1
|
Bednarski IA, Dróżdż I, Ciążyńska M, Wódz K, Narbutt J, Lesiak A. Ultraviolet B Exposure Does Not Influence the Expression of YAP mRNA in Human Epidermal Keratinocytes-Preliminary Study. Biomedicines 2025; 13:596. [PMID: 40149574 PMCID: PMC11940570 DOI: 10.3390/biomedicines13030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The causal relationship between exposure to ultraviolet radiation and the development of skin cancers requires constant research for possible orchestrating mechanisms. In recent years, the Hippo pathway, along with its effector protein YAP, became implicated in cutaneous carcinogenesis; however, Hippo pathway regulation by ultraviolet radiation has not been described thoroughly. In order to address this issue, we focused on how different doses of ultraviolet B affect Hippo signaling pathway components and its upstream regulators, JNK1/2 and ABL1, in human keratinocytes. Additionally, we decided to determine how silencing of YAP influences Hippo pathway component expression. Methods: Primary epidermal keratinocytes were irradiated using UVB lamps with increasing doses of ultraviolet B radiation (including 311 nm UVB). Real-time PCR was used to determine the mRNA levels of each investigated gene. The experiment was then performed after YAP silencing using siRNA transfection. Additionally, we determined the mRNA expression of Hippo pathway components in an A431 cSCC cell line. Results: We observed that YAP mRNA expression in the A431 cell line was insignificant in comparison to control, while in the case of LATS1/2, a significant increase was noted. UVB irradiation did not change the levels of YAP mRNA expression in human epidermal keratinocytes. LATS1, LATS2, ABL1 and MAP4K4 mRNA expression was significantly upregulated after UVB irradiation in non-YAP-silenced keratinocytes in a dose-dependent manner, while after YAP silencing, only LATS2 and ABL1 showed significant mRNA upregulation. The 311 nm UVB irradiation resulted in significant, dose-dependent mRNA upregulation in non-YAP-silenced keratinocytes for LATS1, ABL1 and MAP4K4. After YAP silencing, a significant change in mRNA expression was present only in the case of ABL1. Conclusions: YAP mRNA expression does not significantly increase after exposure to UVB; however, it upregulates the expression of its proven (LATS1/2, JNK1/2) regulators, suggesting that in real-life settings, UV-induced dysregulation of the Hippo pathway may not be limited to YAP.
Collapse
Affiliation(s)
- Igor Aleksander Bednarski
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
- Department of Neurology, Medical University of Łódź, 90-419 Łódź, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Łódź, 92-213 Łódź, Poland;
| | - Magdalena Ciążyńska
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, Medical University of Łódź, 93-513 Łódź, Poland;
| | - Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720 Brudzew, Poland;
| | - Joanna Narbutt
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
| | - Aleksandra Lesiak
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
| |
Collapse
|
2
|
Hikasa H, Kawahara K, Inui M, Yasuki Y, Yamashita K, Otsubo K, Kitajima S, Nishio M, Arima K, Endo M, Taira M, Suzuki A. A highly sensitive reporter system to monitor endogenous YAP1/TAZ activity and its application in various human cells. Cancer Sci 2024; 115:3370-3383. [PMID: 39155534 PMCID: PMC11447953 DOI: 10.1111/cas.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The activation of yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ) has been implicated in both regeneration and tumorigenesis, thus representing a double-edged sword in tissue homeostasis. However, how the activity of YAP1/TAZ is regulated or what leads to its dysregulation in these processes remains unknown. To explore the upstream stimuli modulating the cellular activity of YAP1/TAZ, we developed a highly sensitive YAP1/TAZ/TEAD-responsive DNA element (YRE) and incorporated it into a lentivirus-based reporter cell system to allow for sensitive and specific monitoring of the endogenous activity of YAP1/TAZ in terms of luciferase activity in vitro and Venus fluorescence in vivo. Furthermore, by replacing YRE with TCF- and NF-κB-binding DNA elements, we demonstrated the applicability of this reporter system to other pathways such as Wnt/β-catenin/TCF- and IL-1β/NF-κB-mediated signaling, respectively. The practicality of this system was evaluated by performing cell-based reporter screening of a chemical compound library consisting of 364 known inhibitors, using reporter-introduced cells capable of quantifying YAP1/TAZ- and β-catenin-mediated transcription activities, which led to the identification of multiple inhibitors, including previously known as well as novel modulators of these signaling pathways. We further confirmed that novel YAP1/TAZ modulators, such as potassium ionophores, Janus kinase inhibitors, platelet-derived growth factor receptor inhibitors, and genotoxic stress inducers, alter the protein level or phosphorylation of endogenous YAP1/TAZ and the expression of their target genes. Thus, this reporter system provides a powerful tool to monitor endogenous signaling activities of interest (even in living cells) and search for modulators in various cellular contexts.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kohichi Kawahara
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masako Inui
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yukichika Yasuki
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Keita Yamashita
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kohei Otsubo
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shojiro Kitajima
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Miki Nishio
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazunari Arima
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Masanori Taira
- Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
La Verde G, Artiola V, Pugliese M, La Commara M, Arrichiello C, Muto P, Netti PA, Fusco S, Panzetta V. Radiation therapy affects YAP expression and intracellular localization by modulating lamin A/C levels in breast cancer. Front Bioeng Biotechnol 2022; 10:969004. [PMID: 36091449 PMCID: PMC9450017 DOI: 10.3389/fbioe.2022.969004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The microenvironment of breast cancer actively participates in tumorigenesis and cancer progression. The changes observed in the architecture of the extracellular matrix initiate an oncogene-mediated cell reprogramming, that leads to a massive triggering of YAP nuclear entry, and, therefore, to cancer cell proliferation, invasion and probably to increased radiation-resistance. However, it is not yet fully understood how radiotherapy regulates the expression and subcellular localization of YAP in breast cancer cells experiencing different microenvironmental stiffnesses. To elucidate the role of extracellular matrix stiffness and ionizing radiations on YAP regulation, we explored the behaviour of two different mammary cell lines, a normal epithelial cell line (MCF10A) and a highly aggressive and invasive adenocarcinoma cell line (MDA-MB-231) interacting with polyacrylamide substrates mimicking the mechanics of both normal and tumour tissues (∼1 and ∼13 kPa). We report that X-ray radiation affected in a significant way the levels of YAP expression, density, and localization in both cell lines. After 24 h, MCF10A and MDA-MB-231 increased the expression level of YAP in both nucleus and cytoplasm in a dose dependent manner and particularly on the stiffer substrates. After 72 h, MCF10A reduced mostly the YAP expression in the cytoplasm, whereas it remained high in the nucleus of cells on stiffer substrates. Tumour cells continued to exhibit higher levels of YAP expression, especially in the cytoplasmic compartment, as indicated by the reduction of nuclear/cytoplasmic ratio of total YAP. Then, we investigated the existence of a correlation between YAP localization and the expression of the nuclear envelope protein lamin A/C, considering its key role in modulating nuclear deformability and changes in YAP shuttling phenomena. As supposed, we found that the effects of radiation on YAP nucleus/cytoplasmic expression ratio, increasing in healthy cells and decreasing in tumour ones, were accompanied by lower and higher lamin A/C levels in MCF10A and MDA-MB-231 cells, respectively. These findings point to obtain a deeper knowledge of the role of the extracellular matrix and the effects of X-rays on YAP and lamin A/C expression that can be used in the design of doses and timing of radiation therapy.
