1
|
Daşar T, Ürel Demir G, İmren G, Utine GE, Yilmaz G, Şimşek Kiper PÖ. From Desbuquois Dysplasia to Multiple Epiphyseal Dysplasia: The Clinical Impact of a CANT1 Variant Across Five Unrelated Families. Am J Med Genet A 2025; 197:e63950. [PMID: 39618316 DOI: 10.1002/ajmg.a.63950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/01/2024] [Accepted: 11/16/2024] [Indexed: 03/08/2025]
Abstract
Multiple epiphyseal dysplasia (MED) is a heterogeneous group of chondrodysplasia characterized by arthralgia, early onset osteoarthropathy, and the radiographic findings of small, flat, and irregular-shaped epiphyses. Some patients with MED have mild short stature as well. MED is genetically heterogeneous caused by pathogenic variants in COMP, MATN3, COL9A1, COL9A2, COL9A3, and SLC26A2. In 2017, pathogenic variants in CANT1, which are responsible for Desbuquois dysplasia, have also been reported in the genetic etiology of MED. To date, only three patients have been reported with CANT1-related MED. Herein, we present clinical and radiographic findings of six additional patients from five unrelated families, all sharing the same c.375G > C; p.(Trp125Cys) variant in CANT1 gene. These patients exhibited the features of multiple epiphyseal dysplasia, along with some similarities to Desbuquois dysplasia, thereby broadening the clinical spectrum of CANT1-related disorders.
Collapse
Affiliation(s)
- Tuğba Daşar
- Department of Pediatric Genetics, Bilkent City Hospital, Ankara, Turkiye
- Department of Pediatric Genetics, Hacettepe University, Ankara, Turkiye
| | - Gizem Ürel Demir
- Department of Pediatric Genetics, Hacettepe University, Ankara, Turkiye
| | - Gözde İmren
- Department of Medical Genetics, Hacettepe University, Ankara, Turkiye
| | - Gülen Eda Utine
- Department of Pediatric Genetics, Hacettepe University, Ankara, Turkiye
| | - Güney Yilmaz
- Department of Orthopedics, Hacettepe University, Ankara, Turkiye
| | | |
Collapse
|
2
|
Yamashita R, Tsutsui S, Mizumoto S, Watanabe T, Yamamoto N, Nakano K, Yamada S, Okamura T, Furuichi T. CANT1 Is Involved in Collagen Fibrogenesis in Tendons by Regulating the Synthesis of Dermatan/Chondroitin Sulfate Attached to the Decorin Core Protein. Int J Mol Sci 2025; 26:2463. [PMID: 40141107 PMCID: PMC11941851 DOI: 10.3390/ijms26062463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Tendons are connective tissues that join muscles and bones and are rich in glycosaminoglycans (GAGs). Decorin is a proteoglycan with one dermatan sulfate (DS) or chondroitin sulfate (CS) chain (a type of GAG) attached to its core protein and is involved in regulating the assembly of collagen fibrils in the tendon extracellular matrix (ECM). Calcium-activated nucleotidase 1 (CANT1), a nucleotidase that hydrolyzes uridine diphosphate into uridine monophosphate and phosphate, plays an important role in GAG synthesis in cartilage. In the present study, we performed detailed histological and biochemical analyses of the tendons from Cant1 knockout (Cant1-/-) mice. No abnormalities were observed in the tendons on postnatal day 1 (P1); however, remarkable hypoplasia was observed on P30 and P180. The collagen fibrils were more angular and larger in the Cant1-/- tendons than in the control (Ctrl) tendons. In the Cant1-/- tendons, the DS/CS content was significantly reduced, and the DC/CS chains attached to the decorin core protein became shorter than those in the Ctrl tendons. No abnormalities were observed in the proliferation and differentiation of tendon fibroblasts (tenocytes) in the Cant1-/- mice. These results strongly suggest that CANT1 dysfunction causes defective DS/CS synthesis, followed by impairment of decorin function, which regulates collagen fibrogenesis in the tendon ECM. Multiple joint dislocations are a clinical feature of Desbuquois dysplasia type 1 caused by human CANT1 mutations. The multiple joint dislocations associated with this genetic disorder may be attributed to tendon fragility resulting from CANT1 dysfunction.
