1
|
Nie ZW, Niu YJ, Zhou W, Zhou DJ, Kim JY, Cui XS. AGS3-dependent trans-Golgi network membrane trafficking is essential for compaction in mouse embryos. J Cell Sci 2020; 133:jcs.243238. [PMID: 33148610 DOI: 10.1242/jcs.243238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, also known as GPSM1) regulates the trans-Golgi network. The AGS3 GoLoco motif binds to Gαi and thereby regulates the transport of proteins to the plasma membrane. Compaction of early embryos is based on the accumulation of E-cadherin (Cdh1) at cell-contacted membranes. However, how AGS3 regulates the transport of Cdh1 to the plasma membrane remains undetermined. To investigate this, AGS3 was knocked out using the Cas9-sgRNA system. Both trans-Golgi network protein 46 (TGN46, also known as TGOLN2) and transmembrane p24-trafficking protein 7 (TMED7) were tracked in early mouse embryos by tagging these proteins with a fluorescent protein label. We observed that the majority of the AGS3-edited embryos were developmentally arrested and were fragmented after the four-cell stage, exhibiting decreased accumulation of Cdh1 at the membrane. The trans-Golgi network and TMED7-positive vesicles were also dispersed and were not polarized near the membrane. Additionally, increased Gαi1 (encoded by GNAI1) expression could rescue AGS3-overexpressed embryos. In conclusion, AGS3 reinforces the dynamics of the trans-Golgi network and the transport of TMED7-positive cargo containing Cdh1 to the cell-contact surface during early mouse embryo development.
Collapse
Affiliation(s)
- Zheng-Wen Nie
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ying-Jie Niu
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Wenjun Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Dong-Jie Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ju-Yeon Kim
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| |
Collapse
|
2
|
Senarath K, Kankanamge D, Samaradivakara S, Ratnayake K, Tennakoon M, Karunarathne A. Regulation of G Protein βγ Signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:133-191. [PMID: 29776603 DOI: 10.1016/bs.ircmb.2018.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) deliver external signals to the cell interior, upon activation by the external signal stimulated G protein-coupled receptors (GPCRs).While the activated GPCRs control several pathways independently, activated G proteins control the vast majority of cellular and physiological functions, ranging from vision to cardiovascular homeostasis. Activated GPCRs dissociate GαGDPβγ heterotrimer into GαGTP and free Gβγ. Earlier, GαGTP was recognized as the primary signal transducer of the pathway and Gβγ as a passive signaling modality that facilitates the activity of Gα. However, Gβγ later found to regulate more number of pathways than GαGTP does. Once liberated from the heterotrimer, free Gβγ interacts and activates a diverse range of signaling regulators including kinases, lipases, GTPases, and ion channels, and it does not require any posttranslation modifications. Gβγ family consists of 48 members, which show cell- and tissue-specific expressions, and recent reports show that cells employ the subtype diversity in Gβγ to achieve desired signaling outcomes. In addition to activated GPCRs, which induce free Gβγ generation and the rate of GTP hydrolysis in Gα, which sequester Gβγ in the heterotrimer, terminating Gβγ signaling, additional regulatory mechanisms exist to regulate Gβγ activity. In this chapter, we discuss structure and function, subtype diversity and its significance in signaling regulation, effector activation, regulatory mechanisms as well as the disease relevance of Gβγ in eukaryotes.
Collapse
|
3
|
Gall BJ, Schroer AB, Gross JD, Setola V, Siderovski DP. Reduction of GPSM3 expression akin to the arthritis-protective SNP rs204989 differentially affects migration in a neutrophil model. Genes Immun 2016; 17:321-7. [PMID: 27307211 PMCID: PMC5009006 DOI: 10.1038/gene.2016.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
Abstract
G Protein Signaling Modulator-3 (GPSM3) is a leukocyte-specific regulator of G protein-coupled receptors (GPCRs), which binds inactivated Gαi·GDP subunits and precludes their reassociation with Gβγ subunits. GPSM3 deficiency protects mice from inflammatory arthritis and, in humans, GPSM3 single nucleotide polymorphisms (SNPs) are inversely associated with the risk of rheumatoid arthritis development; recently, these polymorphisms were linked to one particular SNP (rs204989) that decreases GPSM3 transcript abundance. However, the precise role of GPSM3 in leukocyte biology is unknown. Here we show that GPSM3 is induced in the human promyelocytic leukemia NB4 cell line following retinoic acid treatment, which differentiates this cell line into a model of neutrophil physiology (NB4*). Reducing GPSM3 expression in NB4* cells, akin to the effect ascribed to the rs204989 C>T transition, disrupts cellular migration toward leukotriene B4 (LTB4) and (to a lesser extent) interleukin-8 (a.k.a. IL-8 or CXCL8), but not migration toward formylated peptides (fMLP). As the chemoattractants LTB4 and CXCL8 are involved in recruitment of neutrophils to the arthritic joint, our results suggest that the arthritis-protective GPSM3 SNP rs204989 may act to decrease neutrophil chemoattractant responsiveness.
