1
|
Watanabe T, Nagai M, Ishibashi Y, Iwasaki M, Mizoguchi M, Nagata M, Imai T, Takato K, Imamura A, Kakuta Y, Teramoto T, Tani M, Matsuda J, Ishida H, Yamasaki S, Okino N, Ito M. Vacuolar sterol β-glucosidase EGCrP2/Sgl1 deficiency in Cryptococcus neoformans: Dysfunctional autophagy and Mincle-dependent immune activation as targets of novel antifungal strategies. PLoS Pathog 2025; 21:e1013089. [PMID: 40273119 PMCID: PMC12061408 DOI: 10.1371/journal.ppat.1013089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Cryptococcus neoformans (Cn) is a fungal pathogen responsible for cryptococcal meningitis, which accounts for 15% of AIDS-related deaths. Recent studies have shown that the absence of sterol β-glucosidase (EGCrP2, also known as Sgl1) in Cn significantly attenuates its virulence in a mouse infection model. However, the mechanisms underlying this virulence attenuation remain unclear. In this study, we observed a significant increase in dead cells after 3 days of culture of SGL1-deficient Cn (sgl1Δ, KO) at 37°C, compared with wild-type (WT) and SGL1-reconstituted Cn (sgl1Δ::SGL1, RE). qPCR analysis of WT, KO, and RE strains indicated that autophagy-related genes (ATGs) were significantly downregulated in KO strain. Atg8-dependent GFP translocation to the vacuole was significantly delayed in KO strain under starvation conditions. This autophagy dysfunction was identified as the primary cause of the increased cell death observed in KO strain under nitrogen starvation conditions at 37°C. EGCrP2/Sgl1 is predominantly localized in the vacuoles of Cn, and its deletion results in the accumulation of not only ergosterol β-glucoside (EG), as previously reported, but also acylated EGs (AEGs). AEGs were much more potent than EG in activating the C-type lectin receptor Mincle in mice, rats, and humans. AEGs were released from KO strain via extracellular vesicles (EVs). Chemically synthesized 18:1-EG and EVs derived from KO strain, but not WT or RE strains, enhanced cytokine production in murine and human dendritic cells. AEG-dependent cytokine production was markedly reduced in dendritic cells from Mincle-deficient mice, and the number of KO strain in lung tissue from Mincle-deficient mice was substantially higher than wild-type mice on day 3 after infection. Intranasal administration of acylated sitosterol β-glucoside increased Mincle expression and cytokine production and reduced the Cn burden in lung tissue of Cn-infected mice. These findings suggest that autophagy dysfunction in KO strain and the host innate immune response via the AEG-dependent Mincle activation are critical in reducing Cn virulence in mice.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Masayoshi Nagai
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mio Iwasaki
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masaki Mizoguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masahiro Nagata
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takashi Imai
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Koichi Takato
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Usmani SA, Kumar M, Arya K, Ali B, Bhardwaj N, Gaur NA, Prasad R, Singh A. Beyond membrane components: uncovering the intriguing world of fungal sphingolipid synthesis and regulation. Res Microbiol 2023; 174:104087. [PMID: 37328042 DOI: 10.1016/j.resmic.2023.104087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Sphingolipids (SLs) are essential to fungal survival and represent a major class of structural and signaling lipids. Unique SL structures and their biosynthetic enzymes in filamentous fungi make them an ideal drug target. Several studies have contributed towards the functional characterization of specific SL metabolism genes, which have been complemented by advanced lipidomics methods which allow accurate identification and quantification of lipid structures and pathway mapping. These studies have provided a better understanding of SL biosynthesis, degradation and regulation networks in filamentous fungi, which are discussed and elaborated here.
Collapse
Affiliation(s)
- Sana Akhtar Usmani
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Khushboo Arya
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Basharat Ali
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand 249404, India
| | - Naseem Akhtar Gaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India.
