1
|
Mitra A, Gioukakis E, Mul W, Peterman EJG. Delivery of intraflagellar transport proteins to the ciliary base and assembly into trains. SCIENCE ADVANCES 2025; 11:eadr1716. [PMID: 40184459 PMCID: PMC11970479 DOI: 10.1126/sciadv.adr1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/03/2025] [Indexed: 04/06/2025]
Abstract
Anterograde intraflagellar transport (IFT) trains, composed of IFT-B, IFT-A, and BBSome subcomplexes, are responsible for transporting ciliary proteins into the cilium. How IFT subcomplexes reach the ciliary base and assemble into IFT trains is poorly understood. Here, we perform quantitative single-molecule imaging in Caenorhabditis elegans chemosensory cilia to uncover how IFT subcomplexes arrive at the base, organize in IFT trains, and enter the cilium. We find that BBSomes reach the base via diffusion where they either associate with assembling IFT trains or with the membrane surrounding the base. In contrast, IFT-B and IFT-A reach the base via directed transport most likely on vesicles that stop at distinct locations near the base. Individual subcomplexes detach from the vesicles into a diffusive pool and associate to assembling trains. Our results show that IFT-B is first incorporated into IFT trains, followed by IFT-A, and finally BBSomes, indicating that the assembly of IFT trains is a highly regulated, step-wise process.
Collapse
Affiliation(s)
| | - Evangelos Gioukakis
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wouter Mul
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Erwin J. G. Peterman
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Tasaki K, Satoda Y, Chiba S, Shin HW, Katoh Y, Nakayama K. Mutually independent and cilia-independent assembly of IFT-A and IFT-B complexes at mother centriole. Mol Biol Cell 2025; 36:ar48. [PMID: 40020180 PMCID: PMC12005097 DOI: 10.1091/mbc.e24-11-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
The intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes and powered by dynein-2 and kinesin-2 motors, is crucial for bidirectional trafficking of ciliary proteins and their import/export across the transition zone (TZ). Stepwise assembly of anterograde IFT trains was proposed previously; that is, the IFT-B complex first forms a TZ-tethered scaffold with sequential incorporation of IFT-A, dynein-2, and finally kinesin-2. However, IFT-A and IFT-B complexes also demonstrate distinct localization to the basal body/mother centriole. We show that IFT-A, IFT-B, and dynein-2 complexes are recruited to the mother centriole independently of ciliogenesis. Furthermore, mother centriole recruitment of IFT-A and IFT-B can occur in the absence of IFT-B and IFT-A, respectively, and dynein-2 recruitment is independent of IFT-A and IFT-B. Expansion microscopy revealed that the IFT-A/IFT-B pool at the basal body is distinct from that at the TZ. We conclude that IFT-A and IFT-B are recruited to the mother centriole in a mutually independent and ciliogenesis-independent manner before IFT train assembly.
Collapse
Affiliation(s)
- Koshi Tasaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yuuki Satoda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shuhei Chiba
- Laboratory of Molecular and Cellular Biology, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
McCafferty CL, Papoulas O, Lee C, Bui KH, Taylor DW, Marcotte EM, Wallingford JB. An amino acid-resolution interactome for motile cilia identifies the structure and function of ciliopathy protein complexes. Dev Cell 2025; 60:965-978.e3. [PMID: 39674175 PMCID: PMC11945580 DOI: 10.1016/j.devcel.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/04/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain a myriad of different proteins that assemble into an array of distinct machines, and understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry in Tetrahymena thermophila. From over 19,000 cross-links, we identified over 4,700 unique amino acid interactions among over 1,100 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the intraflagellar transport system, axonemal dynein arms, radial spokes, the 96-nm ruler, and microtubule inner proteins. Guided by this dataset, we used vertebrate multiciliated cells to reveal functional interactions among several poorly defined human ciliopathy proteins. This dataset provides a resource for studying the biology of an ancient organelle and the molecular etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L McCafferty
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA.
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Kodzik N, Ciereszko A, Judycka S, Słowińska M, Szczepkowska B, Świderska B, Dietrich MA. Cryoprotectant-specific alterations in the proteome of Siberian sturgeon spermatozoa induced by cryopreservation. Sci Rep 2024; 14:17707. [PMID: 39085328 PMCID: PMC11291920 DOI: 10.1038/s41598-024-68395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Cryopreservation is crucial for conserving genetic diversity in endangered species including the critically endangered group of sturgeons (Acipenseridae), but it can compromise sperm quality and protein profiles. Although cryopreservation with dimethyl sulfoxide (DMSO) and methanol (MeOH) results in the recovery of good post-thaw motility, DMSO-preserved sperm show reduced fertilization ability. This study was conducted in Siberian sturgeon as a model for Acipenserid fishes to explore the effects of DMSO and MeOH on the proteome of semen using advanced proteomics methods-liquid chromatography‒mass spectrometry and two-dimensional difference gel electrophoresis. We analyzed the proteomic profiles of fresh and cryopreserved spermatozoa and their extracellular medium and showed that cryopreservation decreases motility and viability and increases reactive oxygen species levels, membrane fluidity, and acrosome damage. Despite having similar post-thaw semen motility, sperm treated with DMSO had significantly lower fertilization success (6.2%) than those treated with MeOH (51.2%). A total of 224 and 118 differentially abundant proteins were identified in spermatozoa preserved with MeOH and DMSO, respectively. MeOH-related proteins were linked to chromosomal structure and mitochondrial functionality, while DMSO-related proteins impacted fertilization by altering the acrosome reaction and binding of sperm to the zona pellucida and nuclear organization. Additionally, cryopreservation led to alterations in the proacrosin/acrosin system in both cryoprotectants. This study provides the first comprehensive proteomic characterization of Siberian sturgeon sperm after cryopreservation, offering insights into how cryoprotectants impact fertilization ability.
Collapse
Affiliation(s)
- Natalia Kodzik
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Judycka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Bożena Szczepkowska
- Department of Sturgeon Fish Breeding, National Inland Fisheries Research Institute in Olsztyn, 11-610, Pozezdrze, Pieczarki, Poland
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Mariola A Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
5
|
Marshall WF. Chlamydomonas as a model system to study cilia and flagella using genetics, biochemistry, and microscopy. Front Cell Dev Biol 2024; 12:1412641. [PMID: 38872931 PMCID: PMC11169674 DOI: 10.3389/fcell.2024.1412641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
The unicellular green alga, Chlamydomonas reinhardtii, has played a central role in discovering much of what is currently known about the composition, assembly, and function of cilia and flagella. Chlamydomonas combines excellent genetics, such as the ability to grow cells as haploids or diploids and to perform tetrad analysis, with an unparalleled ability to detach and isolate flagella in a single step without cell lysis. The combination of genetics and biochemistry that is possible in Chlamydomonas has allowed many of the key components of the cilium to be identified by looking for proteins that are missing in a defined mutant. Few if any other model organisms allow such a seamless combination of genetic and biochemical approaches. Other major advantages of Chlamydomonas compared to other systems include the ability to induce flagella to regenerate in a highly synchronous manner, allowing the kinetics of flagellar growth to be measured, and the ability of Chlamydomonas flagella to adhere to glass coverslips allowing Intraflagellar Transport to be easily imaged inside the flagella of living cells, with quantitative precision and single-molecule resolution. These advantages continue to work in favor of Chlamydomonas as a model system going forward, and are now augmented by extensive genomic resources, a knockout strain collection, and efficient CRISPR gene editing. While Chlamydomonas has obvious limitations for studying ciliary functions related to animal development or organ physiology, when it comes to studying the fundamental biology of cilia and flagella, Chlamydomonas is simply unmatched in terms of speed, efficiency, cost, and the variety of approaches that can be brought to bear on a question.
Collapse
Affiliation(s)
- Wallace F. Marshall
- Department Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Udupa P, Ghosh DK. The emerging functions of intraflagellar transport 52 in ciliary transport and ciliopathies. Traffic 2024; 25:e12929. [PMID: 38272449 DOI: 10.1111/tra.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Ciliary transport in eukaryotic cells is an intricate and conserved process involving the coordinated assembly and functioning of a multiprotein intraflagellar transport (IFT) complex. Among the various IFT proteins, intraflagellar transport 52 (IFT52) plays a crucial role in ciliary transport and is implicated in various ciliopathies. IFT52 is a core component of the IFT-B complex that facilitates movement of cargoes along the ciliary axoneme. Stable binding of the IFT-B1 and IFT-B2 subcomplexes by IFT52 in the IFT-B complex regulates recycling of ciliary components and maintenance of ciliary functions such as signal transduction and molecular movement. Mutations in the IFT52 gene can disrupt ciliary trafficking, resulting in dysfunctional cilia and affecting cellular processes in ciliopathies. Such ciliopathies caused by IFT52 mutations exhibit a wide range of clinical features, including skeletal developmental abnormalities, retinal degeneration, respiratory failure and neurological abnormalities in affected individuals. Therefore, IFT52 serves as a promising biomarker for the diagnosis of various ciliopathies, including short-rib thoracic dysplasia 16 with or without polydactyly. Here, we provide an overview of the IFT52-mediated molecular mechanisms underlying ciliary transport and describe the IFT52 mutations that cause different disorders associated with cilia dysfunction.