Collapse
Affiliation(s)
- Rina Yamashita
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan;
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Saki Tsutsui
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.)
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Noritaka Yamamoto
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku 162-8655, Japan (T.O.)
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.)
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku 162-8655, Japan (T.O.)
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan;
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| |
Collapse
|
3
|
Gramegna Tota C, Leone A, Khan A, Forlino A, Rossi A, Paganini C. Cant1 Affects Cartilage Proteoglycan Properties: Aggrecan and Decorin Characterization in a Mouse Model of Desbuquois Dysplasia Type 1. Biomolecules 2024; 14:1064. [PMID: 39334831 PMCID: PMC11430760 DOI: 10.3390/biom14091064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Desbuquois dysplasia type 1 (DBQD1) is a recessive chondrodysplasia caused by mutations in the CANT1 gene, encoding for the Golgi Calcium-Activated Nucleotidase 1 (CANT1). The enzyme hydrolyzes UDP, the by-product of glycosyltransferase reactions, but it might play other roles in different cell types. Using a Cant1 knock-out mouse, we demonstrated that CANT1 is crucial for glycosaminoglycan (GAG) synthesis; however, its impact on the biochemical properties of cartilage proteoglycans remains unknown. Thus, in this work, we characterized decorin and aggrecan from primary chondrocyte cultures and cartilage biopsies of mutant mice at post-natal day 4 by Western blots and further investigated their distribution in the cartilage extracellular matrix (ECM) by immunohistochemistry. We demonstrated that the GAG synthesis defect caused by CANT1 impairment led to the synthesis and secretion of proteoglycans with shorter GAG chains compared with wild-type animals. However, this alteration did not result in the synthesis and secretion of decorin and aggrecan in the unglycanated form. Interestingly, the defect was not cartilage-specific since also skin decorin showed a reduced hydrodynamic size. Finally, immunohistochemical studies in epiphyseal sections of mutant mice demonstrated that the proteoglycan structural defect moderately affected decorin distribution in the ECM.
Collapse
Affiliation(s)
- Chiara Gramegna Tota
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.G.T.); (A.L.); (A.K.); (A.F.)
| | - Alessandra Leone
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.G.T.); (A.L.); (A.K.); (A.F.)
- University School for Advanced Studies Pavia, IUSS Pavia, 27100 Pavia, Italy
| | - Asifa Khan
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.G.T.); (A.L.); (A.K.); (A.F.)
| | - Antonella Forlino
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.G.T.); (A.L.); (A.K.); (A.F.)
| | - Antonio Rossi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.G.T.); (A.L.); (A.K.); (A.F.)
| | - Chiara Paganini
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
4
|
Niu Y, Fan L, Shi X, Wu J, Wang T, Hou X. Circ_0001715 accelerated lung adenocarcinoma process by the miR-1322/CANT1 axis. Diagn Pathol 2023; 18:91. [PMID: 37553672 PMCID: PMC10408075 DOI: 10.1186/s13000-023-01348-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/25/2023] [Indexed: 08/10/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a type of lung cancer, which belongs to non-small cell lung cancer and has seriously endangered the physical and mental health of people. The study of circRNAs (circRNAs) has been increasingly hot in recent years, in which circRNAs also play an important regulatory role in cancer. The aim of this study was to investigate the biological molecular mechanisms of circ_0001715 in the progression of LUAD. The expression of circ_0001715, miR-1322 and calcium-activated nucleotidase 1 (CANT1) in LUAD tissues and cell lines was assessed by quantitative reverse transcription PCR (RT-qPCR) and western bot assay. Clone formation assay, 5-Ethynyl-2'-Deoxyuridine (EDU) assay and wound healing assay were used to verify the proliferation ability of cells. Dual-luciferase reporter assay and RNA pull-down assay were performed to characterize the interactions between the three factors. Finally, a mouse tumor model was constructed to assess the tumorigenicity of circ_0001715. RT-qPCR assay results showed that circ_0001715 expression was significantly increased in LUAD tissues and cell lines. Finally, knockdown of circ_0001715 could inhibit tumor growth in vivo. Circ_0001715 regulated the progression of LUAD through the miR-1322/CANT1 axis. The results of this study provided ideas for understanding the molecular mechanisms of circ_0001715 in LUAD.
