1
|
Zhong C, Zeng X, Yi X, Yang Y, Hu J, Yin R, Chen X. The Function of Myostatin in Ameliorating Bone Metabolism Abnormalities in Individuals with Type 2 Diabetes Mellitus by Exercise. Curr Issues Mol Biol 2025; 47:158. [PMID: 40136413 PMCID: PMC11941426 DOI: 10.3390/cimb47030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
PURPOSE The molecular mechanisms involved in bone metabolism abnormalities in individuals with type 2 diabetes mellitus (T2DM) are a prominent area of investigation within the life sciences field. Myostatin (MSTN), a member of the TGF-β superfamily, serves as a critical negative regulator of skeletal muscle growth and bone metabolism. Current research on the exercise-mediated regulation of MSTN expression predominantly focuses on its role in skeletal muscle. However, due to the intricate and multifaceted mechanical and biochemical interactions between muscle and bone, the precise mechanisms by which exercise modulates MSTN to enhance bone metabolic disorders in T2DM necessitate additional exploration. The objective of this review is to systematically synthesize and evaluate the role of MSTN in the development of bone metabolism disorders associated with T2DM and elucidate the underlying mechanisms influenced by exercise interventions, aiming to offer novel insights and theoretical recommendations for enhancing bone health through physical activity. METHODS Relevant articles in Chinese and English up to July 2024 were selected using specific search terms and databases (PubMed, CNKI, Web of Science); 147 studies were finally included after evaluation, and the reference lists were checked for other relevant research. RESULTS Myostatin's heightened expression in the bone and skeletal muscle of individuals with T2DM can impede various pathways, such as PI3K/AKT/mTOR and Wnt/β-catenin, hindering osteoblast differentiation and bone mineralization. Additionally, it can stimulate osteoclast differentiation and bone resorption capacity by facilitating Smad2-dependent NFATc1 nuclear translocation and PI3K/AKT/AP-1-mediated pro-inflammatory factor expression pathways, thereby contributing to bone metabolism disorders. Physical exercise plays a crucial role in ameliorating bone metabolism abnormalities in individuals with T2DM. Exercise can activate pathways like Wnt/GSK-3β/β-catenin, thereby suppressing myostatin and downstream Smads, CCL20/CCR6, and Nox4 target gene expression, fostering bone formation, inhibiting bone resorption, and enhancing bone metabolism in T2DM. CONCLUSION In the context of T2DM, MSTN has been shown to exacerbate bone metabolic disorders by inhibiting the differentiation of osteoblasts and the process of bone mineralization while simultaneously promoting the differentiation and activity of osteoclasts. Exercise interventions have demonstrated efficacy in downregulating MSTN expression, disrupting its downstream signaling pathways, and enhancing bone metabolism.
Collapse
Affiliation(s)
- Chenghao Zhong
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Xinyu Zeng
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Xiaoyan Yi
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Yuxin Yang
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Jianbo Hu
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Rongbin Yin
- School of Physical Education and Sport, Soochow University, Suzhou 215006, China;
| | - Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| |
Collapse
|
2
|
Watson LE, MacRae CL, Kallingappa P, Cao Y, Li X, Hedges CP, D'Souza RF, Fleming N, Mellor KM, Merry TL. An IL-6 promoter variant (-174 G/C) augments IL-6 production and alters skeletal muscle transcription in response to exercise in mice. J Appl Physiol (1985) 2025; 138:213-225. [PMID: 39665197 DOI: 10.1152/japplphysiol.00391.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Interleukin-6 (IL-6) is produced and secreted by skeletal muscle cells during exercise and plays an important role in mediating metabolic responses to exercise. The promoter region of the IL-6 gene contains a common genetic variant (-174 G/C, rs1800795), which may alter responses to exercise training. To isolate the impact of this gene variant on exercise-induced IL-6 expression and skeletal muscle transcription responses following exercise, we generated knock-in mice with a GG or variant CC genotype for the murine homolog of rs1800795. The overall gross metabolic phenotype of resting mice was similar between genotypes; however, following acute treadmill running, the variant CC genotype was associated with a greater increase in skeletal muscle Il6 mRNA and circulating IL-6. Furthermore, we observed that mice with the variant CC genotype exhibited sex-specific differences in skeletal muscle master metabolism regulatory genes and had greater increases in genes controlling mitochondrial biogenesis in skeletal muscle post exercise. However, there was no effect of genotype on exercise-induced skeletal muscle glycogen depletion, circulating free fatty acids, blood glucose and lactate production, or exercise-responsive gene expression in subcutaneous fat. These findings suggest that the IL-6 promoter variant -174 G/C may result in enhanced skeletal muscle adaptations in response to exercise training and could mean that individuals with the "C" allele may more readily gain improvements in metabolic health in response to exercise training.NEW & NOTEWORTHY Interleukin-6 (IL-6) is produced and secreted by skeletal muscle during exercise and mediates metabolic responses to exercise. A common variant in the IL-6 promoter region (-174G/C) may alter responses to exercise training. Mice with the variant "CC" genotype exhibited higher skeletal muscle IL-6 mRNA and circulating IL-6 levels post exercise, as well as altered skeletal muscle gene transcription. This suggests that this variant might enhance muscle adaptations to exercise, potentially benefiting metabolic health.
Collapse
Affiliation(s)
- L E Watson
- Department of Nutrition, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| | - C L MacRae
- Department of Nutrition, University of Auckland, Auckland, New Zealand
| | - P Kallingappa
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Y Cao
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| | - X Li
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - C P Hedges
- Department of Nutrition, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| | - R F D'Souza
- Department of Nutrition, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| | - N Fleming
- Department of Pathology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| | - K M Mellor
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - T L Merry
- Department of Nutrition, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| |
Collapse
|
3
|
Calcaterra V, Magenes VC, Bianchi A, Rossi V, Gatti A, Marin L, Vandoni M, Zuccotti G. How Can Promoting Skeletal Muscle Health and Exercise in Children and Adolescents Prevent Insulin Resistance and Type 2 Diabetes? Life (Basel) 2024; 14:1198. [PMID: 39337980 PMCID: PMC11433096 DOI: 10.3390/life14091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Skeletal muscle secretome, through its paracrine and endocrine functions, contributes to the maintenance and regulation of overall physiological health. We conducted a narrative review on the role of skeletal muscle and exercise in maintaining glucose homeostasis, driving insulin resistance (IR), and preventing type 2 diabetes in pediatric populations, especially in the context of overweight and obesity. Myokines such as interleukin (IL)-6, IL-8, and IL-15, as well as irisin, myonectin, and myostatin, appear to play a crucial role in IR. Skeletal muscle can also become a target of obesity-induced and IR-induced inflammation. In the correlation between muscle, IR, and inflammation, the role of infiltration of the immune cells and the microvasculature may also be considered. It remains unclear which exercise approach is the best; however, combining aerobic exercise with resistance training seems to be the most effective strategy for managing IR, with high-intensity activities offering superior metabolic benefits and long-term adherence. Encouraging daily participation in enjoyable and engaging exercise is key for long-term commitment and effective glucose metabolism management. Promoting physical activity in children and adolescents must be a top priority for public health, not only in terms of individual quality of life and well-being but also for community health.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Vittoria Carlotta Magenes
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Alice Bianchi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Alessandro Gatti
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Luca Marin
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Matteo Vandoni
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy
| |
Collapse
|
4
|
Wei W, Yu S, Zeng H, Tan W, Hu M, Huang J, Li X, Mao L. Docosahexaenoic and Eicosapentaenoic Acids Promote the Accumulation of Browning-Related Myokines via Calcium Signaling in Insulin-Resistant Mice. J Nutr 2024; 154:1271-1281. [PMID: 38367811 DOI: 10.1016/j.tjnut.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Myokines have a prominent effect on improving insulin resistance (IR) by inducing browning of white adipose tissue (WAT). Although docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA) play roles in improving IR and stimulating browning, whether they mediate myokines directly remains unknown. OBJECTIVE This study aims to investigate the effects of DHA and EPA on browning-related myokines under IR and clarify the mechanism via Ca2+ signaling. METHODS The expression and secretion levels of myokines in IR mice and IR myotubes were detected after DHA/EPA treatment. The crosstalk between myotubes and adipocytes was evaluated through a method in which IR adipocytes were treated with the culture medium supernatant of myotubes treated with DHA/EPA. The expression of browning markers in the WAT of IR mice and adipocytes was determined. A calcium chelator was used to determine whether DHA and EPA regulate myokine production through a calcium ion-dependent pathway. RESULTS In vivo experiments: 3:1 and 1:3 DHA/EPA promoted the mRNA levels of Irisin, IL-6, IL-15, and FGF21 in skeletal muscle, stimulated WAT browning, reduced lipid accumulation; 3:1 DHA/EPA upregulated the serum concentration of Irisin; 1:3 DHA/EPA upregulated the serum concentrations of Irisin, IL-6, and FGF21. In vitro experiments: the levels of Irisin and IL-6 in C2C12 myotubes and their medium supernatant were significantly elevated in the 3:1 and 1:3 groups and the upregulation of browning markers and reduction in fat accumulation were observed in adipocytes treated with the medium supernatant of C2C12 myotubes in the 3:1 and 1:3 groups. However, the above phenomena disappeared when Ca2+ signaling was inhibited. CONCLUSIONS Treatment with DHA and EPA at composition ratios of 3:1 and 1:3 induces browning of WAT in IR mice, which is likely related to the promotion of the accumulation of myokines, especially Irisin and IL-6, via Ca2+ signaling.