Collapse
Affiliation(s)
- B J Gall
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - A B Schroer
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - J D Gross
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - V Setola
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - D P Siderovski
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
4
|
Gall BJ, Wilson A, Schroer AB, Gross JD, Stoilov P, Setola V, Watkins CM, Siderovski DP. Genetic variations in GPSM3 associated with protection from rheumatoid arthritis affect its transcript abundance. Genes Immun 2016; 17:139-47. [PMID: 26821282 PMCID: PMC4777669 DOI: 10.1038/gene.2016.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
G protein signaling modulator 3 (GPSM3) is a regulator of G protein-coupled receptor signaling, with expression restricted to leukocytes and lymphoid organs. Previous genome-wide association studies have highlighted single-nucleotide polymorphisms (SNPs; rs204989 and rs204991) in a region upstream of the GPSM3 transcription start site as being inversely correlated to the prevalence of rheumatoid arthritis (RA)-this association is supported by the protection afforded to Gpsm3-deficient mice in models of inflammatory arthritis. Here, we assessed the functional consequences of these polymorphisms. We collected biospecimens from 50 volunteers with RA diagnoses, 50 RA-free volunteers matched to the aforementioned group and 100 unmatched healthy young volunteers. We genotyped these individuals for GPSM3 (rs204989, rs204991), CCL21 (rs2812378) and HLA gene region (rs6457620) polymorphisms, and found no significant differences in minor allele frequencies between the RA and disease-free cohorts. However, we identified that individuals homozygous for SNPs rs204989 and rs204991 had decreased GPSM3 transcript abundance relative to individuals homozygous for the major allele. In vitro promoter activity studies suggest that SNP rs204989 is the primary cause of this decrease in transcript levels. Knockdown of GPSM3 in THP-1 cells, a human monocytic cell line, was found to disrupt ex vivo migration to the chemokine MCP-1.
Collapse
Affiliation(s)
- BJ Gall
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - A Wilson
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - AB Schroer
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - JD Gross
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - P Stoilov
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - V Setola
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
- Department of Behavioral Medicine & Psychiatry, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - CM Watkins
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - DP Siderovski
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| |
Collapse
|
5
|
Zha Z, Han X, Smith MD, Liu Y, Giguère PM, Kopanja D, Raychaudhuri P, Siderovski DP, Guan KL, Lei QY, Xiong Y. A Non-Canonical Function of Gβ as a Subunit of E3 Ligase in Targeting GRK2 Ubiquitylation. Mol Cell 2015; 58:794-803. [PMID: 25982117 PMCID: PMC4458238 DOI: 10.1016/j.molcel.2015.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 02/17/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of cell surface receptors, regulate a wide range of physiological processes, and are the major targets of pharmaceutical drugs. Canonical signaling from GPCRs is relayed to intracellular effector proteins by trimeric G proteins, composed of α, β, and γ subunits (Gαβγ). Here, we report that G protein β subunits (Gβ) bind to DDB1 and that Gβ2 targets GRK2 for ubiquitylation by the DDB1-CUL4A-ROC1 ubiquitin ligase. Activation of GPCR results in PKA-mediated phosphorylation of DDB1 at Ser645 and its dissociation from Gβ2, leading to increase of GRK2 protein. Deletion of Cul4a results in cardiac hypertrophy in male mice that can be partially rescued by the deletion of one Grk2 allele. These results reveal a non-canonical function of the Gβ protein as a ubiquitin ligase component and a mechanism of feedback regulation of GPCR signaling.