Collapse
Affiliation(s)
- Yue Niu
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Lina Fan
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Xiaoyu Shi
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Jia Wu
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Tengqi Wang
- Department of Gastrointestinal Surgery, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China.
| | - Xiaofeng Hou
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China.
| |
Collapse
|
5
|
Wu LY, Song YJ, Zhang CL, Liu J. K V Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells 2023; 12:1894. [PMID: 37508558 PMCID: PMC10377897 DOI: 10.3390/cells12141894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.
Collapse
Affiliation(s)
- Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu-Juan Song
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
6
|
Lundregan SL, Mäkinen H, Buer A, Holand H, Jensen H, Husby A. Infection by a helminth parasite is associated with changes in DNA methylation in the house sparrow. Ecol Evol 2022; 12:e9539. [PMID: 36447599 PMCID: PMC9702581 DOI: 10.1002/ece3.9539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Parasites can exert strong selective pressures on their hosts and influence the evolution of host immunity. While several studies have examined the genetic basis for parasite resistance, the role of epigenetics in the immune response to parasites is less understood. Yet, epigenetic modifications, such as changes in DNA methylation, may allow species to respond rapidly to parasite prevalence or virulence. To test the role of DNA methylation in relation to parasite infection, we examined genome-wide DNA methylation before and during infection by a parasitic nematode, Syngamus trachea, in a natural population of house sparrows (Passer domesticus) using reduced representation bisulfite sequencing (RRBS). We found that DNA methylation levels were slightly lower in infected house sparrows, and we identified candidate genes relating to the initial immune response, activation of innate and adaptive immunity, and mucus membrane functional integrity that were differentially methylated between infected and control birds. Subsequently, we used methylation-sensitive high-resolution melting (MS-HRM) analyses to verify the relationship between methylation proportion and S. trachea infection status at two candidate genes in a larger sample dataset. We found that methylation level at NR1D1, but not CLDN22, remained related to infection status and that juvenile recruitment probability was positively related to methylation level at NR1D1. This underscores the importance of performing follow-up studies on candidate genes. Our findings demonstrate that plasticity in the immune response to parasites can be epigenetically mediated and highlight the potential for epigenetic studies in natural populations to provide further mechanistic insight into host-parasite interactions.