Collapse
Affiliation(s)
- Wenting Wei
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China; Department of Nutriology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Siyan Yu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Huanting Zeng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Weifeng Tan
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Manjiang Hu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jie Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Xudong Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
5
|
Hesketh SJ. Advancing cancer cachexia diagnosis with -omics technology and exercise as molecular medicine. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:1-15. [PMID: 38463663 PMCID: PMC10918365 DOI: 10.1016/j.smhs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024] Open
Abstract
Muscle atrophy exacerbates disease outcomes and increases mortality, whereas the preservation of skeletal muscle mass and function play pivotal roles in ensuring long-term health and overall quality-of-life. Muscle atrophy represents a significant clinical challenge, involving the continued loss of muscle mass and strength, which frequently accompany the development of numerous types of cancer. Cancer cachexia is a highly prevalent multifactorial syndrome, and although cachexia is one of the main causes of cancer-related deaths, there are still no approved management strategies for the disease. The etiology of this condition is based on the upregulation of systemic inflammation factors and catabolic stimuli, resulting in the inhibition of protein synthesis and enhancement of protein degradation. Numerous necessary cellular processes are disrupted by cachectic pathology, which mediate intracellular signalling pathways resulting in the net loss of muscle and organelles. However, the exact underpinning molecular mechanisms of how these changes are orchestrated are incompletely understood. Much work is still required, but structured exercise has the capacity to counteract numerous detrimental effects linked to cancer cachexia. Primarily through the stimulation of muscle protein synthesis, enhancement of mitochondrial function, and the release of myokines. As a result, muscle mass and strength increase, leading to improved mobility, and quality-of-life. This review summarises existing knowledge of the complex molecular networks that regulate cancer cachexia and exercise, highlighting the molecular interplay between the two for potential therapeutic intervention. Finally, the utility of mass spectrometry-based proteomics is considered as a way of establishing early diagnostic biomarkers of cachectic patients.
Collapse
|
6
|
Kanbay M, Copur S, Yildiz AB, Tanriover C, Mallamaci F, Zoccali C. Physical exercise in kidney disease: A commonly undervalued treatment modality. Eur J Clin Invest 2024; 54:e14105. [PMID: 37814427 DOI: 10.1111/eci.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Physical inactivity has been identified as a risk factor for multiple disorders and a strong association exists between chronic kidney disease (CKD) and a sedentary lifestyle. Even though physical activity is crucial in the development and progression of disease, the general focus of the current medical practice is the pharmacological perspective of diseases with inadequate emphasis on lifestyle intervention. METHODS In this narrative review we explain the pathophysiological mechanisms underlying the beneficial effects of physical exercise on CKD in addition to discussing the clinical studies and trials centred on physical exercise in patients with CKD. RESULTS Physical activity influences several pathophysiological mechanisms including inflammation, oxidative stress, vascular function, immune response and macromolecular metabolism. While exercise can initially induce stress responses like inflammation and oxidative stress, long-term physical activity leads to protective countermeasures and overall improved health. Trials in pre-dialysis CKD patients show that exercise can lead to reductions in body weight, inflammation markers and fasting plasma glucose. Furthermore, it improves patients' functional capacity, cardiorespiratory fitness and quality of life. The effects of exercise on kidney function have been inconsistent in these trials. In haemodialysis, peritoneal dialysis and kidney transplant patients exercise interventions improve cardiorespiratory fitness, walking capacity and quality of life. Combined training shows the best performance to increase peak oxygen uptake in haemodialysis patients. In kidney transplant recipients, exercise improves walking performance, quality of life and potentially arterial stiffness. However, exercise does not affect glucose metabolism, serum cholesterol and inflammation biomarkers. Long-term, adequately powered trials are needed to determine the long-term feasibility, and effects on quality of life and major clinical outcomes, including mortality and cardiovascular risk, in all CKD stages and particularly in kidney transplant patients, a scarcely investigated population. CONCLUSION Physical exercise plays a crucial role in ameliorating inflammation, oxidative stress, vascular function, immune response and macromolecular metabolism, and contributes significantly to the quality of life for patients with CKD, irrespective of the treatment and stage. Its direct impact on kidney function remains uncertain. Further extensive, long-term trials to conclusively determine the effect of exercise on major clinical outcomes such as mortality and cardiovascular risk remain a research priority.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Abdullah B Yildiz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit Azienda Ospedaliera "Bianchi-Melacrino-Morelli" & CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renal (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| |
Collapse
|
7
|
Palmisano B, Riminucci M, Karsenty G. Interleukin-6 signaling in osteoblasts regulates bone remodeling during exercise. Bone 2023; 176:116870. [PMID: 37586472 DOI: 10.1016/j.bone.2023.116870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Aerobic exercise has many beneficial effects on human health. One of them, is to influence positively bone remodeling through, however, incompletely understood mechanisms. Given its recently demonstrated role as a mediator of the bone to muscle to bone crosstalk during exercise, we hypothesized that interleukin-6 (IL-6) signaling in bone may contribute to the beneficial effect that exercise has on bone homeostasis. In this study, we first show that aerobic exercise increases the expression of Il6r in bones of WT mice. Then, we analyzed a mutant mouse strain that lacks the IL-6 receptor alpha specifically in osteoblasts (Il6rosb-/-). As it has been reported in the case of Il6-/- mice, in sedentary conditions, bone mass and remodeling were normal in adult Il6rosb-/- mice when compared to controls. In contrast, Il6rosb-/- mice that were subjected to aerobic exercise did not show the increase in bone mass and remodeling parameters that control littermates demonstrated. Moreover, Il6rosb-/- mice undergoing aerobic exercise showed a severe impairment in bone formation, indicating that activation of bone-forming cells is defective when IL-6 signaling in osteoblasts is disrupted. In sum, this study provides evidence that a function of IL-6 signaling in osteoblasts is to promote high bone turnover during aerobic exercise.
Collapse
Affiliation(s)
- Biagio Palmisano
- Department of Genetics and Development, Columbia University Irving Medical Center, 701 W 168th street, New York, NY 10032, United States of America.
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Center, 701 W 168th street, New York, NY 10032, United States of America.
| |
Collapse
|
8
|
Calle-Ciborro B, Espin-Jaime T, Santos FJ, Gomez-Martin A, Jardin I, Pozo MJ, Rosado JA, Camello PJ, Camello-Almaraz C. Secretion of Interleukin 6 in Human Skeletal Muscle Cultures Depends on Ca 2+ Signalling. BIOLOGY 2023; 12:968. [PMID: 37508398 PMCID: PMC10376320 DOI: 10.3390/biology12070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The systemic effects of physical activity are mediated by the release of IL-6 and other myokines from contracting muscle. Although the release of IL-6 from muscle has been extensively studied, the information on the cellular mechanisms is fragmentary and scarce, especially regarding the role of Ca2+ signals. The aim of this study was to characterize the role of the main components of Ca2+ signals in human skeletal muscle cells during IL-6 secretion stimulated by the Ca2+ mobilizing agonist ATP. Primary cultures were prepared from surgical samples, fluorescence microscopy was used to evaluate the Ca2+ signals and the stimulated release of IL-6 into the medium was determined using ELISA. Intracellular calcium chelator Bapta, low extracellular calcium and the Ca2+ channels blocker La3+ reduced the ATP-stimulated, but not the basal secretion. Secretion was inhibited by blockers of L-type (nifedipine, verapamil), T-type (NNC55-0396) and Orai1 (Synta66) Ca2+ channels and by silencing Orai1 expression. The same effect was achieved with inhibitors of ryanodine receptors (ryanodine, dantrolene) and IP3 receptors (xestospongin C, 2-APB, caffeine). Inhibitors of calmodulin (calmidazolium) and calcineurin (FK506) also decreased secretion. IL-6 transcription in response to ATP was not affected by Bapta or by the T channel blocker. Our results prove that ATP-stimulated IL-6 secretion is mediated at the post-transcriptional level by Ca2+ signals, including the mobilization of calcium stores, the activation of store-operated Ca2+ entry, and the subsequent activation of voltage-operated Ca2+ channels and calmodulin/calcineurin pathways.
Collapse
Affiliation(s)
- Blanca Calle-Ciborro
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Teresa Espin-Jaime
- Faculty of Medicine, Hospital Universitario, Universidad de Extremadura, 06006 Badajoz, Spain
| | | | - Ana Gomez-Martin
- Department of Nursing, Faculty of Nursing and Occupational Therapy, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Isaac Jardin
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Maria J Pozo
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Pedro J Camello
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Cristina Camello-Almaraz
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
9
|
AL-Mhanna SB, Wan Ghazali WS, Maqsood A, Mohamed M, Ahmed N, Afolabi HA, Mutalub YB, Heboyan A, Zafar MS. Physical activities pre- and post-COVID-19 vaccination and its implementations: A narrative review. SAGE Open Med 2023; 11:20503121231158981. [PMID: 36909796 PMCID: PMC9996076 DOI: 10.1177/20503121231158981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
Coronavirus disease 2019 is a severe communicable pulmonary medical problem that has been a challenging disease for everyone in the globe, but vaccines development and administration against this severe acute respiratory syndrome-inducing disease (coronavirus disease 2019) are currently yielding fabulous results. The mean duration of the coronavirus disease 2019 pandemic for this study spanned from 2020 until 2022. These manifestations are accompanied by symptoms of respiratory tract illnesses such as non-productive cough, sore throat, and nasal discharge. Relevant reviews on coronavirus disease 2019 manifestations and outcomes, consisting mainly of the infections/outbreaks, experimental information, and pre- and post-serovaccination details that occurred, were described. After a typical vaccination course, the study aims to summarize and understand more about the effectiveness of exercise on the pre-and post-coronavirus disease 2019 vaccination and its implementations. Physical activity is an immunological function adjuvant to decrease communicable disease risk and enhance immunity post-viral infection vaccination. Moderate-intensity resistance exercisesession directly before getting the influenza vaccine decreases vaccine responses in older adults, such as redness, pain, or inflammation at the injection spot or other adverse consequences compared to the inactive circumstance. However, it was reported that exercise after a shot is generally safe as long as vaccinated people feel well enough. Though exercise before or after vaccination has no negative impact on the protection afforded by the vaccine, people can exercise immediately after receiving the vaccine, as any changes in blood flow will not affect the vaccine's response. One episode of light-to-moderate-intensifying exercise after vaccination may improve the antibody reactions to influenza or the coronavirus disease 2019 vaccine. Vaccination administered pre- and post-regular exercise is an effective approach for boosting antibody responses due to its immunostimulant effects. Future research should investigate how different vaccine antibodies respond to low, moderate, and high physical activity levels.
