1
|
Maki K, Fukute J, Adachi T. Super-resolution imaging reveals nucleolar encapsulation by single-stranded DNA. J Cell Sci 2024; 137:jcs262039. [PMID: 39206638 PMCID: PMC11463959 DOI: 10.1242/jcs.262039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
In eukaryotic cell nuclei, specific sets of proteins gather in nuclear bodies and facilitate distinct genomic processes. The nucleolus, a nuclear body, functions as a factory for ribosome biogenesis by accumulating constitutive proteins, such as RNA polymerase I and nucleophosmin 1 (NPM1). Although in vitro assays have suggested the importance of liquid-liquid phase separation (LLPS) of constitutive proteins in nucleolar formation, how the nucleolus is structurally maintained with the intranuclear architecture remains unknown. This study revealed that the nucleolus is encapsulated by a single-stranded (ss)DNA-based molecular complex inside the cell nucleus. Super-resolution lattice-structured illumination microscopy (lattice-SIM) showed that there was a high abundance of ssDNA beyond the 'outer shell' of the nucleolus. Nucleolar disruption and the release of NPM1 were caused by in situ digestion of ssDNA, suggesting that ssDNA has a structural role in nucleolar encapsulation. Furthermore, we identified that ssDNA forms a molecular complex with histone H1 for nucleolar encapsulation. Thus, this study illustrates how an ssDNA-based molecular complex upholds the structural integrity of nuclear bodies to coordinate genomic processes such as gene transcription and replication.
Collapse
Affiliation(s)
- Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Jumpei Fukute
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
2
|
Li W, Hu J, Song F, Yu J, Peng X, Zhang S, Wang L, Hu M, Liu JC, Wei Y, Xiao X, Li Y, Li D, Wang H, Zhou BR, Dai L, Mou Z, Zhou M, Zhang H, Zhou Z, Zhang H, Bai Y, Zhou JQ, Li W, Li G, Zhu P. Structural basis for linker histone H5-nucleosome binding and chromatin fiber compaction. Cell Res 2024; 34:707-724. [PMID: 39103524 PMCID: PMC11442585 DOI: 10.1038/s41422-024-01009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
The hierarchical packaging of chromatin fibers plays a critical role in gene regulation. The 30-nm chromatin fibers, a central-level structure bridging nucleosomal arrays to higher-order organizations, function as the first level of transcriptional dormant chromatin. The dynamics of 30-nm chromatin fiber play a crucial role in biological processes related to DNA. Here, we report a 3.6-angstrom resolution cryogenic electron microscopy structure of H5-bound dodecanucleosome, i.e., the chromatin fiber reconstituted in the presence of linker histone H5, which shows a two-start left-handed double helical structure twisted by tetranucleosomal units. An atomic structural model of the H5-bound chromatin fiber, including an intact chromatosome, is built, which provides structural details of the full-length linker histone H5, including its N-terminal domain and an HMG-motif-like C-terminal domain. The chromatosome structure shows that H5 binds the nucleosome off-dyad through a three-contact mode in the chromatin fiber. More importantly, the H5-chromatin structure provides a fine molecular basis for the intra-tetranucleosomal and inter-tetranucleosomal interactions. In addition, we systematically validated the physiological functions and structural characteristics of the tetranucleosomal unit through a series of genetic and genomic studies in Saccharomyces cerevisiae and in vitro biophysical experiments. Furthermore, our structure reveals that multiple structural asymmetries of histone tails confer a polarity to the chromatin fiber. These findings provide structural and mechanistic insights into how a nucleosomal array folds into a higher-order chromatin fiber with a polarity in vitro and in vivo.
Collapse
Affiliation(s)
- Wenyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Song
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shangdong, China
| | - Juan Yu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Peng
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuming Zhang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Lin Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingli Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Wei
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Xiao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongyu Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linchang Dai
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongjun Mou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haonan Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Ping Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Pascal C, Zonszain J, Hameiri O, Gargi-Levi C, Lev-Maor G, Tammer L, Levy T, Tarabeih A, Roy VR, Ben-Salmon S, Elbaz L, Eid M, Hakim T, Abu Rabe'a S, Shalev N, Jordan A, Meshorer E, Ast G. Human histone H1 variants impact splicing outcome by controlling RNA polymerase II elongation. Mol Cell 2023; 83:3801-3817.e8. [PMID: 37922872 DOI: 10.1016/j.molcel.2023.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.
Collapse
Affiliation(s)
- Corina Pascal
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan Zonszain
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Gargi-Levi
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Luna Tammer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Levy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anan Tarabeih
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vanessa Rachel Roy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stav Ben-Salmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liraz Elbaz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mireille Eid
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Hakim
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Salima Abu Rabe'a
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nana Shalev
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Albert Jordan
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Carrer de Baldiri Reixac, 15, 08028 Barcelona, Spain
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel; Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
4
|
Li S, Shi Y, Dang Y, Hu B, Xiao L, Zhao P, Wang S, Zhang K. Linker histone H1FOO is required for bovine preimplantation development by regulating lineage specification and chromatin structure. Biol Reprod 2022; 107:1425-1438. [PMID: 36001353 DOI: 10.1093/biolre/ioac167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/11/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Linker histone H1 binds to the nucleosome and is implicated in the regulation of the chromatin structure and function. The H1 variant H1FOO is heavily expressed in oocytes and early embryos. However, given the poor homology of H1FOO among mammals, the functional role of H1FOO during preimplantation embryonic development remains largely unknown, especially in domestic animals. Here, we find that H1FOO is not only expressed in oocytes and preimplantation embryos but granulosa cells and spermatids in cattle. We then demonstrate that the interference of H1FOO results in preimplantation embryonic developmental arrest in cattle using either RNA editing or Trim-Away approach. H1FOO depletion leads to a compromised expression of critical lineage-specific genes at the morula stage and affects the establishment of cell polarity. Interestingly, H1FOO depletion causes a significant increase in the expression of genes encoding other linker H1 and core histones. Concurrently, there is an increase of H3K9me3 and H3K27me3, two markers of repressive chromatin and a decrease of H4K16ac, a marker of open chromatin. Importantly, overexpression of bovine H1FOO results in severe embryonic developmental defects. In sum, we propose that H1FOO controls the proper chromatin structure that is crucial for the fidelity of cell polarization and lineage specification during bovine preimplantation development.
