1
|
Deng X, Higaki T, Lin HH, Lee YRJ, Liu B. The unconventional TPX2 family protein TPXL3 regulates α Aurora kinase function in spindle morphogenesis in Arabidopsis. THE PLANT CELL 2025; 37:koaf065. [PMID: 40139933 PMCID: PMC12012799 DOI: 10.1093/plcell/koaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025]
Abstract
Spindle assembly in vertebrates requires the Aurora kinase, which is targeted to microtubules and activated by TPX2 (Targeting Protein of XKLP2). In Arabidopsis (Arabidopsis thaliana), TPX2-LIKE 3 (TPXL3), but not the highly conserved TPX2, is essential. To test the hypothesis that TPXL3 regulates the function of α Aurora kinase in spindle assembly, we generated transgenic Arabidopsis lines expressing an artificial microRNA targeting TPXL3 mRNA (amiR-TPXL3). The resulting mutants exhibited growth retardation, which was linked to compromised TPXL3 expression. In the mutant cells, α Aurora was delocalized from spindle microtubules to the cytoplasm, and spindles were assembled without recognizable poles. A functional TPXL3-GFP fusion protein first prominently appeared on the prophase nuclear envelope. Then, TPXL3-GFP localized to spindle microtubules (primarily toward the spindle poles, like γ-tubulin), and finally to the re-forming nuclear envelope during telophase and cytokinesis. However, TPXL3 was absent from phragmoplast microtubules. In addition, we found that the TPXL3 N-terminal Aurora-binding motif, microtubule-binding domain, and importin-binding motif, but not the C-terminal segment, were required for its mitotic function. Expression of truncated TPXL3 variants enhanced the defects in spindle assembly and seedling growth of amiR-TPXL3 plants. Taken together, our findings uncovered the essential function of TPXL3, but not TPX2, in targeting and activating α Aurora kinase for spindle apparatus assembly in Arabidopsis.
Collapse
Affiliation(s)
- Xingguang Deng
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860–8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860–8555, Japan
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Yao Z, Chen J, Wang Y, Cao L. Bioinformatics analysis and validation of HAUS6 as a key prognostic gene in squamous cell carcinoma of the tongue. Arch Oral Biol 2024; 164:106000. [PMID: 38759391 DOI: 10.1016/j.archoralbio.2024.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE To explore the expression of HAUS6 in squamous cell carcinoma of the tongue (TSCC) and its relationship with the clinicopathological features of patients, and to further provide new ideas and therapeutic targets for curing TSCC. DESIGN The Cancer Genome Atlas (TCGA) database was used to screen for differentially expressed genes (DEGs) between TSCC and normal tissues and survival analysis. DEGs of HAUS6 were screened and analyzed for GO, KEGG and GSEA enrichment. Exploring the correlation of HAUS6 with immune cell infiltration and immune checkpoint-related genes. The expression of HAUS6 in tumor and paraneoplastic tissues was confirmed by immunohistochemistry and Western Blot. RESULTS Analysis of the TCGA database results showed that expression of HAUS6 mRNA was significantly enhanced and correlated with overall survival (OS, p < 0.05) in TSCC. HAUS6 expression correlated with the level of immune cell infiltration and immune checkpoint-related genes. Immunohistochemistry and Western Blot confirmed that the expression level of HAUS6 protein was significantly higher in tumor tissues than in paraneoplastic tissues, and that tumor size and hypo-differentiation were higher in the HAUS6 high expression group than in the low expression group in TSCC (p < 0.05). CONCLUSIONS In conclusion, these analyses suggest that HAUS6 can act as an independent predictor of prognosis (p < 0.05) and high HAUS6 expression is strongly associated with poor prognosis.