Collapse
Affiliation(s)
- Giuseppe La Verde
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Naples, Italy
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, Italy
| | - Valeria Artiola
- Dipartimento di Fisica “Ettore Pancini”, Università Degli Studi di Napoli Federico II, Naples, Italy
| | - Mariagabriella Pugliese
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Naples, Italy
- Dipartimento di Fisica “Ettore Pancini”, Università Degli Studi di Napoli Federico II, Naples, Italy
| | - Marco La Commara
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Naples, Italy
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, Italy
| | - Cecilia Arrichiello
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Naples, Italy
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Naples, Italy
| | - Paolo A. Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, Università Degli Studi di Napoli Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
- *Correspondence: Sabato Fusco,
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, Università Degli Studi di Napoli Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
4
|
Liu WW, Wang F, Li C, Song XY, Otkur W, Zhu YY, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin relieves UVB-induced apoptosis of human skin cells by inhibiting the YAP-p73 pathway. Acta Pharmacol Sin 2022; 43:2156-2167. [PMID: 34912007 PMCID: PMC9343358 DOI: 10.1038/s41401-021-00826-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
Excessive exposure to UVB induces skin diseases. Silibinin, a flavonolignan used for treating liver diseases, is found to be effective against UVB-caused skin epidermal and dermal cell damage. In this study we investigated the molecular mechanisms underlying. Human nonmalignant immortalized keratinocyte HaCaT cells and neonatal human foreskin fibroblasts HFFs were exposed to UVB irradiation. We showed that pre-treatment with silibinin dose-dependently decreased UVB-induced apoptosis of HaCaT cells. Furthermore, we showed that silibinin treatment inhibited nuclear translocation of YAP after UVB irradiation. Molecular docking analysis and DARTS assay confirmed the direct interaction of silibinin with YAP. Silencing YAP by siRNA had no influence on the survival of HaCaT cells, whereas inhibiting classical YAP-TEAD signaling pathway by siRNA targeting TEAD1 or its pharmaceutical inhibitor verteporfin further augmented UVB-induced apoptosis, suggesting that YAP-TEAD pathway was prosurvival, which did not participate in the protective effect of silibinin. We then explored the pro-apoptotic YAP-p73 pathway. p73 was upregulated in UVB-irradiated cells, but reduced by silibinin cotreatment. The mRNA and protein levels of p73 target genes (PML, p21 and Bax) were all increased by UVB but decreased by silibinin co-treatment. Inhibiting p73 by using siRNA reduced UVB-induced apoptosis, suggesting that downregulation of p73 was responsible for the cytoprotective effect of silibinin. In HFFs, the upregulated YAP-p73 pathway by UVB irradiation was also suppressed by silibinin. Collectively, YAP-p73 pathway is a major cause of the death of UVB-exposed epidermal HaCaT cells and dermal HFFs. Silibinin directly inhibits YAP-p73 pathway, exerting the protective action on UVB-irradiated skin cells.
Collapse
Affiliation(s)
- Wei-wei Liu
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Fang Wang
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Can Li
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Xiao-yu Song
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Wuxiyar Otkur
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China ,grid.423905.90000 0004 1793 300XCAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Yu-ying Zhu
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Toshihiko Hayashi
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China ,grid.411110.40000 0004 1793 1012Department of Chemistry and Life science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015 Japan ,Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China. .,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, China.
| |
Collapse
|
5
|
Kim CL, Lim SB, Kim K, Jeong HS, Mo JS. Phosphorylation analysis of the Hippo-YAP pathway using Phos-tag. J Proteomics 2022; 261:104582. [DOI: 10.1016/j.jprot.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
6
|
Moon S, Hwang S, Kim B, Lee S, Kim H, Lee G, Hong K, Song H, Choi Y. Hippo Signaling in the Endometrium. Int J Mol Sci 2022; 23:ijms23073852. [PMID: 35409214 PMCID: PMC8998929 DOI: 10.3390/ijms23073852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
The uterus is essential for embryo implantation and fetal development. During the estrous cycle, the uterine endometrium undergoes dramatic remodeling to prepare for pregnancy. Angiogenesis is an essential biological process in endometrial remodeling. Steroid hormones regulate the series of events that occur during such remodeling. Researchers have investigated the potential factors, including angiofactors, involved in endometrial remodeling. The Hippo signaling pathway discovered in the 21st century, plays important roles in various cellular functions, including cell proliferation and cell death. However, its role in the endometrium remains unclear. In this review, we describe the female reproductive system and its association with the Hippo signaling pathway, as well as novel Hippo pathway genes and potential target genes.
