1
|
Pi JH, Choi SY, Park SK, Lim J, Kang CJ. Anti-lymphoma peptide is inspired by mapping a sequence of four amino acids of KRAI motif as nuclear localization signal of Crlz-1. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200953. [PMID: 40093512 PMCID: PMC11906403 DOI: 10.1016/j.omton.2025.200953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Peptides of Crlz-1 nuclear localization signal as mapped to be a short KRAI sequence inhibited the proliferation of germinal center-derived Ramos cells from Burkitt's lymphoma patient. This anti-proliferative effect was mechanistically explained by a cascade of the block of Crlz-1 nuclear movement and consequential failure of CBFβ nuclear mobilization, resulting in the absence of bound Runx/CBFβ heterodimer on the enhancer-promoter of the Bcl-6 GC master gene. As a consequence of this heterodimer absence, the Bcl-6 expression was abolished, leading to the down-regulation of cyclins D1-D3 and the up-regulation of IRF-4, Blimp-1, and IgJ genes. Furthermore, this peptide decreased the production of rRNA in these cells, indicating that the nuclear Crlz-1 as a UTP-3 constituent of ribosomal small subunit processome might be necessary to regulate the biogenesis and/or processing of rRNA, and thereby produce ribosomes necessary for their rapid proliferation. Surprisingly, the KRAI motif peptides had an intrinsic cell-membrane permeability by themselves, and therefore their anti-proliferative and anti-tumor effects were also demonstrated in both the cultured cells and Ramos-xenografted mice just by adding them directly to the culture media or injecting them into tail veins. This definitely paved the prospective road to developing a novel anti-cancer peptide drug against the germinal center-derived B cell lymphoma.
Collapse
Affiliation(s)
- Joo Hyun Pi
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi 17104, South Korea
| | - Seung Young Choi
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi 17104, South Korea
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Junghyun Lim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Chang Joong Kang
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi 17104, South Korea
| |
Collapse
|
2
|
Castells M, Madden M, Oskeritzian CA. Mast Cells and Mas-related G Protein-coupled Receptor X2: Itching for Novel Pathophysiological Insights to Clinical Relevance. Curr Allergy Asthma Rep 2024; 25:5. [PMID: 39585499 PMCID: PMC11588779 DOI: 10.1007/s11882-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Clinical interest in non-IgE activation of mast cells has been growing since the description of the human MRGPRX2 receptor. Its participation in many allergic and inflammatory conditions such as non histaminergic itch, urticaria, asthma and drug hypersensitivity has been growing. We present here an updated review of its structure, expression and biology to help understand conditions and diseases attributed to its activation and/or overpexression and the search for agonists and antagonists of clinical utility. RECENT FINDINGS The description of patients presenting anaphylaxis when exposed to one or multiple MRGPRX2 agonists such as general anesthetics, antibiotics, opiods and other agents has provided evidence of potential heterogeneity in humans. This review provides the most recent developments into the receptor structure, tissue expression and signaling pathways including the potential enhancement of IgE-mediated mast cell activation. New insight into its agonists and antagonists is described and future developments to adress its modulations.
Collapse
Affiliation(s)
- Mariana Castells
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Smith Building, Room 626D, 1 Jimmy Fund Way, Boston, MA, 02115, USA.
| | - Michael Madden
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
3
|
Kundu D, Min X, Zhang X, Tian X, Wang S, Kim KM. The Ubiquitination of Arrestin3 within the Nucleus Triggers the Nuclear Export of Mdm2, Which, in Turn, Mediates the Ubiquitination of GRK2 in the Cytosol. Int J Mol Sci 2024; 25:9644. [PMID: 39273591 PMCID: PMC11395016 DOI: 10.3390/ijms25179644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
GRK2 and arrestin3, key players in the functional regulation of G protein-coupled receptors (GPCRs), are ubiquitinated by Mdm2, a nuclear protein. The agonist-induced increase in arrestin3 ubiquitination occurs in the nucleus, underscoring the crucial role of its nuclear translocation in this process. The ubiquitination of arrestin3 occurs in the nucleus, highlighting the pivotal role of its nuclear translocation in this process. In contrast, GRK2 cannot translocate into the nucleus; thus, facilitation of the cytosolic translocation of nuclear Mdm2 is required to ubiquitinate GRK2 in the cytosol. Among the explored cellular components and processes, arrestin, Gβγ, clathrin, and receptor phosphorylation were found to be required for the nuclear import of arrestin3, the ubiquitination of arrestin3 in the nucleus, nuclear export of Mdm2, and the ubiquitination of GRK2 in the cytosol. In conclusion, our findings demonstrate that agonist-induced ubiquitination of arrestin3 in the nucleus is interconnected with cytosolic GRK2 ubiquitination.
Collapse
Affiliation(s)
| | | | | | | | | | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| |
Collapse
|
4
|
Kee TR, Khan SA, Neidhart MB, Masters BM, Zhao VK, Kim YK, McGill Percy KC, Woo JAA. The multifaceted functions of β-arrestins and their therapeutic potential in neurodegenerative diseases. Exp Mol Med 2024; 56:129-141. [PMID: 38212557 PMCID: PMC10834518 DOI: 10.1038/s12276-023-01144-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 01/13/2024] Open
Abstract
Arrestins are multifunctional proteins that regulate G-protein-coupled receptor (GPCR) desensitization, signaling, and internalization. The arrestin family consists of four subtypes: visual arrestin1, β-arrestin1, β-arrestin2, and visual arrestin-4. Recent studies have revealed the multifunctional roles of β-arrestins beyond GPCR signaling, including scaffolding and adapter functions, and physically interacting with non-GPCR receptors. Increasing evidence suggests that β-arrestins are involved in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). β-arrestins physically interact with γ-secretase, leading to increased production and accumulation of amyloid-beta in AD. Furthermore, β-arrestin oligomers inhibit the autophagy cargo receptor p62/SQSTM1, resulting in tau accumulation and aggregation in FTD. In PD, β-arrestins are upregulated in postmortem brain tissue and an MPTP model, and the β2AR regulates SNCA gene expression. In this review, we aim to provide an overview of β-arrestin1 and β-arrestin2, and describe their physiological functions and roles in neurodegenerative diseases. The multifaceted roles of β-arrestins and their involvement in neurodegenerative diseases suggest that they may serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Teresa R Kee
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, 33613, USA
| | - Sophia A Khan
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Maya B Neidhart
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Brianna M Masters
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Victoria K Zhao
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Yenna K Kim
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | | | - Jung-A A Woo
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Zhai R, Wang Z, Chai Z, Niu X, Li C, Jin C, Hu Y. Distinct activation mechanisms of β-arrestin-1 revealed by 19F NMR spectroscopy. Nat Commun 2023; 14:7865. [PMID: 38030602 PMCID: PMC10686989 DOI: 10.1038/s41467-023-43694-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
β-Arrestins (βarrs) are functionally versatile proteins that play critical roles in the G-protein-coupled receptor (GPCR) signaling pathways. While it is well established that the phosphorylated receptor tail plays a central role in βarr activation, emerging evidence highlights the contribution from membrane lipids. However, detailed molecular mechanisms of βarr activation by different binding partners remain elusive. In this work, we present a comprehensive study of the structural changes in critical regions of βarr1 during activation using 19F NMR spectroscopy. We show that phosphopeptides derived from different classes of GPCRs display different βarr1 activation abilities, whereas binding of the membrane phosphoinositide PIP2 stabilizes a distinct partially activated conformational state. Our results further unveil a sparsely-populated activation intermediate as well as complex cross-talks between different binding partners, implying a highly multifaceted conformational energy landscape of βarr1 that can be intricately modulated during signaling.