Collapse
Affiliation(s)
- Prajna Udupa
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Fassad MR, Rumman N, Junger K, Patel MP, Thompson J, Goggin P, Ueffing M, Beyer T, Boldt K, Lucas JS, Mitchison HM. Defective airway intraflagellar transport underlies a combined motile and primary ciliopathy syndrome caused by IFT74 mutations. Hum Mol Genet 2023; 32:3090-3104. [PMID: 37555648 PMCID: PMC10586200 DOI: 10.1093/hmg/ddad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Ciliopathies are inherited disorders caused by defective cilia. Mutations affecting motile cilia usually cause the chronic muco-obstructive sinopulmonary disease primary ciliary dyskinesia (PCD) and are associated with laterality defects, while a broad spectrum of early developmental as well as degenerative syndromes arise from mutations affecting signalling of primary (non-motile) cilia. Cilia assembly and functioning requires intraflagellar transport (IFT) of cargos assisted by IFT-B and IFT-A adaptor complexes. Within IFT-B, the N-termini of partner proteins IFT74 and IFT81 govern tubulin transport to build the ciliary microtubular cytoskeleton. We detected a homozygous 3-kb intragenic IFT74 deletion removing the exon 2 initiation codon and 40 N-terminal amino acids in two affected siblings. Both had clinical features of PCD with bronchiectasis, but no laterality defects. They also had retinal dysplasia and abnormal bone growth, with a narrowed thorax and short ribs, shortened long bones and digits, and abnormal skull shape. This resembles short-rib thoracic dysplasia, a skeletal ciliopathy previously linked to IFT defects in primary cilia, not motile cilia. Ciliated nasal epithelial cells collected from affected individuals had reduced numbers of shortened motile cilia with disarranged microtubules, some misorientation of the basal feet, and disrupted cilia structural and IFT protein distributions. No full-length IFT74 was expressed, only truncated forms that were consistent with N-terminal deletion and inframe translation from downstream initiation codons. In affinity purification mass spectrometry, exon 2-deleted IFT74 initiated from the nearest inframe downstream methionine 41 still interacts as part of the IFT-B complex, but only with reduced interaction levels and not with all its usual IFT-B partners. We propose that this is a hypomorphic mutation with some residual protein function retained, which gives rise to a primary skeletal ciliopathy combined with defective motile cilia and PCD.
Collapse
Affiliation(s)
- Mahmoud R Fassad
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
- Department of Human Genetics, Medical Research Institute, Alexandria University, 22 El-Guish Road, El-Shatby, Alexandria 21526, Egypt
| | - Nisreen Rumman
- Department of Pediatrics, Faculty of Medicine, Makassed Hospital and Al-Quds University, East Jerusalem 91220, Palestine
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar St #441, New Haven, CT 06520, United States
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Mitali P Patel
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London W1W 7FF, United Kingdom
| | - James Thompson
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| |
Collapse
|
8
|
McCafferty CL, Papoulas O, Lee C, Bui KH, Taylor DW, Marcotte EM, Wallingford JB. An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548259. [PMID: 37781579 PMCID: PMC10541116 DOI: 10.1101/2023.07.09.548259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry (XL/MS) in Tetrahymena thermophila. From over 19,000 XLs, we identified 4,757 unique amino acid interactions among 1,143 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the Intraflagellar Transport system, axonemal dynein arms, radial spokes, the 96 nm ruler, and microtubule inner proteins, among others. Guided by this dataset, we used vertebrate multiciliated cells to reveal novel functional interactions among several poorly-defined human ciliopathy proteins. The dataset therefore provides a powerful resource for studying the basic biology of an ancient organelle and the molecular etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L. McCafferty
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences McGill University, Québec, Canada
| | - David W. Taylor
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
9
|
Tasaki K, Zhou Z, Ishida Y, Katoh Y, Nakayama K. Compound heterozygous IFT81 variations in a skeletal ciliopathy patient cause Bardet-Biedl syndrome-like ciliary defects. Hum Mol Genet 2023; 32:2887-2900. [PMID: 37427975 DOI: 10.1093/hmg/ddad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Owing to their crucial roles in development and homeostasis, defects in cilia cause ciliopathies with diverse clinical manifestations. The intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes, mediates not only the intraciliary bidirectional trafficking but also import and export of ciliary proteins together with the kinesin-2 and dynein-2 motor complexes. The BBSome, containing eight subunits encoded by causative genes of Bardet-Biedl syndrome (BBS), connects the IFT machinery to ciliary membrane proteins to mediate their export from cilia. Although mutations in subunits of the IFT-A and dynein-2 complexes cause skeletal ciliopathies, mutations in some IFT-B subunits are also known to cause skeletal ciliopathies. We here show that compound heterozygous variations of an IFT-B subunit, IFT81, found in a patient with skeletal ciliopathy cause defects in its interactions with other IFT-B subunits, and in ciliogenesis and ciliary protein trafficking when one of the two variants was expressed in IFT81-knockout (KO) cells. Notably, we found that IFT81-KO cells expressing IFT81(Δ490-519), which lacks the binding site for the IFT25-IFT27 dimer, causes ciliary defects reminiscent of those found in BBS cells and those in IFT74-KO cells expressing a BBS variant of IFT74, which forms a heterodimer with IFT81. In addition, IFT81-KO cells expressing IFT81(Δ490-519) in combination with the other variant, IFT81 (L645*), which mimics the cellular conditions of the above skeletal ciliopathy patient, demonstrated essentially the same phenotype as those expressing only IFT81(Δ490-519). Thus, our data indicate that BBS-like defects can be caused by skeletal ciliopathy variants of IFT81.
Collapse
Affiliation(s)
- Koshi Tasaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Zhuang Zhou
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Petriman NA, Loureiro‐López M, Taschner M, Zacharia NK, Georgieva MM, Boegholm N, Wang J, Mourão A, Russell RB, Andersen JS, Lorentzen E. Biochemically validated structural model of the 15-subunit intraflagellar transport complex IFT-B. EMBO J 2022; 41:e112440. [PMID: 36354106 PMCID: PMC9753473 DOI: 10.15252/embj.2022112440] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Cilia are ubiquitous eukaryotic organelles impotant for cellular motility, signaling, and sensory reception. Cilium formation requires intraflagellar transport of structural and signaling components and involves 22 different proteins organized into intraflagellar transport (IFT) complexes IFT-A and IFT-B that are transported by molecular motors. The IFT-B complex constitutes the backbone of polymeric IFT trains carrying cargo between the cilium and the cell body. Currently, high-resolution structures are only available for smaller IFT-B subcomplexes leaving > 50% structurally uncharacterized. Here, we used Alphafold to structurally model the 15-subunit IFT-B complex. The model was validated using cross-linking/mass-spectrometry data on reconstituted IFT-B complexes, X-ray scattering in solution, diffraction from crystals as well as site-directed mutagenesis and protein-binding assays. The IFT-B structure reveals an elongated and highly flexible complex consistent with cryo-electron tomographic reconstructions of IFT trains. The IFT-B complex organizes into IFT-B1 and IFT-B2 parts with binding sites for ciliary cargo and the inactive IFT dynein motor, respectively. Interestingly, our results are consistent with two different binding sites for IFT81/74 on IFT88/70/52/46 suggesting the possibility of different structural architectures for the IFT-B1 complex. Our data present a structural framework to understand IFT-B complex assembly, function, and ciliopathy variants.
Collapse
Affiliation(s)
- Narcis A Petriman
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Marta Loureiro‐López
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Michael Taschner
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Nevin K Zacharia
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | | | - Niels Boegholm
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Jiaolong Wang
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - André Mourão
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | | | - Jens S Andersen
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Esben Lorentzen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| |
Collapse
|
11
|
Zhou Z, Katoh Y, Nakayama K. CEP19-RABL2-IFT-B axis controls BBSome-mediated ciliary GPCR export. Mol Biol Cell 2022; 33:ar126. [PMID: 36074075 PMCID: PMC9634966 DOI: 10.1091/mbc.e22-05-0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The intraflagellar transport (IFT) machinery mediates the import and export of ciliary proteins across the ciliary gate, as well as bidirectional protein trafficking within cilia. In addition to ciliary anterograde protein trafficking, the IFT-B complex participates in the export of membrane proteins together with the BBSome, which consists of eight subunits encoded by the causative genes of Bardet-Biedl syndrome (BBS). The IFT25-IFT27/BBS19 dimer in the IFT-B complex constitutes its interface with the BBSome. We show here that IFT25-IFT27 and the RABL2 GTPase bind the IFT74/BBS22-IFT81 dimer of the IFT-B complex in a mutually exclusive manner. Cells expressing GTP-locked RABL2 [RABL2(Q80L)], but not wild-type RABL2, phenocopied IFT27-knockout cells, that is, they demonstrated BBS-associated ciliary defects, including accumulation of LZTFL1/BBS17 and the BBSome within cilia and the suppression of export of the ciliary GPCRs GPR161 and Smoothened. RABL2(Q80L) enters cilia in a manner dependent on the basal body protein CEP19, but its entry into cilia is not necessary for causing BBS-associated ciliary defects. These observations suggest that GTP-bound RABL2 is likely to be required for recruitment of the IFT-B complex to the ciliary base, where it is replaced with IFT25-IFT27.
Collapse
Affiliation(s)
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan,*Address correspondence to: Kazuhisa Nakayama (); Yohei Katoh ()
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan,*Address correspondence to: Kazuhisa Nakayama (); Yohei Katoh ()
| |
Collapse
|
12
|
Hibbard JVK, Vázquez N, Wallingford JB. Cilia proteins getting to work - how do they commute from the cytoplasm to the base of cilia? J Cell Sci 2022; 135:jcs259444. [PMID: 36073764 PMCID: PMC9482345 DOI: 10.1242/jcs.259444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cilia are multifunctional organelles that originated with the last eukaryotic common ancestor and play central roles in the life cycles of diverse organisms. The motile flagella that move single cells like sperm or unicellular organisms, the motile cilia on animal multiciliated cells that generate fluid flow in organs, and the immotile primary cilia that decorate nearly all cells in animals share many protein components in common, yet each also requires specialized proteins to perform their specialized functions. Despite a now-advanced understanding of how such proteins are transported within cilia, we still know very little about how they are transported from their sites of synthesis through the cytoplasm to the ciliary base. Here, we review the literature concerning this underappreciated topic in ciliary cell biology. We discuss both general mechanisms, as well as specific examples of motor-driven active transport and passive transport via diffusion-and-capture. We then provide deeper discussion of specific, illustrative examples, such as the diverse array of protein subunits that together comprise the intraflagellar transport (IFT) system and the multi-protein axonemal dynein motors that drive beating of motile cilia. We hope this Review will spur further work, shedding light not only on ciliogenesis and ciliary signaling, but also on intracellular transport in general.