Collapse
Affiliation(s)
- Shuang Li
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Shi
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanna Dang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bingjie Hu
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lieying Xiao
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Panpan Zhao
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shaohua Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Zhang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
5
|
Lai S, Jia J, Cao X, Zhou PK, Gao S. Molecular and Cellular Functions of the Linker Histone H1.2. Front Cell Dev Biol 2022; 9:773195. [PMID: 35087830 PMCID: PMC8786799 DOI: 10.3389/fcell.2021.773195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
Linker histone H1.2, which belongs to the linker histone family H1, plays a crucial role in the maintenance of the stable higher-order structures of chromatin and nucleosomes. As a critical part of chromatin structure, H1.2 has an important function in regulating chromatin dynamics and participates in multiple other cellular processes as well. Recent work has also shown that linker histone H1.2 regulates the transcription levels of certain target genes and affects different processes as well, such as cancer cell growth and migration, DNA duplication and DNA repair. The present work briefly summarizes the current knowledge of linker histone H1.2 modifications. Further, we also discuss the roles of linker histone H1.2 in the maintenance of genome stability, apoptosis, cell cycle regulation, and its association with disease.
Collapse
Affiliation(s)
- Shuting Lai
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin Jia
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Medicine, University of South China, Hengyang, China
| | - Xiaoyu Cao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Life Sciences, Hebei University, Baoding, China
| | - Ping-Kun Zhou
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
6
|
Unraveling linker histone interactions in nucleosomes. Curr Opin Struct Biol 2021; 71:87-93. [PMID: 34246862 DOI: 10.1016/j.sbi.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022]
Abstract
Considerable progress has been made recently in defining the interactions of linker histones (H1s) within nucleosomes. Major advancements include atomic resolution structures of the globular domain of full-length H1s in the context of nucleosomes containing full-length linker DNA. Although these studies have led to a detailed understanding of the interactions and dynamics of H1 globular domains in the canonical on-dyad nucleosome binding pocket, more information regarding the intrinsically disordered N-terminal and C-terminal domains is needed. In this review, we highlight studies supporting our current understanding of the structures and interactions of the N-terminal, globular, and C-terminal domains of linker histones within the nucleosome.
Collapse
|
7
|
Kimura A, Arakawa N, Kagawa H, Kimura Y, Hirano H. Phosphorylation of Ser1452 on BRG1 inhibits the function of the SWI/SNF complex in chromatin activation. J Proteomics 2021; 247:104319. [PMID: 34237461 DOI: 10.1016/j.jprot.2021.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
BRG1, one of core subunits of the SWI/SNF chromatin remodeling complex, is frequently mutated in cancers. Previously, we reported significant downregulation of the phosphorylation level of BRG1 on Ser1452 (<10%) in cell lines derived from ovarian clear cell carcinoma with frequent recurrence and acquired drug resistance. In this study, we tried to elucidate the roles of BRG1 phosphorylation, using cell lines expressing wild-type, phosphorylation-mimic (brg1-S1452D), or non-phosphorylatable (brg1-S1452A) BRG1. Quantitative proteomic analyses revealed upregulation of proteins and phosphoproteins related to linker histone H1s, histone methylation, and protein ubiquitylation in brg1-S1452D cells, which may coordinately promote the chromatin inactivation and ubiquitin-dependent degradation of target proteins. Consistent with these results, brg1-S1452D cells exhibited an increase in condensed chromatin and polyubiquitylated proteins. In brg1-S1452D cells, we also detected downregulation of various cancer-related proteins (e.g., EGFR and MET) as well as decreased migration, proliferation, and sensitivity to taxanes and oxaliplatin. Together, our results reveal that BRG1 phosphorylation drives tumor malignancy by inhibiting the functions of SWI/SNF complex in chromatin activation, thereby promoting expression of various cancer-related proteins. SIGNIFICANCE: For the first time we demonstrated that the mutation on Ser1452 phosphorylation site of BRG1, a component of SWI/SNF chromatin remodeling complex, changed protein and phosphoprotein levels of linker histone H1s, binding competitor of histone H1s, and histone methylase/demethylase involved in the heterochromatic histone modifications to promote the chromatin inactivation. In phosphorylation-mimic mutant, significant decrease of various cancer-related proteins as well as migration, proliferation, and sensitivity to specific antitumor agents were detected. Our results reveal that BRG1 phosphorylation drives tumor malignancy by inhibiting the functions of SWI/SNF complex in chromatin activation, thereby promoting expression of various cancer-related proteins.
Collapse
Affiliation(s)
- Ayuko Kimura
- Advanced Medical Research Center, Yokohama City University and Graduate School of Medical Life Science, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Graduate School of Health Science, Gunma Paz University, Tonyamachi 1-7-1, Takasaki City, Gunma 370-0006, Japan.
| | - Noriaki Arakawa
- Advanced Medical Research Center, Yokohama City University and Graduate School of Medical Life Science, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Hiroyuki Kagawa
- Advanced Medical Research Center, Yokohama City University and Graduate School of Medical Life Science, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University and Graduate School of Medical Life Science, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University and Graduate School of Medical Life Science, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Graduate School of Health Science, Gunma Paz University, Tonyamachi 1-7-1, Takasaki City, Gunma 370-0006, Japan
| |
Collapse
|
8
|
Lyubitelev AV, Kirpichnikov MP, Studitsky VM. The Role of Linker Histones in Carcinogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Henn L, Szabó A, Imre L, Román Á, Ábrahám A, Vedelek B, Nánási P, Boros IM. Alternative linker histone permits fast paced nuclear divisions in early Drosophila embryo. Nucleic Acids Res 2020; 48:9007-9018. [PMID: 32710625 PMCID: PMC7498357 DOI: 10.1093/nar/gkaa624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/16/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
In most animals, the start of embryogenesis requires specific histones. In Drosophila linker histone variant BigH1 is present in early embryos. To uncover the specific role of this alternative linker histone at early embryogenesis, we established fly lines in which domains of BigH1 have been replaced partially or completely with that of H1. Analysis of the resulting Drosophila lines revealed that at normal temperature somatic H1 can substitute the alternative linker histone, but at low temperature the globular and C-terminal domains of BigH1 are essential for embryogenesis. In the presence of BigH1 nucleosome stability increases and core histone incorporation into nucleosomes is more rapid, while nucleosome spacing is unchanged. Chromatin formation in the presence of BigH1 permits the fast-paced nuclear divisions of the early embryo. We propose a model which explains how this specific linker histone ensures the rapid nucleosome reassembly required during quick replication cycles at the start of embryogenesis.