Collapse
|
7
|
Mondal A, Das S, Samanta J, Chakraborty S, sengupta A. YAP1 induces hyperglycemic stress-mediated cardiac hypertrophy and fibrosis in an AKT-FOXM1 dependent signaling pathway. Arch Biochem Biophys 2022; 722:109198. [DOI: 10.1016/j.abb.2022.109198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
|
8
|
Engel-Pizcueta C, Pujades C. Interplay Between Notch and YAP/TAZ Pathways in the Regulation of Cell Fate During Embryo Development. Front Cell Dev Biol 2021; 9:711531. [PMID: 34490262 PMCID: PMC8417249 DOI: 10.3389/fcell.2021.711531] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cells in growing tissues receive both biochemical and physical cues from their microenvironment. Growing evidence has shown that mechanical signals are fundamental regulators of cell behavior. However, how physical properties of the microenvironment are transduced into critical cell behaviors, such as proliferation, progenitor maintenance, or differentiation during development, is still poorly understood. The transcriptional co-activators YAP/TAZ shuttle between the cytoplasm and the nucleus in response to multiple inputs and have emerged as important regulators of tissue growth and regeneration. YAP/TAZ sense and transduce physical cues, such as those from the extracellular matrix or the actomyosin cytoskeleton, to regulate gene expression, thus allowing them to function as gatekeepers of progenitor behavior in several developmental contexts. The Notch pathway is a key signaling pathway that controls binary cell fate decisions through cell-cell communication in a context-dependent manner. Recent reports now suggest that the crosstalk between these two pathways is critical for maintaining the balance between progenitor maintenance and cell differentiation in different tissues. How this crosstalk integrates with morphogenesis and changes in tissue architecture during development is still an open question. Here, we discuss how progenitor cell proliferation, specification, and differentiation are coordinated with morphogenesis to construct a functional organ. We will pay special attention to the interplay between YAP/TAZ and Notch signaling pathways in determining cell fate decisions and discuss whether this represents a general mechanism of regulating cell fate during development. We will focus on research carried out in vertebrate embryos that demonstrate the important roles of mechanical cues in stem cell biology and discuss future challenges.
Collapse
Affiliation(s)
- Carolyn Engel-Pizcueta
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
9
|
Long-Term Hypoxia Maintains a State of Dedifferentiation and Enhanced Stemness in Fetal Cardiovascular Progenitor Cells. Int J Mol Sci 2021; 22:ijms22179382. [PMID: 34502291 PMCID: PMC8431563 DOI: 10.3390/ijms22179382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
Early-stage mammalian embryos survive within a low oxygen tension environment and develop into fully functional, healthy organisms despite this hypoxic stress. This suggests that hypoxia plays a regulative role in fetal development that influences cell mobilization, differentiation, proliferation, and survival. The long-term hypoxic environment is sustained throughout gestation. Elucidation of the mechanisms by which cardiovascular stem cells survive and thrive under hypoxic conditions would benefit cell-based therapies where stem cell survival is limited in the hypoxic environment of the infarcted heart. The current study addressed the impact of long-term hypoxia on fetal Islet-1+ cardiovascular progenitor cell clones, which were isolated from sheep housed at high altitude. The cells were then cultured in vitro in 1% oxygen and compared with control Islet-1+ cardiovascular progenitor cells maintained at 21% oxygen. RT-PCR, western blotting, flow cytometry, and migration assays evaluated adaptation to long term hypoxia in terms of survival, proliferation, and signaling. Non-canonical Wnt, Notch, AKT, HIF-2α and Yap1 transcripts were induced by hypoxia. The hypoxic niche environment regulates these signaling pathways to sustain the dedifferentiation and survival of fetal cardiovascular progenitor cells.
Collapse
|
10
|
Hippo Signaling Pathway as a New Potential Target in Non-Melanoma Skin Cancers: A Narrative Review. Life (Basel) 2021; 11:life11070680. [PMID: 34357052 PMCID: PMC8306788 DOI: 10.3390/life11070680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Non-melanoma skin cancers (NMSCs), including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), are the most frequently diagnosed cancers in humans, however, their exact pathogenesis is not fully understood. In recent years, it has been hypothesized that the recently discovered Hippo pathway could play a detrimental role in cutaneous carcinogenesis, but no direct connections have been made. The Hippo pathway and its effector, YAP, are responsible for tissue growth by accelerating cell proliferation, however, YAP upregulation and overexpression have also been reported in numerous types of tumors. There is also evidence that disrupted YAP/Hippo signaling is responsible for cancer growth, invasion, and metastasis. In this short review, we will explore whether the Hippo pathway is an important regulator of skin carcinogenesis and if it could be a promising target for future therapies.
Collapse
|
11
|
Guo A, Wang B, Lyu C, Li W, Wu Y, Zhu L, Bi R, Huang C, Li JJ, Du Y. Consistent apparent Young's modulus of human embryonic stem cells and derived cell types stabilized by substrate stiffness regulation promotes lineage specificity maintenance. CELL REGENERATION 2020; 9:15. [PMID: 32880028 PMCID: PMC7467757 DOI: 10.1186/s13619-020-00054-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Apparent Young's modulus (AYM), which reflects the fundamental mechanical property of live cells measured by atomic force microscopy and is determined by substrate stiffness regulated cytoskeletal organization, has been investigated as potential indicators of cell fate in specific cell types. However, applying biophysical cues, such as modulating the substrate stiffness, to regulate AYM and thereby reflect and/or control stem cell lineage specificity for downstream applications, remains a primary challenge during in vitro stem cell expansion. Moreover, substrate stiffness could modulate cell heterogeneity in the single-cell stage and contribute to cell fate regulation, yet the indicative link between AYM and cell fate determination during in vitro dynamic cell expansion (from single-cell stage to multi-cell stage) has not been established. RESULTS Here, we show that the AYM of cells changed dynamically during passaging and proliferation on substrates with different stiffness. Moreover, the same change in substrate stiffness caused different patterns of AYM change in epithelial and mesenchymal cell types. Embryonic stem cells and their derived progenitor cells exhibited distinguishing AYM changes in response to different substrate stiffness that had significant effects on their maintenance of pluripotency and/or lineage-specific characteristics. On substrates that were too rigid or too soft, fluctuations in AYM occurred during cell passaging and proliferation that led to a loss in lineage specificity. On a substrate with 'optimal' stiffness (i.e., 3.5 kPa), the AYM was maintained at a constant level that was consistent with the parental cells during passaging and proliferation and led to preservation of lineage specificity. The effects of substrate stiffness on AYM and downstream cell fate were correlated with intracellular cytoskeletal organization and nuclear/cytoplasmic localization of YAP. CONCLUSIONS In summary, this study suggests that optimal substrate stiffness regulated consistent AYM during passaging and proliferation reflects and contributes to hESCs and their derived progenitor cells lineage specificity maintenance, through the underlying mechanistic pathways of stiffness-induced cytoskeletal organization and the downstream YAP signaling. These findings highlighted the potential of AYM as an indicator to select suitable substrate stiffness for stem cell specificity maintenance during in vitro expansion for regenerative applications.