| |
Collapse
|
3
|
Ito M, Ishibashi Y, Watanabe T, Iwaki J, Kurita T, Okino N. Assays and Utilization of Enzymes Involved in Glycolipid Metabolism in Bacteria and Fungi. Methods Mol Biol 2023; 2613:229-256. [PMID: 36587083 DOI: 10.1007/978-1-0716-2910-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microbial glycosphingolipid (GSL)-degrading enzymes with unique specificity are useful tools for GSL research. On the other hand, some microbial glycolipids, not only GSLs but also steryl glucosides, are closely related to pathogenicity, and, thus, the metabolism of microbial glycolipids is attracting attention as a target for antibiotics. This chapter describes the assays and utilization of microbial enzymes useful for glycolipid research and those involved in pathogenicity or host immune reactions.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takashi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.,Department of Pathophysiology and Metabolism, Kawasaki Medical School, Okayama, Japan
| | - Jun Iwaki
- Tokyo Chemical Industry Co., Ltd., Tokyo, Japan
| | | | - Nozomu Okino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Pereira de Sa N, Del Poeta M. Sterylglucosides in Fungi. J Fungi (Basel) 2022; 8:1130. [PMID: 36354897 PMCID: PMC9698648 DOI: 10.3390/jof8111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sterylglucosides (SGs) are sterol conjugates widely distributed in nature. Although their universal presence in all living organisms suggests the importance of this kind of glycolipids, they are yet poorly understood. The glycosylation of sterols confers a more hydrophilic character, modifying biophysical properties of cell membranes and altering immunogenicity of the cells. In fungi, SGs regulate different cell pathways to help overcome oxygen and pH challenges, as well as help to accomplish cell recycling and other membrane functions. At the same time, the level of these lipids is highly controlled, especially in wild-type fungi. In addition, modulating SGs metabolism is becoming a novel tool for vaccine and antifungal development. In the present review, we bring together multiple observations to emphasize the underestimated importance of SGs for fungal cell functions.
Collapse
Affiliation(s)
- Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY 11794, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
5
|
Ishibashi Y. Functions and applications of glycolipid-hydrolyzing microbial glycosidases. Biosci Biotechnol Biochem 2022; 86:974-984. [PMID: 35675217 DOI: 10.1093/bbb/zbac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/29/2022] [Indexed: 11/13/2022]
Abstract
Glycolipids are important components of cell membranes in several organisms. The major glycolipids in mammals are glycosphingolipids (GSLs), which are composed of ceramides. In mammals, GSLs are degraded stepwise from the non-reducing end of the oligosaccharides via exo-type glycosidases. However, endoglycoceramidase (EGCase), an endo-type glycosidase found in actinomycetes, is a unique enzyme that directly acts on the glycosidic linkage between oligosaccharides and ceramides to generate intact oligosaccharides and ceramides. Three molecular species of EGCase, namely EGCase I, EGCase II, and endogalactosylceramidase, have been identified based on their substrate specificity. EGCrP1 and EGCrP2, which are homologs of EGCase in pathogenic fungi, were identified as the first fungal glucosylceramide- and sterylglucoside-hydrolyzing glycosidases, respectively. These enzymes are promising targets for antifungal drugs against pathogenic fungi. This review describes the functions and properties of these microbial glycolipid-degrading enzymes, the molecular basis of their differential substrate specificity, and their applications.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
6
|
Jiang C, Ge J, He B, Zeng B. Glycosphingolipids in Filamentous Fungi: Biological Roles and Potential Applications in Cosmetics and Health Foods. Front Microbiol 2021; 12:690211. [PMID: 34367090 PMCID: PMC8341767 DOI: 10.3389/fmicb.2021.690211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Filamentous fungi are a group of economically important fungi used in the production of fermented foods, industrial enzymes, and secondary metabolites. Glycosphingolipids (GSLs) as constituents of lipid rafts are involved in growth, differentiation, and response to environment stress in filamentous fungi. In addition to these key roles, GSLs are also important in the barrier function of skin to retain moisture as a moisturizing ingredient in cosmetics or health products for their strong biological activity as a functional component. GSLs found in filamentous fungi are divided in two major classes: neutral GSLs (glycosylceramides), glucosylceramides (GlcCers), and/or galactosylceramides (GalCers) and acidic GSLs, mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C]. Glycosylceramides are one of the abundant GSLs in Aspergillus and known to improve skin-barrier function and prevent intestinal impairment as a prebiotic. Some filamentous fungi of Aspergillus spp., synthesizing both GlcCer and GalCer, would be an amenable source to exploit glycosylceramides that wildly adding in cosmetics as moisturizing ingredients or health food as dietary supplements. In this minireview, the types, structures, and biosynthetic pathways of GSLs in filamentous fungi, and the relevance of GSLs in fungal growth, spore formation, and environmental stress response are explained. Furthermore, the advantage, potential development, and application of GlcCer and GalCer from filamentous fungi Aspergillus spp. are also investigate based on the use of plant GlcCer in health foods and cosmetics.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jinxin Ge