Collapse
Affiliation(s)
- László Henn
- Institute of Biochemistry, Biological Research Centre of Szeged, Szeged H-6726, Hungary
| | - Anikó Szabó
- Institute of Biochemistry, Biological Research Centre of Szeged, Szeged H-6726, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - László Imre
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen H-4032 Hungary
| | - Ádám Román
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Andrea Ábrahám
- Institute of Biochemistry, Biological Research Centre of Szeged, Szeged H-6726, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Balázs Vedelek
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen H-4032 Hungary
| | - Imre M Boros
- Institute of Biochemistry, Biological Research Centre of Szeged, Szeged H-6726, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
10
|
Schnetler R, Fanucchi S, Moldoveanu T, Koorsen G. Linker Histone H1.2 Directly Activates BAK through the K/RVVKP Motif on the C-Terminal Domain. Biochemistry 2020; 59:3332-3346. [PMID: 32786407 DOI: 10.1021/acs.biochem.0c00373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
H1.2 is a key mediator of apoptosis following DNA double-strand breaks. The link between H1.2 and canonical apoptotic pathways is unclear. One study found that H1.2 stimulates cytochrome c (Cyt c) release; in contrast, apoptosis-inducing factor was found to be released in another study. The C-terminal domain (CTD) of H1.2 has been implicated in the latter pathway, but activation of the proapoptotic protein BCL-2 homologous antagonist/killer (BAK) is a common denominator in both pathways. This study aimed to determine whether the CTD of H1.2 is also responsible for mitochondrial Cyt c release and whether a previously identified K/RVVKP motif in the CTD mediates the response. This study investigated if H1.2 mediates apoptosis induction through direct interaction with BAK. We established that the CTD of H1.2 stimulates mitochondrial Cyt c release in vitro in a mitochondrial permeability transition-independent manner and that the substitution of a single valine with threonine in the K/RVVKP motif abolishes Cyt c release. Additionally, we showed that H1.2 directly interacts with BAK with weak affinity and that the CTD of H1.2 mediates this binding. Using two 20-amino acid peptides derived from the CTD of H1.2 and H1.1 (K/RVVKP motif inclusive), we determined the main residues involved in the direct interaction with BAK. We propose that H1.2 operates through the K/RVVKP motif by directly activating BAK through inter- and intramolecular interactions. These findings expand the view of H1.2 as a signal-transducing molecule that can activate apoptosis in a BAK-dependent manner.
Collapse
Affiliation(s)
- Rozanné Schnetler
- Department of Biochemistry, University of Johannesburg, Corner Kingsway and University Roads, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Sylvia Fanucchi
- Department of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| | - Tudor Moldoveanu
- Department of Structural Biology and Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Gerrit Koorsen
- Department of Biochemistry, University of Johannesburg, Corner Kingsway and University Roads, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
11
|
Sridhar A, Orozco M, Collepardo-Guevara R. Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1. Nucleic Acids Res 2020; 48:5318-5331. [PMID: 32356891 PMCID: PMC7261198 DOI: 10.1093/nar/gkaa285] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Intrinsically disordered proteins are crucial elements of chromatin heterogenous organization. While disorder in the histone tails enables a large variation of inter-nucleosome arrangements, disorder within the chromatin-binding proteins facilitates promiscuous binding to a wide range of different molecular targets, consistent with structural heterogeneity. Among the partially disordered chromatin-binding proteins, the H1 linker histone influences a myriad of chromatin characteristics including compaction, nucleosome spacing, transcription regulation, and the recruitment of other chromatin regulating proteins. Although it is now established that the long C-terminal domain (CTD) of H1 remains disordered upon nucleosome binding and that such disorder favours chromatin fluidity, the structural behaviour and thereby the role/function of the N-terminal domain (NTD) within chromatin is yet unresolved. On the basis of microsecond-long parallel-tempering metadynamics and temperature-replica exchange atomistic molecular dynamics simulations of different H1 NTD subtypes, we demonstrate that the NTD is completely unstructured in solution but undergoes an important disorder-to-order transition upon nucleosome binding: it forms a helix that enhances its DNA binding ability. Further, we show that the helical propensity of the H1 NTD is subtype-dependent and correlates with the experimentally observed binding affinity of H1 subtypes, suggesting an important functional implication of this disorder-to-order transition.
Collapse
Affiliation(s)
- Akshay Sridhar
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Modesto Orozco
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri i Reixac, 19, 08028 Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Av. Diagonal 647. 08028 Barcelona, Spain
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
12
|
Cheng L, Li C, Xi Z, Wei K, Yuan S, Arnesano F, Natile G, Liu Y. Cisplatin reacts with histone H1 and the adduct forms a ternary complex with DNA. Metallomics 2020; 11:556-564. [PMID: 30672544 DOI: 10.1039/c8mt00358k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cisplatin is an anticancer drug widely used in clinics; it induces the apoptosis of cancer cells by targeting DNA. However, its interaction with proteins has been found to be crucial in modulating the pre and post-target activity. Nuclear DNA is tightly assembled with histone proteins to form nucleosomes in chromatin; this can impede the drug to access DNA. On the other hand, the linker histone H1 is considered 'the gate to nucleosomal DNA' due to its exposed location and dynamic conformation; therefore, this protein can influence the platination of DNA. In this study, we performed a reaction of cisplatin with histone H1 and investigated the interaction of the H1/cisplatin adduct with DNA. The reactions were conducted on the N-terminal domains of H1.4 (sequence 1-90, H1N90) and H1.0 (sequence 1-7, H1N7). The results show that H1 readily reacts with cisplatin and generates bidentate and tridentate adducts, with methionine and glutamate residues as the preferential binding sites. Chromatographic and NMR analyses show that the platination rate of H1 is slightly higher than that of DNA and the platinated H1 can form H1-cisplatin-DNA ternary complexes. Interestingly, cisplatin is more prone to form H1-Pt-DNA ternary complexes than trans-oriented platinum agents. The formation of H1-cisplatin-DNA ternary complexes and their preference for cis- over trans-oriented platinum agents suggest an important role of histone H1 in the mechanism of action of cisplatin.
