1
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
2
|
Zhang S, Zhu D, Wu Z, Yang S, Liu Y, Kang X, Chen X, Zhu Z, Dong Q, Suo C, Han X. GWAS-based polygenic risk scoring for predicting cerebral artery dissection in the Chinese population. BMC Neurol 2024; 24:258. [PMID: 39054468 PMCID: PMC11271197 DOI: 10.1186/s12883-024-03759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE Cerebral artery dissection (CeAD) is a rare but serious disease. Genetic risk assessment for CeAD is lacking in Chinese population. We performed genome-wide association study (GWAS) and computed polygenic risk score (PRS) to explore genetic susceptibility factors and prediction model of CeAD based on patients in Huashan Hospital. METHODS A total of 210 CeAD patients and 280 controls were enrolled from June 2017 to September 2022 in Department of Neurology, Huashan Hospital, Fudan University. We performed GWAS to identify genetic variants associated with CeAD in 140 CeAD patients and 210 control individuals according to a case and control 1:1.5 design rule in the training dataset, while the other 70 patients with CeAD and 70 controls were used as validation. Then Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses were utilized to identify the significant pathways. We constructed a PRS by capturing all independent GWAS SNPs in the analysis and explored the predictivity of PRS, age, and sex for CeAD. RESULTS Through GWAS analysis of the 140 cases and 210 controls in the training dataset, we identified 13 leading SNPs associated with CeAD at a genome-wide significance level of P < 5 × 10- 8. Among them, 10 SNPs were annotated in or near (in the upstream and downstream regions of ± 500Kb) 10 functional genes. rs34508376 (OR2L13) played a suggestive role in CeAD pathophysiology which was in line with previous observations in aortic aneurysms. The other nine genes were first-time associations in CeAD cases. GO enrichment analyses showed that these 10 genes have known roles in 20 important GO terms clustered into two groups: (1) cellular biological processes (BP); (2) molecular function (MF). We used genome-wide association data to compute PRS including 32 independent SNPs and constructed predictive model for CeAD by using age, sex and PRS as predictors both in training and validation test. The area under curve (AUC) of PRS predictive model for CeAD reached 99% and 95% in the training test and validation test respectively, which were significantly larger than the age and sex models of 83% and 86%. CONCLUSIONS Our study showed that ten risk loci were associated with CeAD susceptibility, and annotated functional genes had roles in 20 important GO terms clustered into biological process and molecular function. The PRS derived from risk variants was associated with CeAD incidence after adjusting for age and sex both in training test and validation.
Collapse
Grants
- No. 8227052180 National Natural Science Foundation of China
- No. 8227052180 National Natural Science Foundation of China
- No. 8227052180 National Natural Science Foundation of China
- No. 8227052180 National Natural Science Foundation of China
- No. 8227052180 National Natural Science Foundation of China
- No. 8227052180 National Natural Science Foundation of China
- No. 8227052180 National Natural Science Foundation of China
- No. 8227052180 National Natural Science Foundation of China
- No. 8227052180 National Natural Science Foundation of China
- No. 8227052180 National Natural Science Foundation of China
- No. 8227052180 National Natural Science Foundation of China
- none State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan university.
- none State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan university.
- none State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan university.
- none State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan university.
- none State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan university.
- none State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan university.
- none State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan university.
- none State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan university.
- none State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan university.
- none State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan university.
- none State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan university.
- none The Cerebrovascular Disease Management Project of Sailing Foundation of China Stroke Association.
- none The Cerebrovascular Disease Management Project of Sailing Foundation of China Stroke Association.
- none The Cerebrovascular Disease Management Project of Sailing Foundation of China Stroke Association.
- none The Cerebrovascular Disease Management Project of Sailing Foundation of China Stroke Association.
- none The Cerebrovascular Disease Management Project of Sailing Foundation of China Stroke Association.
- none The Cerebrovascular Disease Management Project of Sailing Foundation of China Stroke Association.
- none The Cerebrovascular Disease Management Project of Sailing Foundation of China Stroke Association.
- none The Cerebrovascular Disease Management Project of Sailing Foundation of China Stroke Association.
- none The Cerebrovascular Disease Management Project of Sailing Foundation of China Stroke Association.
- none The Cerebrovascular Disease Management Project of Sailing Foundation of China Stroke Association.
- none The Cerebrovascular Disease Management Project of Sailing Foundation of China Stroke Association.
- NO. HIGHER2022107 Heart and Brain Health Public Welfare Project of Buchang Zhiyuan Foundation
- NO. HIGHER2022107 Heart and Brain Health Public Welfare Project of Buchang Zhiyuan Foundation
- NO. HIGHER2022107 Heart and Brain Health Public Welfare Project of Buchang Zhiyuan Foundation
- NO. HIGHER2022107 Heart and Brain Health Public Welfare Project of Buchang Zhiyuan Foundation
- NO. HIGHER2022107 Heart and Brain Health Public Welfare Project of Buchang Zhiyuan Foundation
- NO. HIGHER2022107 Heart and Brain Health Public Welfare Project of Buchang Zhiyuan Foundation
- NO. HIGHER2022107 Heart and Brain Health Public Welfare Project of Buchang Zhiyuan Foundation
- NO. HIGHER2022107 Heart and Brain Health Public Welfare Project of Buchang Zhiyuan Foundation
- NO. HIGHER2022107 Heart and Brain Health Public Welfare Project of Buchang Zhiyuan Foundation
- NO. HIGHER2022107 Heart and Brain Health Public Welfare Project of Buchang Zhiyuan Foundation
- NO. HIGHER2022107 Heart and Brain Health Public Welfare Project of Buchang Zhiyuan Foundation
Collapse
Affiliation(s)
- Shufan Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongliang Zhu
- State Key Laboratory of Genetic Engineering, School of life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhengyu Wu
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| | - Shilin Yang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanzeng Liu
- Gu Mei Community Health Service Center of Minhang District, Shanghai, China
| | - Xiaocui Kang
- Department of Neurology, Shanghai Shidong Hospital, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, School of life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Zhu Zhu
- Department of Neurology, Indianan University Health, Bloomington, IN, USA
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chen Suo
- State Key Laboratory of Genetic Engineering, School of life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| | - Xiang Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Rubinfeld H, Cohen ZR, Bendavid U, Fichman-Horn S, Levy-Barda A, David C, Melamed P, Shimon I. Erythropoietin-producing hepatocellular receptor B6 is highly expressed in non-functioning pituitary neuroendocrine tumors and its expression correlates with tumor size. Mol Biol Rep 2024; 51:297. [PMID: 38341842 PMCID: PMC10859332 DOI: 10.1007/s11033-023-09186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Erythropoietin-producing hepatocellular (EPH) receptors are the largest known family of receptor tyrosine kinases characterized in humans. These proteins are involved in tissue organization, synaptic plasticity, vascular development and the progression of various diseases including cancer. The Erythropoietin-producing hepatocellular receptor tyrosine kinase member EphB6 is a pseudokinase which has not attracted an equivalent amount of interest as its enzymatically-active counterparts. The aim of this study was to assess the expression of EphB6 in pituitary tumors. METHODS AND RESULTS Human normal pituitaries and pituitary tumors were examined for EphB6 mRNA expression using real-time PCR and for EphB6 protein by immunohistochemistry and Western blotting. EphB6 was highly expressed in non-functioning pituitary neuroendocrine tumors (NF-PitNETs) versus the normal pituitary and GH-secreting PitNETs. EphB6 mRNA expression was correlated with tumor size. CONCLUSIONS Our results suggest EphB6 aberrant expression in NF-PitNETs. Future studies are warranted to determine the role and significance of EphB6 in NF-PitNETs tumorigenesis.
Collapse
Affiliation(s)
- Hadara Rubinfeld
- Institute of Endocrinology, Diabetes & Metabolism and Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zvi R Cohen
- Department of Neurosurgery, Sheba Medical Center, Tel-Hashomer, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uzi Bendavid
- Department of Neurosurgery, Rabin Medical Center, Petah Tikva, Israel
| | | | - Adva Levy-Barda
- Biobank, Department of Pathology, Rabin Medical Center, Petah Tikva, Israel
| | - Cfir David
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ilan Shimon
- Institute of Endocrinology, Diabetes & Metabolism and Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel.
- School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Hanover G, Vizeacoumar FS, Banerjee SL, Nair R, Dahiya R, Osornio-Hernandez AI, Morales AM, Freywald T, Himanen JP, Toosi BM, Bisson N, Vizeacoumar FJ, Freywald A. Integration of cancer-related genetic landscape of Eph receptors and ephrins with proteomics identifies a crosstalk between EPHB6 and EGFR. Cell Rep 2023; 42:112670. [PMID: 37392382 DOI: 10.1016/j.celrep.2023.112670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023] Open
Abstract
Eph receptors and their ephrin ligands are viewed as promising targets for cancer treatment; however, targeting them is hindered by their context-dependent functionalities. To circumvent this, we explore molecular landscapes underlying their pro- and anti-malignant activities. Using unbiased bioinformatics approaches, we construct a cancer-related network of genetic interactions (GIs) of all Ephs and ephrins to assist in their therapeutic manipulation. We also apply genetic screening and BioID proteomics and integrate them with machine learning approaches to select the most relevant GIs of one Eph receptor, EPHB6. This identifies a crosstalk between EPHB6 and EGFR, and further experiments confirm the ability of EPHB6 to modulate EGFR signaling, enhancing the proliferation of cancer cells and tumor development. Taken together, our observations show EPHB6 involvement in EGFR action, suggesting its targeting might be beneficial in EGFR-dependent tumors, and confirm that the Eph family genetic interactome presented here can be effectively exploited in developing cancer treatment approaches.