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
7
|
Davis J, Pares R, Palmgren M, López-Marqués R, Harper J. A potential pathway for flippase-facilitated glucosylceramide catabolism in plants. PLANT SIGNALING & BEHAVIOR 2020; 15:1783486. [PMID: 32857675 PMCID: PMC8550518 DOI: 10.1080/15592324.2020.1783486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Aminophospholipid ATPase (ALA) family of plant lipid flippases is involved in the selective transport of lipids across membrane bilayers. Recently, we demonstrated that double mutants lacking both ALA4 and -5 are severely dwarfed. Dwarfism in ala4/5 mutants was accompanied by cellular elongation defects and various lipidomic perturbations, including a 1.4-fold increase in the accumulation of glucosylceramides (GlcCers) relative to total sphingolipid content. Here, we present a potential model for flippase-facilitated GlcCer catabolism in plants, where a combination of ALA flippases transport GlcCers to cytosolic membrane surfaces where they are degraded by Glucosylceramidases (GCDs). GCDs remove the glucose headgroup from GlcCers to produce a ceramide (Cer) backbone, which can be further degraded to sphingoid bases (Sphs, e.g, phytosphingosine) and fatty acids (FAs). In the absence of GlcCer-transporting flippases, GlcCers are proposed to accumulate on extracytoplasmic (i.e., apoplastic) or lumenal membrane surfaces. As GlcCers are potential precursors for Sph production, impaired GlcCer catabolism might also result in the decreased production of the secondary messenger Sph-1-phosphate (Sph-1-P, e.g., phytosphingosine-1-P), a regulator of cell turgor. Importantly, we postulate that either GlcCer accumulation or reduced Sph-1-P signaling might contribute to the growth reductions observed in ala4/5 mutants. Similar catabolic pathways have been proposed for humans and yeast, suggesting flippase-facilitated GlcCer catabolism is conserved across eukaryotes.
Collapse
Affiliation(s)
- J.A. Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
- CONTACT Davis, J.A. Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV89557, USA
| | - R.B. Pares
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - M. Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - R.L. López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - J.F. Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
8
|
Dai GY, Yin J, Li KE, Chen DK, Liu Z, Bi FC, Rong C, Yao N. The Arabidopsis AtGCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49930-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Dai GY, Yin J, Li KE, Chen DK, Liu Z, Bi FC, Rong C, Yao N. The Arabidopsis AtGCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides. J Biol Chem 2019; 295:717-728. [PMID: 31819005 DOI: 10.1074/jbc.ra119.011274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/01/2019] [Indexed: 11/06/2022] Open
Abstract
Cellular membranes contain many lipids, some of which, such as sphingolipids, have important structural and signaling functions. The common sphingolipid glucosylceramide (GlcCer) is present in plants, fungi, and animals. As a major plant sphingolipid, GlcCer is involved in the formation of lipid microdomains, and the regulation of GlcCer is key for acclimation to stress. Although the GlcCer biosynthetic pathway has been elucidated, little is known about GlcCer catabolism, and a plant GlcCer-degrading enzyme (glucosylceramidase (GCD)) has yet to be identified. Here, we identified AtGCD3, one of four Arabidopsis thaliana homologs of human nonlysosomal glucosylceramidase, as a plant GCD. We found that recombinant AtGCD3 has a low Km for the fluorescent lipid C6-NBD GlcCer and preferentially hydrolyzes long acyl-chain GlcCer purified from Arabidopsis leaves. Testing of inhibitors of mammalian glucosylceramidases revealed that a specific inhibitor of human β-glucosidase 2, N-butyldeoxynojirimycin, inhibits AtGCD3 more effectively than does a specific inhibitor of human β-glucosidase 1, conduritol β-epoxide. We also found that Glu-499 and Asp-647 in AtGCD3 are vital for GCD activity. GFP-AtGCD3 fusion proteins mainly localized to the plasma membrane or the endoplasmic reticulum membrane. No obvious growth defects or changes in sphingolipid contents were observed in gcd3 mutants. Our results indicate that AtGCD3 is a plant glucosylceramidase that participates in GlcCer catabolism by preferentially hydrolyzing long-acyl-chain GlcCers.