Collapse
Affiliation(s)
- Lanjun Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cheng L, Li C, Yuan S, Shi H, Zhao L, Zhang L, Arnesano F, Natile G, Liu Y. Reaction of Histone H1 with trans-Platinum Complexes and the Effect on DNA Platination. Inorg Chem 2019; 58:6485-6494. [DOI: 10.1021/acs.inorgchem.9b00686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lanjun Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chan Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Siming Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongdong Shi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Linhong Zhao
- Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Zhang
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Fabio Arnesano
- Dipartimento di Chimica, University of Bari “A. Moro”, via E. Orabona 4, 70125 Bari, Italy
| | - Giovanni Natile
- Dipartimento di Chimica, University of Bari “A. Moro”, via E. Orabona 4, 70125 Bari, Italy
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Olins DE, Olins AL. Epichromatin and chromomeres: a 'fuzzy' perspective. Open Biol 2019; 8:rsob.180058. [PMID: 29875200 PMCID: PMC6030114 DOI: 10.1098/rsob.180058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
'Epichromatin', the surface of chromatin beneath the interphase nuclear envelope (NE) or at the surface of mitotic chromosomes, was discovered by immunostaining with a specific bivalent mouse monoclonal anti-nucleosome antibody (mAb PL2-6). 'Chromomeres', punctate chromatin particles approximately 200-300 nm in diameter, identified throughout the interphase chromatin and along mitotic chromosomes, were observed by immunostaining with the monovalent papain-derived Fab fragments of bivalent PL2-6. The specific target for PL2-6 appears to include the nucleosome acidic patch. Thus, within the epichromatin and chromomeric regions, this epitope is 'exposed'. Considering that histones possess unstructured 'tails' (i.e. intrinsically disordered peptide regions, IDPR), our perception of these chromatin regions becomes more 'fuzzy' (less defined). We suggest that epichromatin cationic tails facilitate interactions with anionic components of NE membranes. We also suggest that the unstructured histone tails (especially, histone H1 tails), with their presumed promiscuous binding, establish multivalent binding that stabilizes each chromomere as a unit of chromatin higher order structure. We propose an 'unstructured stability' hypothesis, which postulates that the stability of epichromatin and chromomeres (as well as other nuclear chromatin structures) is a consequence of the collective contributions of numerous weak histone IDPR binding interactions arising from the multivalent nucleosome, analogous to antibody avidity.
Collapse
Affiliation(s)
- Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| | - Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| |
Collapse
|
15
|
Osunsade A, Prescott NA, Hebert JM, Ray DM, Jmeian Y, Lorenz IC, David Y. A Robust Method for the Purification and Characterization of Recombinant Human Histone H1 Variants. Biochemistry 2019; 58:171-176. [PMID: 30585724 PMCID: PMC6541009 DOI: 10.1021/acs.biochem.8b01060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Higher order compaction of the eukaryotic genome is key to the regulation of all DNA-templated processes, including transcription. This tightly controlled process involves the formation of mononucleosomes, the fundamental unit of chromatin, packaged into higher order architectures in an H1 linker histone-dependent process. While much work has been done to delineate the precise mechanism of this event in vitro and in vivo, major gaps still exist, primarily due to a lack of molecular tools. Specifically, there has never been a successful purification and biochemical characterization of all human H1 variants. Here we present a robust method to purify H1 and illustrate its utility in the purification of all somatic variants and one germline variant. In addition, we performed a first ever side-by-side biochemical comparison, which revealed a gradient of nucleosome binding affinities and compaction capabilities. These data provide new insight into H1 redundancy and lay the groundwork for the mechanistic investigation of disease-driving mutations.
Collapse
Affiliation(s)
- Adewola Osunsade
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
| | - Nicholas A. Prescott
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
| | - Jakob M. Hebert
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
| | - Devin M. Ray
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
- Tri-Institutional MD-PhD Program, New York, NY
| | - Yazen Jmeian
- Tri-Institutional Therapeutics Discovery Institute, New York, NY
| | - Ivo C. Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
16
|
Kowalski A. Significance of avian linker histone (H1) polymorphic variation. J Biosci 2018; 43:751-761. [PMID: 30207320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most of avian histone H1 non-allelic subtypes, i.e. eight out of nine, show polymorphic heterogeneity manifested by the presence of two or three allelic variants formed as a result of amino acid deletion and substitution. In addition, some of histone H1 non-allelic subtypes exhibit various allelic complements in different bird species leading to the widening of a whole pool of histone H1 polymorphic variation. A wide range of histone H1 heterogeneity may indicate that the polymorphic variants can individually modulate some histone H1-dependent cellular processes by showing allele-specific influence on chromatin organization and function. Although, the exact way of avian histone H1 allelic variants' activity is not known, their structural separateness inferred from biochemical experiments and relationship with some characteristics of organism functioning disclosed in the genetic studies seem to confirm their importance. The aim of this review is to characterize the molecular origin of histone H1 polymorphisms and draw attention to the link between the histone H1 polymorphic variants and avian organismal features related to the physiological effects of bird individuals' living in the natural and breeding populations.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, Kielce, Poland,
| |
Collapse
|
17
|
|
18
|
H1.0 Linker Histone as an Epigenetic Regulator of Cell Proliferation and Differentiation. Genes (Basel) 2018; 9:genes9060310. [PMID: 29925815 PMCID: PMC6027317 DOI: 10.3390/genes9060310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022] Open
Abstract
H1 linker histones are a class of DNA-binding proteins involved in the formation of supra-nucleosomal chromatin higher order structures. Eleven non-allelic subtypes of H1 are known in mammals, seven of which are expressed in somatic cells, while four are germ cell-specific. Besides having a general structural role, H1 histones also have additional epigenetic functions related to DNA replication and repair, genome stability, and gene-specific expression regulation. Synthesis of the H1 subtypes is differentially regulated both in development and adult cells, thus suggesting that each protein has a more or less specific function. The somatic variant H1.0 is a linker histone that was recognized since long ago to be involved in cell differentiation. Moreover, it has been recently found to affect generation of epigenetic and functional intra-tumor heterogeneity. Interestingly, H1.0 or post-translational forms of it have been also found in extracellular vesicles (EVs) released from cancer cells in culture, thus suggesting that these cells may escape differentiation at least in part by discarding H1.0 through the EV route. In this review we will discuss the role of H1.0 in development, differentiation, and stem cell maintenance, also in relation with tumorigenesis, and EV production.