Collapse
Affiliation(s)
- Ruibo Zhai
- School of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Zhuoqi Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Zhaofei Chai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Joint Laboratory of the National Centers for Magnetic Resonance in Wuhan and in Beijing, Wuhan, 430071, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Joint Laboratory of the National Centers for Magnetic Resonance in Wuhan and in Beijing, Wuhan, 430071, China
| | - Changwen Jin
- School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
- Joint Laboratory of the National Centers for Magnetic Resonance in Wuhan and in Beijing, Wuhan, 430071, China.
| | - Yunfei Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Joint Laboratory of the National Centers for Magnetic Resonance in Wuhan and in Beijing, Wuhan, 430071, China.
| |
Collapse
|
6
|
Sénéchal C, Fujita R, Jamet S, Maiga A, Dort J, Orfi Z, Dumont NA, Bouvier M, Crist C. The adhesion G-protein-coupled receptor Gpr116 is essential to maintain the skeletal muscle stem cell pool. Cell Rep 2022; 41:111645. [DOI: 10.1016/j.celrep.2022.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
|
7
|
Ye Y, Jiang H, Wu Y, Wang G, Huang Y, Sun W, Zhang M. Role of ARRB1 in prognosis and immunotherapy: A Pan-Cancer analysis. Front Mol Biosci 2022; 9:1001225. [PMID: 36213111 PMCID: PMC9538973 DOI: 10.3389/fmolb.2022.1001225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: β-arrestin1 (ARRB1), was originally identified as a multifunctional adaptor protein. Although ARRB1 has recently been shown to also play an important role in tumor growth, metastasis, inflammation, and immunity, its relationship with distinct tumor types and the tumor immune microenvironment remains unclear.Methods: We analyzed the ARRB1 expression profile and clinical characteristics in 33 cancer types using datasets from The Cancer Genome Atlas (TCGA) database. Clinical parameters such as patient survival, tumor stage, age, and gender were used to assess the prognostic value of ARRB1. The Human Protein Atlas (HPA) database was used to explore ARRB1 protein expression data. ESTIMATE and CIBERSORT algorithms were performed to assess immune infiltration. Furthermore, putative correlations between ARRB1 and tumor-infiltrating immune cells, the signatures of T-cell subtypes, immunomodulators, the tumor mutation burden (TMB), Programmed cell death ligand 1 (PD-L1), and microsatellite instability (MSI) were also explored. Gene functional enrichment was determined using GSEA. GSE40435 and GSE13213 cohorts were used to validate the correlation of ARRB1 with KIRC and LUAD clinicopathological parameters. Finally, the relationship between ARRB1 and immunotherapeutic responses was assessed using three independent immunotherapy cohorts, namely, GSE67501, GSE168204, and IMvigor210.Results: We found that ARRB1 expression levels were lower in 17 tumor tissues than in the corresponding normal tissues. We further found that ARRB1 expression was significantly correlated with tumor stage in BRCA, ESCA, KIRC, TGCT, and THCA, while in some tumors, particularly KIRC and LUAD, ARRB1 expression was associated with better prognosis. ARRB1 expression was also positively correlated with the stromal score or the immune score in some tumors. Regarding immune cell infiltration, ARRB1 expression in DLBC was positively correlated with M1 macrophage content and negatively correlated with B-cell infiltration. Additionally, there was a broad correlation between ARRB1 expression and three classes of immunomodulators. Furthermore, high ARRB1 expression levels were significantly correlated with some tumor immune-related pathways. Finally, ARRB1 expression was significantly associated with MSI, PD-L1, and TMB in some tumors and with the efficacy of immune checkpoint inhibitors (ICIs) in melanoma.Conclusion: ARRB1 has prognostic value in malignant tumors, especially in KIRC and LUAD. At the same time, ARRB1 was closely correlated with the tumor immune microenvironment and indicators of immunotherapy efficacy, indicating its great potential as a reliable marker for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Haili Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yue Wu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Gaoxiang Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yi Huang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Weijie Sun, ; Mei Zhang,
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
- *Correspondence: Weijie Sun, ; Mei Zhang,
| |
Collapse
|
8
|
Jian S, Leng J, Wen Z, Luo H, Hu C, Wen C, Hu B. β-arrestin interacts with TRAF6 to negatively regulate the NF-κB pathway in triangle sail mussel Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2022; 127:65-73. [PMID: 35705131 DOI: 10.1016/j.fsi.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
As members of arrestins family, β-arrestins are widely expressed in monocytes, macrophages, neutrophils and other immune cells. They can regulate the immune response of bodies through various ways. In the present study, a β-arrestin homolog named Hcβ-arrestin was cloned and identified from Hyriopsis cumingii. Predicted Hcβ-arrestin protein contained a conserved arrestin domain, which could be further divided into arrestin-N (39-192aa) and arrestin-C (211-365aa). Amino acid sequence alignment showed that it had the highest identity with Mytilus galloprovincialis and Mytilus edulis counterpart, which was 89.02% and 87.68%, respectively. Furthermore, real-time quantitative PCR analysis showed that the Hcβ-arrestin gene was widely expressed in the detected tissues and with the highest expression in hepatopancreas. The transcription of Hcβ-arrestin in hepatopancreas and gill of mussels was significantly up-regulated after stimulation with peptidoglycan, lipopolysaccharide (LPS) and polyinosinic polycytidylic acid. Knockdown of Hcβ-arrestin gene significantly increased the expression of some antibacterial effector genes, such as lysozyme, LPS-binding protein/bactericidal permeability increasing protein and theromacin in hepatopancreas and gills of LPS stimulated mussels, but only had little effect on TLR pathway genes. In addition, GST pull-down assay confirmed that Hcβ-arrestin can bind to HcTRAF6 protein in vitro. Dual luciferase reporter assay showed that the co-expression of HcTRAF6 and Hcβ-arrestin inhibited the activation of NF-κB reporter by HcTRAF6. These findings indicated that Hcβ-arrestins could interact with HcTRAF6 to negatively regulate the NF-κB pathway in H. cumingii.
Collapse
Affiliation(s)
- ShaoQing Jian
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - JiangHe Leng
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - ZiYi Wen
- Department of Biological Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - HaiYang Luo
- Department of Ecology, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - ChengXi Hu
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - ChunGen Wen
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - BaoQing Hu
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
9
|
Todd NK, Huang Y, Lee JY, Doruker P, Krieger JM, Salisbury R, MacDonald M, Bahar I, Thathiah A. GPCR kinases generate an APH1A phosphorylation barcode to regulate amyloid-β generation. Cell Rep 2022; 40:111110. [PMID: 35858570 PMCID: PMC9373432 DOI: 10.1016/j.celrep.2022.111110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/05/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Emerging evidence suggests that G protein-coupled receptor (GPCR) kinases (GRKs) are associated with the pathophysiology of Alzheimer's disease (AD). However, GRKs have not been directly implicated in regulation of the amyloid-β (Aβ) pathogenic cascade in AD. Here, we determine that GRKs phosphorylate a non-canonical substrate, anterior pharynx-defective 1A (APH1A), an integral component of the γ-secretase complex. Significantly, we show that GRKs generate distinct phosphorylation barcodes in intracellular loop 2 (ICL2) and the C terminus of APH1A, which differentially regulate recruitment of the scaffolding protein β-arrestin 2 (βarr2) to APH1A and γ-secretase-mediated Aβ generation. Further molecular dynamics simulation studies reveal an interaction between the βarr2 finger loop domain and ICL2 and ICL3 of APH1A, similar to a GPCR-β-arrestin complex, which regulates γ-secretase activity. Collectively, these studies provide insight into the molecular and structural determinants of the APH1A-βarr2 interaction that critically regulate Aβ generation.
Collapse
Affiliation(s)
- Nicholas K Todd
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yunhong Huang
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ji Young Lee
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pemra Doruker
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - James M Krieger
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ryan Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Matthew MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Zhai R, Snyder J, Montgomery S, Sato PY. Double life: How GRK2 and β-arrestin signaling participate in diseases. Cell Signal 2022; 94:110333. [PMID: 35430346 PMCID: PMC9929935 DOI: 10.1016/j.cellsig.2022.110333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
G-protein coupled receptor (GPCR) kinases (GRKs) and β-arrestins play key roles in GPCR and non-GPCR cellular responses. In fact, GRKs and arrestins are involved in a plethora of pathways vital for physiological maintenance of inter- and intracellular communication. Here we review decades of research literature spanning from the discovery, identification of key structural elements, and findings supporting the diverse roles of these proteins in GPCR-mediated pathways. We then describe how GRK2 and β-arrestins partake in non-GPCR signaling and briefly summarize their involvement in various pathologies. We conclude by presenting gaps in knowledge and our prospective on the promising pharmacological potential in targeting these proteins and/or downstream signaling. Future research is warranted and paramount for untangling these novel and promising roles for GRK2 and arrestins in metabolism and disease progression.