Collapse
Affiliation(s)
- Sameer Badri AL-Mhanna
- Department of Physiology, School of
Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Afsheen Maqsood
- Department of Oral Pathology, Bahria
University Dental College, Karachi, Pakistan
| | - Mahaneem Mohamed
- Department of Physiology, School of
Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Naseer Ahmed
- Department of Prosthodontics, Altamash
Institute of Dental Medicine, Karachi, Pakistan
- Prosthodontics Unit, School of Dental
Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Hafeez Abiola Afolabi
- Department of General Surgery, School
of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Yahkub Babatunde Mutalub
- Department of Clinical Pharmacology,
College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi,
Nigeria
| | - Artak Heboyan
- Department of Prosthodontics, Faculty
of Stomatology, Yerevan State Medical University After Mkhitar Heratsi, Yerevan,
Armenia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry,
College of Dentistry, Taibah University, Al Madinah Al Munawwarah, Saudi
Arabia
- Department of Dental Materials, Islamic
International Dental College, Riphah International University, Islamabad,
Pakistan
| |
Collapse
|
10
|
Ahsan M, Garneau L, Aguer C. The bidirectional relationship between AMPK pathway activation and myokine secretion in skeletal muscle: How it affects energy metabolism. Front Physiol 2022; 13:1040809. [PMID: 36479347 PMCID: PMC9721351 DOI: 10.3389/fphys.2022.1040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2023] Open
Abstract
Myokines are peptides and proteins secreted by skeletal muscle cells, into the interstitium, or in the blood. Their regulation may be dependent or independent of muscle contraction to induce a variety of metabolic effects. Numerous myokines have been implicated in influencing energy metabolism via AMP-activated protein kinase (AMPK) signalling. As AMPK is centrally involved in glucose and lipid metabolism, it is important to understand how myokines influence its signalling, and vice versa. Such insight will better elucidate the mechanism of metabolic regulation during exercise and at rest. This review encompasses the latest research conducted on the relationship between AMPK signalling and myokines within skeletal muscles via autocrine or paracrine signalling.
Collapse
Affiliation(s)
- Mahdi Ahsan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Léa Garneau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
| | - Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University—Campus Outaouais, Gatineau, QC, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
ATF5 is a regulator of exercise-induced mitochondrial quality control in skeletal muscle. Mol Metab 2022; 66:101623. [PMID: 36332794 PMCID: PMC9661517 DOI: 10.1016/j.molmet.2022.101623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES The Mitochondrial Unfolded Protein Response (UPRmt) is a compartment-specific mitochondrial quality control (MQC) mechanism that uses the transcription factor ATF5 to induce the expression of protective enzymes to restore mitochondrial function. Acute exercise is a stressor that has the potential to temporarily disrupt organellar protein homeostasis, however, the roles of ATF5 and the UPRmt in maintaining basal mitochondrial content, function and exercise-induced MQC mechanisms in skeletal muscle are not known. METHODS ATF5 KO and WT mice were examined at rest or after a bout of acute endurance exercise. We measured protein content in whole muscle, nuclear, cytosolic and mitochondrial fractions, in addition to mRNA transcript levels in whole muscle. Using isolated mitochondria, we quantified rates of oxygen consumption and ROS emission to observe the effects of the absence of ATF5 on organelle function. RESULTS ATF5 KO mice exhibited a larger and less functional muscle mitochondrial pool, most likely a culmination of enhanced biogenesis via increased PGC-1α expression, and attenuated mitophagy. The absence of ATF5 resulted in a reduction in antioxidant proteins and increases in mitochondrial ROS emission, cytosolic cytochrome c, and the expression of mitochondrial chaperones. KO muscle also displayed enhanced exercise-induced stress kinase signaling, but a blunted mitophagic and UPRmt gene expression response, complemented by significant increases in the basal mRNA abundance and nuclear localization of ATF4. Instead of promoting its nuclear translocation, acute exercise caused the enrichment of ATF5 in mitochondrial fractions. We also identified PGC-1α as an additional regulator of the basal expression of UPRmt genes. CONCLUSION The transcription factor ATF5 retains a critical role in the maintenance of mitochondrial homeostasis and the appropriate response of muscle to acute exercise for the optimization of mitochondrial quality control.
Collapse
|
12
|
Chu XL, Song XZ, Li Q, Li YR, He F, Gu XS, Ming D. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res 2022; 17:2185-2193. [PMID: 35259827 PMCID: PMC9083151 DOI: 10.4103/1673-5374.335823] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies on the mechanisms of peripheral nerve injury (PNI) have mainly focused on the pathophysiological changes within a single injury site. However, recent studies have indicated that within the central nervous system, PNI can lead to changes in both injury sites and target organs at the cellular and molecular levels. Therefore, the basic mechanisms of PNI have not been comprehensively understood. Although electrical stimulation was found to promote axonal regeneration and functional rehabilitation after PNI, as well as to alleviate neuropathic pain, the specific mechanisms of successful PNI treatment are unclear. We summarize and discuss the basic mechanisms of PNI and of treatment via electrical stimulation. After PNI, activity in the central nervous system (spinal cord) is altered, which can limit regeneration of the damaged nerve. For example, cell apoptosis and synaptic stripping in the anterior horn of the spinal cord can reduce the speed of nerve regeneration. The pathological changes in the posterior horn of the spinal cord can modulate sensory abnormalities after PNI. This can be observed in cases of ectopic discharge of the dorsal root ganglion leading to increased pain signal transmission. The injured site of the peripheral nerve is also an important factor affecting post-PNI repair. After PNI, the proximal end of the injured site sends out axial buds to innervate both the skin and muscle at the injury site. A slow speed of axon regeneration leads to low nerve regeneration. Therefore, it can take a long time for the proximal nerve to reinnervate the skin and muscle at the injured site. From the perspective of target organs, long-term denervation can cause atrophy of the corresponding skeletal muscle, which leads to abnormal sensory perception and hyperalgesia, and finally, the loss of target organ function. The mechanisms underlying the use of electrical stimulation to treat PNI include the inhibition of synaptic stripping, addressing the excessive excitability of the dorsal root ganglion, alleviating neuropathic pain, improving neurological function, and accelerating nerve regeneration. Electrical stimulation of target organs can reduce the atrophy of denervated skeletal muscle and promote the recovery of sensory function. Findings from the included studies confirm that after PNI, a series of physiological and pathological changes occur in the spinal cord, injury site, and target organs, leading to dysfunction. Electrical stimulation may address the pathophysiological changes mentioned above, thus promoting nerve regeneration and ameliorating dysfunction.
Collapse
Affiliation(s)
- Xiao-Lei Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Xi-Zi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Yu-Ru Li
- College of Exercise & Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Feng He
- College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xiao-Song Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine; College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
A preliminary study on the role of Piezo1 channels in myokine release from cultured mouse myotubes. Biochem Biophys Res Commun 2022; 623:148-153. [DOI: 10.1016/j.bbrc.2022.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
|
14
|
RSPO3 is a novel contraction-inducible factor identified in an "in vitro exercise model" using primary human myotubes. Sci Rep 2022; 12:14291. [PMID: 35995979 PMCID: PMC9395423 DOI: 10.1038/s41598-022-18190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
The physiological significance of skeletal muscle as a secretory organ is now well known but we can only speculate as to the existence of as-yet-unidentified myokines, especially those upregulated in response to muscle contractile activity. We first attempted to establish an “insert-chamber based in vitro exercise model” allowing the miniature but high cell-density culture state enabling highly developed contractile human myotubes to be readily obtained by applying electric pulse stimulation (EPS). By employing this in vitro exercise model, we identified R-spondin 3 (RSPO3) as a novel contraction-inducible myokine produced by cultured human myotubes. Contraction-dependent muscular RSPO3 mRNA upregulation was confirmed in skeletal muscles of mice subjected to sciatic nerve mediated in situ contraction as well as those of mice after 2 h of running. Pharmacological in vitro experiments demonstrated a relatively high concentration of metformin (millimolar range) to suppress the contraction-inducible mRNA upregulation of human myokines including RSPO3, interleukin (IL)-6, IL-8 and CXCL1. Our data also suggest human RSPO3 to be a paracrine factor that may positively participate in the myogenesis processes of myoblasts and satellite cells. Thus, the “insert chamber-based in vitro exercise model” is a potentially valuable research tool for investigating contraction-inducible biological responses of human myotubes usually exhibiting poorer contractility development even in the setting of EPS treatment.
Collapse
|
15
|
Asoudeh F, Dashti F, Raeesi S, Heshmat R, Bidkhori M, Jalilian Z, Hashemi R. Inflammatory cytokines and sarcopenia in Iranian adults-results from SARIR study. Sci Rep 2022; 12:5471. [PMID: 35361818 PMCID: PMC8971448 DOI: 10.1038/s41598-022-09139-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Some studies suggested the effects of inflammatory cytokines in reducing muscle mass and muscle strength and, performance. This study aimed to compare pro-inflammatory cytokines in sarcopenic and non-sarcopenic subjects. 120 men and women were selected out from the cross-sectional study ‘sarcopenia and its determinants among Iranian elders’ (SARIR). Sarcopenia was defined based on the first ‘European Working Group on sarcopenia in older people’ (EWGSOP1) guidelines. A fasting blood sample was taken from each participant to measure serum high-sensitivity C-reactive protein (hs-CRP), Interleukin 6 (IL-6), and tumor necrosis factor α (TNFα). A total of 120 participants were included in this study. Mean age was 66.7 ± 7.7 years and mean body mass index (BMI) was 27.3 ± 4.2 kg/m2. Forty participants had the criteria of EWGSOP1 sarcopenia. A statistically significant difference was seen between normal and abnormal groups of muscle strength in hs-CRP (P-value = 0.04). Furthermore, we did not observe any remarkable association between inflammatory biomarkers including IL-6 (OR 1.15; 95% CI 0.31–4.28), TNF-α (OR 0.68; 95% CI 0.17–2.77), and hs-CRP (OR 2.39; 95% CI 0.87–6.55) and the presence of sarcopenia even after controlling for plausible confounders. We found that inflammatory biomarkers level was not associated with odds of sarcopenia. The lack of correlation between inflammatory cytokines and sarcopenia could be due to the participants’ age and genetics. Future studies are required to confirm these findings.