Collapse
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Hannu Mäkinen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Amberly Buer
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Håkon Holand
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Arild Husby
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
7
|
Gao F, Hu X, Liu W, Wu H, Mu Y, Zhao Y. Calcium-activated nucleotides 1 (CANT1)-driven nuclear factor-k-gene binding (NF-ĸB) signaling pathway facilitates the lung cancer progression. Bioengineered 2022; 13:3183-3193. [PMID: 35068336 PMCID: PMC8974139 DOI: 10.1080/21655979.2021.2003131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dysregulation of calcium-activated nucleotides 1 (CANT1) has been observed in different organs. Thus, its biological function in cancer has increasingly attracted researchers. The current work aims to study the CANT1 role in lung cancer and understand the underlying pathological mechanisms. High amplification of CANT1 was observed in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) tissues compared to normal tissues. The high-CANT1 patients showed a dismal prognosis in comparison with the low-CANT1 patients. Highly expressed CANT1 was significantly associated with the N stage of LUSC patients. Ectopic expression of CANT1 conspicuously increased the proliferation and viability of A549 cells. Conversely, CANT1 depletion resulted in adverse effects in H1299 cells. CANT1 depletion also resulted in the retardation of tumor growth in vivo. Mechanically, we found that CANT1 could elevate NF-ĸB (nuclear factor-k-gene binding) transcriptional activity in a concentration-dependent manner. This regulatory relationship was also established by the Western blot technique. Inhibiting NF-ĸB can significantly blunt the increased NF-κ-B Inhibitor-α (IκBα) expression caused by CANT1 overexpression in A549 cells. In conclusion, highly amplified CANT1 promotes the proliferation and viability of lung cancer cells. We also elucidate a new signaling axis of CANT1-NF-ĸB in lung cancer. This approach might be a promising strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Fangfang Gao
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| | - Xiufeng Hu
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| | - Wenjing Liu
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| | - Hongbo Wu
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| | - Yu Mu
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| | - Yanqiu Zhao
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| |
Collapse
|
8
|
Li J, Kumari T, Barazia A, Jha V, Jeong SY, Olson A, Kim M, Lee BK, Manickam V, Song Z, Clemens R, Razani B, Kim J, Dinauer MC, Cho J. Neutrophil DREAM promotes neutrophil recruitment in vascular inflammation. J Exp Med 2022; 219:e20211083. [PMID: 34751735 PMCID: PMC8719643 DOI: 10.1084/jem.20211083] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
The interaction between neutrophils and endothelial cells is critical for the pathogenesis of vascular inflammation. However, the regulation of neutrophil adhesive function remains not fully understood. Intravital microscopy demonstrates that neutrophil DREAM promotes neutrophil recruitment to sites of inflammation induced by TNF-α but not MIP-2 or fMLP. We observe that neutrophil DREAM represses expression of A20, a negative regulator of NF-κB activity, and enhances expression of pro-inflammatory molecules and phosphorylation of IκB kinase (IKK) after TNF-α stimulation. Studies using genetic and pharmacologic approaches reveal that DREAM deficiency and IKKβ inhibition significantly diminish the ligand-binding activity of β2 integrins in TNF-α-stimulated neutrophils or neutrophil-like HL-60 cells. Neutrophil DREAM promotes degranulation through IKKβ-mediated SNAP-23 phosphorylation. Using sickle cell disease mice lacking DREAM, we show that hematopoietic DREAM promotes vaso-occlusive events in microvessels following TNF-α challenge. Our study provides evidence that targeting DREAM might be a novel therapeutic strategy to reduce excessive neutrophil recruitment in inflammatory diseases.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Tripti Kumari
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Andrew Barazia
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Vishwanath Jha
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Si-Yeon Jeong
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Amber Olson
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mijeong Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Bum-Kyu Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Vijayprakash Manickam