Collapse
Affiliation(s)
| | | | | | - Priscila Y. Sato
- Corresponding author at: Drexel University College of Medicine, Department of Pharmacology and Physiology, 245 N 15th Street, NCB 8152, Philadelphia, PA 19102, USA. (P.Y. Sato)
| |
Collapse
|
11
|
Purayil HT, Daaka Y. βArrestin1 regulates glucocorticoid receptor mitogenic signaling in castration-resistant prostate cancer. Prostate 2022; 82:816-825. [PMID: 35226379 DOI: 10.1002/pros.24324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Prostate cancer (PC) is the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in males. The disease is initially treated with methods that inhibit androgen receptor (AR) signal transduction. Laboratory-based and clinical studies have identified alternative pathways that cause the failure of AR signal inhibition and consequent development of castration-resistant prostate cancer (CRPC). Glucocorticoid receptor (GR) signaling is activated in certain PC patients and promotes the emergence of CRPC, although by as yet incompletely understood mechanisms. We have previously demonstrated that ubiquitous βarrestin1 (βArr1) expression levels are linked to PC progression. Here, we consider the possibility that βArr1 interacts with and activates GR in model CRPC cells. METHODS Bioinformatic analysis of tumor xenograft and human PC datasets was used to correlate the expression of βArr1 and GR. Western blot, immunohistochemistry and immunofluorescence microscopy, and subcellular fractionation were used to determine protein expression level and localization. Immunoprecipitation was applied to detect protein-protein interactions. RNA expression levels were determined using quantitative reverse transcription-polymerase chain reaction. Prostate sphere analysis was used to assess the rate of growth and invasion. The xenograft tumor implantation method was used to determine the tumor growth rate, local invasion, and metastasis. RESULTS Elevated expression of βArr1 positively correlated with increased GR expression and function in CRPC xenograft and in human PC patients. βArr1 is expressed in the cell cytosol and nucleus, and it formed a complex with GR in the nucleus and not cytosol. Depletion of βArr1 in AR-null CRPC cells inhibited GR function and CRPC growth and invasion in both in vitro and in vivo settings. CONCLUSIONS βArr1 binds GR that initiates mitogenic signaling cascades involved in the progression of PC to CRPC. The targeting of the βArr1-GR axis may provide a new opportunity to better manage the CRPC disease.
Collapse
Affiliation(s)
- Hamsa Thayele Purayil
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
APLNR regulates IFN-γ signaling via β-arrestin 1 mediated JAK-STAT1 pathway in melanoma cells. Biochem J 2022; 479:385-399. [PMID: 35084016 DOI: 10.1042/bcj20210813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
The apelin receptor (APLNR) regulates many biological processes including metabolism, angiogenesis, circulating blood volume and cardiovascular function. Additionally, APLNR is overexpressed in various types of cancer and influences cancer progression. APLNR is reported to regulate tumor recognition during immune surveillance by modulating the IFN-γ response. However, the mechanism of APLNR crosstalk with intratumoral IFN-γ signaling remains unknown. Here, we show that activation of APLNR upregulates IFN-γ signaling in melanoma cells through APLNR mediated β-arrestin 1 but not β-arrestin 2 recruitment. Our data suggests that β-arrestin 1 directly interacts with STAT1 to inhibit STAT1 phosphorylation to attenuate IFN-γ signaling. The APLNR mutant receptor, I109A, which is deficient in β-arrestins recruitment, is unable to enhance intratumoral IFN-γ signaling. While APLNR N112G, a constitutively active mutant receptor, increases intratumoral sensitivity to IFN-γ signaling by enhancing STAT1 phosphorylation upon IFN-γ exposure. We also demonstrate in a co-culture system that APLNR regulates tumor survival rate. Taken together, our findings reveal that APLNR modulates IFN-γ signaling in melanoma cells and suggests that APLNR may be a potential target to enhance the efficacy of immunotherapy.
Collapse
|
13
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
14
|
Pydi SP, Barella LF, Zhu L, Meister J, Rossi M, Wess J. β-Arrestins as Important Regulators of Glucose and Energy Homeostasis. Annu Rev Physiol 2021; 84:17-40. [PMID: 34705480 DOI: 10.1146/annurev-physiol-060721-092948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
β-Arrestin-1 and -2 (also known as arrestin-2 and -3, respectively) are ubiquitously expressed cytoplasmic proteins that dampen signaling through G protein-coupled receptors. However, β-arrestins can also act as signaling molecules in their own right. To investigate the potential metabolic roles of the two β-arrestins in modulating glucose and energy homeostasis, recent studies analyzed mutant mice that lacked or overexpressed β-arrestin-1 and/or -2 in distinct, metabolically important cell types. Metabolic analysis of these mutant mice clearly demonstrated that both β-arrestins play key roles in regulating the function of most of these cell types, resulting in striking changes in whole-body glucose and/or energy homeostasis. These studies also revealed that β-arrestin-1 and -2, though structurally closely related, clearly differ in their metabolic roles under physiological and pathophysiological conditions. These new findings should guide the development of novel drugs for the treatment of various metabolic disorders, including type 2 diabetes and obesity. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA; .,Current affiliation: Department of Biological Sciences and Bioengineering, The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, India
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| |
Collapse
|
15
|
Xu X, Lei Y, Chen L, Zhou H, Liu H, Jiang J, Yang Y, Wu B. Phosphorylation of NF-κBp65 drives inflammation-mediated hepatocellular carcinogenesis and is a novel therapeutic target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:253. [PMID: 34380537 PMCID: PMC8359590 DOI: 10.1186/s13046-021-02062-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Nuclear factor-κB (NF-κB) plays a vital role in hepatocellular carcinoma (HCC). β-arrestin1 (ARRB1) has been proved to enhance the activity of NF-κBp65, and our previous study indicated that ARRB1 promotes hepatocellular carcinogenesis and development of HCC. However, it remains unknown whether p65 is involved in hepatocellular carcinogenesis through the ARRB1-mediated pathway. METHODS The levels of NF-κBp65 and NF-κBp65 phosphorylation (p-p65) were assessed in including normal liver, primary HCC and paired paracancerous tissues. Liver-specific p65 knockout mice were used to examine the role of p65 and p-p65 in hepatocarcinogenesis. The mechanism of NF-κBp65 and p-p65 in hepatocarcinogenesis via ARRB1 was also studied both in vitro and in vivo. RESULTS Phosphorylation of NF-κBp65 was markedly upregulated in inflammation-related HCC patients and was significantly increased in mouse hepatic inflammation models, which were induced by tetrachloromethane (CCl4), diethylnitrosamine (DEN), TNF-α, as well as DEN-induced HCC. Hepatocyte-specific p65-deficient mice markedly decreased in the HCC incidence and size of tumours by the repressing of the proliferation of malignant cells in a DEN-induced HCC model. Furthermore, ARRB1 directly bounds p65 to promote the phosphorylation of NF-κBp65 at ser536, resulted in cell malignant proliferation through GSK3β/mTOR signalling. CONCLUSION The data demonstrated that phosphorylation of NF-κBp65 drives hepatocellular carcinogenesis in response to inflammation-mediated ARRB1, and that inhibition of the phosphorylation of NF-κBp65 restrains the hepatocellular carcinogenesis. The results indicate that phosphorylation of NF-κBp65 is a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Xuan Xu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Yiming Lei
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Lingjun Chen
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Haoxiong Zhou
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Huiling Liu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Jie Jiang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Yidong Yang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China.