Collapse
Affiliation(s)
- Farzaneh Asoudeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dashti
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences (TUMS), Abuzar St., P.O. Box 14155-6117, Tehran, Iran.
| | - Shima Raeesi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences (TUMS), Abuzar St., P.O. Box 14155-6117, Tehran, Iran
| | - Ramin Heshmat
- Endocrinology and Metabolism Research Center and Chronic Disease Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Bidkhori
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Jalilian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvan Hashemi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences (TUMS), Abuzar St., P.O. Box 14155-6117, Tehran, Iran.
| |
Collapse
|
16
|
Lee-Ødegård S, Olsen T, Norheim F, Drevon CA, Birkeland KI. Potential Mechanisms for How Long-Term Physical Activity May Reduce Insulin Resistance. Metabolites 2022; 12:metabo12030208. [PMID: 35323652 PMCID: PMC8950317 DOI: 10.3390/metabo12030208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin became available for the treatment of patients with diabetes 100 years ago, and soon thereafter it became evident that the biological response to its actions differed markedly between individuals. This prompted extensive research into insulin action and resistance (IR), resulting in the universally agreed fact that IR is a core finding in patients with type 2 diabetes mellitus (T2DM). T2DM is the most prevalent form of diabetes, reaching epidemic proportions worldwide. Physical activity (PA) has the potential of improving IR and is, therefore, a cornerstone in the prevention and treatment of T2DM. Whereas most research has focused on the acute effects of PA, less is known about the effects of long-term PA on IR. Here, we describe a model of potential mechanisms behind reduced IR after long-term PA to guide further mechanistic investigations and to tailor PA interventions in the therapy of T2DM. The development of such interventions requires knowledge of normal glucose metabolism, and we briefly summarize an integrated physiological perspective on IR. We then describe the effects of long-term PA on signaling molecules involved in cellular responses to insulin, tissue-specific functions, and whole-body IR.
Collapse
Affiliation(s)
- Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Christian Andre Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
- Vitas Ltd. Analytical Services, Oslo Science Park, 0349 Oslo, Norway
| | - Kåre Inge Birkeland
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Correspondence:
| |
Collapse
|
17
|
Kistner TM, Pedersen BK, Lieberman DE. Interleukin 6 as an energy allocator in muscle tissue. Nat Metab 2022; 4:170-179. [PMID: 35210610 DOI: 10.1038/s42255-022-00538-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
Abstract
Extensive research has shown that interleukin 6 (IL-6) is a multifunctional molecule that is both proinflammatory and anti-inflammatory, depending on the context. Here, we combine an evolutionary perspective with physiological data to propose that IL-6's context-dependent effects on metabolism reflect its adaptive role for short-term energy allocation. This energy-allocation role is especially salient during physical activity, when skeletal muscle releases large amounts of IL-6. We predict that during bouts of physical activity, myokine IL-6 fulfills the three main characteristics of a short-term energy allocator: it is secreted from muscle in response to an energy deficit, it liberates somatic energy through lipolysis and it enhances muscular energy uptake and transiently downregulates immune function. We then extend this model of energy allocation beyond myokine IL-6 to reinterpret the roles that IL-6 plays in chronic inflammation, as well as during COVID-19-associated hyperinflammation and multiorgan failure.
Collapse
Affiliation(s)
- Timothy M Kistner
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
18
|
Aldosari Z, Abbasian N, Robinson K, Bevington A, Watson E. Low pH up-regulates interleukin-6 mRNA in L6-G8C5 rat skeletal muscle cells independent of pH sensing by SNAT2(SLC38A2) transporters. FASEB Bioadv 2022; 4:138-152. [PMID: 35141477 PMCID: PMC8814557 DOI: 10.1096/fba.2021-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/14/2022] Open
Abstract
Exercise is known to create a transient, but potent increase in skeletal muscle expression of potentially anti-inflammatory myokine interleukin-6 (IL-6). This effect may be clinically important in managing chronic inflammatory states. It has previously been proposed that lactic acidosis following exercise promotes this IL-6 up-regulation, but the mechanism of this acidosis effect is unknown. Rat skeletal muscle cell line L6-G8C5 has been used previously to model metabolic effects of acidosis, sensing low pH through the resulting inhibition of amino acid transporter SNAT2(SLC38A2). Use of ionophore ionomycin to model the rise in intracellular Ca2+ concentration occurring in contracting muscle strongly up-regulates IL-6 mRNA in L6-G8C5 myotubes. This study used this model to test the hypothesis that low extracellular pH (7.1) enhances ionomycin-induced IL-6 mRNA up-regulation by inhibiting SNAT2. Incubation of L6-G8C5 myotubes for 6 h with 0.5 µM ionomycin at control pH (7.4) resulted in a 15-fold increase in IL-6 mRNA which was further enhanced (1.74-fold) at pH 7.1. In contrast low pH had no significant effect on IL-6 mRNA without ionomycin, nor on the IL-6 mRNA increase that was induced by cyclic stretch. Even though pH 7.1 halved the transport activity of SNAT2, alternative methods of SNAT2 inhibition (JNK inhibitor SP600125; SNAT2 antagonist MeAIB; or SNAT2 silencing with siRNA) did not mimic the enhancing effect of low pH on IL-6 mRNA. On the contrary, JNK inhibition blunted the effect of pH 7.1 with ionomycin, but had no effect at pH 7.4. It is concluded that low pH promotes Ca2+/ionomycin-induced up-regulation of IL-6 mRNA through a novel SNAT2-independent JNK-dependent pH-sensing pathway not previously described in this skeletal muscle model.
Collapse
Affiliation(s)
- Ziyad Aldosari
- Department of Respiratory SciencesUniversity of LeicesterLeicesterUK
- Department of Medical Laboratories SciencesCollege of Applied Medical Sciences in AlquwayiyahShaqra UniversityRiyadhSaudi Arabia
| | - Nima Abbasian
- School of Life and Medical SciencesUniversity of HertfordshireHatfieldUK
| | | | - Alan Bevington
- Department of Respiratory SciencesUniversity of LeicesterLeicesterUK
| | - Emma Watson
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| |
Collapse
|
19
|
Ducloux D, Courivaud C. Prevention of Post-Transplant Diabetes Mellitus: Towards a Personalized Approach. J Pers Med 2022; 12:116. [PMID: 35055431 PMCID: PMC8778007 DOI: 10.3390/jpm12010116] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Post-transplant diabetes is a frequent complication after transplantation. Moreover, patients suffering from post-transplant diabetes have increased cardiovascular morbidity and reduced survival. Pathogenesis mainly involves beta-cell dysfunction in presence of insulin resistance. Both pre- and post-transplant risk factors are well-described, and some of them may be corrected or prevented. However, the frequency of post-transplant diabetes has not decreased in recent years. We realized a critical appraisal of preventive measures to reduce post-transplant diabetes.
Collapse
Affiliation(s)
- Didier Ducloux
- CHU Besançon, Department of Nephrology, Dialysis and Renal Transplantation, Federation Hospitalo-Universitaire INCREASE, 25000 Besançon, France;
- UMR RIGHT 1098, INSERM-EFS-UFC, 1 Bd Fleming, 25000 Besançon, France
| | - Cécile Courivaud
- CHU Besançon, Department of Nephrology, Dialysis and Renal Transplantation, Federation Hospitalo-Universitaire INCREASE, 25000 Besançon, France;
- UMR RIGHT 1098, INSERM-EFS-UFC, 1 Bd Fleming, 25000 Besançon, France
| |
Collapse
|
20
|
Yeo M, Kim G. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation. Carbohydr Polym 2021; 272:118444. [PMID: 34420709 DOI: 10.1016/j.carbpol.2021.118444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
In this study, a fully aligned microfibrous structure fabricated using fibrin-assisted alginate bioink and electrohydrodynamic direct-printing was proposed for skeletal muscle tissue engineering. To safely construct the aligned alginate/fibrin microfibrous structure laden with myoblasts or endothelial cells, various printing conditions, such as an applied electric field, distance between the nozzle and target, and nozzle moving speed, were selected appropriately. Furthermore, to accelerate the formation of myotubes more efficiently, the alginate/fibrin bioink with vascular endothelial cells was co-printed into a spatially patterned structure within a myoblast-laden structure. The myoblast-laden structure co-cultured with endothelial cells presented fully aligned myotube formation and significantly greater myogenic differentiation compared to the myoblast-laden structure without the endothelial cells owing to the more abundant secretion of angiogenic cytokines. Also, when adipose stem cell- and endothelial cell-laden fibrous structure was implanted in a mouse volumetric muscle loss model, accelerated volumetric muscle repair was observed compared to the defect model. Based on the results, this study demonstrates an alginate-based bioink and new bio-fabricating method to obtain microfibrous cell-laden alginate/fibrin structures with mechanically stable and topographical cues. The proposed method can provide a myoblast/endothelial cell-laden fibrous alginate structure to efficiently induce engineering of skeletal muscle tissue, which could be used in muscle-on-a-chip or recovering structures of volumetric muscle defects.
Collapse
Affiliation(s)
- Miji Yeo
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
21
|
Ducloux D, Legendre M, Bamoulid J, Saas P, Courivaud C, Crepin T. End-Stage Renal Disease-Related Accelerated Immune Senescence: Is Rejuvenation of the Immune System a Therapeutic Goal? Front Med (Lausanne) 2021; 8:720402. [PMID: 34540869 PMCID: PMC8446427 DOI: 10.3389/fmed.2021.720402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
End-stage renal disease (ESRD) patients exhibit clinical features of premature ageing, including frailty, cardiovascular disease, and muscle wasting. Accelerated ageing also concerns the immune system. Patients with ESRD have both immune senescence and chronic inflammation that are resumed in the so-called inflammaging syndrome. Immune senescence is particularly characterised by premature loss of thymic function that is associated with hyporesponsiveness to vaccines, susceptibility to infections, and death. ESRD-related chronic inflammation has multiple causes and participates to accelerated cardiovascular disease. Although, both characterisation of immune senescence and its consequences are relatively well-known, mechanisms are more uncertain. However, prevention of immune senescence/inflammation or/and rejuvenation of the immune system are major goal to ameliorate clinical outcomes of ESRD patients.
