1
|
Safe S, Farkas E, Hailemariam AE, Oany AR, Sivaram G, Tsui WNT. Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer. Cancers (Basel) 2025; 17:284. [PMID: 39858066 PMCID: PMC11763981 DOI: 10.3390/cancers17020284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters. Several studies showed that a number of NR-regulated genes did not directly bind their corresponding cis-elements and promoter analysis identified that NR-responsive gene promoters contained GC-rich sequences that bind specificity protein 1 (Sp1), Sp3 and Sp4 transcription factors (TFs). This review is focused on identifying an important sub-set of Sp-regulated genes that are indirectly coregulated through interactions with NRs. Subsequent studies showed that many NRs directly bind Sp1 (or Sp3 and Sp4), the NR/Sp complexes bind GC-rich sites to regulate gene expression and the NR acts as a ligand-modulated nuclear cofactor. In addition, several reports show that NR-responsive genes contain cis-elements that bind both Sp TFs and NRs, and mutation of either cis-element results in loss of NR-responsive (inducible and/or basal). Regulation of these genes involves interactions between DNA-bound Sp TFs with proximal or distal DNA-bound NRs, and, in some cases, other nuclear cofactors are required for gene expression. Thus, many NR-responsive genes are regulated by NR/Sp complexes, and these genes can be targeted by ligands that target NRs and also by drugs that induce degradation of Sp1, Sp3 and Sp4.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA; (E.F.); (A.E.H.); (A.R.O.); (G.S.); (W.N.T.T.)
| | | | | | | | | | | |
Collapse
|
2
|
Shen JJ, Yang X, Yu M, Li QC, Wang RY, Yu WY, Zhang JL, Chen YL, Zhu WT, Li J, Zhan ZJ, Wu R. Discovery of aurovertin B as a potent metastasis inhibitor against triple-negative breast cancer: Elucidating the complex role of the ATF3-DUSP1 axis. J Pharmacol Exp Ther 2025; 392:100005. [PMID: 39893015 DOI: 10.1124/jpet.124.002264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by high mortality rates, primarily due to its propensity for metastasis. Addressing this challenge necessitates the development of effective antimetastatic therapies. This study aimed to identify natural compounds with potential antimetastatic properties mainly based on the high-throughput phenotypic screening system. This system, utilizing luciferase reporter gene assays combined with scratch wound assays, evaluates compounds based on their influence on the epithelial-mesenchymal transition (EMT) marker E-cadherin. Through this approach, aurovertin B (AVB) was revealed to have significant antimetastatic capability. Notably, AVB exhibited substantial metastasis suppression in many TNBC cell lines, including MDA-MB-231, HCC1937, and 4T1. Also, its remarkable antimetastatic activity was demonstrated in vivo via the orthotopic breast cancer mouse model. Further exploration revealed a pronounced association between AVB-induced upregulation of dual-specificity phosphatase 1 (DUSP1) and its inhibitory effect on TNBC metastasis. Additionally, microarray analysis conducted to elucidate the underlying mechanism of the AVB-DUSP1 interaction identified activating transcription factor 3 (ATF3) as a critical transcription factor instrumental in DUSP1 transcriptional activation. This discovery, coupled with observations of enhanced ATF3-DUSP1 expression and consequent reduction in TNBC metastatic foci in response to AVB, provides novel insights into the metastatic mechanisms of TNBC. SIGNIFICANCE STATEMENT: This study constructs a high-throughput phenotypic screening system utilizing epithelial-mesenchymal transition marker E-cadherin promoter luciferase reporter gene combined with scratch wound assays. Aurovertin B was revealed to possess significant antimetastatic activity through this approach, which was further demonstrated via in vivo and in vitro experiments. The discovery of the regulatory role of the ATF3-DUSP1 pathway enriches our understanding of TNBC metastasis mechanism and suggests the potential of ATF3 and DUSP1 as biomarkers for diagnosing TNBC metastasis.
Collapse
Affiliation(s)
- Jian-Jun Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xi Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Meng Yu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Qing-Cui Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Ru-Yu Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Wen-Yan Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jia-Li Zhang
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Li Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Wen-Ting Zhu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Rui Wu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Kwak YT, Montalbano AP, Kelleher AM, Colon-Caraballo M, Kraus WL, Mahendroo M, Mendelson CR. Decline in corepressor CNOT1 in the pregnant myometrium near term impairs progesterone receptor function and increases contractile gene expression. J Biol Chem 2024; 300:107484. [PMID: 38897566 PMCID: PMC11301068 DOI: 10.1016/j.jbc.2024.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Progesterone (P4), acting via its nuclear receptor (PR), is critical for pregnancy maintenance by suppressing proinflammatory and contraction-associated protein (CAP)/contractile genes in the myometrium. P4/PR partially exerts these effects by tethering to NF-κB bound to their promot-ers, thereby decreasing NF-κB transcriptional activity. However, the underlying mechanisms whereby P4/PR interaction blocks proinflammatory and CAP gene expression are not fully understood. Herein, we characterized CCR-NOT transcription complex subunit 1 (CNOT1) as a corepressor that also interacts within the same chromatin complex as PR-B. In mouse myome-trium increased expression of CAP genes Oxtr and Cx43 at term coincided with a marked decline in expression and binding of CNOT1 to NF-κB-response elements within the Oxtr and Cx43 promoters. Increased CAP gene expression was accompanied by a pronounced decrease in enrichment of repressive histone marks and increase in enrichment of active histone marks to this genomic region. These changes in histone modification were associated with changes in expression of corresponding histone modifying enzymes. Myometrial tissues from P4-treated 18.5 dpc pregnant mice manifested increased Cnot1 expression at 18.5 dpc, compared to vehicle-treated controls. P4 treatment of PR-expressing hTERT-HM cells enhanced CNOT1 expression and its recruitment to PR bound NF-κB-response elements within the CX43 and OXTR promoters. Furthermore, knockdown of CNOT1 significantly increased expression of contractile genes. These novel findings suggest that decreased expression and DNA-binding of the P4/PR-regulated transcriptional corepressor CNOT1 near term and associated changes in histone modifications at the OXTR and CX43 promoters contribute to the induction of myometrial contractility leading to parturition.
Collapse
Affiliation(s)
- Youn-Tae Kwak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alina P Montalbano
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew M Kelleher
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Laboratory of Signaling and Gene Regulation, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Mariano Colon-Caraballo
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mala Mahendroo
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Carole R Mendelson
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Shynlova O, Nadeem L, Lye S. Progesterone control of myometrial contractility. J Steroid Biochem Mol Biol 2023; 234:106397. [PMID: 37683774 DOI: 10.1016/j.jsbmb.2023.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
During pregnancy, the primary function of the uterus is to be quiescent and not contract, which allows the growing fetus to develop and mature. A uterine muscle layer, myometrium, is composed of smooth muscle cells (SMCs). Before the onset of labor contractions, the uterine SMCs experience a complex biochemical and molecular transformation involving the expression of contraction-associated proteins. Labor is initiated when genes in SMCs are activated in response to a combination of hormonal, inflammatory and mechanical signals. In this review, we provide an overview of molecular mechanisms regulating the process of parturition in humans, focusing on the hormonal control of the myometrium, particularly the steroid hormone progesterone. The primary reason for discussing the regulation of myometrial contractility by progesterone is the importance of the clinical problem of preterm birth. It is thought that the hormonal mechanisms regulating premature uterine contractions represent an untimely triggering of the normal events occurring during term parturition. Yet, our knowledge of the complex and redundant hormonal pathways controlling uterine contractile activity leading to delivery of the neonate remains incomplete. Finally, we introduce recent animal studies using a novel class of drugs, Selective Progesterone Receptor Modulators, targeting progesterone signaling to prevent premature myometrial contractions.
Collapse
Affiliation(s)
- Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Physiology, University of Toronto, M5S 1A1, Canada; Department of Obstetrics & Gynecology, University of Toronto, M5S 1A1, Canada.
| | - Lubna Nadeem
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Physiology, University of Toronto, M5S 1A1, Canada; Department of Obstetrics & Gynecology, University of Toronto, M5S 1A1, Canada
| |
Collapse
|
5
|
Bustamante Eduardo M, Keller I, Schuster N, Aebi S, Jaggi R. Molecular characterization of breast cancer cell pools with normal or reduced ability to respond to progesterone: a study based on RNA-seq. J Genet Eng Biotechnol 2023; 21:81. [PMID: 37550554 PMCID: PMC10406740 DOI: 10.1186/s43141-023-00541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND About one-third of patients with estrogen receptor alpha (ERα)-positive breast cancer have tumors which are progesterone receptor (PR) negative. PR is an important prognostic factor in breast cancer. Patients with ERα-positive/PR-negative tumors have shorter disease-free and overall survival than patients with ERα-positive/PR-positive tumors. New evidence has shown that progesterone (P4) has an anti-proliferative effect in ERα-positive breast cancer cells. However, the role of PR in breast cancer is only poorly understood. METHODS We disrupted the PR gene (PGR) in ERα-positive/PR-positive T-47D cells using the CRISPR/Cas9 system. This resulted in cell pools we termed PR-low as P4 mediated effects were inhibited or blocked compared to control T-47D cells. We analyzed the gene expression profiles of PR-low and control T-47D cells in the absence of hormone and upon treatment with P4 alone or P4 together with estradiol (E2). Differentially expressed (DE) genes between experimental groups were characterized based on RNA-seq and Gene Ontology (GO) enrichment analyses. RESULTS The overall gene expression pattern was very similar between untreated PR-low and untreated control T-47D cells. More than 6000 genes were DE in control T-47D cells upon stimulation with P4 or P4 plus E2. When PR-low pools were subjected to the same hormonal treatment, up- or downregulation was either blocked/absent or consistently lower. We identified more than 3000 genes that were DE between hormone-treated PR-low and control T-47D cells. GO analysis revealed seven significantly enriched biological processes affected by PR and associated with G protein-coupled receptor (GPCR) pathways which have been described to support growth, invasiveness, and metastasis in breast cancer cells. CONCLUSIONS The present study provides new insights into the complex role of PR in ERα-positive/PR-positive breast cancer cells. Many of the genes affected by PR are part of central biological processes of tumorigenesis.
Collapse
Affiliation(s)
- Mariana Bustamante Eduardo
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA.
| | - Irene Keller
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nathalie Schuster
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stefan Aebi
- Department of Medical Oncology, Cantonal Hospital, Lucerne, Switzerland
| | - Rolf Jaggi
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Waszczykowska K, Prażanowska K, Kałuzińska Ż, Kołat D, Płuciennik E. Discovering biomarkers for hormone-dependent tumors: in silico study on signaling pathways implicated in cell cycle and cytoskeleton regulation. Mol Genet Genomics 2022; 297:947-963. [PMID: 35532795 DOI: 10.1007/s00438-022-01900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/16/2022] [Indexed: 02/07/2023]
Abstract
Malignancies dependent on hormone homeostasis include breast, ovary, cervical, prostate, testis and uterine tumors. Hormones are involved in signal transduction which orchestrate processes, such as apoptosis, proliferation, cell cycle or cytoskeleton organization. Currently, there is a need for novel biomarkers which would help to diagnose cancers efficiently. In this study, the genes implicated in signaling that is important in hormone-sensitive carcinogenesis were investigated regarding their prognostic significance. Data of seven cancer cohorts were collected from FireBrowse. 54 gene sets implicated in specific pathways were browsed through MSig database. Profiling was assessed via Monocle3, while gene ontology through PANTHER. For confirmation, correlation analysis was performed using WGCNA. Protein-protein networks were visualized via Cytoscape and impact of genes on survival, as well as cell cycle or cytoskeleton-related prognostic signatures, was tested. Several differences in expression profile were identified, some of them allowed to distinguish histology. Functional annotation revealed that various regulation of cell cycle, adhesion, migration, apoptosis and angiogenesis underlie these differences. Clinical traits, such as histological type or cancer staging, were found during evaluation of module-trait relationships. Of modules, the TopHubs (COL6A3, TNR, GTF2A1, NKX3-1) interacted directly with, e.g., PDGFB, ITGA10, SP1 or AKT3. Among TopHubs and interacting proteins, many showed an impact on hazard ratio and affected the cell cycle or cytoskeleton-related prognostic signatures, e.g., COL1A1 or PDGFB. In conclusion, this study laid the foundation for further hormone-sensitive carcinogenesis research through identification of genes which prove that crosstalk between cell cycle and cytoskeleton exists, opening avenues for future therapeutic strategies.