Collapse
Affiliation(s)
- Zhengyu Zha
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China; Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China; School of Life Sciences, Fudan University 200032, People's Republic of China; Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaoran Han
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China; Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China; School of Life Sciences, Fudan University 200032, People's Republic of China
| | - Matthew D Smith
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yang Liu
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick M Giguère
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL 60607, USA
| | - David P Siderovski
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kun-Liang Guan
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China; Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China; Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Qun-Ying Lei
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China; Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China.
| | - Yue Xiong
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China; Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China; Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Giguère PM, Gall BJ, Ezekwe EAD, Laroche G, Buckley BK, Kebaier C, Wilson JE, Ting JP, Siderovski DP, Duncan JA. G Protein signaling modulator-3 inhibits the inflammasome activity of NLRP3. J Biol Chem 2014; 289:33245-57. [PMID: 25271165 DOI: 10.1074/jbc.m114.578393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inflammasomes are multi-protein complexes that regulate maturation of the interleukin 1β-related cytokines IL-1β and IL-18 through activation of the cysteine proteinase caspase-1. NOD-like receptor family, pyrin domain containing 3 (NLRP3) protein is a key component of inflammasomes that assemble in response to a wide variety of endogenous and pathogen-derived danger signals. Activation of the NLRP3-inflammasome and subsequent secretion of IL-1β is highly regulated by at least three processes: transcriptional activation of both NLRP3 and pro-IL-1β genes, non-transcriptional priming of NLRP3, and final activation of NLRP3. NLRP3 is predominantly expressed in cells of the hematopoietic lineage. Using a yeast two-hybrid screen, we identified the hematopoietic-restricted protein, G protein signaling modulator-3 (GPSM3), as a NLRP3-interacting protein and a negative regulator of IL-1β production triggered by NLRP3-dependent inflammasome activators. In monocytes, GPSM3 associates with the C-terminal leucine-rich repeat domain of NLRP3. Bone marrow-derived macrophages lacking GPSM3 expression exhibit an increase in NLRP3-dependent IL-1β, but not TNF-α, secretion. Furthermore, GPSM3-null mice have enhanced serum and peritoneal IL-1β production following Alum-induced peritonitis. Our findings suggest that GPSM3 acts as a direct negative regulator of NLRP3 function.
Collapse
Affiliation(s)
| | - Bryan J Gall
- the Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | | | | | | | - Chahnaz Kebaier
- Division of Infectious Diseases, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| | | | - Jenny P Ting
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and
| | - David P Siderovski
- the Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Joseph A Duncan
- From the Department of Pharmacology, Division of Infectious Diseases, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and Lineberger Comprehensive Cancer Center, and
| |
Collapse
|
7
|
Billard MJ, Gall BJ, Richards KL, Siderovski DP, Tarrant TK. G protein signaling modulator-3: a leukocyte regulator of inflammation in health and disease. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2014; 3:97-106. [PMID: 25143870 PMCID: PMC4138133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
G protein signaling modulator-3 (GPSM3), also known as G18 or AGS4, is a member of a family of proteins containing one or more copies of a small regulatory motif known as the GoLoco (or GPR) motif. GPSM3 interacts directly with Gα and Gβ subunits of heterotrimeric G proteins to regulate downstream intracellular signals initiated by G protein coupled receptors (GPCRs) that are activated via binding to their cognate ligands. GPSM3 has a selective tissue distribution and is highly expressed in immune system cells; genome-wide association studies (GWAS) have recently revealed that single nucleotide polymorphisms (SNPs) in GPSM3 are associated with chronic inflammatory diseases. This review highlights the current knowledge of GPSM3 function in normal and pathologic immune-mediated conditions.
Collapse
Affiliation(s)
- Matthew J Billard
- Thurston Arthritis Research Center and The Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North CarolinaChapel Hill, NC 27599, USA
| | - Bryan J Gall
- Department of Physiologyand Pharmacology and WV Clinical & Translational Science Institute, West Virginia UniversityMorgantown, WV, 26506-9229, USA
| | - Kristy L Richards
- Lineberger Comprehensive Cancer Center, University of North CarolinaChapel Hill, NC 27599, USA
- Department of Medicine, Division of Hematology and Oncology, University of North CarolinaChapel Hill, NC 27599, USA
| | - David P Siderovski
- Department of Physiologyand Pharmacology and WV Clinical & Translational Science Institute, West Virginia UniversityMorgantown, WV, 26506-9229, USA
| | - Teresa K Tarrant
- Thurston Arthritis Research Center and The Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North CarolinaChapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North CarolinaChapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptor proteins that allow the transfer of signals across the cell membrane. In addition to their physiological role, GPCRs are involved in many pathophysiological processes including pathways relevant in rheumatoid arthritis (RA), osteoarthritis (OA) and psoriatic arthritis. Two-thirds of all currently available drugs target GPCRs directly or indirectly. However, the detailed mechanism of GPCR signalling is still unclear. Selective modification of GPCR-dependent signalling cascades to inhibit disease progression in rheumatic diseases is now being investigated. One approach is to use antibodies against ligands activating GPCRs. However, several GPCRs are known to be activated by only one ligand. In this case, targeting the receptor itself is a promising approach. So far, more information is available on GPCR action in RA as compared with OA, and even less information is available for other rheumatic diseases. Additional research on the role of GPCRs involved in the pathophysiology of rheumatic diseases is required to develop specific therapeutic approaches.