Collapse
Affiliation(s)
- Glinton Hanover
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Sara L Banerjee
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Raveena Nair
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Renuka Dahiya
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Ana I Osornio-Hernandez
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Alain Morejon Morales
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Tanya Freywald
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Juha P Himanen
- Department of Biochemistry, University of Turku, 20500 Turku, Finland
| | - Behzad M Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Nicolas Bisson
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada.
| | - Franco J Vizeacoumar
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|
5
|
Odimba U, Senthilselvan A, Farrell J, Gao Z. Identification of Sex-Specific Genetic Polymorphisms Associated with Asthma in Middle-Aged and Older Canadian Adults: An Analysis of CLSA Data. J Asthma Allergy 2023; 16:553-566. [PMID: 37197194 PMCID: PMC10184860 DOI: 10.2147/jaa.s404670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
Purpose Asthma is a chronic heterogeneous respiratory disease resulting from a complex interplay between genetic variations and environmental exposures. There are sex disparities in the prevalence and severity of asthma in males and females. Asthma prevalence is higher in males during childhood but increases in females in adulthood. The mechanisms underlying these sex differences are not well understood; nevertheless, genetic variations, hormonal changes, and environmental influences are thought to play important roles. This study aimed to identify sex-specific genetic variants associated with asthma using CLSA genomic and questionnaire data. Methods First, we conducted a genome-wide SNP-by-sex interaction analysis on 23,323 individuals, examining 416,562 single nucleotide polymorphisms (SNPs) after quality control, followed by sex-stratified survey logistic regression of SNPs with interaction p-value less than 10¯5. Results Out of the 49 SNPs with interaction p-value less than 10-5, a sex-stratified survey logistic regression showed that five male-specific SNPs (rs6701638, rs17071077, rs254804, rs6013213, and rs2968822) in/near KIF26B, NMBR, PEPD, RTN4, and NFATC2 loci, and three female-specific SNPs (rs2968801, rs2864052, and rs9525931) in/near RTN4, and SERP2 loci were significantly associated with asthma after Bonferroni correction. An SNP (rs36213) in the EPHB1 gene was significantly associated with an increased risk of asthma in males [OR=1.35, 95% CI (1.14, 1.60)] but with a reduced risk of asthma in females [OR=0.84, 95% CI (0.76, 0.92)] after Bonferroni correction. Conclusion We discovered novel sex-specific genetic markers in/near the KIF26B, RTN4, EPHB1, NMBR, SERP2, PEPD, and NFATC2 genes that could potentially shed light on the sex differences in asthma susceptibility in males and females. Future mechanistic studies are required to understand better the underlying sex-related pathways of the identified loci in asthma development.
Collapse
Affiliation(s)
- Ugochukwu Odimba
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | | | - Jamie Farrell
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
- Faculty of Medicine, Health Science Centre (Respirology Department), Memorial University, St John’s, Newfoundland and Labrador, Canada
| | - Zhiwei Gao
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
- Correspondence: Zhiwei Gao, Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3V6, Canada, Tel +17098646523, Email
| |
Collapse
|
6
|
Güneş S, Wu J, Özyılmaz B, Deveci Sevim R, Ünüvar T, Anık A. Cooccurring Type 1 Diabetes Mellitus and Autoimmune Thyroiditis in a Girl with Craniofrontonasal Syndrome: Are EFNB1 Variants Associated with Autoimmunity? Pharmaceuticals (Basel) 2022; 15:ph15121535. [PMID: 36558986 PMCID: PMC9784758 DOI: 10.3390/ph15121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Craniofrontonasal syndrome (CFNS), also known as craniofrontonasal dysplasia, is an X-linked inherited developmental malformation caused by mutations in the ephrin B1 (EFNB1) gene. The main phenotypic features of the syndrome are coronal synostosis, hypertelorism, bifid nasal tip, dry and curly hair, and longitudinal splitting of nails. A 9-year-and-11-month-old girl with CFNS was admitted due to polyuria, polydipsia, fatigue, and abdominal pain. On physical examination, she had the classical phenotypical features of CFNS. Genetic tests revealed a c.429_430insT (p.Gly144TrpfsTer31) heterozygote variant in the EFNB1 coding region. The patient was diagnosed with type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis based on laboratory findings and symptoms. The mother of the patient, who had the same CFNS phenotype and EFNB1 variant, was screened for autoimmune diseases and was also with autoimmune thyroiditis. This is the first report describing the association of CFNS with T1DM and autoimmune thyroiditis in patients with EFNB1 mutation.
Collapse
Affiliation(s)
- Sebla Güneş
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Aydın Adnan Menderes University, 09100 Aydın, Turkey
| | - Jiangping Wu
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QU H2X 0A9, Canada
| | - Berk Özyılmaz
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, 35020 Izmir, Turkey
| | - Reyhan Deveci Sevim
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Aydın Adnan Menderes University, 09100 Aydın, Turkey
| | - Tolga Ünüvar
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Aydın Adnan Menderes University, 09100 Aydın, Turkey
| | - Ahmet Anık
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Aydın Adnan Menderes University, 09100 Aydın, Turkey
- Correspondence: ; Tel.: +90-5325684340
| |
Collapse
|
7
|
Chen H, Chen L, Yuan Z, Yuan J, Li Y, Xu Y, Wu J, Zhang L, Wang G, Li J. Glutamate receptor-interacting protein 1 in D1- and D2-dopamine receptor-expressing medium spiny neurons differentially regulates cocaine acquisition, reinstatement, and associated spine plasticity. Front Cell Neurosci 2022; 16:979078. [PMID: 36406750 PMCID: PMC9669444 DOI: 10.3389/fncel.2022.979078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/17/2022] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND The nucleus accumbens (NAc) is involved in the expression of cocaine addictive phenotypes, including acquisition, extinction, and reinstatement. In the NAc, D1-medium spiny neurons (MSNs) encode cocaine reward, whereas D2-MSNs encode aversive responses in drug addiction. Glutamate receptor-interacting protein 1 (GRIP1) is known to be associated with cocaine addiction, but the role of GRIP1 in D1-MSNs and D2-MSNs of the NAc in cocaine acquisition and reinstatement remains unknown. METHODS A conditioned place preference apparatus was used to establish cocaine acquisition, extinction, and reinstatement in mouse models. GRIP1 expression was evaluated using Western blotting. Furthermore, GRIP1-siRNA and GRIP1 overexpression lentivirus were used to interfere with GRIP1 in the NAc. After the behavioral test, green fluorescent protein immunostaining of brain slices was used to detect spine density. RESULTS GRIP1 expression decreased during cocaine acquisition and reinstatement. GRIP1-siRNA enhanced cocaine-induced CPP behavior in acquisition and reinstatement and regulated associated spine plasticity. Importantly, the decreased GRIP1 expression that mediated cocaine acquisition and reinstatement was mainly driven by the interference of the GRIP1-GluA2 interaction in D1-MSNs and could be blocked by the interference of the GRIP1-GluA2 interaction in D2-MSNs. Interference with the GRIP1-GluA2 interaction in D1- and D2-MSNs decreased spine density in D1- and D2-MSNs, respectively. CONCLUSION GRIP1 in D1- and D2-MSNs of the NAc differentially modulates cocaine acquisition and reinstatement. GRIP1 downregulation in D1-MSNs has a positive effect on cocaine acquisition and reinstatement, while GRIP1 downregulation in D2-MSNs has a negative effect. Additionally, GRIP1 downregulation in D1-MSNs plays a leading role in cocaine acquisition and reinstatement.