Collapse
Affiliation(s)
| | - Karolina Prażanowska
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752, Lodz, Poland
| | - Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland.
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| |
Collapse
|
8
|
Kumar S, Freelander A, Lim E. Type 1 Nuclear Receptor Activity in Breast Cancer: Translating Preclinical Insights to the Clinic. Cancers (Basel) 2021; 13:4972. [PMID: 34638457 PMCID: PMC8507977 DOI: 10.3390/cancers13194972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
The nuclear receptor (NR) family of transcription factors is intimately associated with the development, progression and treatment of breast cancer. They are used diagnostically and prognostically, and crosstalk between nuclear receptor pathways and growth factor signalling has been demonstrated in all major subtypes of breast cancer. The majority of breast cancers are driven by estrogen receptor α (ER), and anti-estrogenic therapies remain the backbone of treatment, leading to clinically impactful improvements in patient outcomes. This serves as a blueprint for the development of therapies targeting other nuclear receptors. More recently, pivotal findings into modulating the progesterone (PR) and androgen receptors (AR), with accompanying mechanistic insights into NR crosstalk and interactions with other proliferative pathways, have led to clinical trials in all of the major breast cancer subtypes. A growing body of evidence now supports targeting other Type 1 nuclear receptors such as the glucocorticoid receptor (GR), as well as Type 2 NRs such as the vitamin D receptor (VDR). Here, we reviewed the existing preclinical insights into nuclear receptor activity in breast cancer, with a focus on Type 1 NRs. We also discussed the potential to translate these findings into improving patient outcomes.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Darlinghurst 2010, Australia; (A.F.); (E.L.)
- Garvan Institute of Medical Research, University of New South Wales, Darlinghurst 2010, Australia
| | - Allegra Freelander
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Darlinghurst 2010, Australia; (A.F.); (E.L.)
- Garvan Institute of Medical Research, University of New South Wales, Darlinghurst 2010, Australia
| | - Elgene Lim
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Darlinghurst 2010, Australia; (A.F.); (E.L.)
- Garvan Institute of Medical Research, University of New South Wales, Darlinghurst 2010, Australia
| |
Collapse
|
9
|
Hussein S, Khanna P, Yunus N, Gatza ML. Nuclear Receptor-Mediated Metabolic Reprogramming and the Impact on HR+ Breast Cancer. Cancers (Basel) 2021; 13:cancers13194808. [PMID: 34638293 PMCID: PMC8508306 DOI: 10.3390/cancers13194808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Breast cancer is the most commonly diagnosed and second leading cause of cancer-related deaths in women in the United States, with hormone receptor positive (HR+) tumors representing more than two-thirds of new cases. Recent evidence has indicated that dysregulation of multiple metabolic programs, which can be driven through nuclear receptor activity, is essential for tumor genesis, progression, therapeutic resistance and metastasis. This study will review the current advances in our understanding of the impact and implication of altered metabolic processes driven by nuclear receptors, including hormone-dependent signaling, on HR+ breast cancer. Abstract Metabolic reprogramming enables cancer cells to adapt to the changing microenvironment in order to maintain metabolic energy and to provide the necessary biological macromolecules required for cell growth and tumor progression. While changes in tumor metabolism have been long recognized as a hallmark of cancer, recent advances have begun to delineate the mechanisms that modulate metabolic pathways and the consequence of altered signaling on tumorigenesis. This is particularly evident in hormone receptor positive (HR+) breast cancers which account for approximately 70% of breast cancer cases. Emerging evidence indicates that HR+ breast tumors are dependent on multiple metabolic processes for tumor progression, metastasis, and therapeutic resistance and that changes in metabolic programs are driven, in part, by a number of key nuclear receptors including hormone-dependent signaling. In this review, we discuss the mechanisms and impact of hormone receptor mediated metabolic reprogramming on HR+ breast cancer genesis and progression as well as the therapeutic implications of these metabolic processes in this disease.
Collapse
Affiliation(s)
- Shaimaa Hussein
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Pooja Khanna
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
| | - Neha Yunus
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
| | - Michael L. Gatza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
- Correspondence: ; Tel.: +1-732-235-8751
| |
Collapse
|
10
|
Khader N, Shchuka VM, Shynlova O, Mitchell JA. Transcriptional control of parturition: insights from gene regulation studies in the myometrium. Mol Hum Reprod 2021; 27:gaab024. [PMID: 33823545 PMCID: PMC8126590 DOI: 10.1093/molehr/gaab024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
The onset of labour is a culmination of a series of highly coordinated and preparatory physiological events that take place throughout the gestational period. In order to produce the associated contractions needed for foetal delivery, smooth muscle cells in the muscular layer of the uterus (i.e. myometrium) undergo a transition from quiescent to contractile phenotypes. Here, we present the current understanding of the roles transcription factors play in critical labour-associated gene expression changes as part of the molecular mechanistic basis for this transition. Consideration is given to both transcription factors that have been well-studied in a myometrial context, i.e. activator protein 1, progesterone receptors, oestrogen receptors, and nuclear factor kappa B, as well as additional transcription factors whose gestational event-driving contributions have been demonstrated more recently. These transcription factors may form pregnancy- and labour-associated transcriptional regulatory networks in the myometrium to modulate the timing of labour onset. A more thorough understanding of the transcription factor-mediated, labour-promoting regulatory pathways holds promise for the development of new therapeutic treatments that can be used for the prevention of preterm labour in at-risk women.
Collapse
Affiliation(s)
- Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Virlana M Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, ON, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Transcription factors regulated by cAMP in smooth muscle of the myometrium at human parturition. Biochem Soc Trans 2021; 49:997-1011. [PMID: 33860781 PMCID: PMC8106496 DOI: 10.1042/bst20201173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) contributes to maintenance of a quiescent (relaxed) state in the myometrium (i.e. uterine smooth muscle) during pregnancy, which most commonly has been attributed to activation of protein kinase A (PKA). PKA-mediated phosphorylation of cytosolic contractile apparatus components in myometrial smooth muscle cells (mSMCs) are known to promote relaxation. Additionally, PKA also regulates nuclear transcription factor (TF) activity to control expression of genes important to the labour process; these are mostly involved in actin-myosin interactions, cell-to-cell connectivity and inflammation, all of which influence mSMC transition from a quiescent to a contractile (pro-labour) phenotype. This review focuses on the evidence that cAMP modulates the activity of TFs linked to pro-labour gene expression, predominantly cAMP response element (CRE) binding TFs, nuclear factor κB (NF-κB), activator protein 1 (AP-1) family and progesterone receptors (PRs). This review also considers the more recently described exchange protein directly activated by cAMP (EPAC) that may oppose the pro-quiescent effects of PKA, as well as explores findings from other cell types that have the potential to be of novel relevance to cAMP action on TF function in the myometrium.
Collapse
|
12
|
Islam MS, Afrin S, Jones SI, Segars J. Selective Progesterone Receptor Modulators-Mechanisms and Therapeutic Utility. Endocr Rev 2020; 41:bnaa012. [PMID: 32365199 PMCID: PMC8659360 DOI: 10.1210/endrev/bnaa012] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
Selective progesterone receptor modulators (SPRMs) are a new class of compounds developed to target the progesterone receptor (PR) with a mix of agonist and antagonist properties. These compounds have been introduced for the treatment of several gynecological conditions based on the critical role of progesterone in reproduction and reproductive tissues. In patients with uterine fibroids, mifepristone and ulipristal acetate have consistently demonstrated efficacy, and vilaprisan is currently under investigation, while studies of asoprisnil and telapristone were halted for safety concerns. Mifepristone demonstrated utility for the management of endometriosis, while data are limited regarding the efficacy of asoprisnil, ulipristal acetate, telapristone, and vilaprisan for this condition. Currently, none of the SPRMs have shown therapeutic success in treating endometrial cancer. Multiple SPRMs have been assessed for efficacy in treating PR-positive recurrent breast cancer, with in vivo studies suggesting a benefit of mifepristone, and multiple in vitro models suggesting the efficacy of ulipristal acetate and telapristone. Mifepristone, ulipristal acetate, vilaprisan, and asoprisnil effectively treated heavy menstrual bleeding (HBM) in patients with uterine fibroids, but limited data exist regarding the efficacy of SPRMs for HMB outside this context. A notable class effect of SPRMs are benign, PR modulator-associated endometrial changes (PAECs) due to the actions of the compounds on the endometrium. Both mifepristone and ulipristal acetate are effective for emergency contraception, and mifepristone was approved by the US Food and Drug Administration (FDA) in 2012 for the treatment of Cushing's syndrome due to its additional antiglucocorticoid effect. Based on current evidence, SPRMs show considerable promise for treatment of several gynecologic conditions.
Collapse
Affiliation(s)
- Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sara Isabel Jones
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Abstract
Term labour is a state of physiological inflammation orchestrated by multiple uterine tissues (both fetal and maternal). This physiological inflammation preceding and accompanying labour onset is characterized by an increase in cytokine and chemokine secretion by the fetal membranes, as well as uterine tissues (i.e., decidua and myometrium). Pro-inflammatory cytokines and chemokines activate circulating maternal peripheral leukocytes as well as the uterine vascular endothelium to permit leukocyte infiltration into the uterus. This inflammatory milieu, in the absence of infection, is required for the initiation of labour as the uterine-infiltrated leukocytes secrete matrix metalloproteinases to induce fetal membrane rupture and cervical ripening as well as various labour mediators, which promote contractions of the myometrium. Myometrial activation at term and the onset of labour contractions are directly related to the changes in the ovarian/placental hormone progesterone and its downstream mediators (i.e., the progesterone receptors, PRA/B), which are also critical for maintenance of pregnancy. Our recent data provides direct evidence in support of local and functional P4 withdrawal in the uterine muscle (myometrium) via the activator protein-1 (AP-1) mediated pathway. This review outlines known mechanisms regulating activation of human labour, including progesterone and cytokine signaling. Understanding of the molecular mechanism of myometrial activation and labour onset could facilitate the development of new therapeutics for high-risk pregnant women to prevent premature uterine activation and preterm birth.