| | - Bin Wu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
16
|
Han C, Du D, Wen Y, Li J, Wang R, Jin T, Yang J, Shi N, Jiang K, Deng L, Fu X, Mukherjee R, Windsor JA, Hong J, Phillips AR, Sutton R, Huang W, Liu T, Xia Q. Chaiqin chengqi decoction ameliorates acute pancreatitis in mice via inhibition of neuron activation-mediated acinar cell SP/NK1R signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114029. [PMID: 33731310 DOI: 10.1016/j.jep.2021.114029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaiqin chengqi decoction (CQCQD) and its derivatives have been widely used in China for the early management of patients with acute pancreatitis (AP). Numerous studies demonstrate the anti-inflammatory and anti-oxidative effects of CQCQD and derivatives, but whether these effects can be attributed to suppressing neurogenic inflammation, has never been studied. AIM OF THE STUDY To investigate the effects of CQCQD on substance P (SP)-neurokinin 1 receptor (NK1R) based neurogenic inflammation in an experimental AP model. MATERIAL AND METHODS For AP patients on admission, pain score was accessed by visual analog scale (VAS); the levels of serum SP and expressions of pancreatic SP and NK1R were also determined. For in vivo study, mice received 7 intraperitoneal injections of cerulein (50 μg/kg) at hourly intervals to induce AP, whilst controls received normal saline injections. In the treatment groups, CQCQD (10 g/kg, 200 μl) was intragastrically given at the third, fifth, and seventh of the cerulein injection or the NK1R antagonist CP96345 (5 mg/kg) was intraperitoneally injected 30 min before the first cerulein administration. The von Frey test was performed to evaluate pain behavior. Animals were sacrificed at 12 h from the first cerulein/saline injection for severity assessment. Pharmacology network analysis was used to identify active ingredients of CQCQD for AP and pain. In vitro, freshly isolated pancreatic acinar cells were pre-treated with CQCQD (5 mg/ml), CP96345 (1 μM), or selected active compounds of CQCQD (12.5, 25, and 50 μM) for 30 min, followed by SP incubation for another 30 min. RESULTS The VAS score as well as the levels of serum SP and expressions of pancreatic SP-NK1R were up-regulated in moderately severe and severe patients compared with those with mild disease. CQCQD, but not CP96345, consistently and significantly ameliorated pain, pancreatic necrosis, and systemic inflammation in cerulein-induced AP as well as inhibited NK1R internalization of pancreatic acinar cells. These effects of CQCQD were associated with reduction of pancreatic SP-NK1R and neuron activity in pancreas, dorsal root ganglia, and spinal cord. Baicalin, emodin, and magnolol, the top 3 active components of CQCQD identified via pharmacology network analysis, suppressed NK1R internalization and NF-κB signal pathway activation in isolated pancreatic acinar cells. CONCLUSIONS CQCQD ameliorated cerulein-induced AP and its associated pain via inhibiting neuron activation-mediated pancreatic acinar cell SP-NK1R signaling pathways and its active compounds baicalin, emodin, and magnolol contributed to this effect.
Collapse
Affiliation(s)
- Chenxia Han
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjian Wen
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiawang Li
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Wang
- Core Research Facilities, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lihui Deng
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Jiwon Hong
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Anthony R Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Robert Sutton
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Barella LF, Rossi M, Pydi SP, Meister J, Jain S, Cui Y, Gavrilova O, Fulgenzi G, Tessarollo L, Wess J. β-Arrestin-1 is required for adaptive β-cell mass expansion during obesity. Nat Commun 2021; 12:3385. [PMID: 34099679 PMCID: PMC8184739 DOI: 10.1038/s41467-021-23656-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/11/2021] [Indexed: 01/14/2023] Open
Abstract
Obesity is the key driver of peripheral insulin resistance, one of the key features of type 2 diabetes (T2D). In insulin-resistant individuals, the expansion of beta-cell mass is able to delay or even prevent the onset of overt T2D. Here, we report that beta-arrestin-1 (barr1), an intracellular protein known to regulate signaling through G protein-coupled receptors, is essential for beta-cell replication and function in insulin-resistant mice maintained on an obesogenic diet. Specifically, insulin-resistant beta-cell-specific barr1 knockout mice display marked reductions in beta-cell mass and the rate of beta-cell proliferation, associated with pronounced impairments in glucose homeostasis. Mechanistic studies suggest that the observed metabolic deficits are due to reduced Pdx1 expression levels caused by beta-cell barr1 deficiency. These findings indicate that strategies aimed at enhancing barr1 activity and/or expression in beta-cells may prove useful to restore proper glucose homeostasis in T2D.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Bethesda, MD, USA
| | - Gianluca Fulgenzi
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
18
|
Pydi SP, Barella LF, Meister J, Wess J. Key Metabolic Functions of β-Arrestins: Studies with Novel Mouse Models. Trends Endocrinol Metab 2021; 32:118-129. [PMID: 33358450 PMCID: PMC7855863 DOI: 10.1016/j.tem.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
β-Arrestin-1 and -2 are intracellular proteins that are able to inhibit signaling via G protein-coupled receptors (GPCRs). However, both proteins can also modulate cellular functions in a G protein-independent fashion. During the past few years, studies with mutant mice selectivity lacking β-arrestin-1 and/or -2 in metabolically important cell types have led to novel insights into the mechanisms through which β-arrestins regulate key metabolic processes in vivo, including whole-body glucose and energy homeostasis. The novel information gained from these studies should inform the development of novel drugs, including β-arrestin- or G protein-biased GPCR ligands, that could prove useful for the therapy of several important pathophysiological conditions, including type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
19
|
Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Int J Mol Sci 2021; 22:1001. [PMID: 33498245 PMCID: PMC7863932 DOI: 10.3390/ijms22031001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders.
Collapse
Affiliation(s)
| | | | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| |
Collapse
|
20
|
Lee C, Viswanathan G, Choi I, Jassal C, Kohlmann T, Rajagopal S. Beta-Arrestins and Receptor Signaling in the Vascular Endothelium. Biomolecules 2020; 11:biom11010009. [PMID: 33374806 PMCID: PMC7824595 DOI: 10.3390/biom11010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022] Open
Abstract
The vascular endothelium is the innermost layer of blood vessels and is a key regulator of vascular tone. Endothelial function is controlled by receptor signaling through G protein-coupled receptors, receptor tyrosine kinases and receptor serine-threonine kinases. The β-arrestins, multifunctional adapter proteins, have the potential to regulate all of these receptor families, although it is unclear as to whether they serve to integrate signaling across all of these different axes. Notably, the β-arrestins have been shown to regulate signaling by a number of receptors important in endothelial function, such as chemokine receptors and receptors for vasoactive substances such as angiotensin II, endothelin-1 and prostaglandins. β-arrestin-mediated signaling pathways have been shown to play central roles in pathways that control vasodilation, cell proliferation, migration, and immune function. At this time, the physiological impact of this signaling has not been studied in detail, but a deeper understanding of it could lead to the development of novel therapies for the treatment of vascular disease.