Collapse
Affiliation(s)
| | | | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78751, USA
| |
Collapse
|
13
|
Ishida Y, Tasaki K, Katoh Y, Nakayama K. Molecular basis underlying the ciliary defects caused by IFT52 variations found in skeletal ciliopathies. Mol Biol Cell 2022; 33:ar83. [PMID: 35704471 PMCID: PMC9582644 DOI: 10.1091/mbc.e22-05-0188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bidirectional protein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery, which contains the IFT-A and IFT-B complexes powered by the kinesin-2 and dynein-2 motors. Mutations in genes encoding subunits of the IFT-A and dynein-2 complexes cause skeletal ciliopathies. Some subunits of the IFT-B complex, including IFT52, IFT80, and IFT172, are also mutated in skeletal ciliopathies. We here show that IFT52 variants found in individuals with short-rib polydactyly syndrome (SRPS) are compromised in terms of formation of the IFT-B holocomplex from two subcomplexes and its interaction with heterotrimeric kinesin-II. IFT52-knockout (KO) cells expressing IFT52 variants that mimic the cellular conditions of individuals with SRPS demonstrated mild ciliogenesis defects and a decrease in ciliary IFT-B level. Furthermore, in IFT52-KO cells expressing an SRPS variant of IFT52, ciliary tip localization of ICK/CILK1 and KIF17, both of which are likely to be transported to the tip via binding to the IFT-B complex, was significantly impaired. Altogether these results indicate that impaired anterograde trafficking caused by a decrease in the ciliary level of IFT-B or in its binding to kinesin-II underlies the ciliary defects found in skeletal ciliopathies caused by IFT52 variations.
Collapse
Affiliation(s)
- Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koshi Tasaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Guleria VS, Parit R, Quadri N, Das R, Upadhyai P. The intraflagellar transport protein IFT52 associated with short-rib thoracic dysplasia is essential for ciliary function in osteogenic differentiation in vitro and for sensory perception in Drosophila. Exp Cell Res 2022; 418:113273. [PMID: 35839863 DOI: 10.1016/j.yexcr.2022.113273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/04/2022]
Abstract
Primary cilia are non-motile sensory cell-organelle that are essential for organismal development, differentiation, and postnatal homeostasis. Their biogenesis and function are mediated by the intraflagellar transport (IFT) system. Pathogenic variants in IFT52, a central component of the IFT-B complex is associated with short-rib thoracic dysplasia with or without polydactyly 16 (SRTD16), with major skeletal manifestations, in addition to other features. Here we sought to examine the role of IFT52 in osteoblast differentiation. Using lentiviral shRNA interference Ift52 was depleted in C3H10T1/2 mouse mesenchymal stem cells. This led to the disruption of the IFT-B anterograde trafficking machinery that impaired primary ciliogenesis and blocked osteogenic differentiation. In Ift52 silenced cells, Hedgehog (Hh) pathway upregulation during osteogenesis was attenuated and despite Smoothened Agonist (SAG) based Hh activation, osteogenic differentiation was incompletely restored. Further we investigated IFT52 activity in Drosophila, wherein the only ciliated somatic cells are the bipolar sensory neurons of the peripheral nervous system. Knockdown of IFT52 in Drosophila neuronal tissues reduced lifespan with the loss of embryonic chordotonal cilia, and produced severe locomotion, auditory and proprioceptive defects in larva and adults. Together these findings improve our knowledge of the role of IFT52 in various physiological contexts and its associated human disorder.
Collapse
Affiliation(s)
- Vishal Singh Guleria
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rahul Parit
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
15
|
Hoffmann F, Bolz S, Junger K, Klose F, Schubert T, Woerz F, Boldt K, Ueffing M, Beyer T. TTC30A and TTC30B Redundancy Protects IFT Complex B Integrity and Its Pivotal Role in Ciliogenesis. Genes (Basel) 2022; 13:genes13071191. [PMID: 35885974 PMCID: PMC9319246 DOI: 10.3390/genes13071191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Intraflagellar transport (IFT) is a microtubule-based system that supports the assembly and maintenance of cilia. The dysfunction of IFT leads to ciliopathies of variable severity. Two of the IFT-B components are the paralogue proteins TTC30A and TTC30B. To investigate whether these proteins constitute redundant functions, CRISPR/Cas9 was used to generate single TTC30A or B and double-knockout hTERT-RPE1 cells. Ciliogenesis assays showed the redundancy of both proteins while the polyglutamylation of cilia was affected in single knockouts. The localization of other IFT components was not affected by the depletion of a single paralogue. A loss of both proteins led to a severe ciliogenesis defect, resulting in no cilia formation, which was rescued by TTC30A or B. The redundancy can be explained by the highly similar interaction patterns of the paralogues; both equally interact with the IFT-B machinery. Our study demonstrates that a loss of one TTC30 paralogue can mostly be compensated by the other, thus preventing severe ciliary defects. However, cells assemble shorter cilia, which are potentially limited in their function, especially because of impaired polyglutamylation. A complete loss of both proteins leads to a deficit in IFT complex B integrity followed by disrupted IFT and subsequently no cilia formation.
Collapse
Affiliation(s)
- Felix Hoffmann
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Sylvia Bolz
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Franziska Klose
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Timm Schubert
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Franziska Woerz
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
- Correspondence:
| |
Collapse
|
16
|
Hazime KS, Zhou Z, Joachimiak E, Bulgakova NA, Wloga D, Malicki JJ. STORM imaging reveals the spatial arrangement of transition zone components and IFT particles at the ciliary base in Tetrahymena. Sci Rep 2021; 11:7899. [PMID: 33846423 PMCID: PMC8041816 DOI: 10.1038/s41598-021-86909-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The base of the cilium comprising the transition zone (TZ) and transition fibers (TF) acts as a selecting gate to regulate the intraflagellar transport (IFT)-dependent trafficking of proteins to and from cilia. Before entering the ciliary compartment, IFT complexes and transported cargoes accumulate at or near the base of the cilium. The spatial organization of IFT proteins at the cilia base is key for understanding cilia formation and function. Using stochastic optical reconstruction microscopy (STORM) and computational averaging, we show that seven TZ, nine IFT, three Bardet–Biedl syndrome (BBS), and one centrosomal protein, form 9-clustered rings at the cilium base of a ciliate Tetrahymena thermophila. In the axial dimension, analyzed TZ proteins localize to a narrow region of about 30 nm while IFT proteins dock approximately 80 nm proximal to TZ. Moreover, the IFT-A subcomplex is positioned peripheral to the IFT-B subcomplex and the investigated BBS proteins localize near the ciliary membrane. The positioning of the HA-tagged N- and C-termini of the selected proteins enabled the prediction of the spatial orientation of protein particles and likely cargo interaction sites. Based on the obtained data, we built a comprehensive 3D-model showing the arrangement of the investigated ciliary proteins.
Collapse
Affiliation(s)
- Khodor S Hazime
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Zhu Zhou
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Natalia A Bulgakova
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Jarema J Malicki
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
17
|
Hibbard JVK, Vazquez N, Satija R, Wallingford JB. Protein turnover dynamics suggest a diffusion-to-capture mechanism for peri-basal body recruitment and retention of intraflagellar transport proteins. Mol Biol Cell 2021; 32:1171-1180. [PMID: 33826363 PMCID: PMC8351562 DOI: 10.1091/mbc.e20-11-0717] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intraflagellar transport (IFT) is essential for construction and maintenance of cilia. IFT proteins concentrate at the basal body where they are thought to assemble into trains and bind cargoes for transport. To study the mechanisms of IFT recruitment to this peri-basal body pool, we quantified protein dynamics of eight IFT proteins, as well as five other basal body localizing proteins using fluorescence recovery after photobleaching in vertebrate multiciliated cells. We found that members of the IFT-A and IFT-B protein complexes show distinct turnover kinetics from other basal body components. Additionally, known IFT subcomplexes displayed shared dynamics, suggesting shared basal body recruitment and/or retention mechanisms. Finally, we evaluated the mechanisms of basal body recruitment by depolymerizing cytosolic MTs, which suggested that IFT proteins are recruited to basal bodies through a diffusion-to-capture mechanism. Our survey of IFT protein dynamics provides new insights into IFT recruitment to basal bodies, a crucial step in ciliogenesis and ciliary signaling.
Collapse
Affiliation(s)
- Jaime V K Hibbard
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Neftali Vazquez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Rohit Satija
- California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
18
|
Vitre B, Guesdon A, Delaval B. Non-ciliary Roles of IFT Proteins in Cell Division and Polycystic Kidney Diseases. Front Cell Dev Biol 2020; 8:578239. [PMID: 33072760 PMCID: PMC7536321 DOI: 10.3389/fcell.2020.578239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Cilia are small organelles present at the surface of most differentiated cells where they act as sensors for mechanical or biochemical stimuli. Cilia assembly and function require the Intraflagellar Transport (IFT) machinery, an intracellular transport system that functions in association with microtubules and motors. If IFT proteins have long been studied for their ciliary roles, recent evidences indicate that their functions are not restricted to the cilium. Indeed, IFT proteins are found outside the ciliary compartment where they are involved in a variety of cellular processes in association with non-ciliary motors. Recent works also provide evidence that non-ciliary roles of IFT proteins could be responsible for the development of ciliopathies related phenotypes including polycystic kidney diseases. In this review, we will discuss the interactions of IFT proteins with microtubules and motors as well as newly identified non-ciliary functions of IFT proteins, focusing on their roles in cell division. We will also discuss the potential contribution of non-ciliary IFT proteins functions to the etiology of kidney diseases.