Collapse
Affiliation(s)
- Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Departments of Physiology and University of Toronto, Ontario, Canada; Obstetrics & Gynecology, University of Toronto, Ontario, Canada.
| | - Lubna Nadeem
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jianhong Zhang
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Caroline Dunk
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Departments of Physiology and University of Toronto, Ontario, Canada; Obstetrics & Gynecology, University of Toronto, Ontario, Canada
| |
Collapse
|
14
|
Tahiri A, Tekpli X, Satheesh SV, DeWijn R, Lüders T, Bukholm IR, Hurtado A, Geisler J, Kristensen VN. Loss of progesterone receptor is associated with distinct tyrosine kinase profiles in breast cancer. Breast Cancer Res Treat 2020; 183:585-598. [PMID: 32710281 PMCID: PMC7497693 DOI: 10.1007/s10549-020-05763-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/20/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study was to assess protein tyrosine kinase profiles in primary breast cancer samples in correlation with the distinct hormone and growth receptor profiles ER, PR, and HER2. EXPERIMENTAL DESIGN Pamchip® microarrays were used to measure the phosphorylation of 144 tyrosine kinase substrates in 29 ER+ breast cancer samples and cell lines MCF7, BT474 and ZR75-1. mRNA expression data from the METABRIC cohort and publicly available PR chip-sequencing data were used for validation purposes, together with RT-PCR. RESULTS In ER+ breast tumors and cell lines, we observed that the loss of PR expression correlated to higher kinase activity in samples and cell lines that were HER2-. A number of kinases, representing mostly proteins within the PI3K/AKT pathway, were identified as responsible for the differential phosphorylation between PR- and PR+ in ER+/HER2- tumors. We used the METABRIC cohort to analyze mRNA expression from 977 ER+/HER2- breast cancers. Twenty four kinase-encoding genes were identified as differentially expressed between PR+ and PR-, dividing ER+/HER2- samples in two distinct clusters with significant differences in survival (p < 0.05). Four kinase genes, LCK, FRK, FGFR4, and MST1R, were identified as potential direct targets of PR. CONCLUSIONS Our results suggest that the PR status has a profound effect on tyrosine kinases, especially for FGFR4 and LCK genes, in ER+/HER2- breast cancer patients. The influence of these genes on the PI3K/AKT signaling pathway may potentially lead to novel drug targets for ER+/PR- breast cancer patients.
Collapse
Affiliation(s)
- Andliena Tahiri
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Rik DeWijn
- PamGene International B.V., 's-Hertogenbosch, The Netherlands
| | - Torben Lüders
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ida R Bukholm
- Helgelandssykehuset HF and Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Antoni Hurtado
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain.,August Pi I Sunyer Research Center (IDIBAPS), Barcelona, Spain
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
15
|
Yiming Z, Qingqing L, Hang Y, Yahong M, Shu L. Selenium deficiency causes immune damage by activating the DUSP1/NF-κB pathway and endoplasmic reticulum stress in chicken spleen. Food Funct 2020; 11:6467-6475. [PMID: 32618989 DOI: 10.1039/d0fo00394h] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selenium (Se) is an essential trace element and its deficiency can lead to immune dysfunction. Many studies have investigated the immune damage caused by Se deficiency in chickens, but its mechanism still needs to be explored. In this study, we fed 1-day-old Hyline male chickens with Se deficient diets (the Se content was 0.008 mg kg-1 of diet) and a basal diet (the Se content was 0.15 mg kg-1 of diet). The spleen was collected at the sixth week and used for subsequent experiments. The pathological analysis showed that Se deficiency leads to the destruction of the normal nuclear structure of the spleen cell, and we can observe obvious chromatin condensation and nuclear debris. We constructed a transcriptome database and analyzed the abundance of various genes in the spleen by transcriptome sequence. The analysis of differentially expressed genes (DEGS) showed significant changes in 337 genes, including 210 up-regulations and 127 down-regulations after feeding Se deficient diets. Se deficiency can significantly change oxidative stress and inflammatory response genes in chicken spleen. This study confirmed that Se deficiency increased the IL-2 levels, whereas it down-regulated IL-17, IFN-γ and Foxp3, which indicates that the immune dysfunction of the spleen and Th1/Th2 is imbalanced. We also found that Se deficiency down-regulated some related genes for endoplasmic reticulum Ca2+ transport, leading to endoplasmic reticulum stress (ERS). Moreover, we determined that Se deficiency triggered the low expression of DUSP1/NF-κB. In summary, our results indicate that Se deficiency can inhibit the spleen immune function of chickens by regulating the DUSP1/NF-κB pathway and ERS, leading to spleen damage in chickens. Based on transcriptomics research, our results will help further study the harmful effects of Se deficiency.
Collapse
Affiliation(s)
- Zhang Yiming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | | | | | | | | |
Collapse
|
16
|
Konan HP, Kassem L, Omarjee S, Surmieliova-Garnès A, Jacquemetton J, Cascales E, Rezza A, Trédan O, Treilleux I, Poulard C, Le Romancer M. ERα-36 regulates progesterone receptor activity in breast cancer. Breast Cancer Res 2020; 22:50. [PMID: 32429997 PMCID: PMC7238515 DOI: 10.1186/s13058-020-01278-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/13/2020] [Indexed: 01/12/2023] Open
Abstract
Background Alterations in estrogen and progesterone signaling, via their respective receptors, estrogen receptor alpha (ERα) and progesterone receptor (PR), respectively, are largely involved in the development of breast cancer (BC). The recent identification of ERα-36, a splice variant of ERα, has uncovered a new facet of this pathology. Although ERα-36 expression is associated with poor prognosis, metastasis development, and resistance to treatment, its predictive value has so far not been associated with a BC subtype and its mechanisms of action remain understudied. Methods To study ERα-36 expression in BC specimens, we performed immunochemical experiments. Next, the role of ERα-36 in progesterone signaling was investigated by generating KO clones using the CRISPR/CAS9 technology. PR signaling was also assessed by proximity ligation assay, Western blotting, RT-QPCR, and ChIP experiments. Finally, proliferation assays were performed with the IncuCyte technology and migration experiments using scratch assays. Results Here, we demonstrate that ERα-36 expression at the plasma membrane is correlated with a reduced disease-free survival in a cohort of 160 BC patients, particularly in PR-positive tumors, suggesting a crosstalk between ERα-36 and PR. Indeed, we show that ERα-36 interacts constitutively with PR in the nucleus of tumor cells. Moreover, it regulates PR expression and phosphorylation on key residues, impacting the biological effects of progesterone. Conclusions ERα-36 is thus a regulator of PR signaling, interfering with its transcriptional activity and progesterone-induced anti-proliferative effects as well as migratory capacity. Hence, ERα-36 may constitute a new prognostic marker as well as a potential target in PR-positive BC.
Collapse
Affiliation(s)
- Henri-Philippe Konan
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Loay Kassem
- Clinical Oncology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Soleilmane Omarjee
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.,Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Ausra Surmieliova-Garnès
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Julien Jacquemetton
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | | | | | - Olivier Trédan
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.,Medical Oncology Department, Centre Léon Bérard, F-69000, Lyon, France
| | - Isabelle Treilleux
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.,Pathology Department, Centre Léon Bérard, F-69000, Lyon, France
| | - Coralie Poulard
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000, Lyon, France. .,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France. .,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.
| |
Collapse
|
17
|
Oudanonh T, Nabi H, Ennour‐Idrissi K, Lemieux J, Diorio C. Progesterone receptor status modifies the association between body mass index and prognosis in women diagnosed with estrogen receptor positive breast cancer. Int J Cancer 2020; 146:2736-2745. [DOI: 10.1002/ijc.32621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Thiphavone Oudanonh
- Faculté de médecineUniversité Laval Quebec City QC Canada
- CHU de Québec‐Université Laval Research Center (Oncology division)Université Laval Cancer Research Center Quebec City QC Canada
| | - Hermann Nabi
- Faculté de médecineUniversité Laval Quebec City QC Canada
- CHU de Québec‐Université Laval Research Center (Oncology division)Université Laval Cancer Research Center Quebec City QC Canada
- Centre for Research in Epidemiology and Populations Health, INSERM U.1018 Villejuif France
| | - Kaoutar Ennour‐Idrissi
- Faculté de médecineUniversité Laval Quebec City QC Canada
- CHU de Québec‐Université Laval Research Center (Oncology division)Université Laval Cancer Research Center Quebec City QC Canada
| | - Julie Lemieux
- Faculté de médecineUniversité Laval Quebec City QC Canada
- CHU de Québec‐Université Laval Research Center (Oncology division)Université Laval Cancer Research Center Quebec City QC Canada
- Centre des maladies du sein Deschênes‐FabiaCHU de Québec Quebec City QC Canada
| | - Caroline Diorio
- Faculté de médecineUniversité Laval Quebec City QC Canada
- CHU de Québec‐Université Laval Research Center (Oncology division)Université Laval Cancer Research Center Quebec City QC Canada
- Centre des maladies du sein Deschênes‐FabiaCHU de Québec Quebec City QC Canada
| |
Collapse
|
18
|
Moore NL, Hanson AR, Ebrahimie E, Hickey TE, Tilley WD. Anti-proliferative transcriptional effects of medroxyprogesterone acetate in estrogen receptor positive breast cancer cells are predominantly mediated by the progesterone receptor. J Steroid Biochem Mol Biol 2020; 199:105548. [PMID: 31805393 DOI: 10.1016/j.jsbmb.2019.105548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
Abstract
Medroxyprogesterone acetate (MPA) is a first generation progestin that has been in clinical use for various hormonal conditions in women since the 1960s. Although developed as a progesterone receptor (PR) agonist, MPA also has strong binding affinity for other steroid receptors. This promiscuity confounds the mechanistic action of MPA in target cells that express multiple steroid receptors. This study is the first to assess the relative contribution of progesterone, androgen and glucocorticoid receptors in mediating the transcriptional activity of MPA on endogenous targets in breast cancer cells that endogenously express all three receptors at comparable levels. Gene expression profiling in estrogen receptor positive (ER+) ZR-75-1 breast cancer cells demonstrated that although the MPA-regulated transcriptome strongly overlapped with that of Progesterone (PROG), 5α-dihydrotestosterone (DHT) and Dexamethasone (DEX), it clustered most strongly with that of PROG, suggesting that MPA predominantly acts via the progesterone receptor (PR) rather than androgen receptor (AR) or glucocorticoid receptor (GR). Subsequent experiments manipulating levels of these receptors, either through specific culture conditions or with lentiviral shRNAs targeting individual receptors, also revealed a stronger contribution of PR compared to AR and GR on the expression of endogenous target genes that are either commonly regulated by all ligands or specifically regulated only by MPA. A predominant contribution of PR to MPA action in ER+ T-47D breast cancer cells was also observed, although a stronger role for AR was evident in T-47D compared to that observed in ZR-75-1 cells. Network analysis of ligand-specific and commonly regulated genes demonstrated that MPA utilises different transcription factors and signalling pathways to inhibit proliferation compared with PROG. This study reaffirms the importance of PR in mediating MPA action in an endogenous breast cancer context where multiple steroid receptors are co-expressed and has potential implications for PR-targeting therapeutic strategies in ER+ breast cancer.