Collapse
Affiliation(s)
- Guang-Yi Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai-En Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang-Cheng Bi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chan Rong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Ben Bdira F, Artola M, Overkleeft HS, Ubbink M, Aerts JMFG. Distinguishing the differences in β-glycosylceramidase folds, dynamics, and actions informs therapeutic uses. J Lipid Res 2018; 59:2262-2276. [PMID: 30279220 PMCID: PMC6277158 DOI: 10.1194/jlr.r086629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Glycosyl hydrolases (GHs) are carbohydrate-active enzymes that hydrolyze a specific β-glycosidic bond in glycoconjugate substrates; β-glucosidases degrade glucosylceramide, a ubiquitous glycosphingolipid. GHs are grouped into structurally similar families that themselves can be grouped into clans. GH1, GH5, and GH30 glycosidases belong to clan A hydrolases with a catalytic (β/α)8 TIM barrel domain, whereas GH116 belongs to clan O with a catalytic (α/α)6 domain. In humans, GH abnormalities underlie metabolic diseases. The lysosomal enzyme glucocerebrosidase (family GH30), deficient in Gaucher disease and implicated in Parkinson disease etiology, and the cytosol-facing membrane-bound glucosylceramidase (family GH116) remove the terminal glucose from the ceramide lipid moiety. Here, we compare enzyme differences in fold, action, dynamics, and catalytic domain stabilization by binding site occupancy. We also explore other glycosidases with reported glycosylceramidase activity, including human cytosolic β-glucosidase, intestinal lactase-phlorizin hydrolase, and lysosomal galactosylceramidase. Last, we describe the successful translation of research to practice: recombinant glycosidases and glucosylceramide metabolism modulators are approved drug products (enzyme replacement therapies). Activity-based probes now facilitate the diagnosis of enzyme deficiency and screening for compounds that interact with the catalytic pocket of glycosidases. Future research may deepen the understanding of the functional variety of these enzymes and their therapeutic potential.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marta Artola
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marcellus Ubbink
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | | |
Collapse
|
11
|
Esaki S, Nagasawa T, Tanaka H, Tominaga A, Mikami D, Usuki S, Hamajima H, Hanamatsu H, Sakai S, Hama Y, Igarashi Y, Kitagaki H, Mitsutake S. The fungal 9-methyl-sphingadiene is a novel ligand for both PPARγ and GPR120. J Food Biochem 2018. [DOI: 10.1111/jfbc.12624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shota Esaki
- Department of Biological Resource Science, Graduate School of Agriculture; Saga University; Saga Japan
| | - Tomotaka Nagasawa
- Department of Biological Resource Science, Graduate School of Agriculture; Saga University; Saga Japan
| | - Haruka Tanaka
- Department of Biological Resource Science, Graduate School of Agriculture; Saga University; Saga Japan
| | - Aoi Tominaga
- Department of Biological Resource Science, Graduate School of Agriculture; Saga University; Saga Japan
| | | | | | - Hiroshi Hamajima
- Faculty of Agriculture, Department of Environmental Science; Saga University; Saga Japan
| | - Hisatoshi Hanamatsu
- Laboratory of Biomembrane and Biofunctional Chemistry, Frontier Research Center for Advanced Material and Life Science; Hokkaido University; Sapporo Japan
| | - Shota Sakai
- Laboratory of Biomembrane and Biofunctional Chemistry, Frontier Research Center for Advanced Material and Life Science; Hokkaido University; Sapporo Japan
| | - Yoichiro Hama
- Faculty of Agriculture, Department of Biochemistry and Applied Biosciences; Saga University; Saga Japan
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Frontier Research Center for Advanced Material and Life Science; Hokkaido University; Sapporo Japan
| | - Hiroshi Kitagaki
- Faculty of Agriculture, Department of Environmental Science; Saga University; Saga Japan
| | - Susumu Mitsutake
- Faculty of Agriculture, Department of Biochemistry and Applied Biosciences; Saga University; Saga Japan
| |
Collapse
|
12
|
Agustinho DP, Miller LC, Li LX, Doering TL. Peeling the onion: the outer layers of Cryptococcus neoformans. Mem Inst Oswaldo Cruz 2018; 113:e180040. [PMID: 29742198 PMCID: PMC5951675 DOI: 10.1590/0074-02760180040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen
that is ubiquitous in the environment. It causes a deadly meningitis that is
responsible for over 180,000 deaths worldwide each year, including 15% of all
AIDS-related deaths. The high mortality rates for this infection, even with
treatment, suggest a need for improved therapy. Unique characteristics of
C. neoformans may suggest directions for drug discovery.
These include features of three structures that surround the cell: the plasma
membrane, the cell wall around it, and the outermost polysaccharide capsule. We
review current knowledge of the fundamental biology of these fascinating
structures and highlight open questions in the field, with the goal of
stimulating further investigation that will advance basic knowledge and human
health.