Collapse
|
19
|
Ivic N, Bilokapic S, Halic M. Preparative two-step purification of recombinant H1.0 linker histone and its domains. PLoS One 2017; 12:e0189040. [PMID: 29206861 PMCID: PMC5716531 DOI: 10.1371/journal.pone.0189040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/19/2017] [Indexed: 01/07/2023] Open
Abstract
H1 linker histones are small basic proteins that have a key role in the formation and maintenance of higher-order chromatin structures. Additionally, many examples have shown that linker histones play an important role in gene regulation, modulated by their various subtypes and posttranslational modifications. Obtaining high amounts of very pure linker histones, especially for efficient antibody production, remains a demanding and challenging procedure. Here we present an easy and fast method to purify human linker histone H1.0 overexpressed in Escherichia coli, as well as its domains: N-terminal/globular domain and C-terminal intrinsically disordered domain. This purification protocol relies on a simple affinity chromatography step followed by cation exchange due to the highly basic properties of histone proteins. Therefore, this protocol can also be applied to other linker histones. Highly pure proteins in amounts sufficient for most biochemical experiments can be obtained. The functional quality of purified H1.0 histone and its domains has been confirmed by pull-down, gel-mobility shift assays and the nuclear import assay.
Collapse
Affiliation(s)
- Nives Ivic
- Department of Biochemistry, Gene Center, University of Munich LMU, Munich, Germany
| | - Silvija Bilokapic
- Department of Biochemistry, Gene Center, University of Munich LMU, Munich, Germany
- * E-mail:
| | - Mario Halic
- Department of Biochemistry, Gene Center, University of Munich LMU, Munich, Germany
| |
Collapse
|
20
|
Abstract
Eukaryotic genomes are packaged in chromatin. The higher-order organization of nucleosome core particles is controlled by the association of the intervening linker DNA with either the linker histone H1 or high mobility group box (HMGB) proteins. While H1 is thought to stabilize the nucleosome by preventing DNA unwrapping, the DNA bending imposed by HMGB may propagate to the nucleosome to destabilize chromatin. For metazoan H1, chromatin compaction requires its lysine-rich C-terminal domain, a domain that is buried between globular domains in the previously characterized yeast Saccharomyces cerevisiae linker histone Hho1p. Here, we discuss the functions of S. cerevisiae HMO1, an HMGB family protein unique in containing a terminal lysine-rich domain and in stabilizing genomic DNA. On ribosomal DNA (rDNA) and genes encoding ribosomal proteins, HMO1 appears to exert its role primarily by stabilizing nucleosome-free regions or "fragile" nucleosomes. During replication, HMO1 likewise appears to ensure low nucleosome density at DNA junctions associated with the DNA damage response or the need for topoisomerases to resolve catenanes. Notably, HMO1 shares with the mammalian linker histone H1 the ability to stabilize chromatin, as evidenced by the absence of HMO1 creating a more dynamic chromatin environment that is more sensitive to nuclease digestion and in which chromatin-remodeling events associated with DNA double-strand break repair occur faster; such chromatin stabilization requires the lysine-rich extension of HMO1. Thus, HMO1 appears to have evolved a unique linker histone-like function involving the ability to stabilize both conventional nucleosome arrays as well as DNA regions characterized by low nucleosome density or the presence of noncanonical nucleosomes.
Collapse
|
21
|
Kowalski A. A heterogeneity of the pheasant (Phasianus colchicus L.) erythrocyte histone H1 subtype H5. C R Biol 2016; 339:357-63. [DOI: 10.1016/j.crvi.2016.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 01/29/2023]
|
22
|
Kowalski A, Pałyga J. Modulation of chromatin function through linker histone H1 variants. Biol Cell 2016; 108:339-356. [PMID: 27412812 DOI: 10.1111/boc.201600007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022]
Abstract
In this review, the structural aspects of linker H1 histones are presented as a background for characterization of the factors influencing their function in animal and human chromatin. The action of H1 histone variants is largely determined by dynamic alterations of their intrinsically disordered tail domains, posttranslational modifications and allelic diversification. The interdependent effects of these factors can establish dynamic histone H1 states that may affect the organization and function of chromatin regions.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Jan Pałyga
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| |
Collapse
|
23
|
Kowalski A. Nuclear and nucleolar activity of linker histone variant H1.0. Cell Mol Biol Lett 2016; 21:15. [PMID: 28536618 PMCID: PMC5414669 DOI: 10.1186/s11658-016-0014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/28/2016] [Indexed: 12/31/2022] Open
Abstract
Histone H1.0 belongs to the class of linker histones (H1), although it is substantially distinct from other histone H1 family members. The differences can be observed in the chromosomal location and organization of the histone H1.0 encoding gene, as well as in the length and composition of its amino acid chain. Whereas somatic (H1.1-H1.5) histone H1 variants are synthesized in the cell cycle S-phase, histone H1.0 is synthesized throughout the cell cycle. By replacing somatic H1 variants during cell maturation, histone H1.0 is gradually deposited in low dividing cells and achieves the highest level of expression in the terminally differentiated cells. Compared to other differentiation-specific H1 histone (H5) characteristic for unique tissue and organisms, the distribution of histone H1.0 remains non-specific. Classic investigations emphasize that histone H1.0 is engaged in the organization of nuclear chromatin accounting for formation and maintenance of its nucleosomal and higher-order structure, and thus influences gene expression. However, the recent data confirmed histone H1.0 peculiar localization in the nucleolus and unexpectedly revealed its potential for regulation of nucleolar, RNA-dependent, activity via interaction with other proteins. According to such findings, histone H1.0 participates in the formation of gene-coded information through its control at both transcriptional and translational levels. In order to reappraise the biological significance of histone H1.0, both aspects of its activity are presented in this review.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, Świętokrzyska 15, 25-406 Kielce, Poland
| |
Collapse
|
24
|
Öztürk MA, Pachov GV, Wade RC, Cojocaru V. Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome. Nucleic Acids Res 2016; 44:6599-613. [PMID: 27270081 PMCID: PMC5001602 DOI: 10.1093/nar/gkw514] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/06/2016] [Accepted: 05/30/2016] [Indexed: 01/25/2023] Open
Abstract
Linker histones are essential for DNA compaction in chromatin. They bind to nucleosomes in a 1:1 ratio forming chromatosomes. Alternative configurations have been proposed in which the globular domain of the linker histone H5 (gH5) is positioned either on- or off-dyad between the nucleosomal and linker DNAs. However, the dynamic pathways of chromatosome assembly remain elusive. Here, we studied the conformational plasticity of gH5 in unbound and off-dyad nucleosome-bound forms with classical and accelerated molecular dynamics simulations. We find that the unbound gH5 converts between open and closed conformations, preferring the closed form. However, the open gH5 contributes to a more rigid chromatosome and restricts the motion of the nearby linker DNA through hydrophobic interactions with thymidines. Moreover, the closed gH5 opens and reorients in accelerated simulations of the chromatosome. Brownian dynamics simulations of chromatosome assembly, accounting for a range of amplitudes of nucleosome opening and different nucleosome DNA sequences, support the existence of both on- and off-dyad binding modes of gH5 and reveal alternative, sequence and conformation-dependent chromatosome configurations. Taken together, these findings suggest that the conformational dynamics of linker histones and nucleosomes facilitate alternative chromatosome configurations through an interplay between induced fit and conformational selection.