Collapse
Affiliation(s)
- Nicole L Moore
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Adrienne R Hanson
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
19
|
Myometrial activation: Novel concepts underlying labor. Placenta 2020; 92:28-36. [PMID: 32056784 DOI: 10.1016/j.placenta.2020.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
Term labour is a state of physiological inflammation orchestrated by multiple uterine tissues (both fetal and maternal). This physiological inflammation preceding and accompanying labour onset is characterized by an increase in cytokine and chemokine secretion by the fetal membranes, as well as uterine tissues (i.e., decidua and myometrium). Pro-inflammatory cytokines and chemokines activate circulating maternal peripheral leukocytes as well as the uterine vascular endothelium to permit leukocyte infiltration into the uterus. This inflammatory milieu, in the absence of infection, is required for the initiation of labour as the uterine-infiltrated leukocytes secrete matrix metalloproteinases to induce fetal membrane rupture and cervical ripening as well as various labour mediators, which promote contractions of the myometrium. Myometrial activation at term and the onset of labour contractions are directly related to the changes in the ovarian/placental hormone progesterone and its downstream mediators (i.e., the progesterone receptors, PRA/B), which are also critical for maintenance of pregnancy. Our recent data provides direct evidence in support of local and functional P4 withdrawal in the uterine muscle (myometrium) via the activator protein-1 (AP-1) mediated pathway. This review outlines known mechanisms regulating activation of human labour, including progesterone and cytokine signaling. Understanding of the molecular mechanism of myometrial activation and labour onset could facilitate the development of new therapeutics for high-risk pregnant women to prevent premature uterine activation and preterm birth.
Collapse
|
20
|
Fu XH, Chen CZ, Li S, Han DX, Wang YJ, Yuan B, Gao Y, Zhang JB, Jiang H. Dual-specificity phosphatase 1 regulates cell cycle progression and apoptosis in cumulus cells by affecting mitochondrial function, oxidative stress, and autophagy. Am J Physiol Cell Physiol 2019; 317:C1183-C1193. [DOI: 10.1152/ajpcell.00012.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dual-specificity phosphatase 1 ( DUSP1) is differentially expressed in cumulus cells of different physiological states, but its specific function and mechanism of action remain unclear. In this study, we explored the effects of DUSP1 expression inhibition on cell cycle progression, proliferation, apoptosis, and lactate and cholesterol levels in cumulus cells and examined reactive oxygen species levels, mitochondrial function, autophagy, and the expression of key cytokine genes. The results showed that inhibition of DUSP1 in cumulus cells caused abnormal cell cycle progression, increased cell proliferation, decreased apoptosis rates, increased cholesterol synthesis and lactic acid content, and increased cell expansion. The main reason for these effects was that inhibition of DUSP1 reduced ROS accumulation, increased glutathione level and mitochondrial membrane potential, and reduced autophagy levels in cells. These results indicate that DUSP1 limits the biological function of bovine cumulus cells under normal physiological conditions and will greatly contribute to further explorations of the physiological functions of cumulus cells and the interactions of the cumulus-oocyte complex.
Collapse
Affiliation(s)
- Xu-huang Fu
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Cheng-zhen Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Sheng Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Dong-xu Han
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yi-jie Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jia-bao Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Woo ARE, Sze SK, Chung HH, Lin VCL. Delineation of critical amino acids in activation function 1 of progesterone receptor for recruitment of transcription coregulators. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:522-533. [DOI: 10.1016/j.bbagrm.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
|
22
|
Amini P, Wilson R, Wang J, Tan H, Yi L, Koeblitz WK, Stanfield Z, Romani AMP, Malemud CJ, Mesiano S. Progesterone and cAMP synergize to inhibit responsiveness of myometrial cells to pro-inflammatory/pro-labor stimuli. Mol Cell Endocrinol 2019; 479:1-11. [PMID: 30118888 DOI: 10.1016/j.mce.2018.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Progesterone (P4) acting through the P4 receptor (PR) isoforms, PR-A and PR-B, promotes uterine quiescence for most of pregnancy, in part, by inhibiting the response of myometrial cells to pro-labor inflammatory stimuli. This anti-inflammatory effect is inhibited by phosphorylation of PR-A at serine-344 and -345 (pSer344/345-PRA). Activation of the cyclic adenosine monophosphate (cAMP) signaling pathway also promotes uterine quiescence and myometrial relaxation. This study examined the cross-talk between P4/PR and cAMP signaling to exert anti-inflammatory actions and control pSer344/345-PRA generation in myometrial cells. In the hTERT-HMA/B immortalized human myometrial cell line P4 inhibited responsiveness to interleukin (IL)-1β and forskolin (increases cAMP) and 8-Br-cAMP increased this effect in a concentration-dependent and synergistic manner that was mediated by activation of protein kinase A (PKA). Forskolin also inhibited the generation of pSer344/345-PRA and expression of key contraction-associated genes. Generation of pSer344/345-PRA was catalyzed by stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Forskolin inhibited pSer344/345-PRA generation, in part, by increasing the expression of dual specificity protein phosphatase 1 (DUSP1), a phosphatase that inactivates mitogen-activated protein kinases (MAPKs) including SAPK/JNK. P4/PR and forskolin increased DUSP1 expression. The data suggest that P4/PR promotes uterine quiescence via cross-talk and synergy with cAMP/PKA signaling in myometrial cells that involves DUSP1-mediated inhibition of SAPK/JNK activation.
Collapse
Affiliation(s)
- Peyvand Amini
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Rachel Wilson
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Junye Wang
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Huiqing Tan
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Lijuan Yi
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William K Koeblitz
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Zachary Stanfield
- Systems Biology and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Andrea M P Romani
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Charles J Malemud
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics and Gynecology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
23
|
Mendelson CR, Gao L, Montalbano AP. Multifactorial Regulation of Myometrial Contractility During Pregnancy and Parturition. Front Endocrinol (Lausanne) 2019; 10:714. [PMID: 31708868 PMCID: PMC6823183 DOI: 10.3389/fendo.2019.00714] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
The steroid hormones progesterone (P4) and estradiol-17β (E2), produced by the placenta in humans and the ovaries in rodents, serve crucial roles in the maintenance of pregnancy, and the initiation of parturition. Because of their critical importance for species survival, the mechanisms whereby P4 and its nuclear receptor (PR) maintain myometrial quiescence during pregnancy, and for the decline in P4/PR and increase in E2/estrogen receptor (ER) function leading to parturition, are multifaceted, cooperative, and redundant. These actions of P4/PR include: (1) PR interaction with proinflammatory transcription factors, nuclear factor κB (NF-κB), and activating protein 1 (AP-1) bound to promoters of proinflammatory and contractile/contraction-associated protein (CAP) genes and recruitment of corepressors to inhibit NF-κB and AP-1 activation of gene expression; (2) upregulation of inhibitors of proinflammatory transcription factor activation (IκBα, MKP-1); (3) induction of transcriptional repressors of CAP genes (e.g., ZEB1). In rodents and most other mammals, circulating maternal P4 levels remain elevated throughout most of pregnancy and decline precipitously near term. By contrast, in humans, circulating P4 levels and myometrial PR levels remain elevated throughout pregnancy and into labor. However, even in rodents, wherein P4 levels decline near term, P4 levels remain higher than the Kd for PR binding. Thus, parturition is initiated in all species by a series of molecular events that antagonize the P4/PR maintenance of uterine quiescence. These events include: direct interaction of inflammatory transcription factors (e.g., NF-κB, AP-1) with PR; increased expression of P4 metabolizing enzymes; increased expression of truncated/inhibitory PR isoforms; altered expression of PR coactivators and corepressors. This article will review various mechanisms whereby P4 acting through PR isoforms maintains myometrial quiescence during pregnancy as well as those that underlie the decline in PR function leading to labor. The roles of P4- and E2-regulated miRNAs in the regulation and integration of these mechanisms will also be considered.
Collapse
|
24
|
Li Z, Xu W, Ren X, Xu J, Chen J. Puerarin promotes DUSP1 expression by regulating miR‑133a‑3p in breast cancer. Mol Med Rep 2018; 19:205-212. [PMID: 30483784 PMCID: PMC6297792 DOI: 10.3892/mmr.2018.9682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Previous studies demonstrated that puerarin represents a potential therapeutic drug for breast cancer treatment, due to its ability to inhibit the migration of MCF-7 and MDA-MB-231 cell lines. In order to investigate the mechanism of puerarin in breast cancer cells, the aim of the present study was to examine whether puerarin regulated the dual specificity phosphatase 1 (DUSP1) expression level by promoting the microRNA-133a-3p (miR-133a-3p) expression level in breast cancer. Cell viability and apoptosis were assessed in HCC38 cells by Cell Counting Kit-8 assays and a flow cytometry assay, respectively. In total, four treatment groups were considered: Puerarin treatment, miR-133a-3p mimics transfection, puerarin + miR-133a-3p mimics and negative control. miR-133a-3p expression and DUSP1 mRNA expression levels were analyzed by reverse transcription-quantitative polymerase chain reaction, and western blotting was used to detect the protein expression level. Furthermore, a luciferase reporter gene assay was used to test whether DUSP1 mRNA was a direct target of miR-133a-3p. The present results suggested that treatment with puerarin or miR-133a-3p mimics transfection affected the miR-133a-3p expression level and the activity of the DUSP1/p38 pathway, leading to inhibition of HCC38 cell viability and an increase in apoptosis. miR-133a-3p overexpression enhanced the drug action of peurarin. In conclusion, puerarin may increase DUSP1 expression by promoting the miR-133a-3p expression level in HCC38 breast cancer cells. Therefore, miR-133a-3p may represent a novel molecular marker for diagnosis and treatment of breast cancer, and puerarin may represent a promising clinical drug for treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Zhifeng Li
- Department of Breast Surgery, Nantong Maternity and Child Health Care Hospital Affiliated to Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Weiwei Xu
- Department of Oncology, Nantong Tumour Hospital Affiliated to Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaoyan Ren
- Department of Pathology, Nantong Maternity and Child Health Care Hospital Affiliated to Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jinhua Xu
- Department of Traditional Chinese Medicine, Nantong Maternity and Child Health Care Hospital Affiliated to Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianxin Chen
- Department of Breast Surgery, Nantong Maternity and Child Health Care Hospital Affiliated to Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
25
|
Lapeire L, Hendrix A, Lecoutere E, Van Bockstal M, Vandesompele J, Maynard D, Braems G, Van Den Broecke R, Müller C, Bracke M, Cocquyt V, Denys H, De Wever O. Secretome analysis of breast cancer-associated adipose tissue to identify paracrine regulators of breast cancer growth. Oncotarget 2018; 8:47239-47249. [PMID: 28525384 PMCID: PMC5564561 DOI: 10.18632/oncotarget.17592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/17/2017] [Indexed: 11/25/2022] Open
Abstract
Adipose tissue secretes a plethora of adipokines as evidenced by characterization of subcutaneous and visceral adipose tissue secretomes. However, adipose tissue composition and secretion pattern is depot and disease dependent, influencing the adipose tissue secretome. We investigated the secretome of cancer-associated adipose tissue (CAAT) explants from breast cancer patients and explored its role in breast cancer proliferation. CAAT proteins were identified by LC-MS/MS and human protein antibody arrays and stimulated proliferation of three breast cancer cell lines. Kinomics and transcriptomics of MCF-7 breast cancer cells treated with the secretome of CAAT revealed activation of Akt-, ERK- and JNK-pathways and differential expression of activator protein 1 (AP-1) and cAMP responsive element-binding protein (CREB) target genes. The cyclin-dependent kinase (CDK)4/6-inhibitor palbociclib significantly abrogated CAAT-enhanced breast cancer cell proliferation. Our work characterizes the specific breast CAAT protein secretome and reveals its pro-proliferative potency in breast cancer.