Collapse
Affiliation(s)
- Daniel P Agustinho
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Liza C Miller
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucy X Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
14
|
Han YB, Chen LQ, Li Z, Tan YM, Feng Y, Yang GY. Structural Insights into the Broad Substrate Specificity of a Novel Endoglycoceramidase I Belonging to a New Subfamily of GH5 Glycosidases. J Biol Chem 2017; 292:4789-4800. [PMID: 28179425 DOI: 10.1074/jbc.m116.763821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/11/2017] [Indexed: 01/27/2023] Open
Abstract
Endoglycoceramidases (EGCases) specifically hydrolyze the glycosidic linkage between the oligosaccharide and the ceramide moieties of various glycosphingolipids, and they have received substantial attention in the emerging field of glycosphingolipidology. However, the mechanism regulating the strict substrate specificity of these GH5 glycosidases has not been identified. In this study, we report a novel EGCase I from Rhodococcus equi 103S (103S_EGCase I) with remarkably broad substrate specificity. Based on phylogenetic analyses, the enzyme may represent a new subfamily of GH5 glycosidases. The X-ray crystal structures of 103S_EGCase I alone and in complex with its substrates monosialodihexosylganglioside (GM3) and monosialotetrahexosylganglioside (GM1) enabled us to identify several structural features that may account for its broad specificity. Compared with EGCase II from Rhodococcus sp. M-777 (M777_EGCase II), which possesses strict substrate specificity, 103S_EGCase I possesses a longer α7-helix and a shorter loop 4, which forms a larger substrate-binding pocket that could accommodate more extended oligosaccharides. In addition, loop 2 and loop 8 of the enzyme adopt a more open conformation, which also enlarges the oligosaccharide-binding cavity. Based on this knowledge, a rationally designed experiment was performed to examine the substrate specificity of EGCase II. The truncation of loop 4 in M777_EGCase II increased its activity toward GM1 (163%). Remarkably, the S63G mutant of M777_EGCase II showed a broader substrate spectra and significantly increased activity toward bulky substrates (up to >1370-fold for fucosyl-GM1). Collectively, the results presented here reveal the exquisite substrate recognition mechanism of EGCases and provide an opportunity for further engineering of these enzymes.
Collapse
Affiliation(s)
- Yun-Bin Han
- From the State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,the Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, Shanghai 200031, China, and
| | - Liu-Qing Chen
- From the State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo Li
- From the State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Meng Tan
- From the State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- From the State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Yu Yang
- From the State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, .,the Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Santana AG, Tysoe C, Hu G, Kronstad J, Goddard-Borger ED, Withers SG. Fungal Glycolipid Hydrolase Inhibitors and Their Effect on Cryptococcus neoformans. Chembiochem 2017; 18:284-290. [PMID: 27905163 DOI: 10.1002/cbic.201600538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 11/07/2022]
Abstract
Pathogenic fungi kill an estimated 1.3 million people each year. This number is predicted to rise as drug resistance spreads, thus antifungal drugs with novel modes of action are urgently required. Fungal endoglycoceramidase-related proteins 1 and 2 (EGCrP-1 and -2), which hydrolyse glucosylceramide and ergosteryl β-glucoside, respectively, are important for fungal cell growth and have been identified as potential targets for drug development. A library of iminosugar derivatives was screened against EGCrP-1 and -2, and a number of competitive inhibitors with nanomolar affinities were identified. In addition, a mechanism-based inhibitor was shown to form a covalent derivative with EGCrP-2. Nine of the inhibitors were evaluated against Cryptococcus neoformans. Several showed growth inhibitory activity, but only against a C. neoformans strain lacking the outer fungal polysaccharide capsule; this implies that penetration into the cell is a significant handicap for these inhibitors. Pro-drug versions of these inhibitors could address this issue.
Collapse
Affiliation(s)
- Andres G Santana
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Christina Tysoe
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - James Kronstad
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ethan D Goddard-Borger
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
16
|
Rella A, Farnoud AM, Del Poeta M. Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res 2015; 61:63-72. [PMID: 26703191 DOI: 10.1016/j.plipres.2015.11.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022]
Abstract
There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies.