Collapse
Affiliation(s)
- He Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Limei Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhirong Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiajie Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yitong Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuesi Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jieyi Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guohua Wang
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou, China
| | - Juan Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Glutamate Receptor Interacting Protein 1 in the Dorsal CA1 Drives Alpha-amino-3-hydroxy-5-methyl-4-Isoxazolepropionic Acid Receptor Endocytosis and Exocytosis Bidirectionally and Mediates Forgetting, Exploratory, and Anxiety-like Behavior. Neuroscience 2022; 498:235-248. [PMID: 35863680 DOI: 10.1016/j.neuroscience.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/21/2023]
Abstract
Endocytosis of GluA2-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in CA1 of the hippocampus regulates forgetting; deficits in forgetting nociceptive memory can induce serious stress disorders. As a transporter of GluA2-containing AMPAR, the functions of glutamate receptor interacting protein 1 (GRIP1) in forgetting and possible stress responses remain unclear. Lentivirus-mediated interference of GRIP1 expression or function in the dorsal CA1 of the hippocampus in mice indicated that GRIP1 overexpression enhanced spatial memory, impaired forgetting in a Barnes maze, and induced anxiety-like behavior in the open field and elevated plus-maze test. In contrast, GRIP1 knockdown impaired learning capacity. Furthermore, inhibition of the PDZ2 and PDZ4/5 domains of GRIP1 and GluA2-dn enhanced learning capacity, whereas GluA2-dn impaired spatial memory; inhibition of the PDZ2 and PDZ4/5 domains of GRIP1 also decreased forgetting capacity to some extent. Importantly, inhibition of both the PDZ2 and PDZ4/5 domains of GRIP1 induced anxiety-like behavior but not GluA2-dn. Furthermore, optogenetic control of both GluA1 and GluA2 insertion into the postsynaptic membrane impaired memory and induced anxiety-like behavior. In vitro experiments showed that GRIP1-ov and -dn, inhibition of PDZ2 and PDZ4/5 domains of GRIP1, and GluA2-dn decreased glycine-induced GluA1 and GluA2 exocytosis; meanwhile, GRIP1-ov and -dn, and interference of PDZ2 and PDZ4/5 domains of GRIP1 blocked AMPA- and NMDA-induced GluA1 and GluA2 endocytosis. Overall, these results suggest that GRIP1 drives AMPA receptor endocytosis and exocytosis bidirectionally; furthermore, GRIP1-induced stabilization of anchoring postsynaptic GluA1 and GluA2 impairs forgetting and induces anxiety-like behavior. GRIP1 may provide a potential therapeutic target in posttraumatic syndromes and anxiety disorders.
Collapse
|
9
|
Rauen M, Hao D, Müller A, Mückter E, Bollheimer LC, Nourbakhsh M. Free Fatty Acid Species Differentially Modulate the Inflammatory Gene Response in Primary Human Skeletal Myoblasts. BIOLOGY 2021; 10:biology10121318. [PMID: 34943232 PMCID: PMC8698660 DOI: 10.3390/biology10121318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Epidemiological studies show that obesity increases the risk of muscle mass loss with age, a syndrome called sarcopenic obesity. Obesity leads to increased free fatty acids (FFAs) and excessive fat deposits, which impair the integrity of skeletal muscles by unknown mechanisms. This report indicates that FFAs directly affect human skeletal muscle cell replication and inflammatory gene expression. The structural characteristics of FFAs play a decisive role in triggering both processes. Thus, the characterization of abundant FFA species in the skeletal muscle of obese individuals may become a useful tool to predict the progression of sarcopenic obesity. Abstract Age-related loss of skeletal muscle is associated with obesity and inflammation. In animal models, intramuscular fat deposits compromise muscle integrity; however, the relevant fat components that mediate muscular inflammation are not known. Previously, we hypothesized that free fatty acids (FFAs) may directly induce inflammatory gene expression in skeletal muscle cells of obese rats. Here, we examined this hypothesis in primary human skeletal myoblasts (SkMs) using multiplex expression analysis of 39 inflammatory proteins in response to different FFA species. Multiplex mRNA quantification confirmed that the IL6, IL1RA, IL4, LIF, CXCL8, CXCL1, CXCL12 and CCL2 genes were differentially regulated by saturated and unsaturated C16 or C18 FFAs. Fluorescence staining revealed that only saturated C16 and C18 strongly interfere with myoblast replication independent of desmin expression, mitochondrial abundance and oxidative activity. Furthermore, we addressed the possible implications of 71 human receptor tyrosine kinases (RTKs) in FFA-mediated effects. Phosphorylated EphB6 and TNK2 were associated with impaired myoblast replication by saturated C16 and C18 FFAs. Our data suggest that abundant FFA species in human skeletal muscle tissue may play a decisive role in the progression of sarcopenic obesity by affecting inflammatory signals or myoblast replication.
Collapse
|
10
|
The EphB6 Receptor: Kinase-Dead but Very Much Alive. Int J Mol Sci 2021; 22:ijms22158211. [PMID: 34360976 PMCID: PMC8347583 DOI: 10.3390/ijms22158211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
The Eph receptor tyrosine kinase member EphB6 is a pseudokinase, and similar to other pseudoenzymes has not attracted an equivalent amount of interest as its enzymatically-active counterparts. However, a greater appreciation for the role pseudoenzymes perform in expanding the repertoire of signals generated by signal transduction systems has fostered more interest in the field. EphB6 acts as a molecular switch that is capable of modulating the signal transduction output of Eph receptor clusters. Although the biological effects of EphB6 activity are well defined, the molecular mechanisms of EphB6 function remain enigmatic. In this review, we use a comparative approach to postulate how EphB6 acts as a scaffold to recruit adaptor proteins to an Eph receptor cluster and how this function is regulated. We suggest that the evolutionary repurposing of EphB6 into a kinase-independent molecular switch in mammals has involved repurposing the kinase activation loop into an SH3 domain-binding site. In addition, we suggest that EphB6 employs the same SAM domain linker and juxtamembrane domain allosteric regulatory mechanisms that are used in kinase-positive Eph receptors to regulate its scaffold function. As a result, although kinase-dead, EphB6 remains a strategically active component of Eph receptor signaling.
Collapse
|
11
|
Wang T, Liu J, Liu H, Lee SR, Gonzalez L, Gorecka J, Shu C, Dardik A. Activation of EphrinB2 Signaling Promotes Adaptive Venous Remodeling in Murine Arteriovenous Fistulae. J Surg Res 2021; 262:224-239. [PMID: 33039109 PMCID: PMC8024410 DOI: 10.1016/j.jss.2020.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Arteriovenous fistulae (AVF) are the preferred mode of vascular access for hemodialysis. Before use, AVF remodel by thickening and dilating to achieve a functional conduit via an adaptive process characterized by expression of molecular markers characteristic of both venous and arterial identity. Although signaling via EphB4, a determinant of venous identity, mediates AVF maturation, the role of its counterpart EphrinB2, a determinant of arterial identity, remains unclear. We hypothesize that EphrinB2 signaling is active during AVF maturation and may be a mechanism of venous remodeling. METHODS Aortocaval fistulae were created or sham laparotomy was performed in C57Bl/6 mice, and specimens were examined on Days 7 or 21. EphrinB2 reverse signaling was activated with EphB4-Fc applied periadventitially in vivo and in endothelial cell culture medium in vitro. Downstream signaling was assessed using immunoblotting and immunofluorescence. RESULTS Venous remodeling during AVF maturation was characterized by increased expression of EphrinB2 as well as Akt1, extracellular signal-regulated kinases 1/2 (ERK1/2), and p38. Activation of EphrinB2 with EphB4-Fc increased phosphorylation of EphrinB2, endothelial nitric oxide synthase, Akt1, ERK1/2, and p38 and was associated with increased diameter and wall thickness in the AVF. Both mouse and human endothelial cells treated with EphB4-Fc increased phosphorylation of EphrinB2, endothelial nitric oxide synthase, Akt1, ERK1/2, and p38 and increased endothelial cell tube formation and migration. CONCLUSIONS Activation of EphrinB2 signaling by EphB4-Fc was associated with adaptive venous remodeling in vivo while activating endothelial cell function in vitro. Regulation of EphrinB2 signaling may be a new strategy to improve AVF maturation and patency.
Collapse
Affiliation(s)
- Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jia Liu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Haiyang Liu
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Shin-Rong Lee
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Luis Gonzalez
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jolanta Gorecka
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Alan Dardik
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, VA Connecticut Healthcare System, West Haven, Connecticut.
| |
Collapse
|
12
|
Mason EO, Goldgur Y, Robev D, Freywald A, Nikolov DB, Himanen JP. Structure of the EphB6 receptor ectodomain. PLoS One 2021; 16:e0247335. [PMID: 33770085 PMCID: PMC7997048 DOI: 10.1371/journal.pone.0247335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Eph receptors are the largest group amongst the receptor tyrosine kinases and are divided into two subgroups, A and B, based on ligand binding specificities and sequence conservation. Through ligand-induced and ligand-independent activities, Ephs play central roles in diverse biological processes, including embryo development, regulation of neuronal signaling, immune responses, vasculogenesis, as well as tumor initiation, progression, and metastasis. The Eph extracellular regions (ECDs) are constituted of multiple domains, and previous structural studies of the A class receptors revealed how they interact with ephrin ligands and simultaneously mediate Eph-Eph clustering necessary for biological activity. Specifically, EphA structures highlighted a model, where clustering of ligand-bound receptors relies on two distinct receptor/receptor interfaces. Interestingly, most unliganded A class receptors also form an additional, third interface, between the ligand binding domain (LBD) and the fibronectin III domain (FN3) of neighboring molecules. Structures of B-class Eph ECDs, on the other hand, have never been reported. To further our understanding of Eph receptor function, we crystallized the EphB6-ECD and determined its three-dimensional structure using X-ray crystallography. EphB6 has important functions in both normal physiology and human malignancies and is especially interesting because this atypical receptor innately lacks kinase activity and our understanding of the mechanism of action is still incomplete. Our structural data reveals the overall EphB6-ECD architecture and shows EphB6-LBD/FN3 interactions similar to those observed for the unliganded A class receptors, suggesting that these unusual interactions are of general importance to the Eph group. We also observe unique structural features, which likely reflect the atypical signaling properties of EphB6, namely the need of co-receptor(s) for this kinase-inactive Eph. These findings provide new valuable information on the structural organization and mechanism of action of the B-class Ephs, and specifically EphB6, which in the future will assist in identifying clinically relevant targets for cancer therapy.