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Zhimin Song
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Regina Clemens
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Babak Razani
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- John Cochran VA Medical Center, St. Louis, MO
| | - Jonghwan Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
9
|
Su H, Fan J, Ma D, Zhu H. Identification and Characterization of Osmoregulation Related MicroRNAs in Gills of Hybrid Tilapia Under Three Types of Osmotic Stress. Front Genet 2021; 12:526277. [PMID: 33889171 PMCID: PMC8056028 DOI: 10.3389/fgene.2021.526277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Researchers have increasingly suggested that microRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression and protein translation in organs and respond to abiotic and biotic stressors. To understand the function of miRNAs in osmotic stress regulation of the gills of hybrid tilapia (Oreochromis mossambicus ♀ × Oreochromis urolepis hornorum ♂), high-throughput Illumina deep sequencing technology was used to investigate the expression profiles of miRNAs under salinity stress (S, 25‰), alkalinity stress (A, 4‰) and salinity-alkalinity stress (SA, S: 15‰, A: 4‰) challenges. The results showed that 31, 41, and 27 upregulated and 33, 42, and 40 downregulated miRNAs (P < 0.05) were identified in the salt stress, alkali stress, and saline-alkali stress group, respectively, which were compared with those in the control group (C). Fourteen significantly differently expressed miRNAs were selected randomly and then validated by a quantitative polymerase chain reaction. On the basis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, genes related to osmoregulation and biosynthesis were enriched in the three types of osmotic stress. In addition, three miRNAs and three predicted target genes were chosen to conduct a quantitative polymerase chain reaction in the hybrid tilapia and its parents during 96-h osmotic stress. Differential expression patterns of miRNAs provided the basis for research data to further investigate the miRNA-modulating networks in osmoregulation of teleost.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jiajia Fan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Dongmei Ma
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Huaping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
10
|
Wang HD, Guo LJ, Feng ZQ, Zhang DW, Zhang MT, Gao Y, Chen CL, Zhu BF. Cloning, expression and enzyme activity delineation of two novel CANT1 mutations: the disappearance of dimerization may indicate the change of protein conformation and even function. Orphanet J Rare Dis 2020; 15:240. [PMID: 32907608 PMCID: PMC7487677 DOI: 10.1186/s13023-020-01492-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background Desbuquois dysplasia (DBQD) was a rare autosomal recessive skeletal dysplasia. Calcium activated nucleotidase 1 (CANT1) mutation was identified as a common pathogenic change for DBQD type 1 and Kim variant but not for DBQD type 2. To our knowledge, all patients with DBQD type 1 currently found could be explained by mutations in the CANT1 gene, but mutations in the CANT1 gene might not be directly diagnosed as DBQD type 1. Results We have identified two novel CANT1 mutations (mut1: c.594G > A [p.Trp198*], mut2: c.734C > T [p.Pro245Leu]) in three children from a family of Chinese origin for the first time. Two of the three children could be diagnosed as typical DBQD type 1 and one child could not be diagnosed as DBQD type 1 based on the clinical data we had. To further clarify the effect of the two mutations of the CANT1 gene, we studied the CANT1 gene expression and detected the protein secretion and nucleotide enzyme activity through cDNA cloning and expression vectors construction for wild and mutant types. The mut1 was a nonsense mutation which could lead to premature termination and produced the truncated bodies; The CANT1 dimer of mut2 was significantly reduced and even undetectable. The extracellular secretion of mut1 was extremely high while mut2 was significantly reduced compared with the wild type. And mut1 and mut2 also could result in a significant reduction in the activity of CANT1 nucleotidease. From the results we could deduce that the two mutations of the CANT1 gene were the causes of the two cases in this study. Conclusions Regarding the particularity of the cases reported in this study, the pathogenesis of CANT1 might be more complicated. The genetic and phenotype of three children with the same genetic background need to be further studied. Larger cohort of patients was needed to establish genotype–phenotype correlations in DBQD.