Collapse
Affiliation(s)
- Antonella Rella
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
17
|
Watanabe T, Tani M, Ishibashi Y, Endo I, Okino N, Ito M. Ergosteryl-β-glucosidase (Egh1) involved in sterylglucoside catabolism and vacuole formation inSaccharomyces cerevisiae. Glycobiology 2015; 25:1079-89. [DOI: 10.1093/glycob/cwv045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/23/2015] [Indexed: 12/30/2022] Open
|
18
|
Glucosylceramide Contained in Koji Mold-Cultured Cereal Confers Membrane and Flavor Modification and Stress Tolerance to Saccharomyces cerevisiae during Coculture Fermentation. Appl Environ Microbiol 2015; 81:3688-98. [PMID: 25795678 DOI: 10.1128/aem.00454-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
In nature, different microorganisms create communities through their physiochemical and metabolic interactions. Many fermenting microbes, such as yeasts, lactic acid bacteria, and acetic acid bacteria, secrete acidic substances and grow faster at acidic pH values. However, on the surface of cereals, the pH is neutral to alkaline. Therefore, in order to grow on cereals, microbes must adapt to the alkaline environment at the initial stage of colonization; such adaptations are also crucial for industrial fermentation. Here, we show that the yeast Saccharomyces cerevisiae, which is incapable of synthesizing glucosylceramide (GlcCer), adapted to alkaline conditions after exposure to GlcCer from koji cereal cultured with Aspergillus kawachii. We also show that various species of GlcCer derived from different plants and fungi similarly conferred alkali tolerance to yeast. Although exogenous ceramide also enhanced the alkali tolerance of yeast, no discernible degradation of GlcCer to ceramide was observed in the yeast culture, suggesting that exogenous GlcCer itself exerted the activity. Exogenous GlcCer also increased ethanol tolerance and modified the flavor profile of the yeast cells by altering the membrane properties. These results indicate that GlcCer from A. kawachii modifies the physiology of the yeast S. cerevisiae and demonstrate a new mechanism for cooperation between microbes in food fermentation.
Collapse
|
19
|
Watanabe T, Ishibashi Y, Ito M. Physiological Significance of Glycolipid Catabolism in Cryptococcus neoformans. TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1504.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takashi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
20
|
Watanabe T, Ishibashi Y, Ito M. Physiological Significance of Glycolipid Catabolism in Cryptococcus neoformans (Jpn. Ed.). TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1504.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takashi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
21
|
Watanabe T, Ito T, Goda HM, Ishibashi Y, Miyamoto T, Ikeda K, Taguchi R, Okino N, Ito M. Sterylglucoside catabolism in Cryptococcus neoformans with endoglycoceramidase-related protein 2 (EGCrP2), the first steryl-β-glucosidase identified in fungi. J Biol Chem 2014; 290:1005-19. [PMID: 25361768 DOI: 10.1074/jbc.m114.616300] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368-381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various β-glucosides, including GlcCer, cholesteryl-β-glucoside, ergosteryl-β-glucoside, sitosteryl-β-glucoside, and para-nitrophenyl-β-glucoside, but not α-glucosides or β-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3β-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-β-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl-β-glucosidase identified as well as a missing link in sterylglucoside metabolism in fungi.
Collapse
Affiliation(s)
- Takashi Watanabe
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomoharu Ito
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hatsumi M Goda
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yohei Ishibashi
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomofumi Miyamoto
- the Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazutaka Ikeda
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan, and
| | - Ryo Taguchi
- the Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan
| | - Nozomu Okino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan,
| |
Collapse
|
22
|
Literature-based gene curation and proposed genetic nomenclature for cryptococcus. EUKARYOTIC CELL 2014; 13:878-83. [PMID: 24813190 DOI: 10.1128/ec.00083-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus, a major cause of disseminated infections in immunocompromised patients, kills over 600,000 people per year worldwide. Genes involved in the virulence of the meningitis-causing fungus are being characterized at an increasing rate, and to date, at least 648 Cryptococcus gene names have been published. However, these data are scattered throughout the literature and are challenging to find. Furthermore, conflicts in locus identification exist, so that named genes have been subsequently published under new names or names associated with one locus have been used for another locus. To avoid these conflicts and to provide a central source of Cryptococcus gene information, we have collected all published Cryptococcus gene names from the scientific literature and associated them with standard Cryptococcus locus identifiers and have incorporated them into FungiDB (www.fungidb.org). FungiDB is a panfungal genome database that collects gene information and functional data and provides search tools for 61 species of fungi and oomycetes. We applied these published names to a manually curated ortholog set of all Cryptococcus species currently in FungiDB, including Cryptococcus neoformans var. neoformans strains JEC21 and B-3501A, C. neoformans var. grubii strain H99, and Cryptococcus gattii strains R265 and WM276, and have written brief descriptions of their functions. We also compiled a protocol for gene naming that summarizes guidelines proposed by members of the Cryptococcus research community. The centralization of genomic and literature-based information for Cryptococcus at FungiDB will help researchers communicate about genes of interest, such as those related to virulence, and will further facilitate research on the pathogen.