Collapse
|
19
|
Shi L, Zhou T, Huang Q, Zhang S, Li W, Zhang L, Hess RA, Pazour GJ, Zhang Z. Intraflagellar transport protein 74 is essential for spermatogenesis and male fertility in mice†. Biol Reprod 2020; 101:188-199. [PMID: 31004481 DOI: 10.1093/biolre/ioz071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/22/2019] [Accepted: 04/18/2019] [Indexed: 12/30/2022] Open
Abstract
Intraflagellar transport protein 74 (IFT74) is a component of the core intraflagellar transport complex, a bidirectional movement of large particles along the axoneme microtubules for cilia formation. In this study, we investigated its role in sperm flagella formation and discovered that mice deficiency in Ift74 gene in male germ cells were infertile with low sperm count and immotile sperm. The few developed spermatozoa displayed misshaped heads and short tails. Transmission electron microscopy revealed abnormal flagellar axonemes in the seminiferous tubules where sperm are made. Clusters of unassembled microtubules were present in the spermatids. Testicular expression levels of IFT27, IFT57, IFT81, IFT88, and IFT140 proteins were significantly reduced in the conditional Ift74 mutant mice, with the exception of IFT20 and IFT25. The levels of outer dense fiber 2 and sperm-associated antigen 16L proteins were also not changed. However, the processed A-Kinase anchor protein, a major component of the fibrous sheath, a unique structure of sperm tail, was significantly reduced. Our study demonstrates that IFT74 is essential for mouse sperm formation, probably through assembly of the core axoneme and fibrous sheath, and suggests that IFT74 may be a potential genetic factor affecting male reproduction in man.
Collapse
Affiliation(s)
- Lin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Ting Zhou
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Qian Huang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Shiyang Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA.,Department of Obstetrics/Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
20
|
Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 2020; 55:179-196. [PMID: 32456460 DOI: 10.1080/10409238.2020.1768206] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia and flagella serve as cellular antennae and propellers in various eukaryotic cells, and contain specific receptors and ion channels as well as components of axonemal microtubules and molecular motors to achieve their sensory and motile functions. Not only the bidirectional trafficking of specific proteins within cilia but also their selective entry and exit across the ciliary gate is mediated by the intraflagellar transport (IFT) machinery with the aid of motor proteins. The IFT-B complex, which is powered by the kinesin-2 motor, mediates anterograde protein trafficking from the base to the tip of cilia, whereas the IFT-A complex together with the dynein-2 complex mediates retrograde protein trafficking. The BBSome complex connects ciliary membrane proteins to the IFT machinery. Defects in any component of this trafficking machinery lead to abnormal ciliogenesis and ciliary functions, and results in a broad spectrum of disorders, collectively called the ciliopathies. In this review article, we provide an overview of the architectures of the components of the IFT machinery and their functional interplay in ciliary protein trafficking.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Vitre B, Taulet N, Guesdon A, Douanier A, Dosdane A, Cisneros M, Maurin J, Hettinger S, Anguille C, Taschner M, Lorentzen E, Delaval B. IFT proteins interact with HSET to promote supernumerary centrosome clustering in mitosis. EMBO Rep 2020; 21:e49234. [PMID: 32270908 PMCID: PMC7271317 DOI: 10.15252/embr.201949234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 11/10/2022] Open
Abstract
Centrosome amplification is a hallmark of cancer, and centrosome clustering is essential for cancer cell survival. The mitotic kinesin HSET is an essential contributor to this process. Recent studies have highlighted novel functions for intraflagellar transport (IFT) proteins in regulating motors and mitotic processes. Here, using siRNA knock‐down of various IFT proteins or AID‐inducible degradation of endogenous IFT88 in combination with small‐molecule inhibition of HSET, we show that IFT proteins together with HSET are required for efficient centrosome clustering. We identify a direct interaction between the kinesin HSET and IFT proteins, and we define how IFT proteins contribute to clustering dynamics during mitosis using high‐resolution live imaging of centrosomes. Finally, we demonstrate the requirement of IFT88 for efficient centrosome clustering in a variety of cancer cell lines naturally harboring supernumerary centrosomes and its importance for cancer cell proliferation. Overall, our data unravel a novel role for the IFT machinery in centrosome clustering during mitosis in cells harboring supernumerary centrosomes.
Collapse
Affiliation(s)
- Benjamin Vitre
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Nicolas Taulet
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Audrey Guesdon
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Audrey Douanier
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Aurelie Dosdane
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Melanie Cisneros
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Justine Maurin
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Sabrina Hettinger
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Christelle Anguille
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Michael Taschner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Benedicte Delaval
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| |
Collapse
|
22
|
Wang J, Taschner M, Petriman NA, Andersen MB, Basquin J, Bhogaraju S, Vetter M, Wachter S, Lorentzen A, Lorentzen E. Purification and crystal structure of human ODA16: Implications for ciliary import of outer dynein arms by the intraflagellar transport machinery. Protein Sci 2020; 29:1502-1510. [PMID: 32239748 DOI: 10.1002/pro.3864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
Motile cilia protrude from cell surfaces and are necessary to create movement of cells and fluids in the body. At the molecular level, cilia contain several dynein molecular motor complexes including outer dynein arms (ODAs) that are attached periodically to the ciliary axoneme, where they hydrolyse ATP to create the force required for bending and motility of the cilium. ODAs are preassembled in the cytoplasm and subsequently trafficked into the cilium by the intraflagellar transport (IFT) system. In the case of the green alga Chlamydomonas reinhardtii, the adaptor protein ODA16 binds to ODAs and directly to the IFT complex component IFT46 to facilitate the ciliary import of ODAs. Here, we purified recombinant human IFT46 and ODA16, determined the high-resolution crystal structure of the ODA16 protein, and carried out direct interaction studies of IFT46 and ODA16. The human ODA16 C-terminal 320 residues adopt the fold of an eight-bladed β-propeller with high overall structural similarity to the Chlamydomonas ODA16. However, the small 80 residue N-terminal domain, which in Chlamydomonas ODA16 is located on top of the β-propeller and is required to form the binding cleft for IFT46, has no visible electron density in case of the human ODA16 structure. Furthermore, size exclusion chromatography and pull-down experiments failed to detect a direct interaction between human ODA16 and IFT46. These data suggest that additional factors may be required for the ciliary import of ODAs in human cells with motile cilia.
Collapse
Affiliation(s)
- Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Michael Taschner
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Narcis A Petriman
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Marie B Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Jerome Basquin
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Planegg, Germany
| | | | - Melanie Vetter
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Planegg, Germany
| | - Stefanie Wachter
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Planegg, Germany
| | - Anna Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
23
|
Dupont MA, Humbert C, Huber C, Siour Q, Guerrera IC, Jung V, Christensen A, Pouliet A, Garfa-Traoré M, Nitschké P, Injeyan M, Millar K, Chitayat D, Shannon P, Girisha KM, Shukla A, Mechler C, Lorentzen E, Benmerah A, Cormier-Daire V, Jeanpierre C, Saunier S, Delous M. Human IFT52 mutations uncover a novel role for the protein in microtubule dynamics and centrosome cohesion. Hum Mol Genet 2020; 28:2720-2737. [PMID: 31042281 DOI: 10.1093/hmg/ddz091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/26/2022] Open
Abstract
Mutations in genes encoding components of the intraflagellar transport (IFT) complexes have previously been associated with a spectrum of diseases collectively termed ciliopathies. Ciliopathies relate to defects in the formation or function of the cilium, a sensory or motile organelle present on the surface of most cell types. IFT52 is a key component of the IFT-B complex and ensures the interaction of the two subcomplexes, IFT-B1 and IFT-B2. Here, we report novel IFT52 biallelic mutations in cases with a short-rib thoracic dysplasia (SRTD) or a congenital anomaly of kidney and urinary tract (CAKUT). Combining in vitro and in vivo studies in zebrafish, we showed that SRTD-associated missense mutation impairs IFT-B complex assembly and IFT-B2 ciliary localization, resulting in decreased cilia length. In comparison, CAKUT-associated missense mutation has a mild pathogenicity, thus explaining the lack of skeletal defects in CAKUT case. In parallel, we demonstrated that the previously reported homozygous nonsense IFT52 mutation associated with Sensenbrenner syndrome [Girisha et al. (2016) A homozygous nonsense variant in IFT52 is associated with a human skeletal ciliopathy. Clin. Genet., 90, 536-539] leads to exon skipping and results in a partially functional protein. Finally, our work uncovered a novel role for IFT52 in microtubule network regulation. We showed that IFT52 interacts and partially co-localized with centrin at the distal end of centrioles where it is involved in its recruitment and/or maintenance. Alteration of this function likely contributes to centriole splitting observed in Ift52-/- cells. Altogether, our findings allow a better comprehensive genotype-phenotype correlation among IFT52-related cases and revealed a novel, extra-ciliary role for IFT52, i.e. disruption may contribute to pathophysiological mechanisms.