Collapse
Affiliation(s)
- Claudia Lee
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
| | - Gayathri Viswanathan
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Issac Choi
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Chanpreet Jassal
- College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Taylor Kohlmann
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Sudarshan Rajagopal
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
- Correspondence:
| |
Collapse
|
21
|
Pydi SP, Jain S, Barella LF, Zhu L, Sakamoto W, Meister J, Wang L, Lu H, Cui Y, Gavrilova O, Wess J. β-arrestin-1 suppresses myogenic reprogramming of brown fat to maintain euglycemia. SCIENCE ADVANCES 2020; 6:eaba1733. [PMID: 32548266 PMCID: PMC7274797 DOI: 10.1126/sciadv.aba1733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/16/2020] [Indexed: 05/05/2023]
Abstract
A better understanding of the signaling pathways regulating adipocyte function is required for the development of new classes of antidiabetic/obesity drugs. We here report that mice lacking β-arrestin-1 (barr1), a cytoplasmic and nuclear signaling protein, selectively in adipocytes showed greatly impaired glucose tolerance and insulin sensitivity when consuming an obesogenic diet. In contrast, transgenic mice overexpressing barr1 in adipocytes were protected against the metabolic deficits caused by a high-calorie diet. Barr1 deficiency led to a myogenic reprogramming of brown adipose tissue (BAT), causing elevated plasma myostatin (Mstn) levels, which in turn led to impaired insulin signaling in multiple peripheral tissues. Additional in vivo studies indicated that barr1-mediated suppression of Mstn expression by BAT is required for maintaining euglycemia. These findings convincingly identify barr1 as a critical regulator of BAT function. Strategies aimed at enhancing barr1 activity in BAT may prove beneficial for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sai P. Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
- Corresponding author. (J.W.); (S.P.P.)
| | - Shanu Jain
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Luiz F. Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Wataru Sakamoto
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Lei Wang
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Huiyan Lu
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
- Corresponding author. (J.W.); (S.P.P.)
| |
Collapse
|
22
|
Zhang X, Min X, Wang S, Sun N, Kim KM. Mdm2-mediated ubiquitination of β-arrestin2 in the nucleus occurs in a Gβγ- and clathrin-dependent manner. Biochem Pharmacol 2020; 178:114049. [PMID: 32450252 DOI: 10.1016/j.bcp.2020.114049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
The fate and activity of β-arrestin2, a key player in the regulation of desensitization and endocytosis of G protein-coupled receptors (GPCRs), are regulated by mouse double minute 2 homolog (Mdm2)-mediated ubiquitination. However, details of the molecular mechanisms of β-arrestin2 ubiquitination remain unclear. Studies on β-arrestin2 and Mdm2 mutants with modified nucleocytoplasmic shuttling properties have revealed that β-arrestin2 ubiquitination occurs in the nucleus in a Gβγ- and clathrin-dependent manner. The nuclear entry of both β-arrestin2 and Mdm2 commonly relies on the presence of importin complex but can occur independently of each other. Gβγ and clathrin regulated the nuclear entry of β-arrestin2 by mediating the interaction between β-arrestin2 and importin β1. In contrast, Akt-mediated phosphorylation of two serine residues of Mdm2 partly regulated the nuclear entry of Mdm2. Ubiquitinated β-arrestin2 along with Mdm2 translocated to the cytoplasm where they play various functional roles including receptor endocytosis and ubiquitination of other cytoplasmic proteins. The nuclear export of Mdm2 required nuclear entry and interaction of β-arrestin2 with Mdm2. Ubiquitination was required for the translocation of β-arrestin2 toward activated receptors on the plasma membrane and for its endocytic activity. The current study revealed the cellular components and processes involved in the ubiquitination of β-arrestin2, and these findings could be quintessential for providing directions and detailed strategies for the manipulation of GPCR functions and development of GPCR-related therapeutics.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Xiao Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Ningning Sun
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea.
| |
Collapse
|
23
|
Tocci P, Cianfrocca R, Di Castro V, Rosanò L, Sacconi A, Donzelli S, Bonfiglio S, Bucci G, Vizza E, Ferrandina G, Scambia G, Tonon G, Blandino G, Bagnato A. β-arrestin1/YAP/mutant p53 complexes orchestrate the endothelin A receptor signaling in high-grade serous ovarian cancer. Nat Commun 2019; 10:3196. [PMID: 31324767 PMCID: PMC6642155 DOI: 10.1038/s41467-019-11045-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
The limited clinical response observed in high-grade serous ovarian cancer (HG-SOC) with high frequency of TP53 mutations (mutp53) might be related to mutp53-driven oncogenic pathway network. Here we show that β-arrestin1 (β-arr1), interacts with YAP, triggering its cytoplasmic-nuclear shuttling. This interaction allows β-arr1 to recruit mutp53 to the YAP-TEAD transcriptional complex upon activation of endothelin-1 receptors (ET-1R) in patient-derived HG-SOC cells and in cell lines bearing mutp53. In parallel, β-arr1 mediates the ET-1R-induced Trio/RhoA-dependent YAP nuclear accumulation. In the nucleus, ET-1 through β-arr1 orchestrates the tethering of YAP and mutp53 to YAP/mutp53 target gene promoters, including EDN1 that ensures persistent signals. Treatment of patient-derived xenografts reveals synergistic antitumoral and antimetastatic effects of the dual ET-1R antagonist macitentan in combination with cisplatinum, shutting-down the β-arr1-mediated YAP/mutp53 transcriptional programme. Furthermore, ETAR/β-arr1/YAP gene signature correlates with a worst prognosis in HG-SOC. These findings support effective combinatorial treatment for repurposing the ET-1R antagonists in HG-SOC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antineoplastic Agents
- Cell Line, Tumor
- Cell Survival/drug effects
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Disease Models, Animal
- Endothelin-1/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Mice, Nude
- Mutation
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Pyrimidines/pharmacology
- Receptor, Endothelin A/drug effects
- Receptor, Endothelin A/metabolism
- Signal Transduction
- Sulfonamides/pharmacology
- Transcription Factors/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
- beta-Arrestin 1/drug effects
- beta-Arrestin 1/metabolism
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Roberta Cianfrocca
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Silvia Bonfiglio
- Center for Translational Genomics and Bioinformatics, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Gabriele Bucci
- Center for Translational Genomics and Bioinformatics, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Enrico Vizza
- Gynecologic Oncology, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Gabriella Ferrandina
- Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of Rome, 00168, Rome, Italy
| | - Giovanni Scambia
- Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of Rome, 00168, Rome, Italy
| | - Giovanni Tonon
- Center for Translational Genomics and Bioinformatics, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
24
|
Bagnato A, Rosanò L. New Routes in GPCR/β-Arrestin-Driven Signaling in Cancer Progression and Metastasis. Front Pharmacol 2019; 10:114. [PMID: 30837880 PMCID: PMC6390811 DOI: 10.3389/fphar.2019.00114] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Tumor cells acquire invasive and metastatic behavior by sensing changes in the localization and activation of signaling pathways, which in turn determine changes in actin cytoskeleton. The core-scaffold machinery associated to β-arrestin (β-arr) is a key mechanism of G-protein coupled receptors (GPCR) to achieve spatiotemporal specificity of different signaling complexes driving cancer progression. Within different cellular contexts, the scaffold proteins β-arr1 or β-arr2 may now be considered organizers of protein interaction networks involved in tumor development and metastatic dissemination. Studies have uncovered the importance of the β-arr engagement with a growing number of receptors, signaling molecules, cytoskeleton regulators, epigenetic modifiers, and transcription factors in GPCR-driven tumor promoting pathways. In many of these molecular complexes, β-arrs might provide a physical link to active dynamic cytoskeleton, permitting cancer cells to adapt and modify the tumor microenvironment to promote the metastatic spread. Given the complexity and the multidirectional β-arr-driven signaling in cancer cells, therapeutic targeting of specific GPCR/β-arr molecular mechanisms is an important avenue to explore when considering future new therapeutic options. The focus of this review is to integrate the most recent developments and exciting findings of how highly connected components of β-arr-guided molecular connections to other pathways allow precise control over multiple signaling pathways in tumor progression, revealing ways of therapeutically targeting the convergent signals in patients.
Collapse
Affiliation(s)
- Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
25
|
New insights into the regulation of the actin cytoskeleton dynamics by GPCR/β-arrestin in cancer invasion and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:129-155. [DOI: 10.1016/bs.ircmb.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Abstract
β-Arrestins (β-arrs) were originally appreciated for the roles they play in the desensitization and internalization of G protein-coupled receptors (GPCRs). They are also now known to act as molecular scaffolds, providing control in multiple signalling pathways. Through their scaffolding properties, β-arrs dynamically regulate the activity and/or subcellular distribution of protein partners giving rise to an appropriate cellular response. There are two β-arr isoforms, namely, β-arr1 and β-arr2, which share high sequence homology and structural conservation. While the β-arrs often display conserved overlapping roles, decisive differences between the isoforms also exist. A striking example of this is the subcellular distribution of the β-arr isoforms. While β-arr1 is distributed both in cytoplasmic and nuclear compartments, β-arr2 displays an apparent cytoplasmic distribution. Both β-arrs are actively imported into the nucleus, but β-arr2 is constitutively exported by a leptomycin B-sensitive pathway due to a nuclear export signal in its C-terminus that is absent in β-arr1. β-arr2 therefore undergoes constitutive nucleocytoplasmic shuttling enabling the displacement of nuclear binding cargoes, such as Mdm2. Here, we describe methods to explore the differential nucleocytoplasmic shuttling capacities of the β-arrs.