Collapse
Affiliation(s)
- Lore Lapeire
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.,Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | | | | | - Jo Vandesompele
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dawn Maynard
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Geert Braems
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | | | - Cathérine Müller
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, UPS, Toulouse, France
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Véronique Cocquyt
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.,Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
26
|
Yazdani S, Kasajima A, Onodera Y, McNamara KM, Ise K, Nakamura Y, Tachibana T, Motoi F, Unno M, Sasano H. Progesterone arrested cell cycle progression through progesterone receptor isoform A in pancreatic neuroendocrine neoplasm. J Steroid Biochem Mol Biol 2018; 178:243-253. [PMID: 29331723 DOI: 10.1016/j.jsbmb.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/30/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
In pancreatic neuroendocrine neoplasms (Pan-NEN) progesterone signaling has been shown to have both inhibitory and stimulatory effects on cell proliferation. The ability of progesterone to inhibit tumor proliferation is of particular interest and is suggested to be mediated through the less abundantly expressed progesterone receptor (PR) isoform A (PRA). To date the mechanistic processes underlying this inhibition of proliferation remain unclear. To examine the mechanism of PRA actions, the human Pan-NEN cell line QGP-1, that endogenously expresses PR isoform B (PRB) without PRA, was transfected with PRA. PRA transfection suppressed the majority of cell cycle related genes increased by progesterone including cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin-dependent kinase 1 (CDK1) and cyclin-dependent kinase 2 (CDK2). Importantly, following progesterone administration cell cycle distribution was shifted to S and G2/M phases in the naïve cell line but in PRA-transfected cells, this effect was suppressed. To see if these mechanistic insights were confirmed in patient samples PRA, PRB, CCNA2, CCNB, CDK1 and CDK2 immunoreactivities were assessed in Pan-NEN cases. Higher levels of cell cycle markers were associated with higher WHO grade tumors and correlations between the markers suggested formation of cyclin/CDK activated complexes in S and G2/M phases. PRA expression was associated with inverse correlation of all cell cycle markers. Collectively, these results indicate that progesterone signals through PRA negatively regulates cell cycle progression through suppressing S and G2/M phases and downregulation of cell cycle phases specific cyclins/CDKs.
Collapse
Affiliation(s)
- Samaneh Yazdani
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuko Kasajima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshiaki Onodera
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keely May McNamara
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazue Ise
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyoshi Tachibana
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Surgery, Tohoku University Hospital, Sendai, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Hospital, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Hospital, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
27
|
Safe S, Nair V, Karki K. Metformin-induced anticancer activities: recent insights. Biol Chem 2018; 399:321-335. [PMID: 29272251 DOI: 10.1515/hsz-2017-0271] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Metformin is a widely used antidiabetic drug, and there is evidence among diabetic patients that metformin is a chemopreventive agent against multiple cancers. There is also evidence in human studies that metformin is a cancer chemotherapeutic agent, and several clinical trials that use metformin alone or in combination with other drugs are ongoing. In vivo and in vitro cancer cell culture studies demonstrate that metformin induces both AMPK-dependent and AMPK-independent genes/pathways that result in inhibition of cancer cell growth and migration and induction of apoptosis. The effects of metformin in cancer cells resemble the patterns observed after treatment with drugs that downregulate specificity protein 1 (Sp1), Sp3 and Sp4 or by knockdown of Sp1, Sp3 and Sp4 by RNA interference. Studies in pancreatic cancer cells clearly demonstrate that metformin decreases expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes, demonstrating that one of the underlying mechanisms of action of metformin as an anticancer agent involves targeting of Sp transcription factors. These observations are consistent with metformin-mediated effects on genes/pathways in many other tumor types.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Vijayalekshmi Nair
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| |
Collapse
|
28
|
Godbole M, Tiwary K, Badwe R, Gupta S, Dutt A. Progesterone suppresses the invasion and migration of breast cancer cells irrespective of their progesterone receptor status - a short report. Cell Oncol (Dordr) 2017; 40:411-417. [PMID: 28653288 PMCID: PMC5537311 DOI: 10.1007/s13402-017-0330-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2017] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Pre-operative progesterone treatment of breast cancer has been shown to confer survival benefits to patients independent of their progesterone receptor (PR) status. The underlying mechanism and the question whether such an effect can also be observed in PR negative breast cancer cells remain to be resolved. METHODS We performed proteome profiling of PR-positive and PR-negative breast cancer cells in response to progesterone using a phospho-kinase array platform. Western blotting was used to validate the results. Cell-based phenotypic assays were conducted using PR-positive and PR-negative breast cancer cells to assess the effect of progesterone. RESULTS We found that progesterone induces de-phosphorylation of 12 out of 43 kinases tested, which are mostly involved in cellular invasion and migration regulation. Consistent with this observation, we found through cell-based phenotypic assays that progesterone inhibits the invasion and migration of breast cancer cells independent of their PR status. CONCLUSION Our results indicate that progesterone can inhibit breast cancer cell invasion and migration mediated by the de-phosphorylation of kinases. This inhibition appears to be independent of the PR status of the breast cancer cells. In a broader context, our study may provide a basis for an association between progesterone treatment and recurrence reduction in breast cancer patients, thereby providing a lead for modelling a randomized in vitro study.
Collapse
Affiliation(s)
- Mukul Godbole
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Kanishka Tiwary
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Rajendra Badwe
- Department of Surgical Oncology, Tata Memorial Centre, Tata Memorial Hospital, Mumbai, 400012, India.
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, 400012, India.
| | - Amit Dutt
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India.
| |
Collapse
|
29
|
Valdez KE, Elsarraj HS, Hong Y, Grimm SL, Ricci LR, Fan F, Tawfik O, May L, Cusick T, Inciardi M, Redick M, Gatewood J, Winblad O, Hilsenbeck S, Edwards DP, Hagan C, Godwin AK, Fabian C, Behbod F. NEMO, a Transcriptional Target of Estrogen and Progesterone, Is Linked to Tumor Suppressor PML in Breast Cancer. Cancer Res 2017; 77:3802-3813. [PMID: 28515148 PMCID: PMC8236416 DOI: 10.1158/0008-5472.can-16-2794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/08/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022]
Abstract
The beneficial versus detrimental roles of estrogen plus progesterone (E+P) in breast cancer remains controversial. Here we report a beneficial mechanism of E+P treatment in breast cancer cells driven by transcriptional upregulation of the NFκB modulator NEMO, which in turn promotes expression of the tumor suppressor protein promyelocytic leukemia (PML). E+P treatment of patient-derived epithelial cells derived from ductal carcinoma in situ (DCIS) increased secretion of the proinflammatory cytokine IL6. Mechanistic investigations indicated that IL6 upregulation occurred as a result of transcriptional upregulation of NEMO, the gene that harbored estrogen receptor (ER) binding sites within its promoter. Accordingly, E+P treatment of breast cancer cells increased ER binding to the NEMO promoter, thereby increasing NEMO expression, NFκB activation, and IL6 secretion. In two mouse xenograft models of DCIS, we found that RNAi-mediated silencing of NEMO increased tumor invasion and progression. This seemingly paradoxical result was linked to NEMO-mediated regulation of NFκB and IL6 secretion, increased phosphorylation of STAT3 on Ser727, and increased expression of PML, a STAT3 transcriptional target. In identifying NEMO as a pivotal transcriptional target of E+P signaling in breast cancer cells, our work offers a mechanistic explanation for the paradoxical antitumorigenic roles of E+P in breast cancer by showing how it upregulates the tumor suppressor protein PML. Cancer Res; 77(14); 3802-13. ©2017 AACR.
Collapse
Affiliation(s)
- Kelli E. Valdez
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Hanan S. Elsarraj
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Sandra L. Grimm
- Department of Molecular & Cellular Biology, Pathology & Immunology, One Baylor Plaza, Houston, Texas 77030
| | - Lawrence R. Ricci
- Department of Radiology, Truman Medical Center, 2301 Holmes Street, Kansas City, MO 64108
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Lisa May
- Department of Radiology, The University of Kansas School of Medicine-Wichita, 1010 N. Kansas, Wichita, KS, 67214
| | - Therese Cusick
- Department of Surgery, The University of Kansas School of Medicine-Wichita, 1010 N. Kansas, Wichita, KS, 67214
| | - Marc Inciardi
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Mark Redick
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Jason Gatewood
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Onalisa Winblad
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Susan Hilsenbeck
- Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Dean P. Edwards
- Department of Molecular & Cellular Biology, Pathology & Immunology, One Baylor Plaza, Houston, Texas 77030
| | - Christy Hagan
- Department of Biochemistry, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Carol Fabian
- Department of Medicine, Breast Cancer Survivorship Center, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Fariba Behbod
- Corresponding author and requests for reprints: Fariba Behbod, Department of Pathology and Laboratory Medicine, MS 3045, The University of Kansas Medical Center, Kansas City, KS, 66160, Tel: (913) 945-6642, Fax: (913) 945-6838,
| |
Collapse
|
30
|
Chen CC, Montalbano AP, Hussain I, Lee WR, Mendelson CR. The transcriptional repressor GATAD2B mediates progesterone receptor suppression of myometrial contractile gene expression. J Biol Chem 2017; 292:12560-12576. [PMID: 28576827 DOI: 10.1074/jbc.m117.791350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/31/2017] [Indexed: 01/05/2023] Open
Abstract
The mechanisms whereby progesterone (P4), acting via the progesterone receptor (PR), inhibits proinflammatory/contractile gene expression during pregnancy are incompletely defined. Using immortalized human myometrial (hTERT-HM) cells stably expressing wild-type PR-A or PR-B (PRWT), we found that P4 significantly inhibited IL-1β induction of the NF-κB target genes, COX-2 and IL-8 P4-PRWT transrepression occurred at the level of transcription initiation and was mediated by decreased recruitment of NF-κB p65 and RNA polymerase II to COX-2 and IL-8 promoters. However, in cells stably expressing a PR-A or PR-B DNA-binding domain mutant (PRmDBD), P4-mediated transrepression was significantly reduced, suggesting a critical role of the PR DBD. ChIP analysis of hTERT-HM cells stably expressing PRWT or PRmDBD revealed that P4 treatment caused equivalent recruitment of PRWT and PRmDBD to COX-2 and IL-8 promoters, suggesting that PR inhibitory effects were not mediated by its direct DNA binding. Using immunoprecipitation, followed by MS, we identified a transcriptional repressor, GATA zinc finger domain-containing 2B (GATAD2B), that interacted strongly with PRWT but poorly with PRmDBD P4 treatment of PRWT hTERT-HM cells caused enhanced recruitment of endogenous GATAD2B to COX-2 and IL-8 promoters. Further, siRNA knockdown of endogenous GATAD2B significantly reduced P4-PRWT transrepression of COX-2 and IL-8 Notably, GATAD2B expression was significantly decreased in pregnant mouse and human myometrium during labor. Our findings suggest that GATAD2B serves as an important mediator of P4-PR suppression of proinflammatory and contractile genes during pregnancy. Decreased GATAD2B expression near term may contribute to the decline in PR function, leading to labor.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Department of Biochemistry and the Department of Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Alina P Montalbano
- Department of Biochemistry and the Department of Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Imran Hussain
- Department of Biochemistry and the Department of Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Wan-Ru Lee
- Department of Biochemistry and the Department of Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Carole R Mendelson
- Department of Biochemistry and the Department of Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038.
| |
Collapse
|
31
|
Mendelson CR, Montalbano AP, Gao L. Fetal-to-maternal signaling in the timing of birth. J Steroid Biochem Mol Biol 2017; 170:19-27. [PMID: 27629593 PMCID: PMC5346347 DOI: 10.1016/j.jsbmb.2016.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/05/2016] [Accepted: 09/10/2016] [Indexed: 12/13/2022]
Abstract
Preterm birth remains the major cause of neonatal morbidity and mortality throughout the world. This is due, in part, to our incomplete understanding of the mechanisms that underlie the maintenance of pregnancy and the initiation of parturition at term. In this article, we review our current knowledge of the complex, interrelated and concerted mechanisms whereby progesterone maintains myometrial quiescence throughout most of pregnancy, as well as those that mediate the upregulation of the inflammatory response and decline in progesterone receptor function leading to parturition. Herein, we review findings that demonstrate a role of the fetus in the timing of birth. Specifically, we focus on our own studies indicating that maturation of the fetal lung and enhanced secretion of the surfactant components, surfactant protein A (SP-A) and the potent inflammatory glycerophospholipid, platelet-activating factor (PAF), initiate a signaling cascade culminating in parturition. Our studies suggest an essential role of steroid receptor coactivators, SRC-1 and SRC-2, which activate expression of genes encoding SP-A and LPCAT1. LPCAT1 is a key enzyme in the synthesis of PAF, as well as DPPC, a highly surface-active glycerophospholipid component of surfactant. Thus, we describe a novel pathway through which the fetus contributes to the initiation of labor by signaling the mother when its lungs have achieved sufficient maturity for survival in an aerobic environment.