Collapse
Affiliation(s)
- Zhuoyue Yao
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China
| | - Jing Chen
- Pathology Teaching and Research Laboratory, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yue Wang
- Pathology Teaching and Research Laboratory, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Liyu Cao
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Pathology Teaching and Research Laboratory, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
3
|
do Rosário CF, Zhang Y, Stadnicki J, Ross JL, Wadsworth P. Lateral and longitudinal compaction of PRC1 overlap zones drives stabilization of interzonal microtubules. Mol Biol Cell 2023; 34:ar100. [PMID: 37467037 PMCID: PMC10551706 DOI: 10.1091/mbc.e23-02-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
During anaphase, antiparallel-overlapping midzone microtubules elongate and form bundles, contributing to chromosome segregation and the location of contractile ring formation. Midzone microtubules are dynamic in early but not late anaphase; however, the kinetics and mechanisms of stabilization are incompletely understood. Using photoactivation of cells expressing PA-EGFP-α-tubulin we find that immediately after anaphase onset, a single highly dynamic population of midzone microtubules is present; as anaphase progresses, both dynamic and stable populations of midzone microtubules coexist. By mid-cytokinesis, only static, non-dynamic microtubules are detected. The velocity of microtubule sliding also decreases as anaphase progresses, becoming undetectable by late anaphase. Following depletion of PRC1, midzone microtubules remain highly dynamic in anaphase and fail to form static arrays in telophase despite furrowing. Cells depleted of Kif4a contain elongated PRC1 overlap zones and fail to form static arrays in telophase. Cells blocked in cytokinesis form short PRC1 overlap zones that do not coalesce laterally; these cells also fail to form static arrays in telophase. Together, our results demonstrate that dynamic turnover and sliding of midzone microtubules is gradually reduced during anaphase and that the final transition to a static array in telophase requires both lateral and longitudinal compaction of PRC1 containing overlap zones.
Collapse
Affiliation(s)
- Carline Fermino do Rosário
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| | - Ying Zhang
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
| | - Jennifer Stadnicki
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| | | | - Patricia Wadsworth
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| |
Collapse
|
4
|
The augmin complex architecture reveals structural insights into microtubule branching. Nat Commun 2022; 13:5635. [PMID: 36163468 PMCID: PMC9512787 DOI: 10.1038/s41467-022-33228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
In mitosis, the augmin complex binds to spindle microtubules to recruit the γ-tubulin ring complex (γ-TuRC), the principal microtubule nucleator, for the formation of branched microtubules. Our understanding of augmin-mediated microtubule branching is hampered by the lack of structural information on the augmin complex. Here, we elucidate the molecular architecture and conformational plasticity of the augmin complex using an integrative structural biology approach. The elongated structure of the augmin complex is characterised by extensive coiled-coil segments and comprises two structural elements with distinct but complementary functions in γ-TuRC and microtubule binding, linked by a flexible hinge. The augmin complex is recruited to microtubules via a composite microtubule binding site comprising a positively charged unordered extension and two calponin homology domains. Our study provides the structural basis for augmin function in branched microtubule formation, decisively fostering our understanding of spindle formation in mitosis. The formation of branched microtubule networks in mitotic spindles depends on the augmin complex. Zupa, Würtz et al. elucidate the molecular architecture and conformational plasticity of the augmin complex using integrative structural biology, providing structural insights into microtubule branching.
Collapse
|
5
|
Gabel CA, Li Z, DeMarco AG, Zhang Z, Yang J, Hall MC, Barford D, Chang L. Molecular architecture of the augmin complex. Nat Commun 2022; 13:5449. [PMID: 36114186 PMCID: PMC9481612 DOI: 10.1038/s41467-022-33227-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/05/2022] [Indexed: 12/21/2022] Open
Abstract
Accurate segregation of chromosomes during mitosis depends on the correct assembly of the mitotic spindle, a bipolar structure composed mainly of microtubules. The augmin complex, or homologous to augmin subunits (HAUS) complex, is an eight-subunit protein complex required for building robust mitotic spindles in metazoa. Augmin increases microtubule density within the spindle by recruiting the γ-tubulin ring complex (γ-TuRC) to pre-existing microtubules and nucleating branching microtubules. Here, we elucidate the molecular architecture of augmin by single particle cryo-electron microscopy (cryo-EM), computational methods, and crosslinking mass spectrometry (CLMS). Augmin's highly flexible structure contains a V-shaped head and a filamentous tail, with the head existing in either extended or contracted conformational states. Our work highlights how cryo-EM, complemented by computational advances and CLMS, can elucidate the structure of a challenging protein complex and provides insights into the function of augmin in mediating microtubule branching nucleation.