Collapse
Affiliation(s)
- Marie Alice Dupont
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Camille Humbert
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Céline Huber
- Laboratory of Molecular and Physiopathological bases of osteochondrodysplasia, INSERM, Paris, France.,Department of Genetics, Reference Centre for Skeletal Dysplasia, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Siour
- Laboratory of Molecular and Physiopathological bases of osteochondrodysplasia, INSERM, Paris, France.,Department of Genetics, Reference Centre for Skeletal Dysplasia, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform 3P5-Necker, Paris Descartes-Sorbonne Paris Cité University, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Vincent Jung
- Proteomics Platform 3P5-Necker, Paris Descartes-Sorbonne Paris Cité University, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Anni Christensen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Aurore Pouliet
- Genomics Core Facility, Imagine Institute and Structure Fédérative de Recherche Necker, INSERM UMR1163 and INSERM US24/CNRS UMS3633, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Meriem Garfa-Traoré
- Cell Imaging Platform UMS 24, Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS3633, Paris, France
| | - Patrick Nitschké
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Bioinformatics Core Facility, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Marie Injeyan
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Kathryn Millar
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Charlotte Mechler
- Assistance Publique - Hôpitaux de Paris, Louis Mourier Hospital, Colombes, France
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Valérie Cormier-Daire
- Laboratory of Molecular and Physiopathological bases of osteochondrodysplasia, INSERM, Paris, France.,Department of Genetics, Reference Centre for Skeletal Dysplasia, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Cécile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Marion Delous
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
24
|
Intraflagellar transport protein RABL5/IFT22 recruits the BBSome to the basal body through the GTPase ARL6/BBS3. Proc Natl Acad Sci U S A 2020; 117:2496-2505. [PMID: 31953262 DOI: 10.1073/pnas.1901665117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy caused by defects in the assembly or distribution of the BBSome, a conserved protein complex. The BBSome cycles via intraflagellar transport (IFT) through cilia to transport signaling proteins. How the BBSome is recruited to the basal body for binding to IFT trains for ciliary entry remains unknown. Here, we show that the Rab-like 5 GTPase IFT22 regulates basal body targeting of the BBSome in Chlamydomonas reinhardtii Our functional, biochemical and single particle in vivo imaging assays show that IFT22 is an active GTPase with low intrinsic GTPase activity. IFT22 is part of the IFT-B1 subcomplex but is not required for ciliary assembly. Independent of its association to IFT-B1, IFT22 binds and stabilizes the Arf-like 6 GTPase BBS3, a BBS protein that is not part of the BBSome. IFT22/BBS3 associates with the BBSome through an interaction between BBS3 and the BBSome. When both IFT22 and BBS3 are in their guanosine triphosphate (GTP)-bound states they recruit the BBSome to the basal body for coupling with the IFT-B1 subcomplex. The GTP-bound BBS3 likely remains to be associated with the BBSome upon ciliary entry. In contrast, IFT22 is not required for the transport of BBSomes in cilia, indicating that the BBSome is transferred from IFT22 to the IFT trains at the ciliary base. In summary, our data propose that nucleotide-dependent recruitment of the BBSome to the basal body by IFT22 regulates BBSome entry into cilia.
Collapse
|
25
|
Wachter S, Jung J, Shafiq S, Basquin J, Fort C, Bastin P, Lorentzen E. Binding of IFT22 to the intraflagellar transport complex is essential for flagellum assembly. EMBO J 2019; 38:e101251. [PMID: 30940671 PMCID: PMC6484408 DOI: 10.15252/embj.2018101251] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Intraflagellar transport (IFT) relies on motor proteins and the IFT complex to construct cilia and flagella. The IFT complex subunit IFT22/RabL5 has sequence similarity with small GTPases although the nucleotide specificity is unclear because of non-conserved G4/G5 motifs. We show that IFT22 specifically associates with G-nucleotides and present crystal structures of IFT22 in complex with GDP, GTP, and with IFT74/81. Our structural analysis unravels an unusual GTP/GDP-binding mode of IFT22 bypassing the classical G4 motif. The GTPase switch regions of IFT22 become ordered upon complex formation with IFT74/81 and mediate most of the IFT22-74/81 interactions. Structure-based mutagenesis reveals that association of IFT22 with the IFT complex is essential for flagellum construction in Trypanosoma brucei although IFT22 GTP-loading is not strictly required.
Collapse
Affiliation(s)
- Stefanie Wachter
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jamin Jung
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Shahaan Shafiq
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Jerome Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Cécile Fort
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
26
|
The complexity of the cilium: spatiotemporal diversity of an ancient organelle. Curr Opin Cell Biol 2018; 55:139-149. [PMID: 30138887 DOI: 10.1016/j.ceb.2018.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
Cilia are microtubule-based appendages present on almost all vertebrate cell types where they mediate a myriad of cellular processes critical for development and homeostasis. In humans, impaired ciliary function is associated with an ever-expanding repertoire of phenotypically-overlapping yet highly variable genetic disorders, the ciliopathies. Extensive work to elucidate the structure, function, and composition of the cilium is offering hints that the `static' representation of the cilium is a gross oversimplification of a highly dynamic organelle whose functions are choreographed dynamically across cell types, developmental, and homeostatic contexts. Understanding this diversity will require discerning ciliary versus non-ciliary roles for classically-defined `ciliary' proteins; defining ciliary protein-protein interaction networks within and beyond the cilium; and resolving the spatiotemporal diversity of ciliary structure and function. Here, focusing on one evolutionarily conserved ciliary module, the intraflagellar transport system, we explore these ideas and propose potential future studies that will improve our knowledge gaps of the oversimplified cilium and, by extension, inform the reasons that underscore the striking range of clinical pathologies associated with ciliary dysfunction.
Collapse
|
27
|
Mohamed MAA, Stepp WL, Ökten Z. Reconstitution reveals motor activation for intraflagellar transport. Nature 2018; 557:387-391. [PMID: 29743676 PMCID: PMC5967604 DOI: 10.1038/s41586-018-0105-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/23/2018] [Indexed: 11/24/2022]
Abstract
The human body represents a striking example of ciliary diversification. Extending from the surface of most cells, cilia accomplish an astonishingly diverse set of tasks. Predictably, mutations in ciliary genes cause a wide range of human diseases such as male infertility or blindness. In C. elegans sensory cilia, this functional diversity appears to be traceable to the differential regulation of the kinesin-2-powered intraflagellar transport (IFT) machinery. Here, we reconstituted the first functional, multi-component IFT complex that is deployed in the sensory cilia of C. elegans. Our bottom-up approach revealed the molecular basis of specific motor recruitment to the IFT trains. We identified the key component that incorporates homodimeric kinesin-2 into its physiologically relevant context which in turn allosterically activates the motor for efficient transport. These results lay the groundwork for a molecular delineation of IFT regulation that eluded understanding since its ground-breaking discovery more than two decades ago.
Collapse
Affiliation(s)
| | - Willi L Stepp
- Physik Department E22, Technische Universität München, Garching, Germany
| | - Zeynep Ökten
- Physik Department E22, Technische Universität München, Garching, Germany. .,Munich Center for Integrated Protein Science, Munich, Germany.
| |
Collapse
|
28
|
Taschner M, Lorentzen A, Mourão A, Collins T, Freke GM, Moulding D, Basquin J, Jenkins D, Lorentzen E. Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis. eLife 2018; 7:33067. [PMID: 29658880 PMCID: PMC5931796 DOI: 10.7554/elife.33067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
Oligomeric assemblies of intraflagellar transport (IFT) particles build cilia through sequential recruitment and transport of ciliary cargo proteins within cilia. Here we present the 1.8 Å resolution crystal structure of the Chlamydomonas IFT-B protein IFT80, which reveals the architecture of two N-terminal β-propellers followed by an α-helical extension. The N-terminal β-propeller tethers IFT80 to the IFT-B complex via IFT38 whereas the second β-propeller and the C-terminal α-helical extension result in IFT80 homo-dimerization. Using CRISPR/Cas to create biallelic Ift80 frameshift mutations in IMCD3 mouse cells, we demonstrate that IFT80 is absolutely required for ciliogenesis. Structural mapping and rescue experiments reveal that human disease-causing missense mutations do not cluster within IFT80 and form functional IFT particles. Unlike missense mutant forms of IFT80, deletion of the C-terminal dimerization domain prevented rescue of ciliogenesis. Taken together our results may provide a first insight into higher order IFT complex formation likely required for IFT train formation.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anna Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - André Mourão
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Toby Collins
- Genetics and Genomic Medicine, University College London, London, United Kingdom
| | - Grace M Freke
- Genetics and Genomic Medicine, University College London, London, United Kingdom
| | - Dale Moulding
- Developmental Biology and Cancer Programmes, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jerome Basquin
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Dagan Jenkins
- Genetics and Genomic Medicine, University College London, London, United Kingdom
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Abstract
Cilia are microtubule-based organelles extending from a basal body at the surface of eukaryotic cells. Cilia regulate cell and fluid motility, sensation and developmental signaling, and ciliary defects cause human diseases (ciliopathies) affecting the formation and function of many tissues and organs. Over the past decade, various Rab and Rab-like membrane trafficking proteins have been shown to regulate cilia-related processes such as basal body maturation, ciliary axoneme extension, intraflagellar transport and ciliary signaling. In this review, we provide a comprehensive overview of Rab protein ciliary associations, drawing on findings from multiple model systems, including mammalian cell culture, mice, zebrafish, C. elegans, trypanosomes, and green algae. We also discuss several emerging mechanistic themes related to ciliary Rab cascades and functional redundancy.