Collapse
Affiliation(s)
- Anqi Guo
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bingjie Wang
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenjing Li
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yaozu Wu
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, 63130, USA
| | - Lu Zhu
- Institute of Systems Engineering, Academy of Military Sciences, Beijing, 100071, China
| | - Ran Bi
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chenyu Huang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Jiao Jiao Li
- Kolling Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yanan Du
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Ouyang T, Meng W, Li M, Hong T, Zhang N. Recent Advances of the Hippo/YAP Signaling Pathway in Brain Development and Glioma. Cell Mol Neurobiol 2020; 40:495-510. [PMID: 31768921 PMCID: PMC11448948 DOI: 10.1007/s10571-019-00762-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is highly conserved from Drosophila melanogaster to mammals and plays a crucial role in organ size control, tissue regeneration, and tumor suppression. The Yes-associated protein (YAP) is an important transcriptional co-activator that is negatively regulated by the Hippo signaling pathway. The Hippo signaling pathway is also regulated by various upstream regulators, such as cell polarity, adhesion proteins, and other signaling pathways (the Wnt/β-catenin, Notch, and MAPK pathways). Recently, accumulated evidence suggests that the Hippo/YAP signaling pathway plays important roles in central nervous system development and brain tumor, including glioma. In this review, we summarize the results of recent studies on the physiological effect of the Hippo/YAP signaling pathway in neural stem cells, neural progenitor cells, and glial cells. In particular, we also focus on the expression of MST1/2, LATS1/2, and the downstream effector YAP, in glioma, and offer a review of the latest research of the Hippo/YAP signaling pathway in glioma pathogenesis. Finally, we also present future research directions and potential therapeutic strategies for targeting the Hippo/YAP signaling in glioma.
Collapse
Affiliation(s)
- Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi Province, No.17, Yongwai Street, Nanchang, 336000, China.
| |
Collapse
|
13
|
Moon S, Yeon Park S, Woo Park H. Regulation of the Hippo pathway in cancer biology. Cell Mol Life Sci 2018; 75:2303-2319. [PMID: 29602952 PMCID: PMC11105795 DOI: 10.1007/s00018-018-2804-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 01/23/2023]
Abstract
The Hippo tumor suppressor pathway, which is well conserved from Drosophila to humans, has emerged as the master regulator of organ size, as well as major cellular properties, such as cell proliferation, survival, stemness, and tissue homeostasis. The biological significance and deregulation of the Hippo pathway in tumorigenesis have received a surge of interest in the past decade. In the current review, we present the major discoveries that made substantial contributions to our understanding of the Hippo pathway and discuss how Hippo pathway components contribute to cellular signaling, physiology, and their potential implications in anticancer therapeutics.
Collapse
Affiliation(s)
- Sungho Moon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
14
|
Zhou JX, Liu YJ, Chen X, Zhang X, Xu J, Yang K, Wang D, Lin S, Ye J. Low-Intensity Pulsed Ultrasound Protects Retinal Ganglion Cell From Optic Nerve Injury Induced Apoptosis via Yes Associated Protein. Front Cell Neurosci 2018; 12:160. [PMID: 29950973 PMCID: PMC6008403 DOI: 10.3389/fncel.2018.00160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/25/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Low-intensity pulsed ultrasound (LIPUS) has been used in clinical studies. But little is known about its effects on the central nervous system (CNS), or its mechanism of action. Retinal ganglion cells (RGCs) are CNS neuronal cells that can be utilized as a classic model system to evaluate outcomes of LIPUS protection from external trauma-induced retinal injury. In this study, we aim to: (1) determine the pulse energy and the capability of LIPUS in RGC viability, (2) ascertain the protective role of LIPUS in optic nerve (ON) crush-induced retinal injury, and 3) explore the cellular mechanisms of RGC apoptosis prevention by LIPUS. Methods: An ON crush model was set up to induce RGC death. LIPUS was used to treat mice eyes daily, and the retina samples were dissected for immunostaining and Western blot. The expression of yes-associated protein (YAP) and apoptosis-related proteins was detected by immunostaining and Western blot in vitro and in vivo. Apoptosis of RGCs was evaluated by TUNEL staining, the survival of RGCs and retained axons were labeled by Fluoro-gold and Tuj1 antibody, respectively. Rotenone was used to set up an in vitro cellular degenerative model and siYAP was used to interfering the expression of YAP to detect the LIPUS protective function. Results: LIPUS protected RGC from loss and apoptosis in vivo and in vitro. The ratio of cleaved/pro-caspase3 also decreased significantly under LIPUS treatment. As a cellular mechanical sensor, YAP expression increased and YAP translocated to nucleus in LIPUS stimulation group, however, phospho-YAP was found to be decreased. When YAP was inhibited, the LIPUS could not protect RGC from caspase3-dependent apoptosis. Conclusion: LIPUS prevented RGCs from apoptosis in an ON crush model and in vitro cellular degenerative model, which indicates a potential treatment for further traumatic ON injury. The mechanism of protection is dependent on YAP activation and correlated with caspase-3 signaling.