Collapse
Affiliation(s)
- Hong-Dan Wang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China. .,National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450014, People's Republic of China. .,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China. .,College of Forensic Science, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Liang-Jie Guo
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Zhan-Qi Feng
- Department of Urology, The First People's Hospital of Zhengzhou, Zhengzhou, 450004, People's Republic of China
| | - Da-Wei Zhang
- Zhengzhou Orthopaedic Hospital, Zhengzhou, 450052, People's Republic of China
| | - Meng-Ting Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Yue Gao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Chuan-Liang Chen
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Bo-Feng Zhu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China. .,College of Forensic Science, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
11
|
Paganini C, Monti L, Costantini R, Besio R, Lecci S, Biggiogera M, Tian K, Schwartz JM, Huber C, Cormier-Daire V, Gibson BG, Pirog KA, Forlino A, Rossi A. Calcium activated nucleotidase 1 (CANT1) is critical for glycosaminoglycan biosynthesis in cartilage and endochondral ossification. Matrix Biol 2018; 81:70-90. [PMID: 30439444 PMCID: PMC6598859 DOI: 10.1016/j.matbio.2018.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
Abstract
Desbuquois dysplasia type 1 (DBQD1) is a chondrodysplasia caused by mutations in CANT1 gene encoding an ER/Golgi calcium activated nucleotidase 1 that hydrolyses UDP. Here, using Cant1 knock-in and knock-out mice recapitulating DBQD1 phenotype, we report that CANT1 plays a crucial role in cartilage proteoglycan synthesis and in endochondral ossification. Specifically, the glycosaminoglycan synthesis was decreased in chondrocytes from Cant1 knock-out mice and their hydrodynamic size was reduced, whilst the sulfation was increased and the overall proteoglycan secretion was delayed. Interestingly, knock-out chondrocytes had dilated ER cisternae suggesting delayed protein secretion and cellular stress; however, no canonical ER stress response was detected using microarray analysis, Xbp1 splicing and protein levels of BiP and ATF4. The observed proteoglycan defects caused deregulated chondrocyte proliferation and maturation in the growth plate resulting in the reduced skeletal growth. In conclusion, the pathogenic mechanism of DBQD1 comprises deregulated chondrocyte performance due to defective intracellular proteoglycan synthesis and altered proteoglycan properties in the extracellular matrix. Desbuquois dysplasia type 1 (DBQD1) is a recessive skeletal dysplasia caused by mutations in CANT1 gene, a Calcium activated nucleotidase of the ER/Golgi. The Cant1 knock-out mouse recapitulates human DBQD1. Cant1 is critical for different steps of proteoglycan biosynthesis including glycosaminoglycan chain synthesis, length and sulfation. The intracellular GAG synthesis defects cause delayed proteoglycan secretion with ER enlargement. In Cant1 knock-out chondrocytes ER enlargement is not linked to canonical ER stress. The proteoglycan defects cause deregulated chondrocyte proliferation and maturation in the growth plate resulting in reduced skeletal growth.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy; Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Luca Monti
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Rossella Costantini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Silvia Lecci
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Marco Biggiogera
- Department of Biology & Biotechnology, University of Pavia, Pavia, Italy
| | - Kun Tian
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Céline Huber
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Beth G Gibson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Katarzyna A Pirog
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Antonella Forlino
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|
12
|
Downstream Regulatory Element Antagonist Modulator (DREAM), a target for anti-thrombotic agents. Pharmacol Res 2017; 117:283-287. [PMID: 28065857 DOI: 10.1016/j.phrs.2017.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 11/21/2022]
Abstract
Circulating platelets participate in the process of numerous diseases including thrombosis, inflammation, and cancer. Thus, it is of great importance to understand the underlying mechanisms mediating platelet activation under disease conditions. Emerging evidence indicates that despite the lack of a nucleus, platelets possess molecules that are involved in gene transcription in nucleated cells. This review will summarize downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor, and highlight recent findings suggesting its novel non-transcriptional role in hemostasis and thrombosis.
Collapse
|
13
|
PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet 2014; 95:96-107. [PMID: 24931394 DOI: 10.1016/j.ajhg.2014.05.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/16/2014] [Indexed: 12/30/2022] Open
Abstract
Human phosphoglucomutase 3 (PGM3) catalyzes the conversion of N-acetyl-glucosamine (GlcNAc)-6-phosphate into GlcNAc-1-phosphate during the synthesis of uridine diphosphate (UDP)-GlcNAc, a sugar nucleotide critical to multiple glycosylation pathways. We identified three unrelated children with recurrent infections, congenital leukopenia including neutropenia, B and T cell lymphopenia, and progression to bone marrow failure. Whole-exome sequencing demonstrated deleterious mutations in PGM3 in all three subjects, delineating their disease to be due to an unsuspected congenital disorder of glycosylation (CDG). Functional studies of the disease-associated PGM3 variants in E. coli cells demonstrated reduced PGM3 activity for all mutants tested. Two of the three children had skeletal anomalies resembling Desbuquois dysplasia: short stature, brachydactyly, dysmorphic facial features, and intellectual disability. However, these additional features were absent in the third child, showing the clinical variability of the disease. Two children received hematopoietic stem cell transplantation of cord blood and bone marrow from matched related donors; both had successful engraftment and correction of neutropenia and lymphopenia. We define PGM3-CDG as a treatable immunodeficiency, document the power of whole-exome sequencing in gene discoveries for rare disorders, and illustrate the utility of genomic analyses in studying combined and variable phenotypes.