Collapse
Affiliation(s)
- Oliver E Blacque
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Noemie Scheidel
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Stefanie Kuhns
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| |
Collapse
|
30
|
Zhang W, Taylor SP, Ennis HA, Forlenza KN, Duran I, Li B, Sanchez JAO, Nevarez L, Nickerson DA, Bamshad M, Lachman RS, Krakow D, Cohn DH. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat 2018; 39:152-166. [PMID: 29068549 PMCID: PMC6198324 DOI: 10.1002/humu.23362] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 01/26/2023]
Abstract
Defects in the biosynthesis and/or function of primary cilia cause a spectrum of disorders collectively referred to as ciliopathies. A subset of these disorders is distinguished by profound abnormalities of the skeleton that include a long narrow chest with markedly short ribs, extremely short limbs, and polydactyly. These include the perinatal lethal short-rib polydactyly syndromes (SRPS) and the less severe asphyxiating thoracic dystrophy (ATD), Ellis-van Creveld (EVC) syndrome, and cranioectodermal dysplasia (CED) phenotypes. To identify new genes and define the spectrum of mutations in the skeletal ciliopathies, we analyzed 152 unrelated families with SRPS, ATD, and EVC. Causal variants were discovered in 14 genes in 120 families, including one newly associated gene and two genes previously associated with other ciliopathies. These three genes encode components of three different ciliary complexes; FUZ, which encodes a planar cell polarity complex molecule; TRAF3IP1, which encodes an anterograde ciliary transport protein; and LBR, which encodes a nuclear membrane protein with sterol reductase activity. The results established the molecular basis of SRPS type IV, in which mutations were identified in four different ciliary genes. The data provide systematic insight regarding the genotypes associated with a large cohort of these genetically heterogeneous phenotypes and identified new ciliary components required for normal skeletal development.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - S Paige Taylor
- Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
| | - Hayley A Ennis
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Kimberly N Forlenza
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Malaga, Malaga, Spain
| | - Bing Li
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Jorge A Ortiz Sanchez
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Lisette Nevarez
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, Washington
| | - Michael Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Ralph S Lachman
- International Skeletal Dysplasia Registry at UCLA, Los Angeles, California
| | - Deborah Krakow
- Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
- International Skeletal Dysplasia Registry at UCLA, Los Angeles, California
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
| | - Daniel H Cohn
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
- International Skeletal Dysplasia Registry at UCLA, Los Angeles, California
| |
Collapse
|
31
|
Nakayama K, Katoh Y. Ciliary protein trafficking mediated by IFT and BBSome complexes with the aid of kinesin-2 and dynein-2 motors. J Biochem 2017; 163:155-164. [DOI: 10.1093/jb/mvx087] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
32
|
Abstract
Cilia are microtubule-based organelles extending from a basal body at the surface of eukaryotic cells. Cilia regulate cell and fluid motility, sensation and developmental signaling, and ciliary defects cause human diseases (ciliopathies) affecting the formation and function of many tissues and organs. Over the past decade, various Rab and Rab-like membrane trafficking proteins have been shown to regulate cilia-related processes such as basal body maturation, ciliary axoneme extension, intraflagellar transport and ciliary signaling. In this review, we provide a comprehensive overview of Rab protein ciliary associations, drawing on findings from multiple model systems, including mammalian cell culture, mice, zebrafish, C. elegans, trypanosomes, and green algae. We also discuss several emerging mechanistic themes related to ciliary Rab cascades and functional redundancy.
Collapse
Affiliation(s)
- Oliver E Blacque
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Noemie Scheidel
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Stefanie Kuhns
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| |
Collapse
|
33
|
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284:2905-2931. [PMID: 28342295 PMCID: PMC5603355 DOI: 10.1111/febs.14068] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance, and length control of cilia, which play critical roles in motility, sensory reception, and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example, axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas, but following its loss in Caenorhabditis elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT dynein motors are thought to play widespread roles as core IFT motors, whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation, and motor-dependent cargo delivery during IFT.
Collapse
Affiliation(s)
- Bram Prevo
- Department of Cellular & Molecular Medicine, University of California San Diego, CA, USA
- Ludwig Institute for Cancer Research, San Diego, CA, USA
| | - Jonathan M Scholey
- Department of Molecular & Cell Biology, University of California Davis, CA, USA
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Dharmat R, Liu W, Ge Z, Sun Z, Yang L, Li Y, Wang K, Thomas K, Sui R, Chen R. IFT81 as a Candidate Gene for Nonsyndromic Retinal Degeneration. Invest Ophthalmol Vis Sci 2017; 58:2483-2490. [PMID: 28460050 PMCID: PMC5413215 DOI: 10.1167/iovs.16-19133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Purpose IFT81, a core component of the IFT-B complex, involved in the bidirectional transport of ciliary proteins, has been recently implicated in syndromic ciliopathies. However, none of the IFT-B core complex proteins have been associated with nonsyndromic retinal dystrophies. Given the importance of ciliary transport in photoreceptor function and structural maintenance, we sought to investigate the impact of IFT (intraflagellar transport) mutations in nonsyndromic retinopathies. Methods Whole exome sequencing was performed on 50 cone-rod dystrophy (CRD) patients that were previously screened for mutations in known retinal disease genes. The impact of candidate mutation was studied using in vitro cell system and in vivo zebrafish assay to determine the pathogenicity of the variant. Results Compound heterozygous mutations in IFT81, including one nonsense (c.1213C>T, p.R405*) and one missense variant (c.1841T>C, p.L614P), were identified in a nonsyndromic CRD proband. Extensive functional analyses of the missense variant in cell culture and zebrafish strongly suggests its pathogenic nature. Loss of IFT81 impairs ciliogenesis and, interestingly, the missense variant displayed significantly reduced rescue of ciliogenesis in the IFT81 knockdown in vitro system. Consistently, dramatic reduction of rescue efficiency of the ift81 mutant zebrafish embryo by mRNA with the missense variant was observed, further supporting its pathogenicity. Conclusions Consistent with the function of the IFT-B complex in the maintenance of photoreceptor cilium, we report a case of mutations in a core IFT-B protein, IFT81. This represents the first report of mutations in IFT81 as a candidate gene for nonsyndromic retinal dystrophy, hence expanding the phenotype spectrum of IFT-B components.
Collapse
Affiliation(s)
- Rachayata Dharmat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States 2Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Wei Liu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Zhongqi Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States 2Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lizhu Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States 2Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Keqing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States 2Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Kandace Thomas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States 2Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States 4Department of Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States 5Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States 6Program of Developmental Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
35
|
Ding J, Shao L, Yao Y, Tong X, Liu H, Yue S, Xie L, Cheng SY. DGKδ triggers endoplasmic reticulum release of IFT88-containing vesicles destined for the assembly of primary cilia. Sci Rep 2017; 7:5296. [PMID: 28706295 PMCID: PMC5509727 DOI: 10.1038/s41598-017-05680-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/01/2017] [Indexed: 11/16/2022] Open
Abstract
The morphogenic factor Sonic hedgehog (Shh) signals through the primary cilium, which relies on intraflagellar transport to maintain its structural integrity and function. However, the process by which protein and lipid cargos are delivered to the primary cilium from their sites of synthesis still remains poorly characterized. Here, we report that diacylglycerol kinase δ (DGKδ), a residential lipid kinase in the endoplasmic reticulum, triggers the release of IFT88-containing vesicles from the ER exit sites (ERES), thereby setting forth their movement to the primary cilium. Encoded by the gene whose mutations originally implicated the primary cilium as the venue of Shh signaling, IFT88 is known to be part of the complex B that drives the anterograde transport within cilia. We show that IFT88 interacts with DGKδ, and is associated with COPII-coated vesicles at the ERES. Using a combination of RNAi silencing and gene knockout strategies, we further show that DGKδ is required for supporting Shh signaling both in vitro and in vivo, demonstrating the physiological significance of this regulation.
Collapse
Affiliation(s)
- Jie Ding
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Lei Shao
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Yixing Yao
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Xin Tong
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Huaize Liu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Shen Yue
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Lu Xie
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
36
|
Lv B, Wan L, Taschner M, Cheng X, Lorentzen E, Huang K. Intraflagellar transport protein IFT52 recruits IFT46 to the basal body and flagella. J Cell Sci 2017; 130:1662-1674. [PMID: 28302912 DOI: 10.1242/jcs.200758] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cilia are microtubule-based organelles and perform motile, sensing and signaling functions. The assembly and maintenance of cilia depend on intraflagellar transport (IFT). Besides ciliary localization, most IFT proteins accumulate at basal bodies. However, little is known about the molecular mechanism of basal body targeting of IFT proteins. We first identified the possible basal body-targeting sequence in IFT46 by expressing IFT46 truncation constructs in an ift46-1 mutant. The C-terminal sequence between residues 246-321, termed BBTS3, was sufficient to target YFP to basal bodies in the ift46-1 strain. Interestingly, BBTS3 is also responsible for the ciliary targeting of IFT46. BBTS3::YFP moves bidirectionally in flagella and interacts with other IFT complex B (IFT-B) proteins. Using IFT and motor mutants, we show that the basal body localization of IFT46 depends on IFT52, but not on IFT81, IFT88, IFT122, FLA10 or DHC1b. IFT52 interacts with IFT46 through residues L285 and L286 of IFT46 and recruits it to basal bodies. Ectopic expression of the C-terminal domain of IFT52 in the nucleus resulted in accumulation of IFT46 in nuclei. These data suggest that IFT52 and IFT46 can preassemble as a complex in the cytoplasm, which is then targeted to basal bodies.
Collapse
Affiliation(s)
- Bo Lv
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lei Wan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried D-82152, Germany
| | - Xi Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried D-82152, Germany
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|
37
|
Taschner M, Mourão A, Awasthi M, Basquin J, Lorentzen E. Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. J Biol Chem 2017; 292:7462-7473. [PMID: 28298440 DOI: 10.1074/jbc.m117.780155] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Motile cilia are found on unicellular organisms such as the green alga Chlamydomonas reinhardtii, on sperm cells, and on cells that line the trachea and fallopian tubes in mammals. The motility of cilia relies on a number of large protein complexes including the force-generating outer dynein arms (ODAs). The transport of ODAs into cilia has been previously shown to require the transport adaptor ODA16, as well as the intraflagellar transport (IFT) protein IFT46, but the molecular mechanism by which ODAs are recognized and transported into motile cilia is still unclear. Here, we determined the high-resolution crystal structure of C. reinhardtii ODA16 (CrODA16) and mapped the binding to IFT46 and ODAs. The CrODA16 structure revealed a small 80-residue N-terminal domain and a C-terminal 8-bladed β-propeller domain that are both required for the association with the N-terminal 147 residues of IFT46. The dissociation constant of the IFT46-ODA16 complex was 200 nm, demonstrating that CrODA16 associates with the IFT complex with an affinity comparable with that of the individual IFT subunits. Furthermore, we show, using ODAs extracted from the axonemes of C. reinhardtii, that the C-terminal β-propeller but not the N-terminal domain of CrODA16 is required for the interaction with ODAs. These data allowed us to present an architectural model for ODA16-mediated IFT of ODAs.