Collapse
Affiliation(s)
- Didier Ducloux
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Mathieu Legendre
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France
| | - Jamal Bamoulid
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Philippe Saas
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Cécile Courivaud
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Thomas Crepin
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| |
Collapse
|
22
|
Nara H, Watanabe R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22189889. [PMID: 34576053 PMCID: PMC8471880 DOI: 10.3390/ijms22189889] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-6 has been studied since its discovery for its role in health and diseases. It is one of the most important pro-inflammatory cytokines. IL-6 was reported as an exacerbating factor in coronavirus disease. In recent years, it has become clear that the function of muscle-derived IL-6 is different from what has been reported so far. Exercise is accompanied by skeletal muscle contraction, during which, several bioactive substances, collectively named myokines, are secreted from the muscles. Many reports have shown that IL-6 is the most abundant myokine. Interestingly, it was indicated that IL-6 plays opposing roles as a myokine and as a pro-inflammatory cytokine. In this review, we discuss why IL-6 has different functions, the signaling mode of hyper-IL-6 via soluble IL-6 receptor (sIL-6R), and the involvement of soluble glycoprotein 130 in the suppressive effect of hyper-IL-6. Furthermore, the involvement of a disintegrin and metalloprotease family molecules in the secretion of sIL-6R is described. One of the functions of muscle-derived IL-6 is lipid metabolism in the liver. However, the differences between the functions of IL-6 as a pro-inflammatory cytokine and the functions of muscle-derived IL-6 are unclear. Although the involvement of myokines in lipid metabolism in adipocytes was previously discussed, little is known about the direct relationship between nonalcoholic fatty liver disease and muscle-derived IL-6. This review is the first to discuss the relationship between the function of IL-6 in diseases and the function of muscle-derived IL-6, focusing on IL-6 signaling and lipid metabolism in the liver.
Collapse
|
23
|
Leuchtmann AB, Adak V, Dilbaz S, Handschin C. The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations. Front Physiol 2021; 12:709807. [PMID: 34456749 PMCID: PMC8387622 DOI: 10.3389/fphys.2021.709807] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise bouts. In contrast, the secretome of long-term training adaptation remains less well understood, and the contribution of non-myokine factors, including metabolites, enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by other means, is underappreciated. In this review, we therefore provide an overview on the current knowledge of endurance and resistance exercise-induced factors of the skeletal muscle secretome that mediate muscular and systemic adaptations to long-term training. Targeting these factors and leveraging their functions could not only have broad implications for athletic performance, but also for the prevention and therapy in diseased and elderly populations.
Collapse
|
24
|
Lautaoja JH, M O'Connell T, Mäntyselkä S, Peräkylä J, Kainulainen H, Pekkala S, Permi P, Hulmi JJ. Higher glucose availability augments the metabolic responses of the C2C12 myotubes to exercise-like electrical pulse stimulation. Am J Physiol Endocrinol Metab 2021; 321:E229-E245. [PMID: 34181491 PMCID: PMC8410101 DOI: 10.1152/ajpendo.00133.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The application of exercise-like electrical pulse simulation (EL-EPS) has become a widely used exercise mimetic in vitro. EL-EPS produces similar physiological responses as in vivo exercise, while less is known about the detailed metabolic effects. Routinely, the C2C12 myotubes are cultured in high-glucose medium (4.5 g/L), which may alter EL-EPS responses. In this study, we evaluate the metabolic effects of EL-EPS under the high- and low-glucose (1.0 g/L) conditions to understand how substrate availability affects the myotube response to EL-EPS. The C2C12 myotube, media, and cell-free media metabolites were analyzed using untargeted nuclear magnetic resonance (NMR)-based metabolomics. Furthermore, translational and metabolic changes and possible exerkine effects were analyzed. EL-EPS enhanced substrate utilization as well as production and secretion of lactate, acetate, 3-hydroxybutyrate, and branched-chain fatty acids (BCFAs). The increase in BCFAs correlated with branched-chain amino acids (BCAAs) and BCFAs were strongly decreased when myotubes were cultured without BCAAs suggesting the action of acyl-CoA thioesterases on BCAA catabolites. Notably, not all EL-EPS responses were augmented by high glucose because EL-EPS increased phosphorylated c-Jun N-terminal kinase and interleukin-6 secretion independent of glucose availability. Administration of acetate and EL-EPS conditioned media on HepG2 hepatocytes had no adverse effects on lipolysis or triacylglycerol content. Our results demonstrate that unlike in cell-free media, the C2C12 myotube and media metabolites were affected by EL-EPS, particularly under high-glucose condition suggesting that media composition should be considered in future EL-EPS studies. Furthermore, acetate and BCFAs were identified as putative exerkines warranting more research.NEW & NOTEWORTHY The present study examined for the first time the metabolome of 1) C2C12 myotubes, 2) their growth media, and 3) cell-free media after exercise-like electrical pulse stimulation under distinct nutritional loads. We report that myotubes grown under high-glucose conditions had greater responsiveness to EL-EPS when compared with lower glucose availability conditions and increased media content of acetate and branched-chain fatty acids suggests they might act as putative exerkines warranting further research.
Collapse
Affiliation(s)
- Juulia H Lautaoja
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Thomas M O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sakari Mäntyselkä
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Juuli Peräkylä
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
25
|
Influences of the IL-6 cytokine family on bone structure and function. Cytokine 2021; 146:155655. [PMID: 34332274 DOI: 10.1016/j.cyto.2021.155655] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
The IL-6 family of cytokines comprises a large group of cytokines that all act via the formation of a signaling complex that includes the glycoprotein 130 (gp130) receptor. Despite this, many of these cytokines have unique roles that regulate the activity of bone forming osteoblasts, bone resorbing osteoclasts, bone-resident osteocytes, and cartilage cells (chondrocytes). These include specific functions in craniofacial development, longitudinal bone growth, and the maintenance of trabecular and cortical bone structure, and have been implicated in musculoskeletal pathologies such as craniosynostosis, osteoporosis, rheumatoid arthritis, osteoarthritis, and heterotopic ossifications. This review will work systematically through each member of this family and provide an overview and an update on the expression patterns and functions of each of these cytokines in the skeleton, as well as their negative feedback pathways, particularly suppressor of cytokine signaling 3 (SOCS3). The specific cytokines described are interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM), leukemia inhibitory factor (LIF), cardiotrophin 1 (CT-1), ciliary neurotrophic factor (CNTF), cardiotrophin-like cytokine factor 1 (CLCF1), neuropoietin, humanin and interleukin 27 (IL-27).
Collapse
|
26
|
IL-6 family cytokines as potential therapeutic strategies to treat metabolic diseases. Cytokine 2021; 144:155549. [PMID: 33962843 DOI: 10.1016/j.cyto.2021.155549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Metabolic disease is highly prevalent. Here we discuss the therapeutic utility of using gp130 receptor ligands as a therapeutic strategy to treat metabolic disease.
Collapse
|
27
|
Garg R, Kumariya S, Katekar R, Verma S, Goand UK, Gayen JR. JNK signaling pathway in metabolic disorders: An emerging therapeutic target. Eur J Pharmacol 2021; 901:174079. [PMID: 33812885 DOI: 10.1016/j.ejphar.2021.174079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Metabolic Syndrome is a multifactorial disease associated with increased risk of cardiovascular disorders, type 2 diabetes mellitus, fatty liver disease, etc. Various stress stimuli such as reactive oxygen species, endoplasmic reticulum stress, mitochondrial dysfunction, increased cytokines, or free fatty acids are known to aggravate progressive development of hyperglycemia and hyperlipidemia. Although the exact mechanism contributing to altered metabolism is unclear. Evidence suggests stress kinase role to be a crucial one in metabolic syndrome. Stress kinase, c-jun N-terminal kinase activation (JNK) is involved in various metabolic manifestations including obesity, insulin resistance, fatty liver disease as well as cardiometabolic disorders. It emerged as a foremost mediator in regulating metabolism in the liver, skeletal muscle, adipose tissue as well as pancreatic β cells. It has three isoforms each having a unique and tissue-specific role in altered metabolism. Current findings based on genetic manipulation or chemical inhibition studies identified JNK isoforms to play a central role in the regulation of whole-body metabolism, suggesting it to be a novel therapeutic target. Hence, it is imperative to elucidate its role in metabolic syndrome onset and progression. The purpose of this review is to elucidate in vitro and in vivo implications of JNK signaling along with the therapeutic strategy to inhibit specific isoform. Since metabolic syndrome is an array of diseases and complex pathway, carefully examining each tissue will be important for specific treatment strategies.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjana Kumariya
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
28
|
Yeo M, Chae S, Kim G. An in vitro model using spheroids-laden nanofibrous structures for attaining high degree of myoblast alignment and differentiation. Am J Cancer Res 2021; 11:3331-3347. [PMID: 33537090 PMCID: PMC7847672 DOI: 10.7150/thno.53928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
A spheroid is an aggregation of single cells with structural and functional characteristics similar to those of 3D native tissues, and it has been utilized as one of the typical in vitro three-dimensional (3D) cell models. Scaffold-free spheroids provide outstanding reflection of tissue complexity in a 3D in vivo-like environment, but they can neither fabricate realistic macroscale 3D complex structures without avoiding necrosis nor receive direct external stimuli (i.e., stimuli from mechanical or topographical cues). Here, we propose a spheroid-laden electrospinning process to obtain in vitro model achieved using the synergistic effect of the unique bioactive components provided by the spheroids and stimulating effects provided by the aligned nanofibers. Methods: To show the functional activity of the spheroid-laden structures, we used myoblast-spheroids to obtain skeletal muscle, comprising highly aligned myotubes, utilizing an uniaxially arranged topographical cue. The spheroid-electrospinning was used to align spheroids directly by embedding them in aligned alginate nanofibers, which were controlled with various materials and processing parameters. Results: The spheroids laden in the alginate nanofibers showed high cell viability (>90%) and was compared with that of a cell-laden alginate nanofiber that was electrospun with single cells. Consequently, the spheroids laden in the aligned nanofibers showed a significantly higher degree of myotube formation and maturation. Conclusion: Results suggested that the in vitro model using electrospun spheroids could potentially be employed to understand myogenic responses for various in vitro drug tests.