Collapse
|
14
|
Baczyk D, Kibschull M, Mellstrom B, Levytska K, Rivas M, Drewlo S, Lye SJ, Naranjo JR, Kingdom JCP. DREAM mediated regulation of GCM1 in the human placental trophoblast. PLoS One 2013; 8:e51837. [PMID: 23300953 PMCID: PMC3536794 DOI: 10.1371/journal.pone.0051837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/07/2012] [Indexed: 12/30/2022] Open
Abstract
The trophoblast transcription factor glial cell missing-1 (GCM1) regulates differentiation of placental cytotrophoblasts into the syncytiotrophoblast layer in contact with maternal blood. Reduced placental expression of GCM1 and abnormal syncytiotrophoblast structure are features of hypertensive disorder of pregnancy--preeclampsia. In-silico techniques identified the calcium-regulated transcriptional repressor--DREAM (Downstream Regulatory Element Antagonist Modulator)--as a candidate for GCM1 gene expression. Our objective was to determine if DREAM represses GCM1 regulated syncytiotrophoblast formation. EMSA and ChIP assays revealed a direct interaction between DREAM and the GCM1 promoter. siRNA-mediated DREAM silencing in cell culture and placental explant models significantly up-regulated GCM1 expression and reduced cytotrophoblast proliferation. DREAM calcium dependency was verified using ionomycin. Furthermore, the increased DREAM protein expression in preeclamptic placental villi was predominantly nuclear, coinciding with an overall increase in sumolylated DREAM and correlating inversely with GCM1 levels. In conclusion, our data reveal a calcium-regulated pathway whereby GCM1-directed villous trophoblast differentiation is repressed by DREAM. This pathway may be relevant to disease prevention via calcium-supplementation.
Collapse
Affiliation(s)
- Dora Baczyk
- Research Centre for Women's and Infants' Health at the Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dierssen M, Fedrizzi L, Gomez-Villafuertes R, de Lagran MM, Gutierrez-Adan A, Sahún I, Pintado B, Oliveros JC, Dopazo XM, Gonzalez P, Brini M, Mellström B, Carafoli E, Naranjo JR. Reduced Mid1 Expression and Delayed Neuromotor Development in daDREAM Transgenic Mice. Front Mol Neurosci 2012; 5:58. [PMID: 22563308 PMCID: PMC3342529 DOI: 10.3389/fnmol.2012.00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/11/2012] [Indexed: 11/21/2022] Open
Abstract
Downstream regulatory element antagonist modulator (DREAM) is a Ca2+-binding protein that binds DNA and represses transcription in a Ca2+-dependent manner. Previous work has shown a role for DREAM in cerebellar function regulating the expression of the sodium/calcium exchanger 3 (NCX3) in cerebellar granular neurons to control Ca2+ homeostasis and survival of these neurons. To achieve a global view of the genes regulated by DREAM in the cerebellum, we performed a genome-wide analysis in transgenic cerebellum expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Here we show that DREAM regulates the expression of the midline 1 (Mid1) gene early after birth. As a consequence, daDREAM mice exhibit a significant shortening of the rostro-caudal axis of the cerebellum and a delay in neuromotor development early after birth. Our results indicate a role for DREAM in cerebellar function.
Collapse
Affiliation(s)
- Mara Dierssen
- Genomic Regulation Center, Parc de Recerca Biomèdica de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|