Collapse
Affiliation(s)
- Michael Taschner
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - André Mourão
- the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mayanka Awasthi
- the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Jerome Basquin
- the Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark,
| |
Collapse
|
38
|
Patel SS, Tomar S, Sharma D, Mahindroo N, Udayabanu M. Targeting sonic hedgehog signaling in neurological disorders. Neurosci Biobehav Rev 2017; 74:76-97. [PMID: 28088536 DOI: 10.1016/j.neubiorev.2017.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India
| | - Sunil Tomar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Diksha Sharma
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India.
| |
Collapse
|
39
|
Jiang X, Hernandez D, Hernandez C, Ding Z, Nan B, Aufderheide K, Qin H. IFT57 stabilizes assembled intraflagellar transport complex and mediates transport of motility-related flagellar cargo. J Cell Sci 2017; 130:879-891. [DOI: 10.1242/jcs.199117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022] Open
Abstract
Intraflagellar Transport (IFT) is essential for flagella/cilia assembly and maintenance. Recent biochemical studies have shown that IFT-B is comprised of two subcomplexes, IFT-B1 and IFT-B2. The IFT-B2 subunit IFT57 lies at the interface between IFT-B1 and IFT-B2. Here, using a Chlamydomonas mutant for IFT57, we tested whether IFT57 is critical for IFT-B complex assembly by bridging IFT-B1 and IFT-B2 together. In the ift57-1 mutant, IFT57 and other IFT-B proteins were greatly reduced at the whole-cell level. Strikingly, in the protease free flagellar compartment, while the level of IFT57 was reduced, other IFT particle proteins were not concomitantly reduced but present at the wild-type level. The IFT movement of the IFT57-deficient-IFT particles was also unchanged. Moreover, IFT57 depletion disrupted the flagellar waveform, leading to cell swimming defects. Analysis of the mutant flagellar protein composition showed that certain axonemal proteins were altered. Taken together, these findings suggest that IFT57 does not play an essential structural role in the IFT particle complex but rather functions to prevent it from degradation. Additionally, IFT57 is involved in transporting specific motility-related proteins.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Daniel Hernandez
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Catherine Hernandez
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Zhaolan Ding
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Karl Aufderheide
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| |
Collapse
|
40
|
Taschner M, Lorentzen E. The Intraflagellar Transport Machinery. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a028092. [PMID: 27352625 DOI: 10.1101/cshperspect.a028092] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved organelles that protrude from the cell surface. The unique location and properties of cilia allow them to function in vital processes such as motility and signaling. Ciliary assembly and maintenance rely on intraflagellar transport (IFT), the bidirectional movement of a multicomponent transport system between the ciliary base and tip. Since its initial discovery more than two decades ago, considerable effort has been invested in dissecting the molecular mechanisms of IFT in a variety of model organisms. Importantly, IFT was shown to be essential for mammalian development, and defects in this process cause a number of human pathologies known as ciliopathies. Here, we review current knowledge of IFT with a particular emphasis on the IFT machinery and specific mechanisms of ciliary cargo recognition and transport.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
41
|
Duran I, Taylor SP, Zhang W, Martin J, Forlenza KN, Spiro RP, Nickerson DA, Bamshad M, Cohn DH, Krakow D. Destabilization of the IFT-B cilia core complex due to mutations in IFT81 causes a Spectrum of Short-Rib Polydactyly Syndrome. Sci Rep 2016; 6:34232. [PMID: 27666822 PMCID: PMC5035930 DOI: 10.1038/srep34232] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023] Open
Abstract
Short-rib polydactyly syndromes (SRPS) and Asphyxiating thoracic dystrophy (ATD) or Jeune Syndrome are recessively inherited skeletal ciliopathies characterized by profound skeletal abnormalities and are frequently associated with polydactyly and multiorgan system involvement. SRPS are produced by mutations in genes that participate in the formation and function of primary cilia and usually result from disruption of retrograde intraflagellar (IFT) transport of the cilium. Herein we describe a new spectrum of SRPS caused by mutations in the gene IFT81, a key component of the IFT-B complex essential for anterograde transport. In mutant chondrocytes, the mutations led to low levels of IFT81 and mutant cells produced elongated cilia, had altered hedgehog signaling, had increased post-translation modification of tubulin, and showed evidence of destabilization of additional anterograde transport complex components. These findings demonstrate the importance of IFT81 in the skeleton, its role in the anterograde transport complex, and expand the number of loci associated with SRPS.
Collapse
Affiliation(s)
- Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), University of Malaga, Malaga, 29071, Spain
| | - S Paige Taylor
- Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Wenjuan Zhang
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Jorge Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Kimberly N Forlenza
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Rhonda P Spiro
- Children's Healthcare of Atlanta, Atlanta, GA, 30342, USA
| | - Deborah A Nickerson
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, Washington, 98195, USA
| | - Michael Bamshad
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, Washington, 98195, USA
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
42
|
Mourão A, Christensen ST, Lorentzen E. The intraflagellar transport machinery in ciliary signaling. Curr Opin Struct Biol 2016; 41:98-108. [PMID: 27393972 DOI: 10.1016/j.sbi.2016.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 01/12/2023]
Abstract
Cilia and flagella on eukaryotic cells are slender microtubule-based projections surrounded by a membrane with a unique lipid and protein composition. It is now appreciated that cilia in addition to their established roles in motility also constitute hubs for cellular signaling by sensing external environmental cues necessary for organ development and maintenance of human health. Pathways reported to rely on the cilium organelle include Hedgehog, TGF-β, Wnt, PDGFRα, integrin and DNA damage repair signaling. An emerging theme in ciliary signaling is the requirement for active transport of signaling components into and out of the cilium proper. Here, we review the current state-of-the-art regarding the importance of intraflagellar transport and BBSome multi-subunit complexes in ciliary signaling.
Collapse
Affiliation(s)
- André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark.
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
43
|
Jiang J, Promchan K, Jiang H, Awasthi P, Marshall H, Harned A, Natarajan V. Depletion of BBS Protein LZTFL1 Affects Growth and Causes Retinal Degeneration in Mice. J Genet Genomics 2016; 43:381-91. [PMID: 27312011 PMCID: PMC4925197 DOI: 10.1016/j.jgg.2015.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/12/2015] [Accepted: 11/20/2015] [Indexed: 10/21/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a heterogeneous disease characterized by deficiencies in various organs that are caused by defects in genes involved in the genesis, structural maintenance, and protein trafficking of cilia. Leucine zipper transcription factor-like 1 (LZTFL1) has been identified as a BBS protein (BBS17), because patients with mutations in this gene exhibit the common BBS phenotypes. In this study, we generated a knockout mouse model to investigate the effects of LZTFL1 depletion. Lztfl1 knockout mice were born with low birth weight, reached similar weight to those of wild-type mice at 10 weeks of age, and later gained more weight than their wild-type counterparts. LZTFL1 was localized to the primary cilium of kidney cells, and the absence of LZTFL1 increased the ciliary localization of BBS9. Moreover, in the retinas of Lztfl1 knockout mice, the photoreceptor outer segment was shortened, the distal axoneme of photoreceptor connecting cilium was significantly enlarged, and rhodopsin was targeted to the outer nuclear layer. TUNEL assay showed that many of these abnormal photoreceptor cells in Lztfl1 knockout mice underwent apoptosis. Interestingly, the absence of LZTFL1 caused an abnormal increase of the adaptor protein complex 1 (AP1) in some photoreceptor cells. Based on these data, we conclude that LZTFL1 is a cilium protein and regulates animal weight and photoreceptor connecting cilium function probably by controlling microtubule assembly and protein trafficking in cilia.
Collapse
Affiliation(s)
- Jiangsong Jiang
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Kanyarat Promchan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hong Jiang
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Parirokh Awasthi
- Transgenic Mouse Model Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Heather Marshall
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Adam Harned
- Electron Microscopy Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ven Natarajan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
44
|
Katoh Y, Terada M, Nishijima Y, Takei R, Nozaki S, Hamada H, Nakayama K. Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex. J Biol Chem 2016; 291:10962-75. [PMID: 26980730 PMCID: PMC4900248 DOI: 10.1074/jbc.m116.713883] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/14/2016] [Indexed: 01/22/2023] Open
Abstract
Intraflagellar transport (IFT) is essential for assembly and maintenance of cilia and flagella as well as ciliary motility and signaling. IFT is mediated by multisubunit complexes, including IFT-A, IFT-B, and the BBSome, in concert with kinesin and dynein motors. Under high salt conditions, purified IFT-B complex dissociates into a core subcomplex composed of at least nine subunits and at least five peripherally associated proteins. Using the visible immunoprecipitation assay, which we recently developed as a convenient protein-protein interaction assay, we determined the overall architecture of the IFT-B complex, which can be divided into core and peripheral subcomplexes composed of 10 and 6 subunits, respectively. In particular, we identified TTC26/IFT56 and Cluap1/IFT38, neither of which was included with certainty in previous models of the IFT-B complex, as integral components of the core and peripheral subcomplexes, respectively. Consistent with this, a ciliogenesis defect of Cluap1-deficient mouse embryonic fibroblasts was rescued by exogenous expression of wild-type Cluap1 but not by mutant Cluap1 lacking the binding ability to other IFT-B components. The detailed interaction map as well as comparison of subcellular localization of IFT-B components between wild-type and Cluap1-deficient cells provides insights into the functional relevance of the architecture of the IFT-B complex.