Collapse
|
29
|
Lazure F, Blackburn DM, Corchado AH, Sahinyan K, Karam N, Sharanek A, Nguyen D, Lepper C, Najafabadi HS, Perkins TJ, Jahani-Asl A, Soleimani VD. Myf6/MRF4 is a myogenic niche regulator required for the maintenance of the muscle stem cell pool. EMBO Rep 2020; 21:e49499. [PMID: 33047485 PMCID: PMC7726801 DOI: 10.15252/embr.201949499] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
The function and maintenance of muscle stem cells (MuSCs) are tightly regulated by signals originating from their niche environment. Skeletal myofibers are a principle component of the MuSC niche and are in direct contact with the muscle stem cells. Here, we show that Myf6 establishes a ligand/receptor interaction between muscle stem cells and their associated muscle fibers. Our data show that Myf6 transcriptionally regulates a broad spectrum of myokines and muscle‐secreted proteins in skeletal myofibers, including EGF. EGFR signaling blocks p38 MAP kinase‐induced differentiation of muscle stem cells. Homozygous deletion of Myf6 causes a significant reduction in the ability of muscle to produce EGF, leading to a deregulation in EGFR signaling. Consequently, although Myf6‐knockout mice are born with a normal muscle stem cell compartment, they undergo a progressive reduction in their stem cell pool during postnatal life due to spontaneous exit from quiescence. Taken together, our data uncover a novel role for Myf6 in promoting the expression of key myokines, such as EGF, in the muscle fiber which prevents muscle stem cell exhaustion by blocking their premature differentiation.
Collapse
Affiliation(s)
- Felicia Lazure
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Aldo H Corchado
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Korin Sahinyan
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Nabila Karam
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Ahmad Sharanek
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Duy Nguyen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada.,Faculty of Medicine, Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
30
|
Exercise-Induced Myokines can Explain the Importance of Physical Activity in the Elderly: An Overview. Healthcare (Basel) 2020; 8:healthcare8040378. [PMID: 33019579 PMCID: PMC7712334 DOI: 10.3390/healthcare8040378] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
Physical activity has been found to aid the maintenance of health in the elderly. Exercise-induced skeletal muscle contractions lead to the production and secretion of many small proteins and proteoglycan peptides called myokines. Thus, studies on myokines are necessary for ensuring the maintenance of skeletal muscle health in the elderly. This review summarizes 13 myokines regulated by physical activity that are affected by aging and aims to understand their potential roles in metabolic diseases. We categorized myokines into two groups based on regulation by aerobic and anaerobic exercise. With aging, the secretion of apelin, β-aminoisobutyric acid (BAIBA), bone morphogenetic protein 7 (BMP-7), decorin, insulin-like growth factor 1 (IGF-1), interleukin-15 (IL-15), irisin, stromal cell-derived factor 1 (SDF-1), sestrin, secreted protein acidic rich in cysteine (SPARC), and vascular endothelial growth factor A (VEGF-A) decreased, while that of IL-6 and myostatin increased. Aerobic exercise upregulates apelin, BAIBA, IL-15, IL-6, irisin, SDF-1, sestrin, SPARC, and VEGF-A expression, while anaerobic exercise upregulates BMP-7, decorin, IGF-1, IL-15, IL-6, irisin, and VEGF-A expression. Myostatin is downregulated by both aerobic and anaerobic exercise. This review provides a rationale for developing exercise programs or interventions that maintain a balance between aerobic and anaerobic exercise in the elderly.
Collapse
|
31
|
Ducy P. Bone Regulation of Insulin Secretion and Glucose Homeostasis. Endocrinology 2020; 161:5895464. [PMID: 32822470 DOI: 10.1210/endocr/bqaa149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Abstract
For centuries our image of the skeleton has been one of an inert structure playing a supporting role for muscles and a protective role for inner organs like the brain. Cell biology and physiology modified this view in the 20st century by defining the constant interplay between bone-forming and bone resorbing cells that take place during bone growth and remodeling, therefore demonstrating that bone is as alive as any other tissues in the body. During the past 40 years human and, most important, mouse genetics, have allowed not only the refinement of this notion by identifying the many genes and regulatory networks responsible for the crosstalk existing between bone cells, but have redefined the role of bone by showing that its influence goes way beyond its own physiology. Among its newly identified functions is the regulation of energy metabolism by 2 bone-derived hormones, osteocalcin and lipocalin-2. Their biology and respective roles in this process are the topic of this review.
Collapse
Affiliation(s)
- Patricia Ducy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
32
|
Murphy RM, Watt MJ, Febbraio MA. Metabolic communication during exercise. Nat Metab 2020; 2:805-816. [PMID: 32747791 DOI: 10.1038/s42255-020-0258-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022]
Abstract
The coordination of nutrient sensing, delivery, uptake and utilization is essential for maintaining cellular, tissue and whole-body homeostasis. Such synchronization can be achieved only if metabolic information is communicated between the cells and tissues of the entire organism. During intense exercise, the metabolic demand of the body can increase approximately 100-fold. Thus, exercise is a physiological state in which intertissue communication is of paramount importance. In this Review, we discuss the physiological processes governing intertissue communication during exercise and the molecules mediating such cross-talk.
Collapse
Affiliation(s)
- Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
33
|
Abstract
The skeletal muscle is the largest organ in the body, by mass. It is also the regulator of glucose homeostasis, responsible for 80% of postprandial glucose uptake from the circulation. Skeletal muscle is essential for metabolism, both for its role in glucose uptake and its importance in exercise and metabolic disease. In this article, we give an overview of the importance of skeletal muscle in metabolism, describing its role in glucose uptake and the diseases that are associated with skeletal muscle metabolic dysregulation. We focus on the role of skeletal muscle in peripheral insulin resistance and the potential for skeletal muscle-targeted therapeutics to combat insulin resistance and diabetes, as well as other metabolic diseases like aging and obesity. In particular, we outline the possibilities and pitfalls of the quest for exercise mimetics, which are intended to target the molecular mechanisms underlying the beneficial effects of exercise on metabolic disease. We also provide a description of the molecular mechanisms that regulate skeletal muscle glucose uptake, including a focus on the SNARE proteins, which are essential regulators of glucose transport into the skeletal muscle. © 2020 American Physiological Society. Compr Physiol 10:785-809, 2020.
Collapse
Affiliation(s)
- Karla E. Merz
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
34
|
Laurens C, Parmar A, Murphy E, Carper D, Lair B, Maes P, Vion J, Boulet N, Fontaine C, Marquès M, Larrouy D, Harant I, Thalamas C, Montastier E, Caspar-Bauguil S, Bourlier V, Tavernier G, Grolleau JL, Bouloumié A, Langin D, Viguerie N, Bertile F, Blanc S, de Glisezinski I, O'Gorman D, Moro C. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight 2020; 5:131870. [PMID: 32106110 DOI: 10.1172/jci.insight.131870] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/20/2020] [Indexed: 01/03/2023] Open
Abstract
We hypothesized that skeletal muscle contraction produces a cellular stress signal, triggering adipose tissue lipolysis to sustain fuel availability during exercise. The present study aimed at identifying exercise-regulated myokines, also known as exerkines, able to promote lipolysis. Human primary myotubes from lean healthy volunteers were submitted to electrical pulse stimulation (EPS) to mimic either acute intense or chronic moderate exercise. Conditioned media (CM) experiments with human adipocytes were performed. CM and human plasma samples were analyzed using unbiased proteomic screening and/or ELISA. Real-time qPCR was performed in cultured myotubes and muscle biopsy samples. CM from both acute intense and chronic moderate exercise increased basal lipolysis in human adipocytes. Growth and differentiation factor 15 (GDF15) gene expression and secretion increased rapidly upon skeletal muscle contraction. GDF15 protein was upregulated in CM from both acute and chronic exercise-stimulated myotubes. We further showed that physiological concentrations of recombinant GDF15 protein increased lipolysis in human adipose tissue, while blocking GDF15 with a neutralizing antibody abrogated EPS CM-mediated lipolysis. We herein provide the first evidence to our knowledge that GDF15 is a potentially novel exerkine produced by skeletal muscle contraction and able to target human adipose tissue to promote lipolysis.
Collapse
Affiliation(s)
- Claire Laurens
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France.,CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Anisha Parmar
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Enda Murphy
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Deborah Carper
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Benjamin Lair
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Pauline Maes
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Julie Vion
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Nathalie Boulet
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Coralie Fontaine
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Marie Marquès
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Dominique Larrouy
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Isabelle Harant
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Claire Thalamas
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Inserm, Clinical Investigation Center CIC 1436, Toulouse, France.,Departments of Biochemistry and Nutrition, Physiology, Plastic Surgery and Clinical Investigation Center CIC 1436, Toulouse University Hospitals, Toulouse, France
| | - Emilie Montastier
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France.,Departments of Biochemistry and Nutrition, Physiology, Plastic Surgery and Clinical Investigation Center CIC 1436, Toulouse University Hospitals, Toulouse, France
| | - Sylvie Caspar-Bauguil
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France.,Departments of Biochemistry and Nutrition, Physiology, Plastic Surgery and Clinical Investigation Center CIC 1436, Toulouse University Hospitals, Toulouse, France
| | - Virginie Bourlier
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Geneviève Tavernier
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Jean-Louis Grolleau
- Departments of Biochemistry and Nutrition, Physiology, Plastic Surgery and Clinical Investigation Center CIC 1436, Toulouse University Hospitals, Toulouse, France
| | - Anne Bouloumié
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Dominique Langin
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France.,Departments of Biochemistry and Nutrition, Physiology, Plastic Surgery and Clinical Investigation Center CIC 1436, Toulouse University Hospitals, Toulouse, France
| | - Nathalie Viguerie
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Fabrice Bertile
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Stéphane Blanc
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Isabelle de Glisezinski
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France.,Departments of Biochemistry and Nutrition, Physiology, Plastic Surgery and Clinical Investigation Center CIC 1436, Toulouse University Hospitals, Toulouse, France
| | - Donal O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Cedric Moro
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| |
Collapse
|
35
|
Daou HN. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. Am J Physiol Regul Integr Comp Physiol 2020; 318:R296-R310. [DOI: 10.1152/ajpregu.00147.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a complicated disorder of extreme, progressive skeletal muscle wasting. It is directed by metabolic alterations and systemic inflammation dysregulation. Numerous studies have demonstrated that increased systemic inflammation promotes this type of cachexia and have suggested that cytokines are implicated in the skeletal muscle loss. Exercise is firmly established as an anti-inflammatory therapy that can attenuate or even reverse the process of muscle wasting in cancer cachexia. The interleukin IL-6 is generally considered to be a key player in the development of the microenvironment of malignancy; it promotes tumor growth and metastasis by acting as a bridge between chronic inflammation and cancerous tissue and it also induces skeletal muscle atrophy and protein breakdown. Paradoxically, a beneficial role for IL-6 has also been identified recently, and that is its status as a “founding member” of the myokine class of proteins. Skeletal muscle is an important source of circulating IL-6 in people who participate in exercise training. IL-6 acts as an anti-inflammatory myokine by inhibiting TNFα and improving glucose uptake through the stimulation of AMPK signaling. This review discusses the action of IL-6 in skeletal muscle tissue dysfunction and the role of IL-6 as an “exercise factor” that modulates the immune system. This review also sheds light on the main considerations related to the treatment of muscle wasting in cancer cachexia.