Collapse
Affiliation(s)
- Clinton A Gabel
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew G DeMarco
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Mark C Hall
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Chen A, Wen S, Liu F, Zhang Z, Liu M, Wu Y, He B, Yan M, Kang T, Lam EWF, Wang Z, Liu Q. CRISPR/Cas9 screening identifies a kinetochore-microtubule dependent mechanism for Aurora-A inhibitor resistance in breast cancer. Cancer Commun (Lond) 2021; 41:121-139. [PMID: 33471959 PMCID: PMC7896750 DOI: 10.1002/cac2.12125] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
Background Overexpression of Aurora‐A (AURKA) is a feature of breast cancer and associates with adverse prognosis. The selective Aurora‐A inhibitor alisertib (MLN8237) has recently demonstrated promising antitumor responses as a single agent in various cancer types but its phase III clinical trial was reported as a failure since MLN8237 did not show an apparent effect in prolonging the survival of patients. Thus, identification of potential targets that could enhance the activity of MLN8237 would provide a rationale for drug combination to achieve better therapeutic outcome. Methods Here, we conducted a systematic synthetic lethality CRISPR/Cas9 screening of 507 kinases using MLN8237 in breast cancer cells and identified a number of targetable kinases that displayed synthetic lethality interactions with MLN8237. Then, we performed competitive growth assays, colony formation assays, cell viability assays, apoptosis assays, and xenograft murine model to evaluate the synergistic therapeutic effects of Haspin (GSG2) depletion or inhibition with MLN8237. For mechanistic studies, immunofluorescence was used to detect the state of microtubules and the localization of Aurora‐B and mitotic centromere‐associated kinesin (MCAK). Results Among the hits, we observed that Haspin depletion or inhibition marginally inhibited breast cancer cell growth but could substantially enhance the killing effects of MLN8237. Mechanistic studies showed that co‐treatment with Aurora‐A and Haspin inhibitors abolished the recruitment of Aurora‐B and mitotic centromere‐associated kinesin (MCAK) to centromeres which were associated with excessive microtubule depolymerization, kinetochore‐microtubule (KT‐MT) attachment failure, and severe mitotic catastrophe. We further showed that the combination of MLN8237 and the Haspin inhibitor CHR‐6494 synergistically reduced breast cancer cell viability and significantly inhibited both in vitro and in vivo tumor growth. Conclusions These findings establish Haspin as a synthetic lethal target and demonstrate CHR‐6494 as a potential combinational drug for promoting the therapeutic effects of MLN8237 on breast cancer.
Collapse
Affiliation(s)
- Ailin Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Fang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Zijian Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Meiling Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Yuanzhong Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Bin He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Surgery and Cancer, Imperial College London, W12 0NN, London, UK
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P. R. China
| |
Collapse
|
7
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
8
|
Verma V, Maresca TJ. Direct observation of branching MT nucleation in living animal cells. J Cell Biol 2019; 218:2829-2840. [PMID: 31340987 PMCID: PMC6719462 DOI: 10.1083/jcb.201904114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/07/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Branching microtubule nucleation by its molecular mediators has never been directly observed in animal cells. By imaging augmin, γ-TuRC, and microtubules with high spatiotemporal resolution, Verma and Maresca quantitatively define the sequential steps of augmin-mediated branching microtubule nucleation in dividing Drosophila cells. Centrosome-mediated microtubule (MT) nucleation has been well characterized; however, numerous noncentrosomal MT nucleation mechanisms exist. The branching MT nucleation pathway envisages that the γ-tubulin ring complex (γ-TuRC) is recruited to MTs by the augmin complex to initiate nucleation of new MTs. While the pathway is well conserved at a molecular and functional level, branching MT nucleation by core constituents has never been directly observed in animal cells. Here, multicolor TIRF microscopy was applied to visualize and quantitatively define the entire process of branching MT nucleation in dividing Drosophila cells during anaphase. The steps of a stereotypical branching nucleation event entailed augmin binding to a mother MT and recruitment of γ-TuRC after 15 s, followed by nucleation 16 s later of a daughter MT at a 36° branch angle. Daughters typically remained attached throughout their ∼40-s lifetime unless the mother depolymerized past the branch point. Assembly of branched MT arrays, which did not require Drosophila TPX2, enhanced localized RhoA activation during cytokinesis.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, MA .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA
| |
Collapse
|
9
|
Lee YRJ, Liu B. Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells. THE NEW PHYTOLOGIST 2019; 222:1705-1718. [PMID: 30681146 DOI: 10.1111/nph.15705] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/07/2019] [Indexed: 05/15/2023]
Abstract
Contents Summary I. Introduction II. MT arrays in plant cells III. γ-Tubulin and MT nucleation IV. MT nucleation sites or flexible MTOCs in plant cells V. MT-dependent MT nucleation VI. Generating new MTs for spindle assembly VII. Generation of MTs for phragmoplast expansion during cytokinesis VIII. MT generation for the cortical MT array IX. MT nucleation: looking forward Acknowledgements References SUMMARY: Cytoskeletal microtubules (MTs) have a multitude of functions including intracellular distribution of molecules and organelles, cell morphogenesis, as well as segregation of the genetic material and separation of the cytoplasm during cell division among eukaryotic organisms. In response to internal and external cues, eukaryotic cells remodel their MT network in a regulated manner in order to assemble physiologically important arrays for cell growth, cell proliferation, or for cells to cope with biotic or abiotic stresses. Nucleation of new MTs is a critical step for MT remodeling. Although many key factors contributing to MT nucleation and organization are well conserved in different kingdoms, the centrosome, representing the most prominent microtubule organizing centers (MTOCs), disappeared during plant evolution as angiosperms lack the structure. Instead, flexible MTOCs may emerge on the plasma membrane, the nuclear envelope, and even organelles depending on types of cells and organisms and/or physiological conditions. MT-dependent MT nucleation is particularly noticeable in plant cells because it accounts for the primary source of MT generation for assembling spindle, phragmoplast, and cortical arrays when the γ-tubulin ring complex is anchored and activated by the augmin complex. It is intriguing what proteins are associated with plant-specific MTOCs and how plant cells activate or inactivate MT nucleation activities in spatiotemporally regulated manners.