Collapse
Affiliation(s)
- Emilia O. Mason
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Dorothea Robev
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (DBN); (JPH)
| | - Juha P. Himanen
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (DBN); (JPH)
| |
Collapse
|
13
|
Wu T, Wang Y, Shi W, Zhang BQ, Raelson J, Yao YM, Wu HD, Xu ZX, Marois-Blanchet FC, Ledoux J, Blunck R, Sheng JZ, Hu SJ, Luo H, Wu J. A Variant in the Nicotinic Acetylcholine Receptor Alpha 3 Subunit Gene Is Associated With Hypertension Risks in Hypogonadic Patients. Front Genet 2020; 11:539862. [PMID: 33329690 PMCID: PMC7728919 DOI: 10.3389/fgene.2020.539862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
Ephb6 gene knockout causes hypertension in castrated mice. EPHB6 controls catecholamine secretion by adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent way. Nicotinic acetylcholine receptor (nAChR) is a ligand-gated Ca2+/Na+ channel, and its opening is the first signaling event leading to catecholamine secretion by AGCCs. There is a possibility that nAChR might be involved in EPHB6 signaling, and thus sequence variants of its subunit genes are associated with hypertension risks. CHRNA3 is the major subunit of nAChR used in human and mouse AGCCs. We conducted a human genetic study to assess the association of CHRNA3 variants with hypertension risks in hypogonadic males. The study cohort included 1,500 hypogonadic Chinese males with (750 patients) or without (750 patients) hypertension. The result revealed that SNV rs3743076 in the fourth intron of CHRNA3 was significantly associated with hypertension risks in the hypogonadic males. We further showed that EPHB6 physically interacted with CHRNA3 in AGCCs, providing a molecular basis for nAChR being in the EPHB6 signaling pathway.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yujia Wang
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shi
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Bi-Qi Zhang
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - John Raelson
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Yu-Mei Yao
- Department of Cardiology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan-Dong Wu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zao-Xian Xu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | - Jonathan Ledoux
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Rikard Blunck
- Department of Physics, University of Montreal, Montreal, QC, Canada
| | - Jian-Zhong Sheng
- Department of Pathology and Physiopathology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shen-Jiang Hu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyu Luo
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Jiangping Wu
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.,Nephrology Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
14
|
Nunes KP, Webb RC. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases 2020; 12:458-469. [PMID: 32970516 DOI: 10.1080/21541248.2020.1822721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
While Rho-signalling controlling vascular contraction is a canonical mechanism, with the modern approaches used in research, we are advancing our understanding and details into this pathway are often uncovered. RhoA-mediated Rho-kinase is the major regulator of vascular smooth muscle cells and a key player manoeuvring other functions in these cells. The discovery of new interactions, such as oxidative stress and hydrogen sulphide with Rho signalling are emerging addition not only in the physiology of the smooth muscle, but especially in the pathophysiology of vascular diseases. Likewise, the interplay between ageing and Rho-kinase in the vasculature has been recently considered. Importantly, in smooth muscle contraction, this pathway may also be affected by sex hormones, and consequently, sex-differences. This review provides an overview of Rho signalling mediating vascular contraction and focuses on recent topics discussed in the literature affecting this pathway such as ageing, sex differences and oxidative stress.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
15
|
Shi W, Ye B, Rame M, Wang Y, Cioca D, Reibel S, Peng J, Qi S, Vitale N, Luo H, Wu J. The receptor tyrosine kinase EPHB6 regulates catecholamine exocytosis in adrenal gland chromaffin cells. J Biol Chem 2020; 295:7653-7668. [PMID: 32321761 PMCID: PMC7261780 DOI: 10.1074/jbc.ra120.013251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin-producing human hepatocellular receptor EPH receptor B6 (EPHB6) is a receptor tyrosine kinase that has been shown previously to control catecholamine synthesis in the adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent fashion. EPHB6 also has a role in regulating blood pressure, but several facets of this regulation remain unclear. Using amperometry recordings, we now found that catecholamine secretion by AGCCs is compromised in the absence of EPHB6. AGCCs from male knockout (KO) mice displayed reduced cortical F-actin disassembly, accompanied by decreased catecholamine secretion through exocytosis. This phenotype was not observed in AGCCs from female KO mice, suggesting that testosterone, but not estrogen, contributes to this phenotype. Of note, reverse signaling from EPHB6 to ephrin B1 (EFNB1) and a 7-amino acid-long segment in the EFNB1 intracellular tail were essential for the regulation of catecholamine secretion. Further downstream, the Ras homolog family member A (RHOA) and FYN proto-oncogene Src family tyrosine kinase (FYN)-proto-oncogene c-ABL-microtubule-associated monooxygenase calponin and LIM domain containing 1 (MICAL-1) pathways mediated the signaling from EFNB1 to the defective F-actin disassembly. We discuss the implications of EPHB6's effect on catecholamine exocytosis and secretion for blood pressure regulation.
Collapse
Affiliation(s)
- Wei Shi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Bei Ye
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Marion Rame
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Yujia Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | - Junzheng Peng
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shijie Qi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Nephrology Department, CHUM, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS. Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene 2019; 38:6567-6584. [PMID: 31406248 DOI: 10.1038/s41388-019-0931-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022]
Abstract
Eph receptors, the largest subfamily of receptor tyrosine kinases, are linked with proliferative disease, such as cancer, as a result of their deregulated expression or mutation. Unlike other tyrosine kinases that have been clinically targeted, the development of therapeutics against Eph receptors remains at a relatively early stage. The major reason is the limited understanding on the Eph receptor regulatory mechanisms at a molecular level. The complexity in understanding Eph signalling in cells arises due to following reasons: (1) Eph receptors comprise 14 members, two of which are pseudokinases, EphA10 and EphB6, with relatively uncharacterised function; (2) activation of Eph receptors results in dimerisation, oligomerisation and formation of clustered signalling centres at the plasma membrane, which can comprise different combinations of Eph receptors, leading to diverse downstream signalling outputs; (3) the non-catalytic functions of Eph receptors have been overlooked. This review provides a structural perspective of the intricate molecular mechanisms that drive Eph receptor signalling, and investigates the contribution of intra- and inter-molecular interactions between Eph receptors intracellular domains and their major binding partners. We focus on the non-catalytic functions of Eph receptors with relevance to cancer, which are further substantiated by exploring the role of the two pseudokinase Eph receptors, EphA10 and EphB6. Throughout this review, we carefully analyse and reconcile the existing/conflicting data in the field, to allow researchers to further the current understanding of Eph receptor signalling.
Collapse
Affiliation(s)
- Lung-Yu Liang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter W Janes
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
17
|
Shi W, Wang Y, Peng J, Qi S, Vitale N, Kaneda N, Murata T, Luo H, Wu J. EPHB6 controls catecholamine biosynthesis by up-regulating tyrosine hydroxylase transcription in adrenal gland chromaffin cells. J Biol Chem 2019; 294:6871-6887. [PMID: 30824540 PMCID: PMC6497964 DOI: 10.1074/jbc.ra118.005767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Indexed: 11/06/2022] Open
Abstract
EPHB6 is a member of the erythropoietin-producing hepatocellular kinase (EPH) family and a receptor tyrosine kinase with a dead kinase domain. It is involved in blood pressure regulation and adrenal gland catecholamine (CAT) secretion, but several facets of EPHB6-mediated CAT regulation are unclear. In this study, using biochemical, quantitative RT-PCR, immunoblotting, and gene microarray assays, we found that EPHB6 up-regulates CAT biosynthesis in adrenal gland chromaffin cells (AGCCs). We observed that epinephrine content is reduced in the AGCCs from male Ephb6-KO mice, caused by decreased expression of tyrosine hydroxylase, the rate-limiting enzyme in CAT biosynthesis. We demonstrate that the signaling pathway from EPHB6 to tyrosine hydroxylase expression in AGCCs involves Rac family small GTPase 1 (RAC1), MAP kinase kinase 7 (MKK7), c-Jun N-terminal kinase (JNK), proto-oncogene c-Jun, activator protein 1 (AP1), and early growth response 1 (EGR1). On the other hand, signaling via extracellular signal-regulated kinase (ERK1/2), p38 mitogen-activated protein kinase, and ELK1, ETS transcription factor (ELK1) was not affected by EPHB6 deletion. We further report that EPHB6's effect on AGCCs was via reverse signaling through ephrin B1 and that EPHB6 acted in concert with the nongenomic effect of testosterone to control CAT biosynthesis. Our findings elucidate the mechanisms by which EPHB6 modulates CAT biosynthesis and identify potential therapeutic targets for diseases, such as hypertension, caused by dysfunctional CAT biosynthesis.