Collapse
|
9
|
Blumer JB, Lanier SM. Activators of G protein signaling exhibit broad functionality and define a distinct core signaling triad. Mol Pharmacol 2014; 85:388-96. [PMID: 24302560 PMCID: PMC3935153 DOI: 10.1124/mol.113.090068] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022] Open
Abstract
Activators of G protein signaling (AGS), initially discovered in the search for receptor-independent activators of G protein signaling, define a broad panel of biologic regulators that influence signal transfer from receptor to G-protein, guanine nucleotide binding and hydrolysis, G protein subunit interactions, and/or serve as alternative binding partners for Gα and Gβγ independently of the classic heterotrimeric Gαβγ. AGS proteins generally fall into three groups based upon their interaction with and regulation of G protein subunits: group I, guanine nucleotide exchange factors (GEF); group II, guanine nucleotide dissociation inhibitors; and group III, entities that bind to Gβγ. Group I AGS proteins can engage all subclasses of G proteins, whereas group II AGS proteins primarily engage the Gi/Go/transducin family of G proteins. A fourth group of AGS proteins with selectivity for Gα16 may be defined by the Mitf-Tfe family of transcription factors. Groups I-III may act in concert, generating a core signaling triad analogous to the core triad for heterotrimeric G proteins (GEF + G proteins + effector). These two core triads may function independently of each other or actually cross-integrate for additional signal processing. AGS proteins have broad functional roles, and their discovery has advanced new concepts in signal processing, cell and tissue biology, receptor pharmacology, and system adaptation, providing unexpected platforms for therapeutic and diagnostic development.
Collapse
Affiliation(s)
- Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | | |
Collapse
|
10
|
Zhao P, Cladman W, Van Tol HHM, Chidiac P. Fine-tuning of GPCR signals by intracellular G protein modulators. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:421-53. [PMID: 23415100 DOI: 10.1016/b978-0-12-394587-7.00010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heterotrimeric G proteins convey receptor signals to intracellular effectors. Superimposed over the basic GPCR-G protein-effector scheme are three types of auxiliary proteins that also modulate Gα. Regulator of G protein signaling proteins and G protein signaling modifier proteins respectively promote GTPase activity and hinder GTP/GDP exchange to limit Gα activation. There are also diverse proteins that, like GPCRs, can promote nucleotide exchange and thus activation. Here we review the impact of these auxiliary proteins on GPCR signaling. Although their precise physiological functions are not yet clear, all of them can produce significant effects in experimental systems. These signaling changes are generally consistent with established effects on isolated Gα; however, the activation state of Gα is seldom verified and many such changes appear also to reflect the physical disruption of or indirect effects on interactions between Gα and its associated GPCR, Gβγ, and/or effector.
Collapse
Affiliation(s)
- Peishen Zhao
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Group II activators of G-protein signaling: monitoring the interaction of Gα with the G-protein regulatory motif in the intact cell. Methods Enzymol 2013; 522:153-67. [PMID: 23374185 DOI: 10.1016/b978-0-12-407865-9.00009-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The G-protein regulatory (GPR) motif serves as a docking site for Gαi-GDP free of Gβγ. The GPR-Gα complex may function at the cell cortex and/or at intracellular sites. GPR proteins include the Group II Activators of G-protein signaling identified in a functional screen for receptor-independent activators of G-protein signaling (GPSM1-3, RGS12) each of which contain 1-4 GPR motifs. GPR motifs are also found in PCP2/L7(GPSM4), Rap1-Gap1 Transcript Variant 1, and RGS14. While the biochemistry of the interaction of GPR proteins with purified Gα is generally understood, the dynamics of this signaling complex and its regulation within the cell remains undefined. Major questions in the field revolve around the factors that regulate the subcellular location of GPR proteins and their interaction with Gαi and other binding partners in the cell. As an initial approach to this question, we established a platform to monitor the GPR-Gαi complex in intact cells using bioluminescence resonance energy transfer.