Collapse
Affiliation(s)
- Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
10
|
Zhang X, Zhuang R, Ye Q, Zhuo J, Chen K, Lu D, Wei X, Xie H, Xu X, Zheng S. High Expression of Human AugminComplex Submit 3 Indicates Poor Prognosis and Associates with Tumor Progression in Hepatocellular Carcinoma. J Cancer 2019; 10:1434-1443. [PMID: 31031853 PMCID: PMC6485217 DOI: 10.7150/jca.28317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/28/2019] [Indexed: 01/19/2023] Open
Abstract
The function of human augmin complex unit 3(Haus3), a component of the HAU augmin-like complex, in various cancers is not clear. This study aims to elucidate the clinical significance and the role of Haus3 in tumor progression of hepatocellular carcinoma (HCC). We analyzed the expression of Haus3 in 50 HCC patients from The Cancer Genome Atlas and 137 HCC patients in our hospital. Compared with adjacent normal tissue, Haus3 expression assessed by immunohistochemical staining was dramatically increased in tumor tissues. A high level of Haus3 expression was significantly correlated with large tumor size (p=0.025) and tumor multiplicity (p=0.004). Univariate and multivariate survival analysis showed thatexpression of Haus3 was an independent prognostic factor for overall survival ofHCCpatients. Western blot analysis showed that Haus3 regulated the phosphorylation of PLK1-T210 and activity of the Cdk1/cyclin B1 complex, indicating that Haus3 disrupted G2/M phase arrest. In immunofluorescence studies, expression of Haus3 correlated with the level ofα-tubulin and γ-tubulin. In summary, Haus3 plays a vital role in regulatingtheactivityof PLK2-T210 and Cdk1/cyclin B1 complex in G2/M phasetransition and the expression of tubulins to ensure normal mitotic progression. Our data suggest that Haus3 might be a promising prognostic biomarker and molecular target of HCC.
Collapse
Affiliation(s)
- Xuanyu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003,China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Runzhou Zhuang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003,China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Qianwei Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003,China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Jianyong Zhuo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003,China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Kangchen Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003,China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Di Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003,China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Xuyong Wei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003,China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003,China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003,China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003,China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
11
|
Magnaghi-Jaulin L, Eot-Houllier G, Gallaud E, Giet R. Aurora A Protein Kinase: To the Centrosome and Beyond. Biomolecules 2019; 9:biom9010028. [PMID: 30650622 PMCID: PMC6359016 DOI: 10.3390/biom9010028] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Accurate chromosome segregation requires the perfect spatiotemporal rearrangement of the cellular cytoskeleton. Isolated more than two decades ago from Drosophila, Aurora A is a widespread protein kinase that plays key roles during cell division. Numerous studies have described the localisation of Aurora A at centrosomes, the mitotic spindle, and, more recently, at mitotic centromeres. In this review, we will summarise the cytoskeletal rearrangements regulated by Aurora A during cell division. We will also discuss the recent discoveries showing that Aurora A also controls not only the dynamics of the cortical proteins but also regulates the centromeric proteins, revealing new roles for this kinase during cell division.