Collapse
Affiliation(s)
- Carole R Mendelson
- Departments of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA; Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA.
| | - Alina P Montalbano
- Departments of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Lu Gao
- Departments of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| |
Collapse
|
32
|
Abstract
There is an abundance of accumulating data strongly suggesting there is a key role for the progesterone receptor in the molecular events effecting the growth or containment of a variety of cancers. This knowledge should lead to novel new strategies to combat various cancers, including drugs classified as progesterone receptor modulators or monoclonal antibodies against some of the key proteins needed for cancer proliferation by suppressing immune surveillance. Areas covered: The role of the classic nuclear receptor and molecular events needed for proliferation are reviewed including cancers of the breast, endometrium, prostate, thyroid, and leiomyomas and leiomyosarcoma. The potential role of non-genomic membrane progesterone receptors is reviewed. The prognostic role of the presence of progesterone receptors is also discussed. Over 1000 research publications were read after conducting a PubMed search. Expert commentary: Discussion is made about a unique immunomodulatory protein called the progesterone induced blocking factor (PIBF). The role of this protein, that is unique to rapidly growing cells, may hold a key to how the cancer cells escape immune surveillance. Thus, techniques to suppress the intracytoplasmic isoforms of PIBF may play a significant role in the fight against all cancers, not just the ones with the classic nuclear progesterone receptors.
Collapse
Affiliation(s)
- Jerome H Check
- a Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility , Cooper Medical School of Rowan University , Camden , New Jersey , United States
| |
Collapse
|
33
|
Wu SP, DeMayo FJ. Progesterone Receptor Signaling in Uterine Myometrial Physiology and Preterm Birth. Curr Top Dev Biol 2017; 125:171-190. [PMID: 28527571 DOI: 10.1016/bs.ctdb.2017.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Myometrium holds the structural integrity for the uterus and generates force for parturition with its primary component, the smooth muscle cells. The progesterone receptor mediates progesterone-dependent signaling and connects to a network of pathways for regulation of contractility and inflammatory responses in myometrium. Dysfunctional progesterone signaling has been linked to pregnancy complications including preterm birth. In the present review, we summarize recent findings on modifiers and effectors of the progesterone receptor signaling. Discussions include novel conceptual discoveries and new development in legacy pathways such as the signal transducers NF-κB, ZEB, microRNA, and the unfolded protein response pathways. We also discuss the impact of progesterone receptor isoform composition and ligand accessibility in modification of the progesterone receptor genomic actions.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States.
| |
Collapse
|
34
|
DUSP1 promoter methylation in peripheral blood leukocyte is associated with triple-negative breast cancer risk. Sci Rep 2017; 7:43011. [PMID: 28220843 PMCID: PMC5318948 DOI: 10.1038/srep43011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is one of the most common epigenetic alterations, providing important information regarding cancer risk and prognosis. A case-control study (423 breast cancer cases, 509 controls) and a case-only study (326 cases) were conducted to evaluate the association of DUSP1 promoter methylation with breast cancer risk and clinicopathological characteristics. No significant association between DUSP1 methylation in peripheral blood leukocyte (PBL) DNA and breast cancer risk was observed. DUSP1 methylation was significantly associated with ER/PR-negative status; in particular, triple-negative breast cancer patients showed the highest frequency of DUSP1 methylation in both tumour DNA and PBL DNA. Soybean intake was significantly correlated with methylated DUSP1 only in ER-negative (OR 2.978; 95% CI 1.245-7.124) and PR negative (OR 2.735; 95% CI 1.315-5.692) patients. Irregular menstruation was significantly associated with methylated DUSP1 only in ER-positive (OR 3.564; 95% CI 1.691-7.511) and PR-positive (OR 3.902, 95% CI 1.656-9.194) patients. Thus, DUSP1 methylation is a cancer-associated hypermethylation event that is closely linked with triple-negative status. Further investigations are warranted to confirm the association of environmental factors, including fruit and soybean intake, irregular menstruation, and ER/PR status, with DUSP1 methylation in breast tumour DNA.
Collapse
|
35
|
Yang Y, Zhou JY, Zhao LJ, Gao BR, Wan XP, Wang JL. Dual-specificity Phosphatase 1 Deficiency Induces Endometrioid Adenocarcinoma Progression via Activation of Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Pathway. Chin Med J (Engl) 2017; 129:1154-60. [PMID: 27174322 PMCID: PMC4878159 DOI: 10.4103/0366-6999.181954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Previously, we reported that dual-specificity phosphatase 1 (DUSP1) was differentially expressed in endometrioid adenocarcinoma (EEA). However, the role of DUSP1 in EEA progression and the relationship between DUSP1 and medroxyprogesterone (MPA) are still unclear. Methods: The expression of DUSP1 in EEA specimens was detected by immunohistochemical analysis. The effect of DUSP1 on cell proliferation was analyzed by Cell Counting Kit 8 and colony formation assay, and cell migration was analyzed by transwell assay. MPA-induced DUSP1 expression in EEA cells was measured by Western blot. Results: DUSP1 expression was deficient in advanced International Federation of Gynecology and Obstetrics stage, high-grade and myometrial invasive EEA. In EEA cell lines (Hec1A, Hec1B, RL952, and Ishikawa), the DUSP1 expression was substantially higher in Ishikawa cells than in other cell lines (P < 0.05). Knockdown of DUSP1 promoted Ishikawa cells proliferation, migration, and activation of mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/Erk) pathway. MPA-induced DUSP1 expression and inhibited MAPK/Erk pathway in Ishikawa cells. Conclusions: Our data suggest that DUSP1 deficiency promotes EEA progression via MAPK/Erk pathway, which may be reversed by MPA, suggesting that DUSP1 may serve as a potential therapeutic target for the treatment of EEA.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Jing-Yi Zhou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Li-Jun Zhao
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Bao-Rong Gao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao-Ping Wan
- Department of Gynecology, Tongji University School of Medicine Affiliated Shanghai First Maternity and Infant Hospital, Shanghai 200126, China
| | - Jian-Liu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
36
|
Rincón R, Zazo S, Chamizo C, Manso R, González-Alonso P, Martín-Aparicio E, Cristóbal I, Cañadas C, Perona R, Lluch A, Eroles P, García-Foncillas J, Albanell J, Rovira A, Madoz-Gúrpide J, Rojo F. c-Jun N-Terminal Kinase Inactivation by Mitogen-Activated Protein Kinase Phosphatase 1 Determines Resistance to Taxanes and Anthracyclines in Breast Cancer. Mol Cancer Ther 2016; 15:2780-2790. [PMID: 27599524 DOI: 10.1158/1535-7163.mct-15-0920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 08/07/2016] [Indexed: 11/16/2022]
Abstract
MAPK phosphatase-1 (MKP-1) is overexpressed during malignant transformation of the breast in many patients, and it is usually associated with chemoresistance through interference with JNK-driven apoptotic pathways. Although the molecular settings of the mechanism have been documented, details about the contribution of MKP-1 to the failure of chemotherapeutic interventions are unclear. Transient overexpression of MKP-1 and treatment with JNK-modulating agents in breast carcinoma cells confirmed the mediation of MKP-1 in the resistance to taxanes and anthracyclines in breast cancer, through the inactivation of JNK1/2. We next assessed MKP-1 expression and JNK1/2 phosphorylation status in a large cohort of samples from 350 early breast cancer patients treated with adjuvant anthracycline-based chemotherapy. We detected that MKP-1 overexpression is a recurrent event predominantly linked to dephosphorylation of JNK1/2 with an adverse impact on relapse of the tumor and overall and disease-free survival. Moreover, MKP-1 and p-JNK1/2 determinations in 64 locally advanced breast cancer patients treated with neoadjuvant taxane-based chemotherapy showed an inverse correlation between MKP-1 overexpression (together with JNK1/2 inhibition) and the pathologic response of the tumors. Our results emphasize the importance of MKP-1 as a potential predictive biomarker for a subset of breast cancer patients with worse outcome and less susceptibility to treatment. Mol Cancer Ther; 15(11); 2780-90. ©2016 AACR.
Collapse
Affiliation(s)
- Raúl Rincón
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Sandra Zazo
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Cristina Chamizo
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Rebeca Manso
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | | | | - Ion Cristóbal
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Carmen Cañadas
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Rosario Perona
- "Alberto Sols" Biomedical Research Institute CSIC-UAM, Madrid, Spain
| | - Ana Lluch
- Institute of Health Research INCLIVA, Valencia, Spain
| | - Pilar Eroles
- Institute of Health Research INCLIVA, Valencia, Spain
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Joan Albanell
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Rovira
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
| | | | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.