Collapse
Affiliation(s)
- Mehmet Ali Öztürk
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg 69118, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg 69120, Germany
| | - Georgi V Pachov
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg 69118, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg 69118, Germany Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg 69120, Germany Interdisciplinary Center for Scientific Computing (IWR), Heidelberg 69120, Germany
| | - Vlad Cojocaru
- Computational Structural Biology Laboratory, Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster 48149, Germany Center for Multiscale Theory and Computation, Westfälische Wilhelms University, Münster 48149, Germany
| |
Collapse
|
25
|
Cutter AR, Hayes JJ. Linker histones: novel insights into structure-specific recognition of the nucleosome. Biochem Cell Biol 2016; 95:171-178. [PMID: 28177778 DOI: 10.1139/bcb-2016-0097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Linker histones (H1s) are a primary component of metazoan chromatin, fulfilling numerous functions, both in vitro and in vivo, including stabilizing the wrapping of DNA around the nucleosome, promoting folding and assembly of higher order chromatin structures, influencing nucleosome spacing on DNA, and regulating specific gene expression. However, many molecular details of how H1 binds to nucleosomes and recognizes unique structural features on the nucleosome surface remain undefined. Numerous, confounding studies are complicated not only by experimental limitations, but the use of different linker histone isoforms and nucleosome constructions. This review summarizes the decades of research that has resulted in several models of H1 association with nucleosomes, with a focus on recent advances that suggest multiple modes of H1 interaction in chromatin, while highlighting the remaining questions.
Collapse
Affiliation(s)
- Amber R Cutter
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeffrey J Hayes
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
26
|
Roque A, Ponte I, Suau P. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics. Chromosoma 2016; 126:83-91. [DOI: 10.1007/s00412-016-0591-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 01/14/2023]
|
27
|
Millán-Ariño L, Izquierdo-Bouldstridge A, Jordan A. Specificities and genomic distribution of somatic mammalian histone H1 subtypes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:510-9. [DOI: 10.1016/j.bbagrm.2015.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/15/2022]
|
28
|
Flanagan TW, Files JK, Casano KR, George EM, Brown DT. Photobleaching studies reveal that a single amino acid polymorphism is responsible for the differential binding affinities of linker histone subtypes H1.1 and H1.5. Biol Open 2016; 5:372-80. [PMID: 26912777 PMCID: PMC4810752 DOI: 10.1242/bio.016733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mammals express six major somatic linker histone subtypes, all of which display dynamic binding to chromatin, characterized by transient binding at a given location followed by rapid translocation to a new site. Using photobleaching techniques, we systematically measured the exchange rate of all six mouse H1 subtypes to determine their relative chromatin-binding affinity. Two subtypes, H1.1 and H1.2, display binding affinities that are significantly lower than all other subtypes. Using in vitro mutagenesis, the differences in chromatin-binding affinities between H1.1 (lower binding affinity) and H1.5 (higher binding affinity) were mapped to a single amino acid polymorphism near the junction of the globular and C-terminal domains. Overexpression of H1.5 in density arrested fibroblasts did not affect cell cycle progression after release. By contrast, overexpression of H1.1 resulted in a more rapid progression through G1/S relative to control cells. These results provide structural insights into the proposed functional significance of linker histone heterogeneity. Summary: Mouse linker histone subtypes H1.1 and H1.5 bind to chromatin with different affinities due to a single amino acid polymorphism. Overexpression of H1.1 in fibroblasts accelerates cell cycle progression.
Collapse
Affiliation(s)
- Thomas W Flanagan
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jacob K Files
- Clinton High School, Clinton, MS 39056, USA Spring Hill College, Mobile, AL 36608, USA
| | | | - Eric M George
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA Department of Physiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - David T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
29
|
A quantitative investigation of linker histone interactions with nucleosomes and chromatin. Sci Rep 2016; 6:19122. [PMID: 26750377 PMCID: PMC4707517 DOI: 10.1038/srep19122] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Linker histones such as H1 are abundant basic proteins that bind tightly to nucleosomes, thereby acting as key organizers of chromatin structure. The molecular details of linker histone interactions with the nucleosome, and in particular the contributions of linker DNA and of the basic C-terminal tail of H1, are controversial. Here we combine rigorous solution-state binding assays with native gel electrophoresis and Atomic Force Microscopy, to quantify the interaction of H1 with chromatin. We find that H1 binds nucleosomes and nucleosomal arrays with very tight affinity by recognizing a specific DNA geometry minimally consisting of a solitary nucleosome with a single ~18 base pair DNA linker arm. The association of H1 alters the conformation of trinucleosomes so that only one H1 can bind to the two available linker DNA regions. Neither incorporation of the histone variant H2A.Z, nor the presence of neighboring nucleosomes affects H1 affinity. Our data provide a comprehensive thermodynamic framework for this ubiquitous chromatin architectural protein.
Collapse
|
30
|
Pan C, Fan Y. Role of H1 linker histones in mammalian development and stem cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:496-509. [PMID: 26689747 DOI: 10.1016/j.bbagrm.2015.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome.