Collapse
|
36
|
Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat Rev Immunol 2019; 19:563-572. [DOI: 10.1038/s41577-019-0177-9] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Klimanova EA, Sidorenko SV, Smolyaninova LV, Kapilevich LV, Gusakova SV, Lopina OD, Orlov SN. Ubiquitous and cell type-specific transcriptomic changes triggered by dissipation of monovalent cation gradients in rodent cells: Physiological and pathophysiological implications. CURRENT TOPICS IN MEMBRANES 2019; 83:107-149. [PMID: 31196602 DOI: 10.1016/bs.ctm.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevation of [Na+]i/[K+]i-ratio is considered as one of the major signals triggering transcriptomic changes in various cells types. In this study, we identified ubiquitous and cell type-specific [Formula: see text] -sensitive genes by comparative analysis of transcriptomic changes in ouabain-treated rat aorta smooth muscle cells and rat aorta endothelial cells (RASMC and RAEC, respectively), rat cerebellar granule cells (RCGC), and mouse C2C12 myoblasts. Exposure of the cells to ouabain increased intracellular Na+ content by ~14, 8, 7, and 6-fold and resulted in appearance of 7577, 2698, 2120, and 1146 differentially expressed transcripts in RAEC, RASMC, C2C12, and RCGC, respectively. Eighty-three genes were found as the intersection of the four sets of identified transcripts corresponding to each cell type and are classified as ubiquitous. Among the 10 top upregulated ubiquitous transcripts are the following: Dusp6, Plk3, Trib1, Ccl7, Mafk, Atf3, Ptgs2, Cxcl1, Spry4, and Coq10b. Unique transcripts whose expression is cell-specific include 4897, 1523, 789, and 494 transcripts for RAEC, RASMC, C2C12, and RCGC, respectively. The role of gene expression and signal pathways induced by dissipation of transmembrane gradient of monovalent cations in the development of various diseases is discussed with special attention to cardiovascular and pulmonary illnesses.
Collapse
Affiliation(s)
- Elizaveta A Klimanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia.
| | - Svetlana V Sidorenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Larisa V Smolyaninova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia
| | | | | | - Olga D Lopina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei N Orlov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
38
|
Kang HM, Lee JS, Lee YH, Kim MS, Park HG, Jeong CB, Lee JS. Body size-dependent interspecific tolerance to cadmium and their molecular responses in the marine rotifer Brachionus spp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:195-202. [PMID: 30500606 DOI: 10.1016/j.aquatox.2018.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/18/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Although several studies have reported on different interspecific sensitivities in response to various toxicants, the response mechanisms are still poorly understood. Here, we investigate the interspecific toxicity of cadmium (Cd) and its mechanism using three marine rotifer Brachionus spp. that are distinguishable by body size, which is considered the most significant indicator of phenotypic difference. The body sizes of B. plicatilis, B. koreanus, and B. rotundiformis are significantly different throughout their life cycles (egg, neonate, and adult), with the smaller rotifer exhibiting higher sensitivity to Cd. To investigate the mechanisms that result in body size-dependent tolerance to Cd, metabolic and Cd bioaccumulation rates were investigated. Both rates have shown a significant correlation with body size, indicating that body size and its variables are important factors in determining Cd tolerance in Brachionus spp. In addition, similar patterns that further explain body size-dependent tolerance are shown in the phosphorylation status of mitogen-activated protein kinases, reactive oxygen species level, and antioxidant enzymatic activities. Our study provides valuable insight into size- and species-dependent toxicity mechanisms of species in the same genus.
Collapse
Affiliation(s)
- Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
39
|
Sidorenko S, Klimanova E, Milovanova K, Lopina OD, Kapilevich LV, Chibalin AV, Orlov SN. Transcriptomic changes in C2C12 myotubes triggered by electrical stimulation: Role of Ca2+i-mediated and Ca2+i-independent signaling and elevated [Na+]i/[K+]i ratio. Cell Calcium 2018; 76:72-86. [DOI: 10.1016/j.ceca.2018.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
|
40
|
Nylén C, Aoi W, Abdelmoez AM, Lassiter DG, Lundell LS, Wallberg-Henriksson H, Näslund E, Pillon NJ, Krook A. IL6 and LIF mRNA expression in skeletal muscle is regulated by AMPK and the transcription factors NFYC, ZBTB14, and SP1. Am J Physiol Endocrinol Metab 2018; 315:E995-E1004. [PMID: 29688769 DOI: 10.1152/ajpendo.00398.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) controls glucose and lipid metabolism and modulates inflammatory responses to maintain metabolic and inflammatory homeostasis during low cellular energy levels. The AMPK activator 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) interferes with inflammatory pathways in skeletal muscle, but the mechanisms are undefined. We hypothesized that AMPK activation reduces cytokine mRNA levels by blocking transcription through one or several transcription factors. Three skeletal muscle models were used to study AMPK effects on cytokine mRNA: human skeletal muscle strips obtained from healthy men incubated in vitro, primary human muscle cells, and rat L6 cells. In all three skeletal muscle systems, AICAR acutely reduced cytokine mRNA levels. In L6 myotubes treated with the transcriptional blocker actinomycin D, AICAR addition did not further reduce Il6 or leukemia inhibitory factor ( Lif) mRNA, suggesting that AICAR modulates cytokine expression through regulating transcription rather than mRNA stability. A cross-species bioinformatic approach identified novel transcription factors that may regulate LIF and IL6 mRNA. The involvement of these transcription factors was studied after targeted gene-silencing by siRNA. siRNA silencing of the transcription factors nuclear transcription factor Y subunit c ( Nfyc), specificity protein 1 ( Sp1), and zinc finger and BTB domain containing 14 ( Zbtb14), or AMPK α1/α2 subunits, increased constitutive levels of Il6 and Lif. Our results identify novel candidates in the regulation of skeletal muscle cytokine expression and identify AMPK, Nfyc, Sp1, and Zbtb14 as novel regulators of immunometabolic signals from skeletal muscle.
Collapse
Affiliation(s)
- Carolina Nylén
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Wataru Aoi
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences Kyoto Prefectural University , Kyoto , Japan
| | - Ahmed M Abdelmoez
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - David G Lassiter
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Leonidas S Lundell
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Harriet Wallberg-Henriksson
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet , Stockholm , Sweden
| | - Nicolas J Pillon
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Anna Krook
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
41
|
In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflugers Arch 2018; 471:413-429. [PMID: 30291430 DOI: 10.1007/s00424-018-2210-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Exercise provides a cornerstone in the prevention and treatment of several chronic diseases. The use of in vivo exercise models alone cannot fully establish the skeletal muscle-specific mechanisms involved in such health-promoting effects. As such, models that replicate exercise-like effects in vitro provide useful tools to allow investigations that are not otherwise possible in vivo. In this review, we provide an overview of experimental models currently used to induce exercise-like effects in skeletal muscle in vitro. In particular, the appropriateness of electrical pulse stimulation and several pharmacological compounds to resemble exercise, as well as important technical considerations, are addressed. Each model covered herein provides a useful tool to investigate different aspects of exercise with a level of abstraction not possible in vivo. That said, none of these models are perfect under all circumstances, and the choice of model (and terminology) used should be informed by the specific research question whilst accounting for the several inherent limitations of each model. Further work is required to develop and optimise the current experimental models used, such as combination with complementary techniques during treatment, and thereby improve their overall utility and impact within muscle biology research.
Collapse
|
42
|
Skeletal muscle secretion of IL-6 is muscle type specific: Ex vivo evidence. Biochem Biophys Res Commun 2018; 505:146-150. [PMID: 30241947 DOI: 10.1016/j.bbrc.2018.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 01/18/2023]
Abstract
Emerging evidence indicates that skeletal muscle possesses endocrine function to secret myokines. Interleukin 6 (IL-6) is a well-characterized myokine that is involved in regulation of metabolism and muscle function. Metabolism type and contractile dynamics vary in different muscle types. It is not clear, however, if IL-6 secretion differs in different muscle types. In this study, we first established an ex vivo approach to test the inducible muscle secretion. Freshly isolated muscles were incubated in Krebs solution at 37 °C with oxygen supply. Secreted IL-6 in the incubation media was measure using Western blot and ELISA assay. We first confirmed that the IL-6 release was inducible by treating the incubated muscle with a cytokine stimulant. We demonstrated that physiological temperature (37 °C) and O2 supply were essential for the induction of IL-6 release from the incubated muscle, suggesting it is a controlled secretion rather than a spontaneous leak. Using this approach, we found that IL-6 release was only inducible from soleus muscle but not EDL muscle. We further showed that IL-6 protein level was higher in slow oxidative muscle fibers. Moreover, we showed that EDL, although lacks of IL-6 release, surely has inducible secretory function that had different secretory pattern from soleus.