Collapse
Affiliation(s)
- Laura Magnaghi-Jaulin
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Grégory Eot-Houllier
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Emmanuel Gallaud
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Régis Giet
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| |
Collapse
|
12
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
13
|
Lee YRJ, Hiwatashi Y, Hotta T, Xie T, Doonan JH, Liu B. The Mitotic Function of Augmin Is Dependent on Its Microtubule-Associated Protein Subunit EDE1 in Arabidopsis thaliana. Curr Biol 2017; 27:3891-3897.e4. [DOI: 10.1016/j.cub.2017.11.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/30/2017] [Accepted: 11/09/2017] [Indexed: 01/13/2023]
|
14
|
Abstract
The mitotic spindle has a crucial role in ensuring the accurate segregation of chromosomes into the two daughter cells during cell division, which is paramount for maintaining genome integrity. It is a self-organized and dynamic macromolecular structure that is constructed from microtubules, microtubule-associated proteins and motor proteins. Thirty years of research have led to the identification of centrosome-, chromatin- and microtubule-mediated microtubule nucleation pathways that each contribute to mitotic spindle assembly. Far from being redundant pathways, data are now emerging regarding how they function together to ensure the timely completion of mitosis. We are also beginning to comprehend the multiple mechanisms by which cells regulate spindle scaling. Together, this research has increased our understanding of how cells coordinate hundreds of proteins to assemble the dynamic, precise and robust structure that is the mitotic spindle.
Collapse
|
15
|
Late mitotic functions of Aurora kinases. Chromosoma 2016; 126:93-103. [DOI: 10.1007/s00412-016-0594-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
16
|
Meunier S, Vernos I. Acentrosomal Microtubule Assembly in Mitosis: The Where, When, and How. Trends Cell Biol 2015; 26:80-87. [PMID: 26475655 DOI: 10.1016/j.tcb.2015.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023]
Abstract
In mitosis the cell assembles the bipolar spindle, a microtubule (MT)-based apparatus that segregates the duplicated chromosomes into two daughter cells. Most animal cells enter mitosis with duplicated centrosomes that provide an active source of dynamic MTs. However, it is now established that spindle assembly relies on the nucleation of acentrosomal MTs occurring around the chromosomes after nuclear envelope breakdown, and on pre-existing microtubules. Where chromosome-dependent MT nucleation occurs, when MT amplification takes place and how the two pathways function are still key questions that generate some controversies. We reconcile the data and present an integrated model accounting for acentrosomal microtubule assembly in the dividing cell.
Collapse
Affiliation(s)
- Sylvain Meunier
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
17
|
Carvalhal S, Ribeiro SA, Arocena M, Kasciukovic T, Temme A, Koehler K, Huebner A, Griffis ER. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation. Mol Biol Cell 2015; 26:3424-38. [PMID: 26246606 PMCID: PMC4591688 DOI: 10.1091/mbc.e15-02-0113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
The nucleoporin ALADIN, which is mutated in patients with triple A syndrome, is necessary for proper spindle formation. Without ALADIN, active Aurora A moves away from centrosomes. The relocalization of active Aurora A leads to a redistribution of specific spindle assembly factors that make spindles less stable and slows their formation. The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome.
Collapse
Affiliation(s)
- Sara Carvalhal
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Susana Abreu Ribeiro
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543 Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Miguel Arocena
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Taciana Kasciukovic
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Katrin Koehler
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Angela Huebner
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Eric R Griffis
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
18
|
Arai E, Gotoh M, Tian Y, Sakamoto H, Ono M, Matsuda A, Takahashi Y, Miyata S, Totsuka H, Chiku S, Komiyama M, Fujimoto H, Matsumoto K, Yamada T, Yoshida T, Kanai Y. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas. Int J Cancer 2015; 137:2589-606. [PMID: 26061684 PMCID: PMC4755138 DOI: 10.1002/ijc.29630] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 04/15/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023]
Abstract
CpG-island methylator phenotype (CIMP)-positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP-positive renal carcinogenesis. Genome (whole-exome and copy number), transcriptome and proteome (two-dimensional image converted analysis of liquid chromatography-mass spectrometry) analyses were performed using tissue specimens of 87 CIMP-negative and 14 CIMP-positive clear cell RCCs and corresponding specimens of non-cancerous renal cortex. Genes encoding microtubule-associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non-synonymous single-nucleotide mutations and insertions/deletions) in CIMP-positive RCCs, whereas CIMP-negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP-positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the "The metaphase checkpoint (p = 1.427 × 10(-6))," "Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10(-6))" and "Spindle assembly and chromosome separation (p = 9.260 × 10(-6))" pathways. Quantitative RT-PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP-positive than in CIMP-negative RCCs. All CIMP-positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP-positive renal carcinogenesis, and that AURKA and AURKB may be potential therapeutic targets in more aggressive CIMP-positive RCCs.