Collapse
Affiliation(s)
- Chenyi Pan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhong Fan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
31
|
Liao R, Mizzen CA. Interphase H1 phosphorylation: Regulation and functions in chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:476-85. [PMID: 26657617 DOI: 10.1016/j.bbagrm.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
Abstract
Many metazoan cell types differentially express multiple non-allelic amino acid sequence variants of histone H1. Although early work revealed that H1 variants, collectively, are phosphorylated during interphase and mitosis, differences between individual H1 variants in the sites they possess for mitotic and interphase phosphorylation have been elucidated only relatively recently. Here, we review current knowledge on the regulation and function of interphase H1 phosphorylation, with a particular emphasis on how differences in interphase phosphorylation among the H1 variants of mammalian cells may enable them to have differential effects on transcription and other chromatin processes.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA; Institute for Genomic Biology, University of Illinois at Urbana Champaign, USA.
| |
Collapse
|
32
|
Parseghian MH. What is the role of histone H1 heterogeneity? A functional model emerges from a 50 year mystery. AIMS BIOPHYSICS 2015; 2:724-772. [PMID: 31289748 PMCID: PMC6615755 DOI: 10.3934/biophy.2015.4.724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For the past 50 years, understanding the function of histone H1 heterogeneity has been mired in confusion and contradiction. Part of the reason for this is the lack of a working model that tries to explain the large body of data that has been collected about the H1 subtypes so far. In this review, a global model is described largely based on published data from the author and other researchers over the past 20 years. The intrinsic disorder built into H1 protein structure is discussed to help the reader understand that these histones are multi-conformational and adaptable to interactions with different targets. We discuss the role of each structural section of H1 (as we currently understand it), but we focus on the H1's C-terminal domain and its effect on each subtype's affinity, mobility and compaction of chromatin. We review the multiple ways these characteristics have been measured from circular dichroism to FRAP analysis, which has added to the sometimes contradictory assumptions made about each subtype. Based on a tabulation of these measurements, we then organize the H1 variants according to their ability to condense chromatin and produce nucleosome repeat lengths amenable to that compaction. This subtype variation generates a continuum of different chromatin states allowing for fine regulatory control and some overlap in the event one or two subtypes are lost to mutation. We also review the myriad of disparate observations made about each subtype, both somatic and germline specific ones, that lend support to the proposed model. Finally, to demonstrate its adaptability as new data further refines our understanding of H1 subtypes, we show how the model can be applied to experimental observations of telomeric heterochromatin in aging cells.
Collapse
|
33
|
Bednar J, Hamiche A, Dimitrov S. H1-nucleosome interactions and their functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:436-43. [PMID: 26477489 DOI: 10.1016/j.bbagrm.2015.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 01/13/2023]
Abstract
Linker histones are three domain proteins and consist of a structured (globular) domain, flanked by two likely non-structured NH2- and COOH-termini. The binding of the linker histones to the nucleosome was characterized by different methods in solution. Apparently, the globular domain interacts with the linker DNA and the nucleosome dyad, while the binding of the large and rich in lysines COOH-terminus results in "closing" the linker DNA of the nucleosome and the formation of the "stem" structure. What is the mode of binding of the linker histones within the chromatin fiber remains still elusive. Nonetheless, it is clear that linker histones are essential for both the assembly and maintenance of the condensed chromatin fiber. Interestingly, linker histones are post-translationally modified and how this affects both their binding to chromatin and functions is now beginning to emerge. In addition, linker histones are highly mobile in vivo, but not in vitro. No explanation of this finding is reported for the moment. The higher mobility of the linker histones should, however, have strong impact on their function. Linker histones plays an important role in gene expression regulation and other chromatin related process and their function is predominantly regulated by their posttranslational modifications. However, the detailed mechanism how the linker histones do function remains still not well understood despite numerous efforts. Here we will summarize and analyze the data on the linker histone binding to the nucleosome and the chromatin fiber and will discuss its functional consequences.
Collapse
Affiliation(s)
- Jan Bednar
- Université de Grenoble Alpes/CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, 140 rue de la Physique, B.P. 87, St. Martin d'Heres, F-38402, France.
| | - Ali Hamiche
- Equipe labellisée Ligue contre le Cancer, Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UDS, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Stefan Dimitrov
- INSERM/UJF, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, France
| |
Collapse
|
34
|
Flanagan TW, Brown DT. Molecular dynamics of histone H1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:468-75. [PMID: 26454113 DOI: 10.1016/j.bbagrm.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/17/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022]
Abstract
The H1 or linker histones bind dynamically to chromatin in living cells via a process that involves transient association with the nucleosome near the DNA entry/exit site followed by dissociation, translocation to a new location, and rebinding. The mean residency time of H1 on any given nucleosome is about a minute, which is much shorter than that of most core histones but considerably longer than that of most other chromatin-binding proteins, including transcription factors. Here we review recent advances in understanding the kinetic pathway of H1 binding and how it relates to linker histone structure and function. We also describe potential mechanisms by which the dynamic binding of H1 might contribute directly to the regulation of gene expression and discuss several situations for which there is experimental evidence to support these mechanisms. Finally, we review the evidence for the participation of linker histone chaperones in mediating H1 exchange.
Collapse
Affiliation(s)
- Thomas W Flanagan
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - David T Brown
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
35
|
Roque A, Ponte I, Suau P. Interplay between histone H1 structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:444-54. [PMID: 26415976 DOI: 10.1016/j.bbagrm.2015.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/10/2023]
Abstract
H1 linker histones are involved both in the maintenance of higher-order chromatin structure and in gene regulation. Histone H1 exists in multiple isoforms, is evolutionarily variable and undergoes a large variety of post-translational modifications. We review recent progress in the understanding of the folding and structure of histone H1 domains with an emphasis on the interactions with DNA. The importance of intrinsic disorder and hydrophobic interactions in the folding and function of the carboxy-terminal domain (CTD) is discussed. The induction of a molten globule-state in the CTD by macromolecular crowding is also considered. The effects of phosphorylation by cyclin-dependent kinases on the structure of the CTD, as well as on chromatin condensation and oligomerization, are described. We also address the extranuclear functions of histone H1, including the interaction with the β-amyloid peptide.