Collapse
Affiliation(s)
- Wei Shi
- From the Research Centre and
| | - Yujia Wang
- From the Research Centre and
- the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | | | | | - Nicolas Vitale
- the Institut des Neurosciences Cellulaires et Intégratives, UPR-3212, CNRS-Université de Strasbourg, 5 rue Blaise Pascal, 67000 Strasbourg, France, and
| | - Norio Kaneda
- the Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 4688503, Japan
| | - Tomiyasu Murata
- the Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 4688503, Japan
| | | | - Jiangping Wu
- From the Research Centre and
- Nephrology Department, Centre Hospitalier de l'Université de Montréal Montreal, Quebec, H2X 0A9, Canada
| |
Collapse
|
18
|
Zhang Z, Tremblay J, Raelson J, Sofer T, Du L, Fang Q, Argos M, Marois-Blanchet FC, Wang Y, Yan L, Chalmers J, Woodward M, Harrap S, Hamet P, Luo H, Wu J. EPHA4 regulates vascular smooth muscle cell contractility and is a sex-specific hypertension risk gene in individuals with type 2 diabetes. J Hypertens 2019; 37:775-789. [PMID: 30817459 DOI: 10.1097/hjh.0000000000001948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We investigated the association of genetic variants of EPHA4, a receptor tyrosine kinase, with hypertension, and its role in vascular smooth muscle cell (VSMC) contractility. METHODS Data from two human genetic studies, ADVANCE and HCHS/SOL, were analyzed for association of EPHA4 single nucleotide variants (SNVs) with hypertension risks. The effect of EPHA4 signalling on mouse VSMC contractility was assessed. RESULTS We identified a SNV (rs75843691 hg19 chr2:g.222395371 C>G), located in the third intron of EPHA4 gene, being significantly associated with hypertension in human female patients (P value = 8.3 × 10, below the Bonferroni-corrected critical P value) but not male patients with type 2 diabetes from the ADVANCE clinical trial. We found that EPHA4 was expressed in VSMCs and its stimulation by anti-EPHA4 antibody led to reduced VSMC contractility. Estrogen enhanced the contractility-lowering effect of EPHA4 stimulation. Conversely, siRNA knockdown of Epha4 expression in VSMCs resulted in increased contractility of VSMCs from female mice but not from male mice. CONCLUSION EPHA4 appears to be a sex-specific hypertension risk gene in type 2 diabetic patients. Forward EPHA4 signalling reduces VSMC contractility, and estrogen is a modifier of this effect. The effect of EPHA4 on VSMCs contractility explains the association of EPHA4 gene with hypertension risks in female patients.
Collapse
Affiliation(s)
- Zeqin Zhang
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Johanne Tremblay
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - John Raelson
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Tamar Sofer
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lizhong Du
- The Children's Hospital, Zhejiang University School of Medicine
| | - Qiang Fang
- The Intensive Care Unit, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Maria Argos
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Yu Wang
- The Children's Hospital, Zhejiang University School of Medicine
| | - Lingling Yan
- The Children's Hospital, Zhejiang University School of Medicine
| | - John Chalmers
- The George Institute for Global Health, University of Sydney, Sydney, New South Wales, Australia
- The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Mark Woodward
- The George Institute for Global Health, University of Sydney, Sydney, New South Wales, Australia
- The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Stephen Harrap
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Pavel Hamet
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| |
Collapse
|
19
|
Wu T, Zhang BQ, Raelson J, Yao YM, Wu HD, Xu ZX, Marois-Blanchet FC, Tahir MR, Wang Y, Bradley WE, Luo H, Wu J, Sheng JZ, Hu SJ. Analysis of the association of EPHB6, EFNB1 and EFNB3 variants with hypertension risks in males with hypogonadism. Sci Rep 2018; 8:14497. [PMID: 30262919 PMCID: PMC6160468 DOI: 10.1038/s41598-018-32836-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
Several members of the EPH kinase family and their ligands are involved in blood pressure regulation, and such regulation is often sex- or sex hormone-dependent, based on animal and human genetic studies. EPHB6 gene knockout (KO) in mice leads to hypertension in castrated males but not in un-manipulated KO males or females. To assess whether this finding in mice is relevant to human hypertension, we conducted a human genetic study for the association of EPHB6 and its two ligands, EFNB1 and EFNB3, with hypertension in hypogonadic patients. Seven hundred and fifty hypertensive and 750 normotensive Han Chinese patients, all of whom were hypogonadic, were genotyped for single nucleotide polymorphisms (SNPs) within the regions of the genes, plus an additional 50 kb 5′ of the genes for EPHB6, EFNB1 and EFNB3. An imputed insertion/deletion polymorphism, rs35530071, was found to be associated with hypertension at p-values below the Bonferroni-corrected significance level of 0.0024. This marker is located 5′ upstream of the EFNB3 gene start site. Previous animal studies showed that while male EFNB3 gene knockout mice were normotensive, castration of these mice resulted in hypertension, corroborating the results of the human genetic study. Considering the significant associations of EFNB3 SNPs with hypertension in hypogonadic males and supporting evidence from castrated EFNB3 KO mice, we conclude that loss-of-function variants of molecules in the EPHB6 signaling pathway in the presence of testosterone are protective against hypertension in humans.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Cardiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Bi-Qi Zhang
- Institute of Cardiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - John Raelson
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Yu-Mei Yao
- Department of Cardiology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Huan-Dong Wu
- Institute of Cardiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zao-Xian Xu
- Institute of Cardiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | | | - Muhammad Ramzan Tahir
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Yujia Wang
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada.,Children's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - W Edward Bradley
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada. .,Nephrology Service, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada.
| | - Jian-Zhong Sheng
- Department of Pathology and Physiopathology, College of Medicine, Zhejiang University, Hangzhou, 310005, China.
| | - Shen-Jiang Hu
- Institute of Cardiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
20
|
Finney AC, Orr AW. Guidance Molecules in Vascular Smooth Muscle. Front Physiol 2018; 9:1311. [PMID: 30283356 PMCID: PMC6157320 DOI: 10.3389/fphys.2018.01311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Several highly conserved families of guidance molecules, including ephrins, Semaphorins, Netrins, and Slits, play conserved and distinct roles in tissue remodeling during tissue patterning and disease pathogenesis. Primarily, these guidance molecules function as either secreted or surface-bound ligands that interact with their receptors to activate a variety of downstream effects, including cell contractility, migration, adhesion, proliferation, and inflammation. Vascular smooth muscle cells, contractile cells comprising the medial layer of the vessel wall and deriving from the mural population, regulate vascular tone and blood pressure. While capillaries lack a medial layer of vascular smooth muscle, mural-derived pericytes contribute similarly to capillary tone to regulate blood flow in various tissues. Furthermore, pericyte coverage is critical in vascular development, as perturbations disrupt vascular permeability and viability. During cardiovascular disease, smooth muscle cells play a more dynamic role in which suppression of contractile markers, enhanced proliferation, and migration lead to the progression of aberrant vascular remodeling. Since many types of guidance molecules are expressed in vascular smooth muscle and pericytes, these may contribute to blood vessel formation and aberrant remodeling during vascular disease. While vascular development is a large focus of the existing literature, studies emerged to address post-developmental roles for guidance molecules in pathology and are of interest as novel therapeutic targets. In this review, we will discuss the roles of guidance molecules in vascular smooth muscle and pericyte function in development and disease.
Collapse
Affiliation(s)
- Alexandra Christine Finney
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
21
|
Liu J, Xu B, Xu G, Zhang X, Yang X, Wang J. Reduced EphB6 protein in gastric carcinoma and associated lymph nodes suggests EphB6 as a gastric tumor and metastasis inhibitor. Cancer Biomark 2018; 19:241-248. [PMID: 28453458 DOI: 10.3233/cbm-160256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Eph receptors comprise the largest group of the receptor tyrosine kinase (RTK) family, and Eph receptors interacting with their ligand ephrins play an important role in development and tumorigenesis. EphB6, a special Eph receptor that lacks tyrosine kinase activity, was reported to be expressed in some human cancers. The clinical significance of EphB6 in gastric carcinoma has not been well investigated. METHODS In this study, we detected expression of EphB6 protein in four gastric cancer cell lines and a set of gastric carcinoma tissue specimens by using immunohistochemistry. The relationship between EphB6 protein expression and clinicopathological parameters was statistically analyzed. RESULTS EphB6 protein was differentially detected in four gastric cancer cell lines. EphB6 protein was low expressed in 52.6%, moderately expressed in 32.59%, and strongly expressed in 14.5% of gastric carcinomas. EphB6 expression was positively associated with tumor differentiation (P< 0.001, rs= 0.476), and negatively associated with lymph node metastasis (P< 0.001, rs=-0.444) and tumor stage (P= 0.001, rs=-0.269). Low EphB6 expression was detected more often in female patients (P= 0.031). No significant relationship between EphB6 expression and patient age, tumor location, or depth of tumor invasion was identified. CONCLUSION Our data indicate that EphB6 protein was decreased in gastric carcinoma compared with normal mucosa. Analytic results based on pathological parameters suggests that EphB6 protein may inhibit metastasis of gastric carcinoma and could be a potential therapeutic target for gastric carcinoma.