Collapse
Affiliation(s)
- Jia-Xing Zhou
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yun-Jia Liu
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xi Zhang
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Xu
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ke Yang
- Chongqing Engineering Technical Center Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Sun D, Li X, He Y, Li W, Wang Y, Wang H, Jiang S, Xin Y. YAP1 enhances cell proliferation, migration, and invasion of gastric cancer in vitro and in vivo. Oncotarget 2018; 7:81062-81076. [PMID: 27835600 PMCID: PMC5348376 DOI: 10.18632/oncotarget.13188] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022] Open
Abstract
Yes-associated protein 1 (YAP1) plays an important role in the development of carcinomas such as breast, colorectal, and gastric (GC) cancers, but the role of YAP1 in GC has not been investigated comprehensively. The present study strongly suggests that YAP1 and P62 were significantly up-regulated in GC specimens, compared with normal gastric mucosa. In addition, the YAP1high P62high expression was independently associated with poor prognosis in GC (hazard ratio: 1.334, 95% confidence interval: 1.045–1.704, P = 0.021). Stable YAP1 silencing inhibited the proliferation, migration, and invasion of BGC-823 GC cells in vitro and inhibited the growth of xenograft tumor and hematogenous metastasis of BGC-823 GC cells in vivo. The mechanism was associated with inhibited extracellular signal-regulated kinases (ERK)1/2 phosphorylation, elevated E-cadherin protein expression and decreased vimentin protein expression, down-regulated β-catenin protein expression and elevated α-catenin protein expression, and down-regulated long non-coding RNA (lncRNA) expressions including HOX transcript antisense RNA (HOTAIR), H19, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), human large tumor suppressor-2 (LATS2)-AS1-001, and LATS2. YAP1 over-expression promoted the proliferation, migration, and invasion of human immortalized normal gastric mucosa GES-1 cells in vitro by reversing the above signal molecules. Subcutaneous inoculation of GES-1 cells and YAP1-over-expressing GES-1 cells into nude mice did not generate tumors. We successfully established the xenograft tumor models using MKN-45 GC cells, but immunochemistry showed that there was no YAP1 expression in MKN-45 cells. These results suggest that YAP1 is not a direct factor affecting tumor formation, but could accelerate tumor growth and metastasis. Collectively, this study highlights an important role for YAP1 as a promoter of GC growth and metastasis, and suggests that YAP1 could possibly be a potential treatment target for GC.
Collapse
Affiliation(s)
- Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiaoting Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yingjian He
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wenhui Li
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ying Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Huan Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Shanshan Jiang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
16
|
Calderone A. The Biological Role of Nestin (+)-Cells in Physiological and Pathological Cardiovascular Remodeling. Front Cell Dev Biol 2018; 6:15. [PMID: 29492403 PMCID: PMC5817075 DOI: 10.3389/fcell.2018.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
The intermediate filament protein nestin was identified in diverse populations of cells implicated in cardiovascular remodeling. Cardiac resident neural progenitor/stem cells constitutively express nestin and following an ischemic insult migrate to the infarct region and participate in angiogenesis and neurogenesis. A modest number of normal adult ventricular fibroblasts express nestin and the intermediate filament protein is upregulated during the progression of reparative and reactive fibrosis. Nestin depletion attenuates cell cycle re-entry suggesting that increased expression of the intermediate filament protein in ventricular fibroblasts may represent an activated phenotype accelerating the biological impact during fibrosis. Nestin immunoreactivity is absent in normal adult rodent ventricular cardiomyocytes. Following ischemic damage, the intermediate filament protein is induced in a modest population of pre-existing adult ventricular cardiomyocytes bordering the peri-infarct/infarct region and nestin(+)-ventricular cardiomyocytes were identified in the infarcted human heart. The appearance of nestin(+)-ventricular cardiomyocytes post-myocardial infarction (MI) recapitulates an embryonic phenotype and depletion of the intermediate filament protein inhibits cell cycle re-entry. Recruitment of the serine/threonine kinase p38 MAPK secondary to an overt inflammatory response after an ischemic insult may represent a seminal event limiting the appearance of nestin(+)-ventricular cardiomyocytes and concomitantly suppressing cell cycle re-entry. Endothelial and vascular smooth muscle cells (VSMCs) express nestin and upregulation of the intermediate filament protein may directly contribute to vascular remodeling. This review will highlight the biological role of nestin(+)-cells during physiological and pathological remodeling of the heart and vasculature and discuss the phenotypic advantage attributed to the intermediate filament protein.
Collapse
Affiliation(s)
- Angelino Calderone
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Montreal Heart Institute, Montréal, QC, Canada
| |
Collapse
|
17
|
Hertig V, Matos-Nieves A, Garg V, Villeneuve L, Mamarbachi M, Caland L, Calderone A. Nestin expression is dynamically regulated in cardiomyocytes during embryogenesis. J Cell Physiol 2017; 233:3218-3229. [PMID: 28834610 DOI: 10.1002/jcp.26165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
The transcriptional factors implicated in the expression of the intermediate filament protein nestin in cardiomyocytes during embryogenesis remain undefined. In the heart of 9,5-10,5 day embryonic mice, nestin staining was detected in atrial and ventricular cardiomyocytes and a subpopulation co-expressed Tbx5. At later stages of development, nestin immunoreactivity in cardiomyocytes gradually diminished and was absent in the heart of 17,5 day embryonic mice. In the heart of wild type 11,5 day embryonic mice, 54 ± 7% of the trabeculae expressed nestin and the percentage was significantly increased in the hearts of Tbx5+/- and Gata4+/- embryos. The cell cycle protein Ki67 and transcriptional coactivator Yap-1 were still prevalent in the nucleus of nestin(+) -cardiomyocytes identified in the heart of Tbx5+/- and Gata4+/- embryonic mice. Phorbol 12,13-dibutyrate treatment of neonatal rat ventricular cardiomyocytes increased Yap-1 phosphorylation and co-administration of the p38 MAPK inhibitor SB203580 led to significant dephosphorylation. Antagonism of dephosphorylated Yap-1 signalling with verteporfin inhibited phorbol 12,13-dibutyrate/SB203580-mediated nestin expression and BrdU incorporation of neonatal cardiomyocytes. Nestin depletion with an AAV9 containing a shRNA directed against the intermediate filament protein significantly reduced the number of neonatal cardiomyocytes that re-entered the cell cycle. These findings demonstrate that Tbx5- and Gata4-dependent events negatively regulate nestin expression in cardiomyocytes during embryogenesis. By contrast, dephosphorylated Yap-1 acting via upregulation of the intermediate filament protein nestin plays a seminal role in the cell cycle re-entry of cardiomyocytes. Based on these data, an analogous role of Yap-1 may be prevalent in the heart of Tbx5+/- and Gata4+/- mice.