Collapse
|
43
|
Díaz BB, González DA, Gannar F, Pérez MCR, de León AC. Myokines, physical activity, insulin resistance and autoimmune diseases. Immunol Lett 2018; 203:1-5. [PMID: 30194964 DOI: 10.1016/j.imlet.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/22/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022]
Abstract
Myokines are peptides produced and released by myocytes of muscle fibers that influence physiology of muscle and other organs and tissues. They are involved in mediating the beneficial effects that exercise has on health. More than one hundred have been identified and among them are IL6, myostatin, irisin, mionectin and decorin. Physical inactivity leads to an altered response of the secretion of myokines and resistance to them; this leads to a pro-inflammatory state that favors sarcopenia and fat accumulation, promoting the development of cardiovascular diseases, insulin resistance, and diabetes mellitus type 2. Some myokines, including irisin, are responsible for the improvement that exercise produces in many chronic diseases such as type 2 diabetes and cardiovascular diseases, some types of cancer and many autoimmune diseases such as idiopathic inflammatory myopathy, rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease.
Collapse
Affiliation(s)
- Buenaventura Brito Díaz
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Delia Almeida González
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Immunology Section, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Fadoua Gannar
- Laboratory of Biochemistry-Human Nutrition, Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | - M Cristo Rodríguez Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Antonio Cabrera de León
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Facultad de Medicina, Universidad de La Laguna, La Laguna, Spain.
| |
Collapse
|
44
|
Effects of extracellular orotic acid on acute contraction-induced adaptation patterns in C2C12 cells. Mol Cell Biochem 2018; 448:251-263. [DOI: 10.1007/s11010-018-3330-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
|
45
|
Danilov K, Sidorenko S, Milovanova K, Klimanova E, Kapilevich LV, Orlov SN. Electrical pulse stimulation decreases electrochemical Na + and K + gradients in C2C12 myotubes. Biochem Biophys Res Commun 2017; 493:875-878. [DOI: 10.1016/j.bbrc.2017.09.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/23/2017] [Indexed: 11/27/2022]
|
46
|
Nieuwoudt S, Mulya A, Fealy CE, Martelli E, Dasarathy S, Naga Prasad SV, Kirwan JP. In vitro contraction protects against palmitate-induced insulin resistance in C2C12 myotubes. Am J Physiol Cell Physiol 2017; 313:C575-C583. [PMID: 28835436 DOI: 10.1152/ajpcell.00123.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
We are interested in understanding mechanisms that govern the protective role of exercise against lipid-induced insulin resistance, a key driver of type 2 diabetes. In this context, cell culture models provide a level of abstraction that aid in our understanding of cellular physiology. Here we describe the development of an in vitro myotube contraction system that provides this protective effect, and which we have harnessed to investigate lipid-induced insulin resistance. C2C12 myocytes were differentiated into contractile myotubes. A custom manufactured platinum electrode system and pulse stimulator, with polarity switching, provided an electrical pulse stimulus (EPS) (1 Hz, 6-ms pulse width, 1.5 V/mm, 16 h). Contractility was assessed by optical flow flied spot noise mapping and inhibited by application of ammonium acetate. Following EPS, myotubes were challenged with 0.5 mM palmitate for 4 h. Cells were then treated with or without insulin for glucose uptake (30 min), secondary insulin signaling activation (10 min), and phosphoinositide 3-kinase-α (PI3Kα) activity (5 min). Prolonged EPS increased non-insulin-stimulated glucose uptake (83%, P = 0.002), Akt (Thr308) phosphorylation (P = 0.005), and insulin receptor substrate-1 (IRS-1)-associated PI3Kα activity (P = 0.048). Palmitate reduced insulin-specific action on glucose uptake (-49%, P < 0.001) and inhibited insulin-stimulated Akt phosphorylation (P = 0.049) and whole cell PI3Kα activity (P = 0.009). The inhibitory effects of palmitate were completely absent with EPS pretreatment at the levels of glucose uptake, insulin responsiveness, Akt phosphorylation, and whole cell PI3Kα activity. This model suggests that muscle contraction alone is a sufficient stimulus to protect against lipid-induced insulin resistance as evidenced by changes in the proximal canonical insulin-signaling pathway.
Collapse
Affiliation(s)
- Stephan Nieuwoudt
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio.,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Ciarán E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Elizabeth Martelli
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Srinivasan Dasarathy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | | | - John P Kirwan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; .,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|
47
|
Nikolić N, Görgens SW, Thoresen GH, Aas V, Eckel J, Eckardt K. Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise - possibilities and limitations. Acta Physiol (Oxf) 2017; 220:310-331. [PMID: 27863008 DOI: 10.1111/apha.12830] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 11/06/2016] [Indexed: 12/19/2022]
Abstract
The beneficial health-related effects of exercise are well recognized, and numerous studies have investigated underlying mechanism using various in vivo and in vitro models. Although electrical pulse stimulation (EPS) for the induction of muscle contraction has been used for quite some time, its application on cultured skeletal muscle cells of animal or human origin as a model of in vitro exercise is a more recent development. In this review, we compare in vivo exercise and in vitro EPS with regard to effects on signalling, expression level and metabolism. We provide a comprehensive overview of different EPS protocols and their applications, discuss technical aspects of this model including critical controls and the importance of a proper maintenance procedure and finally discuss the limitations of the EPS model.
Collapse
Affiliation(s)
- N. Nikolić
- Department of Pharmaceutical Biosciences; School of Pharmacy; University of Oslo; Oslo Norway
| | - S. W. Görgens
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - G. H. Thoresen
- Department of Pharmaceutical Biosciences; School of Pharmacy; University of Oslo; Oslo Norway
- Department of Pharmacology; Institute of Clinical Medicine; Faculty of Medicine; University of Oslo; Oslo Norway
| | - V. Aas
- Department of Life Sciences and Health; Oslo and Akershus University College of Applied Sciences; Oslo Norway
| | - J. Eckel
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
- German Center for Diabetes Research (DZD e.V.); Düsseldorf Germany
| | - K. Eckardt
- Department of Nutrition; Institute for Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
48
|
Pesta DH, Goncalves RLS, Madiraju AK, Strasser B, Sparks LM. Resistance training to improve type 2 diabetes: working toward a prescription for the future. Nutr Metab (Lond) 2017; 14:24. [PMID: 28270856 PMCID: PMC5335813 DOI: 10.1186/s12986-017-0173-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/14/2017] [Indexed: 01/07/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) is rapidly increasing, and effective strategies to manage and prevent this disease are urgently needed. Resistance training (RT) promotes health benefits through increased skeletal muscle mass and qualitative adaptations, such as enhanced glucose transport and mitochondrial oxidative capacity. In particular, mitochondrial adaptations triggered by RT provide evidence for this type of exercise as a feasible lifestyle recommendation to combat T2D, a disease typically characterized by altered muscle mitochondrial function. Recently, the synergistic and antagonistic effects of combined training and Metformin use have come into question and warrant more in-depth prospective investigations. In the future, clinical intervention studies should elucidate the mechanisms driving RT-mitigated mitochondrial adaptations in muscle and their link to improvements in glycemic control, cholesterol metabolism and other cardiovascular disease risk factors in individuals with T2D.
Collapse
Affiliation(s)
- Dominik H Pesta
- Department of Sport Science, Medical Section, University of Innsbruck, Fürstenweg 185, Innsbruck, Austria.,Department of Visceral, Transplant, and Thoracic Surgery, D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Renata L S Goncalves
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115 USA
| | - Anila K Madiraju
- Salk Institute for Biological Studies, 10010N Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Barbara Strasser
- Biocenter, Medical University Innsbruck, Innrain 80-82, Innsbruck, Austria
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 E. Princeton Street, Orlando, FL 32804 USA.,Sanford Burnham Prebys Medical Discovery Institute, Center for Clinical and Molecular Origins of Disease, Orlando, FL USA
| |
Collapse
|
49
|
Lauterbach MAR, Wunderlich FT. Macrophage function in obesity-induced inflammation and insulin resistance. Pflugers Arch 2017; 469:385-396. [PMID: 28233125 PMCID: PMC5362664 DOI: 10.1007/s00424-017-1955-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
The steadily increasing obesity epidemic affects currently 30% of western populations and is causative for numerous disorders. It has been demonstrated that immune cells such as macrophages reside in or infiltrate metabolic organs under obese conditions and cause the so-called low-grade inflammation or metaflammation that impairs insulin action thus leading to the development of insulin resistance. Here, we report on data that specifically address macrophage biology/physiology in obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- Mario A R Lauterbach
- Institute of Innate Immunity, University Hospital, University of Bonn, Sigmund Freud Str. 25, 53127, Bonn, Germany
| | - F Thomas Wunderlich
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD); Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, Max Planck Institute for Metabolism Research Cologne, University of Cologne, Gleueler Straße 50, 50931, Cologne, Germany.
| |
Collapse
|
50
|
Abreu P, Leal-Cardoso JH, Ceccatto VM. ADAPTAÇÃO DO MÚSCULO ESQUELÉTICO AO EXERCÍCIO FÍSICO: CONSIDERAÇÕES MOLECULARES E ENERGÉTICAS. REV BRAS MED ESPORTE 2017. [DOI: 10.1590/1517-869220172301167371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Os benefícios para a saúde e as adaptações fisiológicas ao exercício regular são amplamente conhecidos e, com o advento das ciências ômicas e moleculares, revelou-se uma complexa rede de vias de sinalização e moléculas reguladoras que coordenam a resposta adaptativa do músculo esquelético ao exercício. As mudanças orgânicas transientes, porém, são cumulativas no pós-exercício. Elas incluem, de forma principal, a transcrição de genes relacionados aos fatores regulatórios da miogênese, ao metabolismo de carboidratos, à mobilização de gorduras, ao transporte e oxidação de substratos, ao metabolismo mitocondrial através da fosforilação oxidativa e, por fim, à regulação transcricional de genes envolvidos na biogênese mitocondrial. Tendo em vista o grande impacto científico, resumiram-se neste trabalho, além de algumas das principais respostas moleculares sofridas pelo músculo esquelético com o exercício físico, fatores que coordenam a plasticidade muscular para o ganho de desempenho. Foram citadas dezenas de biomarcadores ligados a alguns aspectos moleculares das adaptações do músculo esquelético ao exercício físico, algumas principais vias sinalizadoras e o papel mitocondrial, revelando alguns novos paradigmas para o entendimento desta área científica.
Collapse
|