Collapse
|
27
|
Williams DW, Askew LC, Jones E, Clements JE. CCR2 Signaling Selectively Regulates IFN-α: Role of β-Arrestin 2 in IFNAR1 Internalization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:105-118. [PMID: 30504423 PMCID: PMC6310093 DOI: 10.4049/jimmunol.1800598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/28/2018] [Indexed: 01/06/2023]
Abstract
An integral component of the antiviral response, type I IFNs require regulation to modulate immune activation. We identify β-arrestin 2 as a key modulator of type I IFN in primary human macrophages, an essential component of the innate immune response. β-Arrestin 2 was selectively activated by CCL2/CCR2 signaling, which induced a decrease in IFN-α, but not IFN-β expression. Small interfering RNA knockdown of β-arrestin 2 demonstrated its role in IFNAR1 internalization, as well as STAT1 and IRF3 activation. As a result, cytokine responses were not propagated following HIV infection and TLR3 activation. However, remnants of IFN signaling remained intact, despite β-arrestin 2 activation, as IFN-β, IFN-γ, IFN-λ1, IRF7, TRAIL, and MxA expression were sustained. Similar effects of β-arrestin 2 on IFN signaling occurred in hepatocytes, suggesting that arrestins may broadly modulate IFN responses in multiple cell types. In summary, we identify a novel role of β-arrestin 2 as an integral regulator of type I IFN through its internalization of IFNAR1 and a subsequent selective loss of downstream IFN signaling.
Collapse
Affiliation(s)
- Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Lauren C Askew
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Elonna Jones
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
28
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
29
|
Rahman MM, Hazan A, Selway JL, Herath DS, Harwood CA, Pirzado MS, Atkar R, Kelsell DP, Linton KJ, Philpott MP, Neill GW. A Novel Mechanism for Activation of GLI1 by Nuclear SMO That Escapes Anti-SMO Inhibitors. Cancer Res 2018; 78:2577-2588. [DOI: 10.1158/0008-5472.can-17-2897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/10/2017] [Accepted: 02/16/2018] [Indexed: 11/16/2022]
|
30
|
Li X, Che K, Wang L, Zhang T, Wang G, Pang Z, Shen H, Du J. Subcellular localization of β-arrestin1 and its prognostic value in lung adenocarcinoma. Medicine (Baltimore) 2017; 96:e8450. [PMID: 29137031 PMCID: PMC5690724 DOI: 10.1097/md.0000000000008450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
β-Arrestins play important roles in cancer progression, and the subcellular localization of β-arrestin1 has been receiving increasingly more attention. Intriguingly, several studies, including some of our previous work, showed that the effects of β-arrestin1 on outcomes of cancer patients were controversial.Specimens were obtained from 133 patients with lung adenocarcinoma. Immunohistochemistry was used to detect the expression of β-arrestin1 and p300 in the collected tissues. The Kaplan-Meier analysis and Cox proportional hazards regression were used to examine the relationship between β-arrestin1 and patient survival.We found no significant association between β-arrestin1 and clinicopathological variables. The Kaplan-Meier plot showed that patients with high expression of β-arrestin1 (especially in the nucleus) had a poorer overall survival (OS) and shorter disease-free survival (DFS) (P = .026, P = .015). Additionally, high p300 expression also resulted in worse OS (P = .039). Following the univariate analysis, high expressions of nuclear β-arrestin1 and p300 were classed as poor prognostic factors for both OS (P = .016) and DFS (P = .025).The expression of β-arrestin1 in the nucleus is associated with increased malignant tendency of lung adenocarcinoma, and the predictive value of β-arrestin1 may be optimized by combining information about the expression of p300 acetyltransferase.
Collapse
Affiliation(s)
| | | | | | | | - Guanghui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | | | | | - Jiajun Du
- Institute of Oncology
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| |
Collapse
|
31
|
Rosanò L, Cianfrocca R, Sestito R, Tocci P, Di Castro V, Bagnato A. Targeting endothelin-1 receptor/β-arrestin1 network for the treatment of ovarian cancer. Expert Opin Ther Targets 2017; 21:925-932. [DOI: 10.1080/14728222.2017.1361930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Cianfrocca
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
32
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017; 69:256-297. [PMID: 28626043 PMCID: PMC5482185 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
33
|
Rosanò L, Bagnato A. β-arrestin1 at the cross-road of endothelin-1 signaling in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:121. [PMID: 27473335 PMCID: PMC4966762 DOI: 10.1186/s13046-016-0401-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/24/2016] [Indexed: 12/15/2022]
Abstract
The advent of targeted therapeutics in human cancer has begun to find novel druggable targets and, in this context, the endothelin-1 receptor (ET-1R), namely ETA receptor (ETAR) and ETB receptor, among the GPCR family represents a class of highly druggable molecules in cancer. ET-1R are aberrantly expressed in human malignancies, potentially representing prognostic factors. Their activation by ligand stimulation initiate signaling cascades activating different downstream effectors, allowing precise control over multiple signaling pathways. ET-1R regulates cell proliferation, survival, motility, cytoskeletal changes, angiogenesis, metastasis as well as drug resistance. The molecular events underlying these responses are the activation of transcriptional factors and coactivators, and downstream genes, acting as key players in tumor growth and progression. ET-1R represent crucial cancer targets that have been exploited for ET-1R therapeutics. Importantly, efforts to explore new information of ETAR in cancer have uncovered that their functions are crucially regulated by multifunctional scaffold protein β-arrestins (β-arrs) which orchestrate the multidimensionality of ETAR signaling into highly regulated and distinct signaling complexes, a property that is highly advantageous for tumor signaling. Moreover, the role of β-arr1 in ET-1 signaling in cancer highlights why the pleiotropic effects of ET-1 and its dynamic signaling are more complex than previously recognized. In order to improve therapeutic strategies that interfere with the widespread effects of ET-1R, it is important to consider antagonists able to turn the receptors “off” selectively controlling β-arr1-dependent signaling, highlighting the possibility that targeting ETAR/β-arr1 may display a large therapeutic window in cancer.
Collapse
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
34
|
Srivastava A, Gupta B, Gupta C, Shukla AK. Emerging Functional Divergence of β-Arrestin Isoforms in GPCR Function. Trends Endocrinol Metab 2015; 26:628-642. [PMID: 26471844 DOI: 10.1016/j.tem.2015.09.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/21/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are tightly regulated by multifunctional protein β-arrestins. Two isoforms of β-arrestin sharing more than 70% sequence identity and overall very similar 3D structures, β-arrestins 1 and 2, were originally expected to be functionally redundant. However, in recent years multiple lines of emerging evidence suggest they have distinct roles in various aspects of GPCR regulation and signaling. We summarize selected examples of GPCRs where β-arrestin isoforms are discovered to display non-overlapping and sometimes even antagonistic functions. We also discuss potential mechanistic basis for their functional divergence and highlight new frontiers that are likely to form the focal points of research in this area in coming years.