| |
Collapse
|
37
|
Muter J, Brighton PJ, Lucas ES, Lacey L, Shmygol A, Quenby S, Blanks AM, Brosens JJ. Progesterone-Dependent Induction of Phospholipase C-Related Catalytically Inactive Protein 1 (PRIP-1) in Decidualizing Human Endometrial Stromal Cells. Endocrinology 2016; 157:2883-93. [PMID: 27167772 PMCID: PMC4972893 DOI: 10.1210/en.2015-1914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Decidualization denotes the transformation of endometrial stromal cells into specialized decidual cells. In pregnancy, decidual cells form a protective matrix around the implanting embryo, enabling coordinated trophoblast invasion and formation of a functional placenta. Continuous progesterone (P4) signaling renders decidual cells resistant to various environmental stressors, whereas withdrawal inevitably triggers tissue breakdown and menstruation or miscarriage. Here, we show that PLCL1, coding phospholipase C (PLC)-related catalytically inactive protein 1 (PRIP-1), is highly induced in response to P4 signaling in decidualizing human endometrial stromal cells (HESCs). Knockdown experiments in undifferentiated HESCs revealed that PRIP-1 maintains basal phosphoinositide 3-kinase/Protein kinase B activity, which in turn prevents illicit nuclear translocation of the transcription factor forkhead box protein O1 and induction of the apoptotic activator BIM. By contrast, loss of this scaffold protein did not compromise survival of decidual cells. PRIP-1 knockdown did also not interfere with the responsiveness of HESCs to deciduogenic cues, although the overall expression of differentiation markers, such as PRL, IGFBP1, and WNT4, was blunted. Finally, we show that PRIP-1 in decidual cells uncouples PLC activation from intracellular Ca(2+) release by attenuating inositol 1,4,5-trisphosphate signaling. In summary, PRIP-1 is a multifaceted P4-inducible scaffold protein that gates the activity of major signal transduction pathways in the endometrium. It prevents apoptosis of proliferating stromal cells and contributes to the relative autonomy of decidual cells by silencing PLC signaling downstream of Gq protein-coupled receptors.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Paul J Brighton
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Lauren Lacey
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Anatoly Shmygol
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Andrew M Blanks
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Jan J Brosens
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| |
Collapse
|
38
|
Xu H, Kong YY, Chen X, Guo MY, Bai XH, Lu YJ, Li W, Zhou XW. Recombinant FIP-gat, a Fungal Immunomodulatory Protein from Ganoderma atrum, Induces Growth Inhibition and Cell Death in Breast Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2690-2698. [PMID: 26996414 DOI: 10.1021/acs.jafc.6b00539] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
FIP-gat, an immunomodulatory protein isolated from Ganoderma atrum, is a new member of the FIP family. Little is known, however, about its expressional properties and antitumor activities. It was availably expressed in Escherichia coli with a total yield of 29.75 mg/L. The migration of recombinant FIP-gat (rFIP-gat) on SDS-PAGE corresponded to the predicted molecular mass, and the band was correctly detected by a specific antibody. To characterize the direct effects of rFIP-gat on MDA-MB-231 breast cancer cells, MDA-MB-231 cells were treated with different concentrations of rFIP-gat in vitro; the results showed that this protein could reduce cell viability dose-dependently with a median inhibitory concentration (IC50) of 9.96 μg/mL and agglutinate the MDA-MB-231 cells at a concentration as low as 5 μg/mL. Furthermore, FIP-gat at a concentration of 10 μg/mL can induce significant growth inhibition and cell death in MDA-MB-231 cells. Notably, FIP-gat treatment triggers significant cell cycle arrest at the G1/S transition and pronounced increase in apoptotic cell population. Molecular assays based on microarray and real-time PCR further revealed the potential mechanisms encompassing growth arrest, apoptosis, and autophagy underlying the phenotypic effects.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiaotong University , Shanghai 200240, People's Republic of China
| | - Ying-Yu Kong
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiaotong University , Shanghai 200240, People's Republic of China
| | - Xin Chen
- Department of Immunology, University of Connecticut Health Center , Farmington, Connecticut 06032, United States
| | - Meng-Yuan Guo
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiaotong University , Shanghai 200240, People's Republic of China
| | - Xiao-Hui Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Yu-Jia Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Wei Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Xuan-Wei Zhou
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Agriculture and Biology, Shanghai Jiaotong University , Shanghai 200240, People's Republic of China
| |
Collapse
|
39
|
|
40
|
Voutsadakis IA. Epithelial-Mesenchymal Transition (EMT) and Regulation of EMT Factors by Steroid Nuclear Receptors in Breast Cancer: A Review and in Silico Investigation. J Clin Med 2016; 5:E11. [PMID: 26797644 PMCID: PMC4730136 DOI: 10.3390/jcm5010011] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Steroid Nuclear Receptors (SNRs) are transcription factors of the nuclear receptor super-family. Estrogen Receptor (ERα) is the best-studied and has a seminal role in the clinic both as a prognostic marker but also as a predictor of response to anti-estrogenic therapies. Progesterone Receptor (PR) is also used in the clinic but with a more debatable prognostic role and the role of the four other SNRs, ERβ, Androgen Receptor (AR), Glucocorticoid Receptor (GR) and Mineralocorticoid Receptor (MR), is starting only to be appreciated. ERα, but also to a certain degree the other SNRs, have been reported to be involved in virtually every cancer-enabling process, both promoting and impeding carcinogenesis. Epithelial-Mesenchymal Transition (EMT) and the reverse Mesenchymal Epithelial Transition (MET) are such carcinogenesis-enabling processes with important roles in invasion and metastasis initiation but also establishment of tumor in the metastatic site. EMT is governed by several signal transduction pathways culminating in core transcription factors of the process, such as Snail, Slug, ZEB1 and ZEB2, and Twist, among others. This paper will discuss direct regulation of these core transcription factors by SNRs in breast cancer. Interrogation of publicly available databases for binding sites of SNRs on promoters of core EMT factors will also be included in an attempt to fill gaps where other experimental data are not available.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste Marie, ON P6B 0A8, Canada.
- Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, QC P3E 2C6, Canada.
| |
Collapse
|
41
|
D'Uva G, Lauriola M. Towards the emerging crosstalk: ERBB family and steroid hormones. Semin Cell Dev Biol 2015; 50:143-52. [PMID: 26582250 DOI: 10.1016/j.semcdb.2015.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 01/05/2023]
Abstract
Growth factors acting through receptor tyrosine kinases (RTKs) of ERBB family, along with steroid hormones (SH) acting through nuclear receptors (NRs), are critical signalling mediators of cellular processes. Deregulations of ERBB and steroid hormone receptors are responsible for several diseases, including cancer, thus demonstrating the central role played by both systems. This review will summarize and shed light on an emerging crosstalk between these two important receptor families. How this mutual crosstalk is attained, such as through extensive genomic and non-genomic interactions, will be addressed. In light of recent studies, we will describe how steroid hormones are able to fine-tune ERBB feedback loops, thus impacting on cellular output and providing a new key for understanding the complexity of biological processes in physiological or pathological conditions. In our understanding, the interactions between steroid hormones and RTKs deserve further attention. A system biology approach and advanced technologies for the analysis of RTK-SH crosstalk could lead to major advancements in molecular medicine, providing the basis for new routes of pharmacological intervention in several diseases, including cancer.
Collapse
Affiliation(s)
- Gabriele D'Uva
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Mattia Lauriola
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
42
|
Renthal NE, Williams KC, Montalbano AP, Chen CC, Gao L, Mendelson CR. Molecular Regulation of Parturition: A Myometrial Perspective. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a023069. [PMID: 26337112 DOI: 10.1101/cshperspect.a023069] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The molecular mechanisms that maintain quiescence of the myometrium throughout most of pregnancy and promote its transformation to a highly coordinated contractile unit culminating in labor are complex and intertwined. During pregnancy, progesterone (P4) produced by the placenta and/or ovary serves a dominant role in maintaining myometrial quiescence by blocking proinflammatory response pathways and expression of so-called "contractile" genes. In the majority of placental mammals, increased uterine contractility near term is heralded by an increase in circulating estradiol-17β (E2) and/or increased estrogen receptor α (ERα) activity and a sharp decline in circulating P4 levels. However, in women, circulating levels of P4 and progesterone receptors (PR) in myometrium remain elevated throughout pregnancy and into labor. This has led to the concept that increased uterine contractility leading to term and preterm labor is mediated, in part, by a decline in PR function. The biochemical mechanisms for this decrease in PR function are also multifaceted and interwoven. In this paper, we focus on the molecular mechanisms that mediate myometrial quiescence and contractility and their regulation by the two central hormones of pregnancy, P4 and estradiol-17β. The integrative roles of microRNAs also are considered.
Collapse
Affiliation(s)
- Nora E Renthal
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Koriand'r C Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Alina P Montalbano
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Chien-Cheng Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Lu Gao
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Carole R Mendelson
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038 Department of Obstetrics-Gynecology, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| |
Collapse
|
43
|
Lei K, Georgiou EX, Chen L, Yulia A, Sooranna SR, Brosens JJ, Bennett PR, Johnson MR. Progesterone and the Repression of Myometrial Inflammation: The Roles of MKP-1 and the AP-1 System. Mol Endocrinol 2015; 29:1454-67. [PMID: 26280733 DOI: 10.1210/me.2015-1122] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Progesterone (P4) maintains uterine quiescence during pregnancy and its functional withdrawal is associated with increased prostaglandin synthesis and the onset of labor. In primary human myometrial cells, the glucocorticoid receptor (GR) rather than the P4 receptor mediates P4 antagonism of IL-1β-induced cyclooxygenase-2 (COX-2) expression, the rate-limiting enzyme in prostaglandin synthesis. We now report that P4 also acts via GR to induce MAPK phosphatase (MKP)-1 and knockdown of MKP-1 impairs the ability of P4 to repress IL-1β-dependent COX-2 induction. Microarray analysis revealed that P4 repressed preferentially activator protein-1-responsive genes in response to IL-1β. Consistent with these observations, we found that the ability of P4 to reduce c-Jun activation was lost upon GR as well as MKP-1 knockdown. Interestingly, c-Jun levels in human myometrial cells declined upon GR and MKP-1 knockdown, which suggests the presence of an activator protein-1 feedback loop. This is supported by our observation that c-Jun levels declined after an initial rise in primary myometrial cells treated with phorbol 12-myrisatate 13-acetate, a potent activator of c-Jun N-terminal kinase. Finally, we show that MKP-1 is an intermediate in P4-mediated repression of some but not all IL-1β-responsive genes. For example, P4 repression of IL11 and IRAK3 was maintained upon MKP-1 knockdown. Taken together, the data show that P4 acts via GR to drive MKP-1 expression, which in turn inhibits IL-1β-dependent c-Jun activation and COX-2 expression.
Collapse
Affiliation(s)
- K Lei
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - E X Georgiou
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - L Chen
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - A Yulia
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - S R Sooranna
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - J J Brosens
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - P R Bennett
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - M R Johnson
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
44
|
Toda K, Hayashi Y, Ono M, Saibara T. Co-administration of insulin with a gonadotropin partly improves ovulatory responses of estrogen-deficient mice. Mol Cell Endocrinol 2015; 411:177-86. [PMID: 25957088 DOI: 10.1016/j.mce.2015.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/30/2022]
Abstract
Administration of 17-βestradiol (E2) with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) can induce ovulation in estrogen-deficient (ArKO) mice; nevertheless, ovulatory efficiency and rate are low. In this study, effects of insulin on the ovulatory responses were investigated. In ArKO ovary, hCG signal was found to be transmitted in an uncoordinated manner when phosphorylation levels of signaling molecules are examined. Co-administration of insulin with hCG improved the transmission of hCG signal as well as the ovulatory efficiency in ArKO mice. It also improved the ovulatory rate but far below the wild-type rate. Gene expression analysis demonstrated that Cyp11a1 and Cyp17a1 mRNAs were significantly induced 4 h after PMSG administration in the wild-type ovary, but not in ArKO ovary. Collectively, these results suggest that insulin improves ovulatory responses of ArKO mice, but it fails to ameliorate follicular dysfunctions caused possibly by an inappropriate intraovarian milieu during follicular maturation.