Collapse
Affiliation(s)
- Vanessa Hertig
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Adrianna Matos-Nieves
- Center for Cardiovascular Research and the Heart Center, Nationwide Children's Hospital, OH Department of Pediatrics, The Ohio State University, OH Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Vidu Garg
- Center for Cardiovascular Research and the Heart Center, Nationwide Children's Hospital, OH Department of Pediatrics, The Ohio State University, OH Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Maya Mamarbachi
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Laurie Caland
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
| | - Angelino Calderone
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
| |
Collapse
|
18
|
Kim MH, Kim J. Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell Mol Life Sci 2017; 74:1457-1474. [PMID: 27826640 PMCID: PMC11107740 DOI: 10.1007/s00018-016-2412-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/15/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
A diverse range of drug resistance mechanisms in cancer cells and their microenvironment significantly reduces the effectiveness of anti-cancer therapies. Growing evidence suggests that transcriptional effectors of the Hippo pathway, YAP and TAZ, promote resistance to various anti-cancer therapies, including cytotoxic chemotherapy, molecular targeted therapy, and radiation therapy. Here, we overview the role of YAP and TAZ as drug resistance mediators, and also discuss potential upstream regulators and downstream targets of YAP/TAZ in cancer. The widespread involvement of YAP and TAZ in resistance mechanisms suggests that therapeutic targeting of YAP and TAZ may expedite the development of effective anti-resistance therapies.
Collapse
Affiliation(s)
- Min Hwan Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea.
| |
Collapse
|
19
|
Hong AW, Meng Z, Yuan HX, Plouffe SW, Moon S, Kim W, Jho EH, Guan KL. Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep 2016; 18:72-86. [PMID: 27979971 DOI: 10.15252/embr.201642681] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/09/2023] Open
Abstract
YAP is the major downstream effector of the Hippo pathway, which controls cell growth, tissue homeostasis, and organ size. Aberrant YAP activation, resulting from dysregulation of the Hippo pathway, is frequently observed in human cancers. YAP is a transcription co-activator, and the key mechanism of YAP regulation is its nuclear and cytoplasmic translocation. The Hippo pathway component, LATS, inhibits YAP by phosphorylating YAP at Ser127, leading to 14-3-3 binding and cytoplasmic retention of YAP Here, we report that osmotic stress stimulates transient YAP nuclear localization and increases YAP activity even when YAP Ser127 is phosphorylated. Osmotic stress acts via the NLK kinase to induce YAP Ser128 phosphorylation. Phosphorylation of YAP at Ser128 interferes with its ability to bind to 14-3-3, resulting in YAP nuclear accumulation and induction of downstream target gene expression. This osmotic stress-induced YAP activation enhances cellular stress adaptation. Our findings reveal a critical role for NLK-mediated Ser128 phosphorylation in YAP regulation and a crosstalk between osmotic stress and the Hippo pathway.
Collapse
Affiliation(s)
- Audrey W Hong
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Hai-Xin Yuan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,The Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Steven W Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sungho Moon
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoul, Korea
| | - Wantae Kim
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoul, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoul, Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
21
|
Fallahi E, O'Driscoll NA, Matallanas D. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair. Genes (Basel) 2016; 7:genes7060028. [PMID: 27322327 PMCID: PMC4929427 DOI: 10.3390/genes7060028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Fallahi
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
| | - Niamh A O'Driscoll
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
22
|
Chung H, Lee BK, Uprety N, Shen W, Lee J, Kim J. Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells. EMBO Rep 2016; 17:519-29. [PMID: 26917425 DOI: 10.15252/embr.201540933] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/22/2016] [Indexed: 01/09/2023] Open
Abstract
Yap1 is a transcriptional co-activator of the Hippo pathway. The importance of Yap1 in early cell fate decision during embryogenesis has been well established, though its role in embryonic stem (ES) cells remains elusive. Here, we report that Yap1 plays crucial roles in normal differentiation rather than self-renewal of ES cells. Yap1-depleted ES cells maintain undifferentiated state with a typical colony morphology as well as robust alkaline phosphatase activity. These cells also retain comparable levels of the core pluripotent factors, such as Pou5f1 and Sox2, to the levels in wild-type ES cells without significant alteration of lineage-specific marker genes. Conversely, overexpression of Yap1 in ES cells promotes nuclear translocation of Yap1, resulting in disruption of self-renewal and triggering differentiation by up-regulating lineage-specific genes. Moreover, Yap1-deficient ES cells show impaired induction of lineage markers during differentiation. Collectively, our data demonstrate that Yap1 is a required factor for proper differentiation of mouse ES cells, while remaining dispensable for self-renewal.
Collapse
Affiliation(s)
- HaeWon Chung
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Bum-Kyu Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Nadima Uprety
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Wenwen Shen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jiwoon Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
23
|
Liu X, Li H, Rajurkar M, Li Q, Cotton JL, Ou J, Zhu LJ, Goel HL, Mercurio AM, Park JS, Davis RJ, Mao J. Tead and AP1 Coordinate Transcription and Motility. Cell Rep 2016; 14:1169-1180. [PMID: 26832411 DOI: 10.1016/j.celrep.2015.12.104] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/11/2015] [Accepted: 12/23/2015] [Indexed: 11/25/2022] Open
Abstract
The Tead family transcription factors are the major intracellular mediators of the Hippo-Yap pathway. Despite the importance of Hippo signaling in tumorigenesis, Tead-dependent downstream oncogenic programs and target genes in cancer cells remain poorly understood. Here, we characterize Tead4-mediated transcriptional networks in a diverse range of cancer cells, including neuroblastoma, colorectal, lung, and endometrial carcinomas. By intersecting genome-wide chromatin occupancy analyses of Tead4, JunD, and Fra1/2, we find that Tead4 cooperates with AP1 transcription factors to coordinate target gene transcription. We find that Tead-AP1 interaction is JNK independent but engages the SRC1-3 co-activators to promote downstream transcription. Furthermore, we show that Tead-AP1 cooperation regulates the activity of the Dock-Rac/CDC42 module and drives the expression of a unique core set of target genes, thereby directing cell migration and invasion. Together, our data unveil a critical regulatory mechanism underlying Tead- and AP1-controlled transcriptional and functional outputs in cancer cells.