Collapse
Affiliation(s)
- Jiaxiu Liu
- Department of Molecular Biology, Jiangsu College of Nursing, Huaian 223300, Jiangsu, China
| | - Bin Xu
- Jiangsu Huaian Third People's Hospital, Huaian 223340, Jiangsu, China
| | - Guoying Xu
- Department of Molecular Biology, Jiangsu College of Nursing, Huaian 223300, Jiangsu, China
| | - Xiaolei Zhang
- Department of Molecular Biology, Jiangsu College of Nursing, Huaian 223300, Jiangsu, China
| | - Xueyi Yang
- Department of Molecular Biology, Jiangsu College of Nursing, Huaian 223300, Jiangsu, China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, Jiangsu, China
| |
Collapse
|
22
|
Wang Y, Shi W, Blanchette A, Peng J, Qi S, Luo H, Ledoux J, Wu J. EPHB6 and testosterone in concert regulate epinephrine release by adrenal gland chromaffin cells. Sci Rep 2018; 8:842. [PMID: 29339804 PMCID: PMC5770418 DOI: 10.1038/s41598-018-19215-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022] Open
Abstract
Erythropoietin-producing human hepatocellular receptor (EPH) B6 (EPHB6) is a member of the receptor tyrosine kinase family. We previously demonstrated that EPHB6 knockout reduces catecholamine secretion in male but not female mice, and castration reverses this phenotype. We showed here that male EPHB6 knockout adrenal gland chromaffin cells presented reduced acetylcholine-triggered Ca2+ influx. Such reduction depended on the non-genomic effect of testosterone. Increased large conductance calcium-activated potassium channel current densities were recorded in adrenal gland chromaffin cells from male EPHB6 knockout mice but not from castrated knockout or female knockout mice. Blocking of the large conductance calcium-activated potassium channel in adrenal gland chromaffin cells from male knockout mice corrected their reduced Ca2+ influx. We conclude that the absence of EPHB6 and the presence of testosterone would lead to augmented large conductance calcium-activated potassium channel currents, which limit voltage-gated calcium channel opening in adrenal gland chromaffin cells. Consequently, acetylcholine-triggered Ca2+ influx is reduced, leading to lower catecholamine release in adrenal gland chromaffin cells from male knockout mice. This explains the reduced resting-state blood catecholamine levels, and hence the blood pressure, in male but not female EPHB6 knock mice. These findings have certain clinical implications.
Collapse
Affiliation(s)
- Yujia Wang
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Wei Shi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
| | | | - Junzheng Peng
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Shijie Qi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada.
| | - Jonathan Ledoux
- Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada.
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada.
- Nephrology Department, CHUM, Montreal, Quebec, H2L 4M1, Canada.
| |
Collapse
|
23
|
Kim M, Yoo HJ, Kim M, Kim J, Baek SH, Song M, Lee JH. EPHA6 rs4857055 C > T polymorphism associates with hypertension through triglyceride and LDL particle size in the Korean population. Lipids Health Dis 2017; 16:230. [PMID: 29208002 PMCID: PMC5718072 DOI: 10.1186/s12944-017-0620-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Erythropoietin-producing human hepatocellular (Eph) receptors might contribute to the development of atherosclerosis. A genome-wide association study indicated that the Eph receptor A6 gene (EPHA6) associated with at least 1 blood pressure (BP) phenotype. The objective of the present study was to determine whether EPHA6 is a novel candidate gene for hypertension in a Korean population. METHODS A total 2146 study participants with normotension and hypertension were included. Genotype data were obtained using a Korean Chip. To assess the association between single-nucleotide polymorphisms (SNPs) and BP, we performed a linear regression analysis, which showed that rs4850755 in the EPHA6 gene was the SNP most highly associated with both systolic and diastolic BP. RESULTS The presence of the TT genotype of the EPHA6 rs4857055 C > T SNP was associated with a higher risk of hypertension after adjusting for age, sex, body mass index (BMI), smoking, and drinking [odds ratio 1.533, P = 0.001]. In the control group, significant associations were observed between systolic BP and the rs4857055 polymorphism and between diastolic BP and the rs4857055 polymorphism. In the hypertension group, a significant association was observed between systolic BP and the rs4857055 polymorphism. In the hypertension group, subjects with the TT genotype showed significantly higher systolic BP than CC subjects. Additionally, in the hypertension group, TT carriers showed a higher tendency of serum triglyceride (P = 0.069) and significantly higher apolipoprotein B (P = 0.015) and smaller low-density lipoprotein (LDL) particle size (P < 0.001) than either TC or CC subjects. CONCLUSIONS These results could suggest that the EPHA6 rs4857055 C > T SNP is a novel candidate gene for hypertension in the Korean population. Additionally, the TT genotype could be associated with hypertriglyceridemia and small LDL particle size in hypertension.
Collapse
Affiliation(s)
- Minjoo Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea
| | - Hye Jin Yoo
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea
| | - Minkyung Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea
| | - Jiyoo Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea.,National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Korea
| | - Seung Han Baek
- Institute of Convergence Technology, Yonsei University, Seoul, 03722, Korea
| | - Min Song
- Department of Library and Information Science, Yonsei University, Seoul, 03722, Korea
| | - Jong Ho Lee
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea. .,Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea. .,National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
24
|
Bucsek MJ, Qiao G, MacDonald CR, Giridharan T, Evans L, Niedzwecki B, Liu H, Kokolus KM, Eng JWL, Messmer MN, Attwood K, Abrams SI, Hylander BL, Repasky EA. β-Adrenergic Signaling in Mice Housed at Standard Temperatures Suppresses an Effector Phenotype in CD8 + T Cells and Undermines Checkpoint Inhibitor Therapy. Cancer Res 2017; 77:5639-5651. [PMID: 28819022 DOI: 10.1158/0008-5472.can-17-0546] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/27/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022]
Abstract
The immune context of tumors has significant prognostic value and is predictive of responsiveness to several forms of therapy, including immunotherapy. We report here that CD8+ T-cell frequency and functional orientation within the tumor microenvironment is regulated by β2-adrenergic receptor (β-AR) signaling in host immune cells. We used three strategies-physiologic (manipulation of ambient thermal environment), pharmacologic (β-blockers), and genetic (β2-AR knockout mice) to reduce adrenergic stress signaling in two widely studied preclinical mouse tumor models. Reducing β-AR signaling facilitated conversion of tumors to an immunologically active tumor microenvironment with increased intratumoral frequency of CD8+ T cells with an effector phenotype and decreased expression of programmed death receptor-1 (PD-1), in addition to an elevated effector CD8+ T-cell to CD4+ regulatory T-cell ratio (IFNγ+CD8+:Treg). Moreover, this conversion significantly increased the efficacy of anti-PD-1 checkpoint blockade. These data highlight the potential of adrenergic stress and norepinephrine-driven β-AR signaling to regulate the immune status of the tumor microenvironment and support the strategic use of clinically available β-blockers in patients to improve responses to immunotherapy. Cancer Res; 77(20); 5639-51. ©2017 AACR.
Collapse
Affiliation(s)
- Mark J Bucsek
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Guanxi Qiao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | | | | - Lauren Evans
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Brian Niedzwecki
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Haichao Liu
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Kathleen M Kokolus
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Jason W-L Eng
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Michelle N Messmer
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Bonnie L Hylander
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | |
Collapse
|
25
|
Tremblay J, Wang Y, Raelson J, Marois-Blanchet FC, Wu Z, Luo H, Bradley E, Chalmers J, Woodward M, Harrap S, Hamet P, Wu J. Evidence from single nucleotide polymorphism analyses of ADVANCE study demonstrates EFNB3 as a hypertension risk gene. Sci Rep 2017; 7:44114. [PMID: 28272517 PMCID: PMC5341021 DOI: 10.1038/srep44114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/03/2017] [Indexed: 01/11/2023] Open
Abstract
EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions. We recently reported that Efnb3 gene deletion results in hypertension in female but not male mice. These data suggest that EFNB3 regulates blood pressure in a sex- and sex hormone-dependent way. In the present study, we conducted a human genetic study to assess the association of EFNB3 single nucleotide polymorphisms with human hypertension risks, using 3,448 patients with type 2 diabetes from the ADVANCE study (Action in Diabetes and Vascular Disease: Peterax and Diamicron MR Controlled Evaluation). We have observed significant association between 2 SNPs in the 3′ untranslated region or within the adjacent region just 3′ of the EFNB3 gene with hypertension, corroborating our findings from the mouse model. Thus, our investigation has shown that EFNB3 is a hypertension risk gene in certain individuals.
Collapse
Affiliation(s)
- Johanne Tremblay
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Yujia Wang
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - John Raelson
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | | | - Zenghui Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Edward Bradley
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - John Chalmers
- The George Institute for Global Health, University of Sydney Sydney, New South Wales, 2006, Australia
| | - Mark Woodward
- The George Institute for Global Health, University of Sydney Sydney, New South Wales, 2006, Australia.,The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Stephen Harrap
- Department of Epidemiology, Johns Hopkins University, Baltimore MD, USA.,Department of Physiology, University of Melbourne, Victoria 3010, Australia
| | - Pavel Hamet
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| |
Collapse
|
26
|
The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility. Sci Rep 2016; 6:38976. [PMID: 27941904 PMCID: PMC5150233 DOI: 10.1038/srep38976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022] Open
Abstract
Several erythropoietin-producing hepatocellular receptor B family (EPHB) and their ligands, ephrinBs (EFNBs), are involved in blood pressure regulation in animal models. We selected 528 single nucleotide polymorphisms (SNPs) within the genes of EPHB6, EFNB2, EFNB3 and GRIP1 in the EPH/EFN signalling system to query the International Blood Pressure Consortium dataset. A SNP within the glutamate receptor interacting protein 1 (GRIP1) gene presented a p-value of 0.000389, approaching the critical p-value of 0.000302, for association with diastolic blood pressure of 60,396 individuals. According to echocardiography, we found that Efnb3 gene knockout mice showed enhanced constriction in the carotid arteries. In vitro studies revealed that in mouse vascular smooth muscle cells, siRNA knockdown of GRIP1, which is in the EFNB3 reverse signalling pathway, resulted in increased contractility of these cells. These data suggest that molecules in the EPHB/EFNB signalling pathways, specifically EFNB3 and GRIP1, are involved blood pressure regulation.