Collapse
Affiliation(s)
- Eri Arai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahiro Gotoh
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Ying Tian
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Akio Matsuda
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoriko Takahashi
- Bioscience Department, Business Development Division, Mitsui Knowledge Industry Co. Ltd, Tokyo, Japan
| | - Sayaka Miyata
- Bioscience Department, Business Development Division, Mitsui Knowledge Industry Co. Ltd, Tokyo, Japan
| | - Hirohiko Totsuka
- Bioinformatics Group, Research and Development Center, Solution Division 4, Hitachi Government and Public Corporation System Engineering Ltd, Tokyo, Japan
| | - Suenori Chiku
- Science Solutions Division, Mizuho Information and Research Institute, Inc, Tokyo, Japan
| | - Motokiyo Komiyama
- Department of Urology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tesshi Yamada
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
19
|
Savoian MS, Glover DM. Differing requirements for Augmin in male meiotic and mitotic spindle formation in Drosophila. Open Biol 2015; 4:140047. [PMID: 24829288 PMCID: PMC4042853 DOI: 10.1098/rsob.140047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Animal cells divide using a microtubule-based, bipolar spindle. Both somatic, mitotic cells and sperm-producing male meiotic spermatocytes use centrosome-dependent and acentrosomal spindle-forming mechanisms. Here, we characterize the largely undefined, centrosome-independent spindle formation pathway used during male meiosis. Our live and fixed cell analyses of Drosophila spermatocytes reveal that acentrosomal microtubules are nucleated at kinetochores and in the vicinity of chromatin and that together these assemble into functional spindles. Mutational studies indicate that γ-tubulin and its extra-centrosomal targeting complex, Augmin, are vital for this process. In addition, Augmin facilitates efficient spindle assembly in the presence of centrosomes. In contrast to the pronounced recruitment of Augmin on spindles in other cell types, the complex is absent from those of spermatocytes but does accumulate on kinetochores. Polo kinase facilitates this kinetochore recruitment while inhibiting Augmin's spindle association, and this in turn dictates γ-tubulin distribution and spindle density. Polo's negative regulation of Augmin in male meiosis contrasts with its requirement in loading Augmin along mitotic spindles in somatic Drosophila cells. Together our data identify a novel mechanism of acentrosomal spindle formation in spermatocytes and reveal its divergence from that used in mitotic cells.
Collapse
Affiliation(s)
- Matthew S Savoian
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | - David M Glover
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| |
Collapse
|
20
|
Kamasaki T, O'Toole E, Kita S, Osumi M, Usukura J, McIntosh JR, Goshima G. Augmin-dependent microtubule nucleation at microtubule walls in the spindle. ACTA ACUST UNITED AC 2013; 202:25-33. [PMID: 23816620 PMCID: PMC3704994 DOI: 10.1083/jcb.201304031] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electron tomography and 3D modeling identifies augmin-dependent connections between the wall of one microtubule and the minus end of a neighboring one in the spindle. The formation of a functional spindle requires microtubule (MT) nucleation from within the spindle, which depends on augmin. How augmin contributes to MT formation and organization is not known because augmin-dependent MTs have never been specifically visualized. In this paper, we identify augmin-dependent MTs and their connections to other MTs by electron tomography and 3D modeling. In metaphase spindles of human cells, the minus ends of MTs were located both around the centriole and in the body of the spindle. When augmin was knocked down, the latter population of MTs was significantly reduced. In control cells, we identified connections between the wall of one MT and the minus end of a neighboring MT. Interestingly, the connected MTs were nearly parallel, unlike other examples of end–wall connections between cytoskeletal polymers. Our observations support the concept of augmin-dependent MT nucleation at the walls of existing spindle MTs. Furthermore, they suggest a mechanism for maintaining polarized MT organization, even when noncentrosomal MT initiation is widespread.