Collapse
Affiliation(s)
- Ashish Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Bhagyashri Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Charu Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
35
|
Tao Y, Ma L, Liao Z, Le Q, Yu J, Liu X, Li H, Chen Y, Zheng P, Yang Z, Ma L. Astroglial β-Arrestin1-mediated Nuclear Signaling Regulates the Expansion of Neural Precursor Cells in Adult Hippocampus. Sci Rep 2015; 5:15506. [PMID: 26500013 PMCID: PMC4620451 DOI: 10.1038/srep15506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/23/2015] [Indexed: 01/14/2023] Open
Abstract
Adult hippocampal neurogenesis is crucial for preserving normal brain function, but how it is regulated by niche cells is uncertain. Here we show that β-arrestin 1 (β-arr1) in dentate gyrus (DG) regulates neural precursor proliferation. β-arr1 knockout (KO) mice show reduced neural precursor proliferation in subgranular zone (SGZ) which could be rescued by selective viral expression of β-arr1 but not its nuclear-function-deficient mutants under control of hGFAP promotor in DG. Compared with wild type astrocytes, β-arr1 KO astrocytes nurture less neurospheres, and this may be attributed to changed activity of soluble, heat-sensitive excretive factors, such as BMP2. RNA-sequencing reveals that β-arr1 KO DG astrocytes exhibit an aberrant gene expression profile of niche factors, including elevated transcription of Bmp2. Taken together, our data suggest that β-arr1 mediated nuclear signaling regulates the production of excretive factors derived from niche astrocytes and expansion of neural precursors in DG, thus maintaining homeostasis of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yezheng Tao
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Li Ma
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhaohui Liao
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qiumin Le
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jialing Yu
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xing Liu
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Haohong Li
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yuejun Chen
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ping Zheng
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhengang Yang
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
36
|
Yu J, Wang L, Zhang T, Shen H, Dong W, Ni Y, Du J. Co-expression of β-arrestin1 and NF-кB is associated with cancer progression and poor prognosis in lung adenocarcinoma. Tumour Biol 2015; 36:6551-8. [PMID: 25820700 DOI: 10.1007/s13277-015-3349-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/16/2015] [Indexed: 01/05/2023] Open
Abstract
β-arrestin1 and NF-κB have been demonstrated to be associated with tumorigenesis, tumor progression, and metastasis. Thus far, there is nevertheless little study about these two molecules in lung adenocarcinoma. The aim of this study was to investigate the correlation between β-arrestin1 and NF-κB expression and the clinicopathological characteristics in lung adenocarcinoma. A total of 115 surgically resected lung adenocarcinoma patients were recruited for the study. Expression of β-arrestin1 and p65 were detected by immunohistochemistry (IHC) in lung adenocarcinoma tissue samples. Nuclear expression of β-arrestin1 and p65 were observed in 39.1 % (45/115) and 46.1 % (53/115) cases of lung adenocarcinoma, respectively. And high expression of β-arrestin1 had negative prognostic impact for overall survival (OS) and disease-free survival (DFS) (p = 0.034 and p = 0.033). In addition, overexpression of p65 indicated a significantly poor OS and DFS than those of lower-expression (p = 0.038 and p = 0.041). Furthermore, co-expression of nuclear β-arrestin1 and p65 correlated with poorer OS and DFS in lung adenocarcinoma patients. Multivariate analysis using the Cox regression model confirmed that co-expression of nuclear β-arrestin1 and p65 was an independent prognostic factor for tumor progression (p = 0.008). In conclusion, these data indicated that co-expression of nuclear β-arrestin1 and p65 was a novel predictor for worse prognosis in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Jianyu Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Rosanò L, Cianfrocca R, Tocci P, Spinella F, Di Castro V, Caprara V, Semprucci E, Ferrandina G, Natali PG, Bagnato A. Endothelin A receptor/β-arrestin signaling to the Wnt pathway renders ovarian cancer cells resistant to chemotherapy. Cancer Res 2014; 74:7453-64. [PMID: 25377471 DOI: 10.1158/0008-5472.can-13-3133] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The high mortality of epithelial ovarian cancer (EOC) is mainly caused by resistance to the available therapies. In EOC, the endothelin-1 (ET-1, EDN1)-endothelin A receptor (ETAR, EDNRA) signaling axis regulates the epithelial-mesenchymal transition (EMT) and a chemoresistant phenotype. However, there is a paucity of knowledge about how ET-1 mediates drug resistance. Here, we define a novel bypass mechanism through which ETAR/β-arrestin-1 (β-arr1, ARRB1) links Wnt signaling to acquire chemoresistant and EMT phenotype. We found that ETAR/β-arr1 activity promoted nuclear complex with β-catenin and p300, resulting in histone acetylation, chromatin reorganization, and enhanced transcription of genes, such as ET-1, enhancing the network that sustains chemoresistance. Silencing of β-arr1 or pharmacologic treatment with the dual ETAR/ETBR antagonist macitentan prevented core complex formation and restored drug sensitivity, impairing the signaling pathways involved in cell survival, EMT, and invasion. In vivo macitentan treatment reduced tumor growth, vascularization, intravasation, and metastatic progression. The combination of macitentan and cisplatinum resulted in the potentiation of the cytotoxic effect, indicating that macitentan can enhance sensitivity to chemotherapy. Investigations in clinical specimens of chemoresistant EOC tissues confirmed increased recruitment of β-arr1 and β-catenin to ET-1 gene promoter. In these tissues, high expression of ETAR significantly associated with poor clinical outcome and chemoresistance. Collectively, our findings reveal the existence of a novel mechanism by which ETAR/β-arr1 signaling is integrated with the Wnt/β-catenin pathway to sustain chemoresistance in EOC, and they offer a solid rationale for clinical evaluation of macitentan in combination with chemotherapy to overcome chemoresistance in this setting.
Collapse
Affiliation(s)
- Laura Rosanò
- Molecular Pathology Laboratory, Regina Elena National Cancer Institute, Rome, Italy.
| | - Roberta Cianfrocca
- Molecular Pathology Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Molecular Pathology Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Spinella
- Molecular Pathology Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Molecular Pathology Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Molecular Pathology Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Elisa Semprucci
- Molecular Pathology Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Pier Giorgio Natali
- Molecular Pathology Laboratory, Regina Elena National Cancer Institute, Rome, Italy. Consorzio Interuniversitario Nazionale per la Bio-Oncologia (CINBO) Laboratories, University Gabriele d'Annunzio, Chieti, Italy
| | - Anna Bagnato
- Molecular Pathology Laboratory, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
38
|
Cianfrocca R, Tocci P, Semprucci E, Spinella F, Di Castro V, Bagnato A, Rosanò L. β-Arrestin 1 is required for endothelin-1-induced NF-κB activation in ovarian cancer cells. Life Sci 2014; 118:179-84. [DOI: 10.1016/j.lfs.2014.01.078] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 12/26/2022]
|
39
|
Arrestin2 modulates androgen receptor activation. Oncogene 2014; 34:3144-51. [PMID: 25109335 DOI: 10.1038/onc.2014.252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/15/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022]
Abstract
Androgen receptor (AR) has a pivotal role in the growth and survival of prostate cancer (PCa). Arrestin2 (Arr2) is a ubiquitous scaffolding/adaptor protein first characterized as a regulator of G protein-coupled receptor signaling. In this study, we report that Arr2 additionally functions as a positive regulator of AR expression and function in PCa cells. Expression level of Arr2 correlates with that of AR, and knockdown of Arr2 inhibits the expression of AR and its effectors prostate-specific antigen, transmembrane protease serine 2, FK506-binding protein 51 and fatty acid synthase. Mechanistically, the knockdown of Arr2 attenuates the binding of AR to androgen response elements and consequently decreases transcription of AR-regulated genes. The inhibition of AR by Arr2 knockdown occurs in both androgen-dependent and castration-resistant PCa (CRPC) cells, although the effect is more prominent in CRPC. Arr2 knockdown inhibits the in vitro CRPC cell proliferation, prostasphere growth and invasion, as well as the in vivo prostate tumor formation, local invasion and distant metastasis. These results illustrate a new role for Arr2 in the expression and activation of AR and its potential relevance as a target for therapeutic intervention and monitoring of disease progression.