Collapse
Affiliation(s)
- Katsumi Toda
- Department of Biochemistry, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan.
| | - Yoshihiro Hayashi
- Department of Pathology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Masafumi Ono
- Department of Gastroenterology and Hepatology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
45
|
Mohammed H, Russell IA, Stark R, Rueda OM, Hickey TE, Tarulli GA, Serandour AAA, Birrell SN, Bruna A, Saadi A, Menon S, Hadfield J, Pugh M, Raj GV, Brown GD, D’Santos C, Robinson JLL, Silva G, Launchbury R, Perou CM, Stingl J, Caldas C, Tilley WD, Carroll JS. Progesterone receptor modulates ERα action in breast cancer. Nature 2015; 523:313-7. [PMID: 26153859 PMCID: PMC4650274 DOI: 10.1038/nature14583] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/22/2015] [Indexed: 01/27/2023]
Abstract
Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-α (ERα) function and breast cancer prognosis. Here we show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited oestrogen-mediated growth of ERα(+) cell line xenografts and primary ERα(+) breast tumour explants, and had increased anti-proliferative effects when coupled with an ERα antagonist. Copy number loss of PGR, the gene coding for PR, is a common feature in ERα(+) breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERα chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions.
Collapse
Affiliation(s)
- Hisham Mohammed
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - I. Alasdair Russell
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Rory Stark
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Theresa E. Hickey
- Dame Roma Mitchell Cancer Research Laboratories and the Adelaide Prostate Cancer Research Centre, School of Medicine, Hanson Institute Building, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gerard A. Tarulli
- Dame Roma Mitchell Cancer Research Laboratories and the Adelaide Prostate Cancer Research Centre, School of Medicine, Hanson Institute Building, University of Adelaide, Adelaide, SA 5005, Australia
| | - Aurelien A. A. Serandour
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Stephen N. Birrell
- Dame Roma Mitchell Cancer Research Laboratories and the Adelaide Prostate Cancer Research Centre, School of Medicine, Hanson Institute Building, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Amel Saadi
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Suraj Menon
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - James Hadfield
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Michelle Pugh
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Ganesh V. Raj
- Department of Urology, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| | - Gordon D. Brown
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Clive D’Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Jessica L. L. Robinson
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Grace Silva
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB7295, Chapel Hill, NC, 27599, USA
| | - Rosalind Launchbury
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB7295, Chapel Hill, NC, 27599, USA
| | - John Stingl
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge, CB2 0RE
| | - Wayne D. Tilley
- Dame Roma Mitchell Cancer Research Laboratories and the Adelaide Prostate Cancer Research Centre, School of Medicine, Hanson Institute Building, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jason S. Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
46
|
He J, Yang J, Chen W, Wu H, Yuan Z, Wang K, Li G, Sun J, Yu L. Molecular Features of Triple Negative Breast Cancer: Microarray Evidence and Further Integrated Analysis. PLoS One 2015; 10:e0129842. [PMID: 26103053 PMCID: PMC4478040 DOI: 10.1371/journal.pone.0129842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 05/13/2015] [Indexed: 11/23/2022] Open
Abstract
Purpose Breast cancer is a heterogeneous disease usually including four molecular subtypes such as luminal A, luminal B, HER2-enriched, and triple-negative breast cancer (TNBC). TNBC is more aggressive than other breast cancer subtypes. Despite major advances in ER-positive or HER2-amplified breast cancer, there is no targeted agent currently available for TNBC, so it is urgent to identify new potential therapeutic targets for TNBC. Methods We first used microarray analysis to compare gene expression profiling between TNBC and non-TNBC. Furthermore an integrated analysis was conducted based on our own and published data, leading to more robust, reproducible and accurate predictions. Additionally, we performed qRT-PCR in breast cancer cell lines to verify the findings in integrated analysis. Results After searching Gene Expression Omnibus database (GEO), two microarray studies were obtained according to the inclusion criteria. The integrated analysis was conducted, including 30 samples of TNBC and 77 samples of non-TNBC. 556 genes were found to be consistently differentially expressed (344 up-regulated genes and 212 down-regulated genes in TNBC). Functional annotation for these differentially expressed genes (DEGs) showed that the most significantly enriched Gene Ontology (GO) term for molecular functions was protein binding (GO: 0005515, P = 6.09E-21), while that for biological processes was signal transduction (GO: 0007165, P = 9.46E-08), and that for cellular component was cytoplasm (GO: 0005737, P = 2.09E-21). The most significant pathway was Pathways in cancer (P = 6.54E-05) based on Kyoto Encyclopedia of Genes and Genomes (KEGG). DUSP1 (Degree = 21), MYEOV2 (Degree = 15) and UQCRQ (Degree = 14) were identified as the significant hub proteins in the protein-protein interaction (PPI) network. Five genes were selected to perform qRT-PCR in seven breast cancer cell lines, and qRT-PCR results showed that the expression pattern of selected genes in TNBC lines and non-TNBC lines was nearly consistent with that in the integrated analysis. Conclusion This study may help to understand the pathogenesis of different breast cancer subtypes, contributing to the successful identification of therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Jinsong He
- Department of Breast Surgery, The first affiliated hospital of Shenzhen university, the Second People’s Hospital of Shenzhen, Shenzhen 518035, China
- * E-mail:
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, UMN Twin Cities, Minneapolis 55455, Minnesota, United States of America
| | - Weicai Chen
- Department of Breast Surgery, The first affiliated hospital of Shenzhen university, the Second People’s Hospital of Shenzhen, Shenzhen 518035, China
| | - Huisheng Wu
- Department of Breast Surgery, The first affiliated hospital of Shenzhen university, the Second People’s Hospital of Shenzhen, Shenzhen 518035, China
| | - Zishan Yuan
- Department of Breast Surgery, The first affiliated hospital of Shenzhen university, the Second People’s Hospital of Shenzhen, Shenzhen 518035, China
| | - Kun Wang
- Department of Breast Surgery, The first affiliated hospital of Shenzhen university, the Second People’s Hospital of Shenzhen, Shenzhen 518035, China
| | - Guojin Li
- Department of Breast Surgery, The first affiliated hospital of Shenzhen university, the Second People’s Hospital of Shenzhen, Shenzhen 518035, China
| | - Jie Sun
- Department of Breast Surgery, The first affiliated hospital of Shenzhen university, the Second People’s Hospital of Shenzhen, Shenzhen 518035, China
| | - Limin Yu
- Department of Breast Surgery, The first affiliated hospital of Shenzhen university, the Second People’s Hospital of Shenzhen, Shenzhen 518035, China
| |
Collapse
|
47
|
CHENG PENG, ZHU SHUYING, JUN LI, HUANG LIHUA, HONG YAHUI. Production of DUSP1 protein using the baculovirus insect cell expression system and its in vitro effects on cancer cells. Int J Mol Med 2015; 35:1715-9. [DOI: 10.3892/ijmm.2015.2179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/06/2015] [Indexed: 11/06/2022] Open
|
48
|
Wang Q, Shi S, He W, Padilla MT, Zhang L, Wang X, Zhang B, Lin Y. Retaining MKP1 expression and attenuating JNK-mediated apoptosis by RIP1 for cisplatin resistance through miR-940 inhibition. Oncotarget 2015; 5:1304-14. [PMID: 24675421 PMCID: PMC4012727 DOI: 10.18632/oncotarget.1798] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The elucidation of chemoresistance mechanisms is important to improve cancer patient survival. In this report, we investigated the role and mechanism through which receptor-interacting protein 1 (RIP1), a mediator in cell survival and death signaling, participates in cancer's response to chemotherapy. In lung cancer cells, knockdown of RIP1 substantially increased cisplatin-induced apoptotic cytotoxicity, which was associated with robust JNK activation. The expression of the JNK inactivating phosphatase, MKP1, was substantially reduced in RIP1 knockdown cells. Although MKP1 protein stability was not altered by RIP1 suppression, the synthesis rate of MKP1 was dramatically reduced in RIP1-suppressed cells. Furthermore, we found that the expression of miR-940 was substantially increased in RIP1 knockdown cells. Knockdown of miR-940 restored MKP1 expression and attenuated cisplatin-induced JNK activation and cytotoxicity. Importantly, ectopic expression of MKP1 effectively attenuated cisplatin-induced JNK activation and cytotoxicity. In addition, activation of the JNK upstream signaling kinase, MKK4, was also potentiated in RIP1 knockdown cells. Altogether, our results suggest that RIP1 contributes to cisplatin resistance by suppressing JNK activation that involves releasing miR-940-mediated inhibition of MKP1 and suppressing activation of MKK4. Intervention targeting the RIP1/miR-940/MKP1/JNK pathway may be used to sensitize platinum-based chemotherapy.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education at Sichuan University, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Computational prediction and analysis of breast cancer targets for 6-methyl-1, 3, 8-trichlorodibenzofuran. PLoS One 2014; 9:e109185. [PMID: 25365309 PMCID: PMC4217716 DOI: 10.1371/journal.pone.0109185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is one of the most known cancer types caused to the women around the world. Dioxins on the other hand are a wide range of chemical compounds known to cause the effects on human health. Among them, 6-Methyl-1,3,8-trichlorodibenzofuran (MCDF) is a relatively non toxic prototypical alkyl polychlorinated dibenzofuran known to act as a highly effective agent for inhibiting hormone-responsive breast cancer growth in animal models. In this study, we have developed a multi-level computational approach to identify possible new breast cancer targets for MCDF. We used PharmMapper Server to predict breast cancer target proteins for MCDF. Search results showed crystal Structure of the Antagonist Form of Glucocorticoid Receptor with highest fit score and AutoLigand analysis showed two potential binding sites, site-A and site-B for MCDF. A molecular docking was performed on these two sites and based on binding energy site-B was selected. MD simulation studies on Glucocorticoid receptor-MCDF complex revealed that MCDF conformation was stable at site-B and the intermolecular interactions were maintained during the course of simulation. In conclusion, our approach couples reverse pharmacophore analysis, molecular docking and molecular dynamics simulations to identify possible new breast cancer targets for MCDF.
Collapse
|
50
|
Jeong DG, Wei CH, Ku B, Jeon TJ, Chien PN, Kim JK, Park SY, Hwang HS, Ryu SY, Park H, Kim DS, Kim SJ, Ryu SE. The family-wide structure and function of human dual-specificity protein phosphatases. ACTA ACUST UNITED AC 2014; 70:421-35. [PMID: 24531476 DOI: 10.1107/s1399004713029866] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022]
Abstract
Dual-specificity protein phosphatases (DUSPs), which dephosphorylate both phosphoserine/threonine and phosphotyrosine, play vital roles in immune activation, brain function and cell-growth signalling. A family-wide structural library of human DUSPs was constructed based on experimental structure determination supplemented with homology modelling. The catalytic domain of each individual DUSP has characteristic features in the active site and in surface-charge distribution, indicating substrate-interaction specificity. The active-site loop-to-strand switch occurs in a subtype-specific manner, indicating that the switch process is necessary for characteristic substrate interactions in the corresponding DUSPs. A comprehensive analysis of the activity-inhibition profile and active-site geometry of DUSPs revealed a novel role of the active-pocket structure in the substrate specificity of DUSPs. A structure-based analysis of redox responses indicated that the additional cysteine residues are important for the protection of enzyme activity. The family-wide structures of DUSPs form a basis for the understanding of phosphorylation-mediated signal transduction and the development of therapeutics.
Collapse
Affiliation(s)
- Dae Gwin Jeong
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Chun Hua Wei
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Bonsu Ku
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Tae Jin Jeon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Pham Ngoc Chien
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jae Kwan Kim
- Department of Industrial Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - So Ya Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun Sook Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sun Young Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Deok-Soo Kim
- Department of Industrial Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung Jun Kim
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|