Collapse
Affiliation(s)
- Tomoko Kamasaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Colombié N, Głuszek AA, Meireles AM, Ohkura H. Meiosis-specific stable binding of augmin to acentrosomal spindle poles promotes biased microtubule assembly in oocytes. PLoS Genet 2013; 9:e1003562. [PMID: 23785300 PMCID: PMC3681601 DOI: 10.1371/journal.pgen.1003562] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/26/2013] [Indexed: 12/20/2022] Open
Abstract
In the oocytes of many animals including humans, the meiotic spindle assembles without centrosomes. It is still unclear how multiple pathways contribute to spindle microtubule assembly, and whether they are regulated differently in mitosis and meiosis. Augmin is a γ-tubulin recruiting complex which "amplifies" spindle microtubules by generating new microtubules along existing ones in mitosis. Here we show that in Drosophila melanogaster oocytes Augmin is dispensable for chromatin-driven assembly of bulk spindle microtubules, but is required for full microtubule assembly near the poles. The level of Augmin accumulated at spindle poles is well correlated with the degree of chromosome congression. Fluorescence recovery after photobleaching shows that Augmin stably associates with the polar regions of the spindle in oocytes, unlike in mitotic cells where it transiently and uniformly associates with the metaphase spindle. This stable association is enhanced by γ-tubulin and the kinesin-14 Ncd. Therefore, we suggest that meiosis-specific regulation of Augmin compensates for the lack of centrosomes in oocytes by actively biasing sites of microtubule generation within the spindle.
Collapse
Affiliation(s)
- Nathalie Colombié
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - A. Agata Głuszek
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ana M. Meireles
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hiroyuki Ohkura
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Reboutier D, Troadec MB, Cremet JY, Chauvin L, Guen V, Salaun P, Prigent C. Aurora A is involved in central spindle assembly through phosphorylation of Ser 19 in P150Glued. ACTA ACUST UNITED AC 2013; 201:65-79. [PMID: 23547029 PMCID: PMC3613693 DOI: 10.1083/jcb.201210060] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A human Aurora A kinase engineered to be specifically inhibited by the ATP analog 1-Na-PP1 allows dissection of a novel role for this protein in central spindle assembly. Knowledge of Aurora A kinase functions is limited to premetaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. The involvement of Aurora A in events after metaphase has only been suggested because appropriate experiments are technically difficult. We report here the design of the first human Aurora A kinase (as-AurA) engineered by chemical genetics techniques. This kinase is fully functional biochemically and in cells, and is rapidly and specifically inhibited by the ATP analogue 1-Naphthyl-PP1 (1-Na-PP1). By treating cells exclusively expressing the as-AurA with 1-Na-PP1, we discovered that Aurora A is required for central spindle assembly in anaphase through phosphorylation of Ser 19 of P150Glued. This paper thus describes a new Aurora A function that takes place after the metaphase-to-anaphase transition and a new powerful tool to search for and study new Aurora A functions.
Collapse
Affiliation(s)
- David Reboutier
- Unité Mixte de Recherche 6290, Centre National de la Recherche Scientifique, F-35043 Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
LABRECQUE RÉMI, VIGNEAULT CHRISTIAN, BLONDIN PATRICK, SIRARD MARCANDRÉ. Gene Expression Analysis of Bovine Oocytes With High Developmental Competence Obtained From FSH-Stimulated Animals. Mol Reprod Dev 2013; 80:428-40. [DOI: 10.1002/mrd.22177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/21/2013] [Indexed: 11/11/2022]
Affiliation(s)
- RÉMI LABRECQUE
- Centre de recherche en biologie de la reproduction, Faculté des sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF; Université Laval; Québec; Québec; Canada
| | | | | | - MARC-ANDRÉ SIRARD
- Centre de recherche en biologie de la reproduction, Faculté des sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF; Université Laval; Québec; Québec; Canada
| |
Collapse
|
24
|
Meunier S, Vernos I. Microtubule assembly during mitosis - from distinct origins to distinct functions? J Cell Sci 2012; 125:2805-14. [PMID: 22736044 DOI: 10.1242/jcs.092429] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mitotic spindle is structurally and functionally defined by its main component, the microtubules (MTs). The MTs making up the spindle have various functions, organization and dynamics: astral MTs emanate from the centrosome and reach the cell cortex, and thus have a major role in spindle positioning; interpolar MTs are the main constituent of the spindle and are key for the establishment of spindle bipolarity, chromosome congression and central spindle assembly; and kinetochore-fibers are MT bundles that connect the kinetochores with the spindle poles and segregate the sister chromatids during anaphase. The duplicated centrosomes were long thought to be the origin of all of these MTs. However, in the last decade, a number of studies have contributed to the identification of non-centrosomal pathways that drive MT assembly in dividing cells. These pathways are now known to be essential for successful spindle assembly and to participate in various processes such as K-fiber formation and central spindle assembly. In this Commentary, we review the recent advances in the field and discuss how different MT assembly pathways might cooperate to successfully form the mitotic spindle.