Collapse
|
40
|
Ma X, Espana-Serrano L, Kim WJ, Thayele Purayil H, Nie Z, Daaka Y. βArrestin1 regulates the guanine nucleotide exchange factor RasGRF2 expression and the small GTPase Rac-mediated formation of membrane protrusion and cell motility. J Biol Chem 2014; 289:13638-50. [PMID: 24692549 DOI: 10.1074/jbc.m113.511360] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
βArrestin proteins shuttle between the cytosol and nucleus and have been shown to regulate G protein-coupled receptor signaling, actin remodeling, and gene expression. Here, we tested the hypothesis that βarrestin1 regulates actin remodeling and cell migration through the small GTPase Rac. Depletion of βarrestin1 promotes Rac activation, leading to the formation of multipolar protrusions and increased cell circularity, and overexpression of a dominant negative form of Rac reverses these morphological changes. Small interfering RNA library screen identifies RasGRF2 as a target of βarrestin1. RasGRF2 gene and protein expression levels are elevated following depletion of βarrestin1, and the consequent activation of Rac results in dephosphorylation of cofilin that can promote actin polymerization and formation of multipolar protrusions, thereby retarding cell migration and invasion. Together, these results suggest that βarrestin1 regulates rasgrf2 gene expression and Rac activation to affect membrane protrusion and cell migration and invasion.
Collapse
Affiliation(s)
- Xiaojie Ma
- From the Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Fadia A. Kamal
- From The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH
| | - Joshua G. Travers
- From The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH
| | - Burns C. Blaxall
- From The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH
| |
Collapse
|
42
|
Abstract
Non-visual arrestins were initially appreciated for the roles they play in the negative regulation of G protein-coupled receptors through the processes of desensitisation and endocytosis. The arrestins are also now known as protein scaffolding platforms that act downstream of multiple types of receptors, ensuring relevant transmission of information for an appropriate cellular response. They function as regulatory hubs in several important signalling pathways that are often dysregulated in human cancers. Interestingly, several recent studies have documented changes in expression and localisation of arrestins that occur during cancer progression and that correlate with clinical outcome. Here, we discuss these advances and how changes in expression/localisation may affect functional outputs of arrestins in cancer biology.
Collapse
|
43
|
Abstract
Programmed cell death (apoptosis) is a coordinated set of events eventually leading to the massive activation of specialized proteases (caspases) that cleave numerous substrates, orchestrating fairly uniform biochemical changes than culminate in cellular suicide. Apoptosis can be triggered by a variety of stimuli, from external signals or growth factor withdrawal to intracellular conditions, such as DNA damage or ER stress. Arrestins regulate many signaling cascades involved in life-or-death decisions in the cell, so it is hardly surprising that numerous reports document the effects of ubiquitous nonvisual arrestins on apoptosis under various conditions. Although these findings hardly constitute a coherent picture, with the same arrestin subtypes, sometimes via the same signaling pathways, reported to promote or inhibit cell death, this might reflect real differences in pro- and antiapoptotic signaling in different cells under a variety of conditions. Recent finding suggests that one of the nonvisual subtypes, arrestin-2, is specifically cleaved by caspases. Generated fragment actively participates in the core mechanism of apoptosis: it assists another product of caspase activity, tBID, in releasing cytochrome C from mitochondria. This is the point of no return in committing vertebrate cells to death, and the aspartate where caspases cleave arrestin-2 is evolutionary conserved in vertebrate, but not in invertebrate arrestins. In contrast to wild-type arrestin-2, its caspase-resistant mutant does not facilitate cell death.
Collapse
Affiliation(s)
- Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Nashville, TN, 37232, USA
| | | | | |
Collapse
|
44
|
Spiegelberg BD. G protein coupled-receptor signaling and reversible lysine acetylation. J Recept Signal Transduct Res 2013; 33:261-6. [PMID: 23895385 DOI: 10.3109/10799893.2013.822889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Emerging data suggest that interaction with reversible protein acetylation is an important mediator of GPCR-initiated changes in transcription and other processes. Alteration of acetylation downstream of GPCR activation occurs through a variety of mechanisms, including kinase-dependent and -independent regulation of histone deacetylases (HDACs) and histone acetyltransferases (HATs). The prominence of both GPCR and acetylation in pathology and drug development efforts highlights the importance of understanding cross-talk between these two signaling mechanisms.
Collapse
Affiliation(s)
- Bryan D Spiegelberg
- Department of Chemistry and Biochemistry, Rider University , New Jersey , USA
| |
Collapse
|
45
|
Morinelli TA, Lee MH, Kendall RT, Luttrell LM, Walker LP, Ullian ME. Angiotensin II activates NF-κB through AT1A receptor recruitment of β-arrestin in cultured rat vascular smooth muscle cells. Am J Physiol Cell Physiol 2013; 304:C1176-86. [PMID: 23576578 DOI: 10.1152/ajpcell.00235.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of the angiotensin type 1A receptor (AT1AR) in rat aorta vascular smooth muscle cells (RASMC) results in increased synthesis of the proinflammatory enzyme cyclooxygenase-2 (COX-2). We previously showed that nuclear localization of internalized AT1AR results in activation of transcription of the gene for COX-2, i.e., prostaglandin-endoperoxide synthase-2. Others have suggested that ANG II stimulation of COX-2 protein synthesis is mediated by NF-κB. The purpose of the present study was to examine the interrelationship between AT1AR activation, β-arrestin recruitment, and NF-κB activation in the ability of ANG II to increase COX-2 protein synthesis in RASMC. In the present study we utilized RASMC, inhibitors of the NF-κB pathway, β-arrestin knockdown, radioligand binding, immunoblotting, and immunofluorescence to characterize the roles of AT1AR internalization, NF-κB activation, and β-arrestin in ANG II-induced COX-2 synthesis. Ro-106-9920 or parthenolide, agents that inhibit the initial steps of NF-κB activation, blocked ANG II-induced p65 NF-κB nuclear localization, COX-2 protein expression, β-arrestin recruitment, and AT1AR internalization without inhibiting ANG II-induced p42/44 ERK activation. Curcumin, an inhibitor of NF-κB-induced transcription, blocked ANG II-induced COX-2 protein expression without altering AT1AR internalization, ANG II-induced p65 NF-κB nuclear localization, or p42/44 ERK activation. Small interfering RNA-induced knockdown of β-arrestin-1 and -2 inhibited ANG II-induced p65 NF-κB nuclear localization. In vascular smooth muscle cells, internalization of the activated AT1AR mediated by β-arrestins activates the NF-κB pathway, producing nuclear localization of the transcription factor and initiation of COX-2 protein synthesis, thereby linking internalization of the receptor with the NF-κB pathway.
Collapse
Affiliation(s)
- Thomas A Morinelli
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
46
|
β-Arrestins: modulators of small GTPase activation and function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:149-74. [PMID: 23764053 DOI: 10.1016/b978-0-12-394440-5.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most cellular events responsible for accurate G protein-coupled receptor trafficking involve small GTP-binding proteins. For example, trafficking of receptors via the endocytic and exocytic pathways requires activation of ADP-ribosylation factors and Rab proteins, while receptor-mediated complex responses such as migration are well characterized to be dependent upon Rho family members. Because β-arrestin proteins are recruited to activated receptors and now considered as key signaling molecules, whether they act to control small GTPase activity remains a subject of great interest. Over the years, considerable evidence has suggested that β-arrestins and GTPases might be effectors of the same signaling pathways. One example is the roles of both β-arrestin and Ras, the prototypical GTPase, in coordinating activation of mitogen-activated protein kinase. Recently developed tools effective in suppressing the expression of β-arrestins will help define whether they are essential for small G protein activation. Furthermore, novel approaches to identify protein complexes will greatly advance our understanding of the possible cross talk between β-arrestin and small GTPases.
Collapse
|
47
|
Rosanò L, Cianfrocca R, Tocci P, Spinella F, Di Castro V, Spadaro F, Salvati E, Biroccio AM, Natali PG, Bagnato A. β-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced β-catenin signaling. Oncogene 2012. [DOI: 10.1038/onc.2012.527] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Bychkov E, Zurkovsky L, Garret MB, Ahmed MR, Gurevich EV. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum. PLoS One 2012; 7:e48912. [PMID: 23139825 PMCID: PMC3490921 DOI: 10.1371/journal.pone.0048912] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.
Collapse
Affiliation(s)
| | | | | | | | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|