Collapse
Affiliation(s)
- Xiangfan Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Huapeng Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mihir Rajurkar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hira L Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joo-Seop Park
- Divisions of Pediatric Urology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
24
|
Yang T, Zhao P, Rong Z, Li B, Xue H, You J, He C, Li W, He X, Lee RJ, Ma X, Xiang G. Anti-tumor Efficiency of Lipid-coated Cisplatin Nanoparticles Co-loaded with MicroRNA-375. Am J Cancer Res 2016; 6:142-54. [PMID: 26722380 PMCID: PMC4679361 DOI: 10.7150/thno.13130] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/30/2015] [Indexed: 01/29/2023] Open
Abstract
One of the major challenges in the hepatocellular carcinoma (HCC) treatment is its insensitivity to chemotherapeutic drugs. Here, we report the development of novel lipid-coated cisplatin nanoparticles co-loaded with microRNA-375 (NPC/miR-375) as a potential treatment for chemotherapy insensitive HCC. The NPC/miR-375 was fabricated by mixing two reverse microemulsions containing KCl solution and a highly soluble cis-diaminedihydroplatinum (II) coated with a cationic lipid layer. Subsequently, the miR-375 was incorporated into the lipid-coated cisplatin nanoparticles. The NPC/miR375 nanoparticles were expected to further decrease cell proliferation and to enhance the anti-tumor effect of cisplatin in chemotherapy resistant HCC cells. In vitro analysis of intracellular trafficking revealed that NPC/miR-375 were able to escape from the late endosomes instead of lysosomes thus avoiding degradation of the miR-375 in lysosomes. Importantly, NPC/miR-375 enhanced apoptosis and induced cell cycle arrest in HCC cells in vitro. In the double oncogenes Akt/Ras-induced primary HCC mouse model, multiple doses of NPC/miR-375 significantly inhibited tumor growth and delayed the tumor relapse. Our results indicate that cisplatin nanoparticles co-loaded with miR-375 represent a potential therapeutic agent for chemotherapy-insensitive HCC.
Collapse
|
25
|
Polyomavirus small T antigen interacts with yes-associated protein to regulate cell survival and differentiation. J Virol 2014; 88:12055-64. [PMID: 25122798 DOI: 10.1128/jvi.01399-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Murine polyomavirus small t antigen (PyST) regulates cell cycle, cell survival, apoptosis, and differentiation and cooperates with middle T antigen (MT) to transform primary cells in vitro and in vivo. Like all polyomavirus T antigens, PyST functions largely via its interactions with host cell proteins. Here, we show that PyST binds both Yes-associated protein 1 (YAP1) and YAP2, integral parts of the Hippo signaling pathway, which is a subject of increasing interest in human cancer. The transcription factor TEAD, which is a known target of YAP, is also found in PyST complexes. PyST enhanced YAP association with protein phosphatase 2A (PP2A), leading to decreased YAP phosphorylation. PyST increased YAP levels by decreasing its degradation. This effect was mediated by a reduction in YAP association with β-transducin repeat protein (βTRCP), which is known to regulate YAP turnover in a phosphorylation-dependent manner. Genetic analysis has identified PyST mutants defective in YAP binding. These mutants demonstrated that YAP binding is important for PyST to block myoblast differentiation and to synergize with the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) to promote cell death in 3T3-L1 preadipocytes placed under differentiation conditions. In addition to YAP binding, both of these phenotypes require PyST binding to PP2A. Importance: The Hippo/YAP pathway is a highly conserved cascade important for tissue development and homeostasis. Defects in this pathway are increasingly being associated with cancer. Polyomavirus small t antigen is a viral oncogene that cooperates with middle T antigen in transformation. On its own, small t antigen controls cell survival and differentiation. By binding YAP, small t antigen brings it together with protein phosphatase 2A. This work shows how this association of small t antigen with YAP is important for its effects on cell phenotype. It also suggests that PyST can be used to characterize cellular processes that are regulated by YAP.
Collapse
|
26
|
Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G, Gupta S, Vietsch EE, Laughlin SZ, Wadhwa M, Chetram M, Joshi M, Wang F, Kallakury B, Toretsky J, Wellstein A, Yi C. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal 2014; 7:ra42. [PMID: 24803537 PMCID: PMC4175524 DOI: 10.1126/scisignal.2005049] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates and frequently carries oncogenic KRAS mutation. However, KRAS has thus far not been a viable therapeutic target. We found that the abundance of YAP mRNA, which encodes Yes-associated protein (YAP), a protein regulated by the Hippo pathway during tissue development and homeostasis, was increased in human PDAC tissue compared with that in normal pancreatic epithelia. In genetically engineered Kras(G12D) and Kras(G12D):Trp53(R172H) mouse models, pancreas-specific deletion of Yap halted the progression of early neoplastic lesions to PDAC without affecting normal pancreatic development and endocrine function. Although Yap was dispensable for acinar to ductal metaplasia (ADM), an initial step in the progression to PDAC, Yap was critically required for the proliferation of mutant Kras or Kras:Trp53 neoplastic pancreatic ductal cells in culture and for their growth and progression to invasive PDAC in mice. Yap functioned as a critical transcriptional switch downstream of the oncogenic KRAS-mitogen-activated protein kinase (MAPK) pathway, promoting the expression of genes encoding secretory factors that cumulatively sustained neoplastic proliferation, a tumorigenic stromal response in the tumor microenvironment, and PDAC progression in Kras and Kras:Trp53 mutant pancreas tissue. Together, our findings identified Yap as a critical oncogenic KRAS effector and a promising therapeutic target for PDAC and possibly other types of KRAS-mutant cancers.
Collapse
Affiliation(s)
- Weiying Zhang
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Nivedita Nandakumar
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yuhao Shi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mark Manzano
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Alias Smith
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Garrett Graham
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Swati Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Eveline E. Vietsch
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sean Z. Laughlin
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mandheer Wadhwa
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mahandranauth Chetram
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mrinmayi Joshi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Fen Wang
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jeffrey Toretsky
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
27
|
Zhong CQ, Li Y, Yang D, Zhang N, Xu X, Wu Y, Chen J, Han J. Quantitative phosphoproteomic analysis of RIP3-dependent protein phosphorylation in the course of TNF-induced necroptosis. Proteomics 2014; 14:713-24. [PMID: 24453211 DOI: 10.1002/pmic.201300326] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/24/2013] [Accepted: 01/08/2014] [Indexed: 11/06/2022]
Abstract
Tumor necrosis factor (TNF) induced cell death in murine fibrosarcoma L929 cells is a model system in studying programed necrosis (also known as necroptosis). Receptor interacting protein 3 (RIP3), a serine-threonine kinase, is known to play an essential role in TNF-induced necroptosis; however, the phosphorylation events initiated by RIP3 activation in necroptotic process is still largely unknown. Here, we performed a quantitative MS based analysis to compare TNF-induced changes in the global phosphoproteome of wild-type (RIP3(+/+) ) and RIP3-knockdown L929 cells at different time points after TNF treatment. A total of 8058 phosphopeptides spanning 6892 phosphorylation sites in 2762 proteins were identified in the three experiments, in which cells were treated with TNF for 0.5, 2, and 4 h. By comparing the phosphorylation sites in wild-type and RIP3-knockdown L929 cells, 174, 167, and 177 distinct phosphorylation sites were revealed to be dependent on RIP3 at the 0.5, 2, and 4 h time points after TNF treatment, respectively. Notably, most of them were not detected in a previous phosphoproteomic analysis of RIP3-dependent phosphorylation in lipopolysaccharide-stimulated peritoneal macrophages and TNF-treated murine embryonic fibroblasts (MEFs), suggesting that the data presented in this report are highly relevant to the study of TNF-induced necroptosis of L929 cells.