Collapse
Affiliation(s)
- Sylvain Meunier
- Microtubule Function and Cell Division group, Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
25
|
Hotta T, Kong Z, Ho CMK, Zeng CJT, Horio T, Fong S, Vuong T, Lee YRJ, Liu B. Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. THE PLANT CELL 2012; 24:1494-509. [PMID: 22505726 PMCID: PMC3398559 DOI: 10.1105/tpc.112.096610] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/10/2012] [Accepted: 03/20/2012] [Indexed: 05/19/2023]
Abstract
Plant cells assemble the bipolar spindle and phragmoplast microtubule (MT) arrays in the absence of the centrosome structure. Our recent findings in Arabidopsis thaliana indicated that AUGMIN subunit3 (AUG3), a homolog of animal dim γ-tubulin 3, plays a critical role in γ-tubulin-dependent MT nucleation and amplification during mitosis. Here, we report the isolation of the entire plant augmin complex that contains eight subunits. Among them, AUG1 to AUG6 share low sequence similarity with their animal counterparts, but AUG7 and AUG8 share homology only with proteins of plant origin. Genetic analyses indicate that the AUG1, AUG2, AUG4, and AUG5 genes are essential, as stable mutations in these genes could only be transmitted to heterozygous plants. The sterile aug7-1 homozygous mutant in which AUG7 expression is significantly reduced exhibited pleiotropic phenotypes of seriously retarded vegetative and reproductive growth. The aug7-1 mutation caused delocalization of γ-tubulin in the mitotic spindle and phragmoplast. Consequently, spindles were abnormally elongated, and their poles failed to converge, as MTs were splayed to discrete positions rendering deformed arrays. In addition, the mutant phragmoplasts often had disorganized MT bundles with uneven edges. We conclude that assembly of MT arrays during plant mitosis depends on the augmin complex, which includes two plant-specific subunits.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Plant Biology, University of California, Davis, California 95616
| | - Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, California 95616
| | - Chin-Min Kimmy Ho
- Department of Plant Biology, University of California, Davis, California 95616
| | - Cui Jing Tracy Zeng
- Department of Plant Biology, University of California, Davis, California 95616
| | - Tetsuya Horio
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Sophia Fong
- Department of Plant Biology, University of California, Davis, California 95616
| | - Trang Vuong
- Department of Plant Biology, University of California, Davis, California 95616
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California 95616
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, California 95616
- Address correspondence to
| |
Collapse
|
26
|
Nakaoka Y, Miki T, Fujioka R, Uehara R, Tomioka A, Obuse C, Kubo M, Hiwatashi Y, Goshima G. An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. THE PLANT CELL 2012; 24:1478-93. [PMID: 22505727 PMCID: PMC3398558 DOI: 10.1105/tpc.112.098509] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitosis is a fundamental process of eukaryotic cell proliferation. However, the molecular mechanisms underlying mitosis remain poorly understood in plants partly because of the lack of an appropriate model cell system in which loss-of-function analyses can be easily combined with high-resolution microscopy. Here, we developed an inducible RNA interference (RNAi) system and three-dimensional time-lapse confocal microscopy in the moss Physcomitrella patens that allowed in-depth phenotype characterization of the moss genes essential for cell division. We applied this technique to two microtubule regulators, augmin and γ-tubulin complexes, whose mitotic roles remain obscure in plant cells. Live imaging of caulonemal cells showed that they proceed through mitosis with continual generation and self-organization of acentrosomal microtubules. We demonstrated that augmin plays an important role in γ-tubulin localization and microtubule generation from prometaphase to cytokinesis. Most evidently, microtubule formation in phragmoplasts was severely compromised after RNAi knockdown of an augmin subunit, leading to incomplete expansion of phragmoplasts and cytokinesis failure. Knockdown of the γ-tubulin complex affected microtubule formation throughout mitosis. We conclude that postanaphase microtubule generation is predominantly stimulated by the augmin/γ-tubulin machinery in moss and further propose that this RNAi system serves as a powerful tool to dissect the molecular mechanisms underlying mitosis in land plants.
Collapse
Affiliation(s)
- Yuki Nakaoka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tomohiro Miki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryuta Fujioka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryota Uehara
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akiko Tomioka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Minoru Kubo
- ERATO, Japan Science and Technology Agency, Okazaki 444-8585, Japan
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yuji Hiwatashi
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- School of Life Science, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Address correspondence to
| |
Collapse
|