Collapse
|
23
|
Hanada K. Co-evolution of sphingomyelin and the ceramide transport protein CERT. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:704-19. [PMID: 23845852 DOI: 10.1016/j.bbalip.2013.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022]
Abstract
Life creates many varieties of lipids. The choline-containing sphingophospholipid sphingomyelin (SM) exists ubiquitously or widely in vertebrates and lower animals, but is absent or rare in bacteria, fungi, protists, and plants. In the biosynthesis of SM, ceramide, which is synthesized in the endoplasmic reticulum, is transported to the Golgi region by the ceramide transport protein CERT, probably in a non-vesicular manner, and is then converted to SM by SM synthase, which catalyzes the reaction of phosphocholine transfer from phosphatidylcholine (PtdCho) to ceramide. Recent advances in genomics and lipidomics indicate that the phylogenetic occurrence of CERT and its orthologs is nearly parallel to that of SM. Based on the chemistry of lipids together with evolutionary aspects of SM and CERT, several concepts are here proposed. SM may serve as a chemically inert and robust, but non-covalently interactive lipid class at the outer leaflet of the plasma membrane. The functional domains and peptidic motifs of CERT are separated by exon units, suggesting an exon-shuffling mechanism for the generation of an ancestral CERT gene. CERT may have co-evolved with SM to bypass a competing metabolic reaction at the bifurcated point in the anabolism of ceramide. Human CERT is identical to the splicing variant of human Goodpasture antigen-binding protein (GPBP) annotated as an extracellular non-canonical serine/threonine protein kinase. The relationship between CERT and GPBP has also been discussed from an evolutionary aspect. Moreover, using an analogy of "compatible (or osmoprotective) solutes" that can accumulate to very high concentrations in the cytosol without denaturing proteins, choline phospholipids such as PtdCho and SM may act as compatible phospholipids in biomembranes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
24
|
Ishibashi Y, Kohyama-Koganeya A, Hirabayashi Y. New insights on glucosylated lipids: metabolism and functions. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1475-85. [PMID: 23770033 DOI: 10.1016/j.bbalip.2013.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 01/05/2023]
Abstract
Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | |
Collapse
|
25
|
Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 2012; 12:186. [PMID: 22992189 PMCID: PMC3526467 DOI: 10.1186/1471-2148-12-186] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/13/2012] [Indexed: 12/02/2022] Open
Abstract
Background The large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on β-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation of enzyme specificities in a knowledge-based context, and to obtain new evolutionary insights, we present here a new, robust subfamily classification of family GH5. Results About 80% of the current sequences were assigned into 51 subfamilies in a global analysis of all publicly available GH5 sequences and associated biochemical data. Examination of subfamilies with catalytically-active members revealed that one third are monospecific (containing a single enzyme activity), although new functions may be discovered with biochemical characterization in the future. Furthermore, twenty subfamilies presently have no characterization whatsoever and many others have only limited structural and biochemical data. Mapping of functional knowledge onto the GH5 phylogenetic tree revealed that the sequence space of this historical and industrially important family is far from well dispersed, highlighting targets in need of further study. The analysis also uncovered a number of GH5 proteins which have lost their catalytic machinery, indicating evolution towards novel functions. Conclusion Overall, the subfamily division of GH5 provides an actively curated resource for large-scale protein sequence annotation for glycogenomics; the subfamily assignments are openly accessible via the Carbohydrate-Active Enzyme database at
http://www.cazy.org/GH5.html.
Collapse
Affiliation(s)
- Henrik Aspeborg
- Division of Glycoscience, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden
| | | | | | | | | |
Collapse
|