Collapse
|
27
|
Wang Y, Hamet P, Thorin E, Tremblay J, Raelson J, Wu Z, Luo H, Jin W, Lavoie JL, Peng J, Marois-Blanchet FC, Tahir MR, Chalmers J, Woodward M, Harrap S, Qi S, Li CY, Wu J. Reduced blood pressure after smooth muscle EFNB2 deletion and the potential association of EFNB2 mutation with human hypertension risk. Eur J Hum Genet 2016; 24:1817-1825. [PMID: 27530629 DOI: 10.1038/ejhg.2016.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/04/2016] [Accepted: 07/05/2016] [Indexed: 11/09/2022] Open
Abstract
Ephrin B2 (EFNB2) is a ligand for erythropoietin-producing hepatocellular kinases (EPH), the largest family of receptor tyrosine kinases. It has critical functions in many biological systems, but is not known to regulate blood pressure. We generated mice with a smooth muscle cell (SMC)-specific deletion of EFNB2 and investigated its roles in blood pressure regulation and vascular SMC (VSMC) contractility. Male Efnb2 knockout (KO) mice presented reduced blood pressure, whereas female KO mice had no such reduction. Both forward signaling from EFNB2 to EPHs and reverse signaling from EPHs to EFNB2 were involved in regulating VSMC contractility, with EPHB4 serving as a critical molecule for forward signaling, based on crosslinking studies. We also found that a region from aa 313 to aa 331 in the intracellular tail of EFNB2 was essential for reverse signaling regulating VSMC contractility, based on deletion mutation studies. In a human genetic study, we identified five SNPs in the 3' region of the EFNB2 gene, which were in linkage disequilibrium and were significantly associated with hypertension for male but not female subjects, consistent with our findings in mice. The coding (minor) alleles of these five SNPs were protective in males. We have thus discovered a previously unknown blood pressure-lowering mechanism mediated by EFNB2 and identified EFNB2 as a gene associated with hypertension risk in humans.
Collapse
Affiliation(s)
- Yujia Wang
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Pavel Hamet
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Eric Thorin
- Department of Surgery, Université de Montréal and Université Montreal Heart Institute, Montreal, QC, Canada
| | - Johanne Tremblay
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - John Raelson
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.,PGX-Services, Montreal, QC, Canada
| | - Zenghui Wu
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Hongyu Luo
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Wei Jin
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Julie L Lavoie
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.,Department of Kinesiology, University of Montreal, Montreal, QC, Canada
| | - Junzheng Peng
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | | | - Muhammad Ramzan Tahir
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - John Chalmers
- Department of Biostatistics, The George Institute for Global Health, University of Sydney, Sydney, NSW, Australia
| | - Mark Woodward
- Department of Biostatistics, The George Institute for Global Health, University of Sydney, Sydney, NSW, Australia
| | - Stephen Harrap
- Department of Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Shijie Qi
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Charles Yibin Li
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Jiangping Wu
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.,Department of Nephrology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
28
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
29
|
Wang Y, Wu Z, Thorin E, Tremblay J, Lavoie JL, Luo H, Peng J, Qi S, Wu T, Chen F, Shen J, Hu S, Wu J. Estrogen and testosterone in concert with EFNB3 regulate vascular smooth muscle cell contractility and blood pressure. Am J Physiol Heart Circ Physiol 2016; 310:H861-72. [PMID: 26851246 DOI: 10.1152/ajpheart.00873.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/02/2016] [Indexed: 12/20/2022]
Abstract
EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions, although their function in blood pressure (BP) control has not been studied in detail. In the present study, we report that Efnb3 gene knockout (KO) led to increased BP in female but not male mice. Vascular smooth muscle cells (VSMCs) were target cells for EFNB3 function in BP regulation. The deletion of EFNB3 augmented contractility of VSMCs from female but not male KO mice, compared with their wild-type (WT) counterparts. Estrogen augmented VSMC contractility while testosterone reduced it in the absence of EFNB3, although these sex hormones had no effect on the contractility of VSMCs from WT mice. The effect of estrogen on KO VSMC contractility was via a nongenomic pathway involving GPER, while that of testosterone was likely via a genomic pathway, according to VSMC contractility assays and GPER knockdown assays. The sex hormone-dependent contraction phenotypes in KO VSMCs were reflected in BP in vivo. Ovariectomy rendered female KO mice normotensive. At the molecular level, EFNB3 KO in VSMCs resulted in reduced myosin light chain kinase phosphorylation, an event enhancing sensitivity to Ca(2+)flux in VSMCs. Our investigation has revealed previously unknown EFNB3 functions in BP regulation and show that EFNB3 might be a hypertension risk gene in certain individuals.
Collapse
Affiliation(s)
- Yujia Wang
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Zenghui Wu
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada;
| | - Eric Thorin
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Johanne Tremblay
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Julie L Lavoie
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Département de Kinésiologie, Université de Montréal, Montreal, Quebec, Canada
| | - Hongyu Luo
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Junzheng Peng
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shijie Qi
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Tao Wu
- Institute of Cardiology, First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, China; and
| | - Fei Chen
- Institute of Cardiology, First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, China; and
| | - Jianzhong Shen
- Institute of Cardiology, First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, China; and
| | - Shenjiang Hu
- Institute of Cardiology, First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, China; and
| | - Jiangping Wu
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Nephrology Service, CRCHUM, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Hu Y, Wang X, Wu Y, Jin W, Cheng B, Fang X, Martel-Pelletier J, Kapoor M, Peng J, Qi S, Shi G, Wu J, Luo H. Role of EFNB1 and EFNB2 in Mouse Collagen-Induced Arthritis and Human Rheumatoid Arthritis. Arthritis Rheumatol 2015; 67:1778-88. [PMID: 25779027 DOI: 10.1002/art.39116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 03/10/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVE EFNB1 and EFNB2 are ligands for Eph receptor tyrosine kinases. This study was undertaken to investigate how the expression of Efnb1 and Efnb2 on murine T cells influences the pathogenesis of collagen-induced arthritis (CIA) and to assess correlations between the T cell expression of these 2 molecules and measures of disease activity in patients with rheumatoid arthritis (RA). METHODS CIA was studied in mice with T cell-specific deletion (double gene knockout [dKO]) of both Efnb1 and Efnb2. Expression of EFNB1 and EFNB2 messenger RNA (mRNA) in peripheral blood T cells from patients with RA was determined by quantitative reverse transcription- polymerase chain reaction. RESULTS In dKO mice, clinical scores of arthritis were reduced compared to those in wild-type (WT) control mice. Serum collagen-specific antibody titers in dKO mice were lower than those in WT mice. In analyses based on equal cell numbers, dKO mouse T cells, as compared to WT mouse T cells, provided vastly inferior help to B cells in the production of collagen-specific antibodies in vitro. T cells from dKO mice were compromised in their ability to migrate to the arthritic paws in vivo and in their ability to undergo chemotaxis toward CXCL12 in vitro. Deletion mutation of Efnb1 and Efnb2 intracellular tails revealed critical regions in controlling T cell chemotaxis. T cells from RA patients expressed higher EFNB1 mRNA levels, which correlated with RA symptoms and laboratory findings. CONCLUSION Efnb1 and Efnb2 in T cells are essential for pathogenic antibody production and for T cell migration to the inflamed paws in mice with CIA. These findings suggest that the expression of EFNB1 in T cells might be a useful parameter for monitoring RA disease activity and treatment responses.
Collapse
Affiliation(s)
- Yan Hu
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Xuehai Wang
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Yongqiang Wu
- West China Hospital of Sichuan University, Chengdu, China
| | - Wei Jin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Baoli Cheng
- First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiangming Fang
- First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | | | - Mohit Kapoor
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Junzheng Peng
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Shijie Qi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Guixiu Shi
- First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiangping Wu
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Hongyu Luo
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Wang Y, Thorin E, Luo H, Tremblay J, Lavoie JL, Wu Z, Peng J, Qi S, Wu J. EPHB4 Protein Expression in Vascular Smooth Muscle Cells Regulates Their Contractility, and EPHB4 Deletion Leads to Hypotension in Mice. J Biol Chem 2015; 290:14235-44. [PMID: 25903126 DOI: 10.1074/jbc.m114.621615] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 11/06/2022] Open
Abstract
EPH kinases are the largest family of receptor tyrosine kinases, and their ligands, ephrins (EFNs), are also cell surface molecules. This work presents evidence that EPHB4 on vascular smooth muscle cells (VSMCs) is involved in blood pressure regulation. We generated gene KO mice with smooth muscle cell-specific deletion of EPHB4. Male KO mice, but not female KO mice, were hypotensive. VSMCs from male KO mice showed reduced contractility when compared with their WT counterparts. Signaling both from EFNBs to EPHB4 (forward signaling) and from EPHB4 to EFNB2 (reverse signaling) modulated VSMC contractility. At the molecular level, the absence of EPHB4 in VSMCs resulted in compromised signaling from Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to myosin light chain kinase (MLCK) to myosin light chain, the last of which controls the contraction force of motor molecule myosin. Near the cell membrane, an adaptor protein GRIP1, which can associate with EFNB2, was found to be essential in mediating EPHB4-to-EFNB reverse signaling, which regulated VSMC contractility, based on siRNA gene knockdown studies. Our research indicates that EPHB4 plays an essential role in regulating small artery contractility and blood pressure.