Collapse
Affiliation(s)
- Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang S, Zhang L, Liu M, Chong R, Ding SJ, Chen Y, Dong J. CDK1 phosphorylation of YAP promotes mitotic defects and cell motility and is essential for neoplastic transformation. Cancer Res 2013; 73:6722-33. [PMID: 24101154 DOI: 10.1158/0008-5472.can-13-2049] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Yes-associated protein, YAP, is a downstream effector of the Hippo pathway of cell-cycle control that plays important roles in tumorigenesis. Hippo-mediated phosphorylation YAP, mainly at S127, inactivates YAP function. In this study, we define a mechanism for positive regulation of YAP activity that is critical for its oncogenic function. Specifically, we found that YAP is phosphorylated in vitro and in vivo by the cell-cycle kinase CDK1 at T119, S289, and S367 during the G2-M phase of the cell cycle. We also found that ectopic expression of a phosphomimetic YAP mutant (YAP3D, harboring T119D/S289D/S367D) was sufficient to induce mitotic defects in immortalized epithelial cells, including centrosome amplification, multipolar spindles, and chromosome missegregation. Finally, we documented that mitotic phosphorylation of YAP was sufficient to promote cell migration and invasion in a manner essential for neoplastic cell transformation. In support of our findings, CDK1 inhibitors largely suppressed cell motility mediated by activated YAP-S127A but not the phosphomimetic mutant YAP3D. Collectively, our results reveal a previously unrecognized mechanism for controlling the activity of YAP that is crucial for its oncogenic function mediated by mitotic dysregulation.
Collapse
Affiliation(s)
- Shuping Yang
- Authors' Affiliations: Eppley Institute for Research in Cancer and Allied Diseases; Department of Pathology and Microbiology; and Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | | | | |
Collapse
|
29
|
Federici G, Gao X, Slawek J, Arodz T, Shitaye A, Wulfkuhle JD, De Maria R, Liotta LA, Petricoin EF. Systems analysis of the NCI-60 cancer cell lines by alignment of protein pathway activation modules with "-OMIC" data fields and therapeutic response signatures. Mol Cancer Res 2013; 11:676-85. [PMID: 23635402 DOI: 10.1158/1541-7786.mcr-12-0690] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The NCI-60 cell line set is likely the most molecularly profiled set of human tumor cell lines in the world. However, a critical missing component of previous analyses has been the inability to place the massive amounts of "-omic" data in the context of functional protein signaling networks, which often contain many of the drug targets for new targeted therapeutics. We used reverse-phase protein array (RPPA) analysis to measure the activation/phosphorylation state of 135 proteins, with a total analysis of nearly 200 key protein isoforms involved in cell proliferation, survival, migration, adhesion, etc., in all 60 cell lines. We aggregated the signaling data into biochemical modules of interconnected kinase substrates for 6 key cancer signaling pathways: AKT, mTOR, EGF receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), integrin, and apoptosis signaling. The net activation state of these protein network modules was correlated to available individual protein, phosphoprotein, mutational, metabolomic, miRNA, transcriptional, and drug sensitivity data. Pathway activation mapping identified reproducible and distinct signaling cohorts that transcended organ-type distinctions. Direct correlations with the protein network modules involved largely protein phosphorylation data but we also identified direct correlations of signaling networks with metabolites, miRNA, and DNA data. The integration of protein activation measurements into biochemically interconnected modules provided a novel means to align the functional protein architecture with multiple "-omic" data sets and therapeutic response correlations. This approach may provide a deeper understanding of how cellular biochemistry defines therapeutic response. Such "-omic" portraits could inform rational anticancer agent screenings and drive personalized therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Federici
- Department of Hematology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang Y, Kesselman D, Kizub D, Guerrero-Preston R, Ratovitski EA. Phospho-ΔNp63α/microRNA feedback regulation in squamous carcinoma cells upon cisplatin exposure. Cell Cycle 2013; 12:684-97. [PMID: 23343772 DOI: 10.4161/cc.23598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Our previous reports showed that the cisplatin exposure induced the ATM-dependent phosphorylation of ΔNp63a, which is subsequently involved in transcriptional regulation of gene promoters encoding mRNAs and microRNAs in squamous cell carcinoma (SCC) cells upon cisplatin-induced cell death. We showed that phosphorylated (p)-ΔNp63a plays a role in upregulation of pro-apoptotic proteins, while non-p-ΔNp63a is implicated in pro-survival signaling. In contrast to non-p-ΔNp63a, p-ΔNp63a modulated expression of specific microRNAs in SCC cells exposed to cisplatin. These microRNAs were shown to attenuate the expression of several proteins involved in cell death/survival, suggesting the critical role for p-ΔNp63a in regulation of tumor cell resistance to cisplatin. Here, we studied the function of ΔNp63a in transcriptional activation and repression of the specific microRNA promoters whose expression is affected by cisplatin treatment of SCC cells. We quantitatively studied chromatin-associated proteins bound to tumor protein (TP) p63-responsive element, we found that p-ΔNp63a along with certain transcription coactivators (e.g., CARM1, KAT2B, TFAP2A, etc.) necessary to induce gene promoters for microRNAs (630 and 885-3p) or with transcription corepressors (e.g., EZH2, CTBP1, HDACs, etc.) needed to repress promoters for microRNAs (181a-5p, 374a-5p and 519a-3p) in SCC cells exposed to cisplatin.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|