Collapse
|
12
|
Giguère PM, Billard MJ, Laroche G, Buckley BK, Timoshchenko RG, McGinnis MW, Esserman D, Foreman O, Liu P, Siderovski DP, Tarrant TK. G-protein signaling modulator-3, a gene linked to autoimmune diseases, regulates monocyte function and its deficiency protects from inflammatory arthritis. Mol Immunol 2012; 54:193-8. [PMID: 23280397 DOI: 10.1016/j.molimm.2012.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Polymorphism at the GPSM3 gene locus is inversely associated with four systemic autoimmune diseases, including rheumatoid arthritis and ankylosing spondylitis. G-protein signaling modulator-3 (GPSM3) expression is most pronounced in myeloid cells, in which it targets heterotrimeric G-protein Gαi subunits of chemokine receptors, critical to immune function. To begin to explore the regulatory role of GPSM3 in monocytes, human THP-1 and primary mouse myeloid cells were cultured under stimulus conditions; GPSM3 was found by immunoblotting to be expressed at highest levels in the mature monocyte. To evaluate the effects of GPSM3 deficiency on a myeloid-dependent autoimmune disease, collagen antibody-induced arthritis (CAIA) was induced in Gpsm3-/- and control mice, which were then analyzed for clinical score, paw swelling, intra-articular proinflammatory markers, and histopathology. Mice lacking GPSM3 were protected from CAIA, and expression of monocyte-representative pro-inflammatory chemokine receptors and cytokines in paws of Gpsm3-/- mice were decreased. Flow cytometry, apoptosis, and transwell chemotaxis experiments were conducted to further characterize the effect of GPSM3 deficiency on survival and chemokine responsiveness of monocytes. GPSM3-deficient myeloid cells had reduced migration ex vivo to CCL2, CX3CL1, and chemerin and enhanced apoptosis in vitro. Our results suggest that GPSM3 is an important regulator of monocyte function involving mechanisms of differentiation, survival, and chemotaxis, and deficiency in GPSM3 expression is protective in acute inflammatory arthritis.
Collapse
Affiliation(s)
- Patrick M Giguère
- Department of Pharmacology, UNC School of Medicine, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Giguère PM, Laroche G, Oestreich EA, Duncan JA, Siderovski DP. Regulation of the subcellular localization of the G-protein subunit regulator GPSM3 through direct association with 14-3-3 protein. J Biol Chem 2012; 287:31270-9. [PMID: 22843681 PMCID: PMC3438958 DOI: 10.1074/jbc.m112.394379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/20/2012] [Indexed: 11/06/2022] Open
Abstract
G-protein signaling modulator-3 (GPSM3), also known as G18 or AGS4, is a member of the Gα(i/o)-Loco (GoLoco) motif containing proteins. GPSM3 acts through its two GoLoco motifs to exert GDP dissociation inhibitor activity over Gα(i) subunits; recently revealed is the existence of an additional regulatory site within GPSM3 directed toward monomeric Gβ subunits during their biosynthesis. Here, using in silico and proteomic approaches, we have found that GPSM3 also interacts directly with numerous members of the 14-3-3 protein family. This interaction is dependent on GPSM3 phosphorylation, creating a mode II consensus 14-3-3 binding site. 14-3-3 binding to the N-terminal disordered region of GPSM3 confers stabilization from protein degradation. The complex of GPSM3 and 14-3-3 is exclusively cytoplasmic, and both moieties mutually control their exclusion from the nucleus. Phosphorylation of GPSM3 by a proline-directed serine/threonine kinase and the resultant association of 14-3-3 is the first description of post-translational regulation of GPSM3 subcellular localization, a process that likely regulates important spatio-temporal aspects of G-protein-coupled receptor signaling modulation by GPSM3.
Collapse
Affiliation(s)
| | | | | | - Joseph A. Duncan
- From the Department of Pharmacology and
- Division of Infectious Diseases, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365 and
| | - David P. Siderovski
- the Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| |
Collapse
|
14
|
Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc Natl Acad Sci U S A 2012; 109:12544-9. [PMID: 22802633 DOI: 10.1073/pnas.1209620109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The stability of human embryonic stem cells (hESCs) is of critical importance for both experimental and clinical applications. We find that as an initial response to altered culture conditions, hESCs change their transcription profile for hundreds of genes and their DNA methylation profiles for several genes outside the core pluripotency network. After adaption to conditions of feeder-free defined and/or xeno-free culture systems, expression and DNA methylation profiles are quite stable for additional passaging. However, upon reversion to the original feeder-based culture conditions, numerous transcription changes are not reversible. Similarly, although the majority of DNA methylation changes are reversible, highlighting the plasticity of DNA methylation, a few are persistent. Collectively, this indicates these cells harbor a memory of culture history. For culture-induced DNA methylation changes, we also note an intriguing correlation: hypomethylation of regions 500-2440 bp upstream of promoters correlates with decreased expression, opposite to that commonly seen at promoter-proximal regions. Lastly, changes in regulation of G-coupled protein receptor pathways provide a partial explanation for many of the unique transcriptional changes observed during hESC adaptation and reverse adaptation.
Collapse
|