Collapse
Affiliation(s)
- Yujia Wang
- From the Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9
| | - Eric Thorin
- the Montreal Heart Institute, Montreal, Quebec H1T 1C8
| | - Hongyu Luo
- From the Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9
| | - Johanne Tremblay
- From the Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9
| | - Julie L Lavoie
- From the Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, the Département de Kinésiologie, Université de Montréal, Montreal, Quebec H3T 1J4, and
| | - Zenghui Wu
- From the Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9
| | - Junzheng Peng
- From the Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9
| | - Shijie Qi
- From the Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9
| | - Jiangping Wu
- From the Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, the Nephrology Service, CHUM, Montreal, Quebec H2L 4M1, Canada
| |
Collapse
|
32
|
Allonby O, El Zawily AM, Freywald T, Mousseau DD, Chlan J, Anderson D, Benmerah A, Sidhu V, Babu M, DeCoteau J, Freywald A. Ligand stimulation induces clathrin- and Rab5-dependent downregulation of the kinase-dead EphB6 receptor preceded by the disruption of EphB6-Hsp90 interaction. Cell Signal 2014; 26:2645-57. [PMID: 25152371 DOI: 10.1016/j.cellsig.2014.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/25/2014] [Accepted: 08/15/2014] [Indexed: 12/13/2022]
Abstract
Ligand-induced internalisation and subsequent downregulation of receptor tyrosine kinases (RTKs) serve to determine biological outputs of their signalling. Intrinsically kinase-deficient RTKs control a variety of biological responses, however, the mechanism of their downregulation is not well understood and its analysis is focused exclusively on the ErbB3 receptor. The Eph group of RTKs is represented by the EphA and EphB subclasses. Each bears one kinase-inactive member, EphA10 and EphB6, respectively, suggesting an important role for these molecules in the Eph signalling network. While EphB6 effects on cell behaviour have been assessed, the mechanism of its downregulation remains elusive. Our work reveals that EphB6 and its kinase-active relative, and signalling partner, EphB4, are downregulated in a similar manner in response to their common ligand, ephrin-B2. Following stimulation, both receptors are internalised through clathrin-coated pits and are degraded in lysosomes. Their targeting for lysosomal degradation relies on the activity of an early endosome regulator, the Rab5 GTPase, as this process is inhibited in the presence of a Rab5 dominant-negative mutant. EphB6 also interacts with the Hsp90 chaperone and EphB6 downregulation is preceded by their rapid dissociation. Moreover, the inhibition of Hsp90 results in EphB6 degradation, mimicking its ligand-induced downregulation. These processes appear to rely on overlapping mechanisms, since Hsp90 inhibition does not significantly enhance ligand-induced EphB6 elimination. Taken together, our observations define a novel mechanism for intrinsically kinase-deficient RTK downregulation and support an intriguing model, where Hsp90 dissociation acts as a trigger for ligand-induced receptor removal.
Collapse
Affiliation(s)
- Odette Allonby
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Amr M El Zawily
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Tanya Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Darrell D Mousseau
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Jennifer Chlan
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Deborah Anderson
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Cancer Research Unit, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Alexandre Benmerah
- INSERM U1163, Laboratory of Inherited Kidney Diseases, 75015 Paris, France; Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France.
| | - Vishaldeep Sidhu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK,S4S 0A2, Canada.
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK,S4S 0A2, Canada.
| | - John DeCoteau
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
33
|
Hong Z, Cabrera JA, Mahapatra S, Kutty S, Weir EK, Archer SL. Activation of the EGFR/p38/JNK pathway by mitochondrial-derived hydrogen peroxide contributes to oxygen-induced contraction of ductus arteriosus. J Mol Med (Berl) 2014; 92:995-1007. [PMID: 24906456 DOI: 10.1007/s00109-014-1162-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/25/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Oxygen-induced contraction of the ductus arteriosus (DA) involves a mitochondrial oxygen sensor, which signals pO2 in the DA smooth muscle cell (DASMC) by increasing production of diffusible hydrogen peroxide (H2O2). H2O2 stimulates vasoconstriction by regulating ion channels and Rho kinase, leading to calcium influx and calcium sensitization. Because epidermal growth factor receptor (EGFR) signaling is also redox regulated and participates in oxygen sensing and vasoconstriction in other systems, we explored the role of the EGFR and its signaling cascade (p38 and c-Jun N-amino-terminal kinase (JNK)) in DA contraction. Experiments were performed in DA rings isolated from full-term New Zealand white rabbits and human DASMC. In human DASMCs, increasing pO2 from hypoxia to normoxia (40 to 100 mmHg) significantly increased cytosolic calcium, p < 0.01. This normoxic rise in intracellular calcium was mimicked by EGF and inhibited by EGFR siRNA. In DA rings, EGF caused contraction while the specific EGFR inhibitor (AG1478) and the tyrosine kinase inhibitors (genistein or tyrphostin A23) selectively attenuated oxygen-induced contraction (p < 0.01). Conversely, orthovanadate, a tyrosine phosphatase inhibitor known to activate EGFR signaling, caused dose-dependent contraction of hypoxic DA and superimposed increases in oxygen caused minimal additional contraction. Anisomycin, an activator of EGFR's downstream kinases, p38 and JNK, caused DA contraction; conversely, oxygen-induced DA contraction was blocked by inhibitors of p38 mitogen-activated protein kinases (MAPK) (SB203580) or JNK (JNK inhibitor II). O2-induced phosphorylation of EGFR occurred within 5 min of increasing pO2 and was inhibited by mitochondrial-targeted overexpression of catalase. AG1478 prevented the oxygen-induced p38 and JNK phosphorylation. In conclusion, O2-induced EGFR transactivation initiates p38/JNK-mediated increases in cytosolic calcium and contributes to DA contraction. The EGFR/p38/JNK pathway is regulated by mitochondrial redox signaling and is a promising therapeutic target for modulation of the patent ductus arteriosus. KEY MESSAGES Oxygen activates epidermal growth factor receptor (EGFR) in ductus arteriosus (DA) smooth muscle cells. EGFR inhibition selectively attenuates O2-induced DA constriction. pO2-induced EGFR activation is mediated by mitochondrial-derived hydrogen peroxide. p38 MAPK and JNK mediated EGFR's effects on oxygen-induced DA contraction. Tyrosine kinases and phosphatases participate in oxygen sensing in the DA. The EGFR pathway offers new therapeutic targets to modulate patency of the ductus arteriosus.
Collapse
Affiliation(s)
- Zhigang Hong
- Department of Medicine, Queen's University, Etherington Hall, Room 3041, 94 Stuart St., Kingston, Ontario, K7L 3 N6, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Wu Z, Luo H, Thorin E, Tremblay J, Peng J, Lavoie JL, Wang Y, Qi S, Wu T, Wu J. Possible role of Efnb1 protein, a ligand of Eph receptor tyrosine kinases, in modulating blood pressure. J Biol Chem 2012; 287:15557-69. [PMID: 22393061 DOI: 10.1074/jbc.m112.340869] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eph kinases constitute the largest receptor tyrosine kinase family, and their ligands, ephrins (Efns), are also cell surface molecules. Although they are ligands, Efns can transduce signals reversely into cells. We have no prior knowledge of the role played by any members of this family of kinases or their ligands in blood pressure (BP) regulation. In the present studies, we investigated the role of Efnb1 in vascular smooth muscle cell (VSMC) contractility and BP regulation. We revealed that reverse signaling through Efnb1 led to a reduction of RhoA activation and VSMC contractility in vitro. Consistent with this finding, ex vivo, there was an increase of RhoA activity accompanied by augmented myosin light chain phosphorylation in mesenteric arteries from mice with smooth muscle-specific conditional Efnb1 gene knock-out (KO). Small interfering RNA knockdown of Grip1, a molecule associated with the Efnb1 intracellular tail, partially eliminated the effect of Efnb1 on VSMC contractility and myosin light chain phosphorylation. In support of these in vitro and ex vivo results, Efnb1 KO mice on a high salt diet showed a statistically significant heightened increment of BP at multiple time points during stress compared with wild type littermates. Our results demonstrate that Efnb1 is a previously unknown negative regulator of VSMC contractility and BP and that it exerts such effects via reverse signaling through Grip1.
Collapse
Affiliation(s)
- Zenghui Wu
- Nephrology Department, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2L 4M1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|