Collapse
Affiliation(s)
- Yohei Katoh
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaya Terada
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuya Nishijima
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryota Takei
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shohei Nozaki
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Hamada
- the Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan, and the Center for Developmental Biology, RIKEN, Chuou-ku, Kobe 650-0047, Japan
| | - Kazuhisa Nakayama
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan,
| |
Collapse
|
45
|
Kubo T, Brown JM, Bellve K, Craige B, Craft JM, Fogarty K, Lechtreck KF, Witman GB. Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J Cell Sci 2016; 129:2106-19. [PMID: 27068536 DOI: 10.1242/jcs.187120] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
The assembly and maintenance of most cilia and flagella rely on intraflagellar transport (IFT). Recent in vitro studies have suggested that, together, the calponin-homology domain within the IFT81 N-terminus and the highly basic N-terminus of IFT74 form a module for IFT of tubulin. By using Chlamydomonas mutants for IFT81 and IFT74, we tested this hypothesis in vivo. Modification of the predicted tubulin-binding residues in IFT81 did not significantly affect basic anterograde IFT and length of steady-state flagella but slowed down flagellar regeneration, a phenotype similar to that seen in a strain that lacks the IFT74 N-terminus. In both mutants, the frequency of tubulin transport by IFT was greatly reduced. A double mutant that combined the modifications to IFT81 and IFT74 was able to form only very short flagella. These results indicate that, together, the IFT81 and IFT74 N-termini are crucial for flagellar assembly, and are likely to function as the main module for IFT of tubulin.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason M Brown
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Biology Department, Salem State University, Salem, MA 01970, USA
| | - Karl Bellve
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Branch Craige
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Julie M Craft
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kevin Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
46
|
Vannuccini E, Paccagnini E, Cantele F, Gentile M, Dini D, Fino F, Diener D, Mencarelli C, Lupetti P. Two classes of short intraflagellar transport train with different 3D structures are present in Chlamydomonas flagella. J Cell Sci 2016; 129:2064-74. [PMID: 27044756 DOI: 10.1242/jcs.183244] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/30/2016] [Indexed: 12/18/2022] Open
Abstract
Intraflagellar transport (IFT) is responsible for the bidirectional trafficking of molecular components required for the elongation and maintenance of eukaryotic cilia and flagella. Cargo is transported by IFT 'trains', linear rows of multiprotein particles moved by molecular motors along the axonemal doublets. We have previously described two structurally distinct categories of 'long' and 'short' trains. Here, we analyse the relative number of these trains throughout flagellar regeneration and show that long trains are most abundant at the beginning of flagellar growth whereas short trains gradually increase in number as flagella elongate. These observations are incompatible with the previous hypothesis that short trains are derived solely from the reorganization of long trains at the flagellar tip. We demonstrate with electron tomography the existence of two distinct ultrastructural organizations for the short trains, we name these 'narrow' and 'wide', and provide the first 3D model of the narrow short trains. These trains are characterized by tri-lobed units, which repeat longitudinally every 16 nm and contact protofilament 7 of the B-tubule. Functional implications of the new structural evidence are discussed.
Collapse
Affiliation(s)
- Elisa Vannuccini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Eugenio Paccagnini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Francesca Cantele
- Dipartimento di Chimica, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milan, Italy
| | - Mariangela Gentile
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Daniele Dini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Federica Fino
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Dennis Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06520, USA
| | - Caterina Mencarelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
47
|
Taschner M, Weber K, Mourão A, Vetter M, Awasthi M, Stiegler M, Bhogaraju S, Lorentzen E. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J 2016; 35:773-90. [PMID: 26912722 PMCID: PMC4818760 DOI: 10.15252/embj.201593164] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT‐B complex consists of 9–10 stably associated core subunits and six “peripheral” subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six “peripheral” IFT‐B subunits of Chlamydomonas reinhardtii as recombinant proteins and show that they form a stable complex independently of the IFT‐B core. We suggest a nomenclature of IFT‐B1 (core) and IFT‐B2 (peripheral) for the two IFT‐B subcomplexes. We demonstrate that IFT88, together with the N‐terminal domain of IFT52, is necessary to bridge the interaction between IFT‐B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT‐B1/IFT‐B2 complex formation. Furthermore, we show that of the three IFT‐B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αβ‐tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface‐exposed residues.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Kristina Weber
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Melanie Vetter
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Mayanka Awasthi
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Marc Stiegler
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Sagar Bhogaraju
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
48
|
Complex Reconstitution from Individual Protein Modules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:305-14. [PMID: 27165333 DOI: 10.1007/978-3-319-27216-0_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cellular function relies on protein complexes that work as nano-machines. The structure and function of protein complexes is an outcome of the specific combination of protein subunits, or modules, within the complex. A major focus of molecular biology is thus to understand how protein subunits assemble to form complexes with distinct biological function. To this end, in vitro reconstitution of complexes from individual subunits to study their assembly, structure and activity is of central importance. With purified individual subunits and sub-modules at hand one can systematically dissect the hierarchical assembly of larger complexes using direct protein-protein interaction assays. Furthermore, activity assays can be carried out with individual subunits or smaller sub-complexes and compared to those of the fully assembled complex to precisely map functional sites and provide a molecular basis for in vivo observations. In this chapter we review methods for protein complex assembly from individual subunits and provide examples of advantages and potential pitfalls to this approach.
Collapse
|
49
|
Recombinant Reconstitution and Purification of the IFT-B Core Complex from Chlamydomonas reinhardtii. Methods Mol Biol 2016; 1454:69-82. [PMID: 27514916 DOI: 10.1007/978-1-4939-3789-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotic cilia and flagella are assembled and maintained by intraflagellar transport (IFT), the bidirectional transport of proteins between the ciliary base and tip. IFT is mediated by the multi-subunit IFT complex, which simultaneously binds cargo proteins and the ciliary motors. So far 22 subunits of the IFT complex have been identified, but insights into the biochemical architecture and especially the three-dimensional structure of this machinery are only starting to emerge because of difficulties in obtaining homogeneous material suitable for structural analysis. Here, we describe a protocol for the purification and reconstitution of a complex containing nine Chlamydomonas reinhardtii IFT proteins, commonly known as the IFT-B core complex. In our hands, this protocol routinely yields several milligrams of pure complex suitable for structural analysis by X-ray crystallography and single-particle cryo-electron microscopy.
Collapse
|
50
|
Perrault I, Halbritter J, Porath JD, Gérard X, Braun DA, Gee HY, Fathy HM, Saunier S, Cormier-Daire V, Thomas S, Attié-Bitach T, Boddaert N, Taschner M, Schueler M, Lorentzen E, Lifton RP, Lawson JA, Garfa-Traore M, Otto EA, Bastin P, Caillaud C, Kaplan J, Rozet JM, Hildebrandt F. IFT81, encoding an IFT-B core protein, as a very rare cause of a ciliopathy phenotype. J Med Genet 2015; 52:657-65. [PMID: 26275418 PMCID: PMC4621372 DOI: 10.1136/jmedgenet-2014-102838] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 06/15/2015] [Indexed: 11/06/2022]
Abstract
Background Bidirectional intraflagellar transport (IFT) consists of two major protein complexes, IFT-A and IFT-B. In contrast to the IFT-B complex, all components of IFT-A have recently been linked to human ciliopathies when defective. We therefore hypothesised that mutations in additional IFT-B encoding genes can be found in patients with multisystemic ciliopathies. Methods We screened 1628 individuals with reno-ocular ciliopathies by targeted next-generation sequencing of ciliary candidate genes, including all IFT-B encoding genes. Results Consequently, we identified a homozygous mutation in IFT81 affecting an obligatory donor splice site in an individual with nephronophthisis and polydactyly. Further, we detected a loss-of-stop mutation with extension of the deduced protein by 10 amino acids in an individual with neuronal ceroid lipofuscinosis-1. This proband presented with retinal dystrophy and brain lesions including cerebellar atrophy, a phenotype to which the IFT81 variant might contribute. Cultured fibroblasts of this latter affected individual showed a significant decrease in ciliated cell abundance compared with controls and increased expression of the transcription factor GLI2 suggesting deranged sonic hedgehog signalling. Conclusions This work describes identification of mutations of IFT81 in individuals with symptoms consistent with the clinical spectrum of ciliopathies. It might represent the rare case of a core IFT-B complex protein found associated with human disease. Our data further suggest that defects in the IFT-B core are an exceedingly rare finding, probably due to its indispensable role for ciliary assembly in development.
Collapse
Affiliation(s)
- Isabelle Perrault
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Paris, France Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Jan Halbritter
- Division of Endocrinology and Nephrology, Department of Internal Medicine, University Clinic Leipzig, Leipzig, Germany Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan D Porath
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xavier Gérard
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Paris, France Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Daniela A Braun
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanan M Fathy
- Pediatric Nephrology Unit, University of Alexandria, Alexandria, Egypt
| | - Sophie Saunier
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France INSERM UMR 1163, Molecular bases of hereditary kidney diseases, Nephronophthisis and Hypodysplasia, Paris, France
| | - Valérie Cormier-Daire
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France INSERM UMR 1163, Molecular and Physiopathological bases of osteochondrodysplasia, Paris, France
| | - Sophie Thomas
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France INSERM UMR 1163, Embryology and genetics of human malformation, Paris, France
| | - Tania Attié-Bitach
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France INSERM UMR 1163, Embryology and genetics of human malformation, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Hôpital Necker-Enfants Malades, APHP, Descartes University, Paris, France
| | - Michael Taschner
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Markus Schueler
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Richard P Lifton
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, USA
| | - Jennifer A Lawson
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meriem Garfa-Traore
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France INSERM UMR 1163, Cell imaging platform, Paris, France
| | - Edgar A Otto
- Departments of Pediatrics, University of Michigan, Ann Arbor, USA
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur and CNRS, URA 2581, Paris, France
| | | | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Paris, France Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Paris, France Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|