Collapse
Affiliation(s)
- Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain
| | - Inma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain.
| |
Collapse
|
36
|
Kowalski A. Abundance of intrinsic structural disorder in the histone H1 subtypes. Comput Biol Chem 2015; 59 Pt A:16-27. [PMID: 26366527 DOI: 10.1016/j.compbiolchem.2015.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 08/03/2015] [Accepted: 08/30/2015] [Indexed: 01/06/2023]
Abstract
The intrinsically disordered proteins consist of partially structured regions linked to the unstructured stretches, which consequently form the transient and dynamic conformational ensembles. They undergo disorder to order transition upon binding their partners. Intrinsic disorder is attributed to histones H1, perceived as assemblers of chromatin structure and the regulators of DNA and proteins activity. In this work, the comparison of intrinsic disorder abundance in the histone H1 subtypes was performed both by the analysis of their amino acid composition and by the prediction of disordered stretches, as well as by identifying molecular recognition features (MoRFs) and ANCHOR protein binding regions (APBR) that are responsible for recognition and binding. Both human and model organisms-animals, plants, fungi and protists-have H1 histone subtypes with the properties typical of disordered state. They possess a significantly higher content of hydrophilic and charged amino acid residues, arranged in the long regions, covering over half of the whole amino acid residues in chain. Almost complete disorder corresponds to histone H1 terminal domains, including MoRFs and ANCHOR. Those motifs were also identified in a more ordered histone H1 globular domain. Compared to the control (globular and fibrous) proteins, H1 histones demonstrate the increased folding rate and a higher proportion of low-complexity segments. The results of this work indicate that intrinsic disorder is an inherent structural property of histone H1 subtypes and it is essential for establishing a protein conformation which defines functional outcomes affecting on DNA- and/or partner protein-dependent cell processes.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland.
| |
Collapse
|
37
|
Mapping of post-translational modifications of spermatid-specific linker histone H1-like protein, HILS1. J Proteomics 2015; 128:218-30. [PMID: 26257145 DOI: 10.1016/j.jprot.2015.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/29/2022]
Abstract
In mammalian spermiogenesis, haploid round spermatids undergo dramatic biochemical and morphological changes and transform into motile mature spermatozoa. A majority of the histones are replaced by transition proteins during mid-spermiogenesis and later replaced by protamines, which occupy the sperm chromatin. In mammals, 11 linker histone H1 subtypes have been reported. Among them, H1t, HILS1, and H1T2 are uniquely expressed in testis, with the expression of HILS1 and H1T2 restricted to spermiogenesis. However, there is a lack of knowledge about linker histone role in the nuclear reorganization during mammalian spermiogenesis. Here, we report a method for separation of endogenous HILS1 protein from other rat testis linker histones by reversed-phase high-performance liquid chromatography (RP-HPLC) and identification of 15 novel post-translational modifications of HILS1, which include lysine acetylation and serine/threonine/tyrosine phosphorylation sites. Immunofluorescence studies demonstrate the presence of linker histone HILS1 and HILS1Y78p during different steps of spermiogenesis from early elongating to condensing spermatids.
Collapse
|
38
|
Cutter AR, Hayes JJ. A brief review of nucleosome structure. FEBS Lett 2015; 589:2914-22. [PMID: 25980611 DOI: 10.1016/j.febslet.2015.05.016] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 12/23/2022]
Abstract
The nucleosomal subunit organization of chromatin provides a multitude of functions. Nucleosomes elicit an initial ∼7-fold linear compaction of genomic DNA. They provide a critical mechanism for stable repression of genes and other DNA-dependent activities by restricting binding of trans-acting factors to cognate DNA sequences. Conversely they are engineered to be nearly meta-stable and disassembled (and reassembled) in a facile manner to allow rapid access to the underlying DNA during processes such as transcription, replication and DNA repair. Nucleosomes protect the genome from DNA damaging agents and provide a lattice onto which a myriad of epigenetic signals are deposited. Moreover, vast strings of nucleosomes provide a framework for assembly of the chromatin fiber and higher-order chromatin structures. Thus, in order to provide a foundation for understanding these functions, we present a review of the basic elements of nucleosome structure and stability, including the association of linker histones.
Collapse
Affiliation(s)
- Amber R Cutter
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Jeffrey J Hayes
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, United States.
| |
Collapse
|
39
|
Garfinkel BP, Melamed-Book N, Anuka E, Bustin M, Orly J. HP1BP3 is a novel histone H1 related protein with essential roles in viability and growth. Nucleic Acids Res 2015; 43:2074-90. [PMID: 25662603 PMCID: PMC4344522 DOI: 10.1093/nar/gkv089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/17/2014] [Accepted: 01/23/2015] [Indexed: 12/28/2022] Open
Abstract
The dynamic architecture of chromatin is vital for proper cellular function, and is maintained by the concerted action of numerous nuclear proteins, including that of the linker histone H1 variants, the most abundant family of nucleosome-binding proteins. Here we show that the nuclear protein HP1BP3 is widely expressed in most vertebrate tissues and is evolutionarily and structurally related to the H1 family. HP1BP3 contains three globular domains and a highly positively charged C-terminal domain, resembling similar domains in H1. Fluorescence recovery after photobleaching (FRAP) studies indicate that like H1, binding of HP1BP3 to chromatin depends on both its C and N terminal regions and is affected by the cell cycle and post translational modifications. HP1BP3 contains functional motifs not found in H1 histones, including an acidic stretch and a consensus HP1-binding motif. Transcriptional profiling of HeLa cells lacking HP1BP3 showed altered expression of 383 genes, suggesting a role for HP1BP3 in modulation of gene expression. Significantly, Hp1bp3(-/-) mice present a dramatic phenotype with 60% of pups dying within 24 h of birth and the surviving animals exhibiting a lifelong 20% growth retardation. We suggest that HP1BP3 is a ubiquitous histone H1 like nuclear protein with distinct and non-redundant functions necessary for survival and growth.
Collapse
Affiliation(s)
- Benjamin P Garfinkel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Naomi Melamed-Book
- Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eli Anuka
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
40
|
Millán-Ariño L, Islam ABMMK, Izquierdo-Bouldstridge A, Mayor R, Terme JM, Luque N, Sancho M, López-Bigas N, Jordan A. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2. Nucleic Acids Res 2014; 42:4474-93. [PMID: 24476918 PMCID: PMC3985652 DOI: 10.1093/nar/gku079] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Seven linker histone H1 variants are present in human somatic cells with distinct prevalence across cell types. Despite being key structural components of chromatin, it is not known whether the different variants have specific roles in the regulation of nuclear processes or are differentially distributed throughout the genome. Using variant-specific antibodies to H1 and hemagglutinin (HA)-tagged recombinant H1 variants expressed in breast cancer cells, we have investigated the distribution of six H1 variants in promoters and genome-wide. H1 is depleted at promoters depending on its transcriptional status and differs between variants. Notably, H1.2 is less abundant than other variants at the transcription start sites of inactive genes, and promoters enriched in H1.2 are different from those enriched in other variants and tend to be repressed. Additionally, H1.2 is enriched at chromosomal domains characterized by low guanine–cytosine (GC) content and is associated with lamina-associated domains. Meanwhile, other variants are associated with higher GC content, CpG islands and gene-rich domains. For instance, H1.0 and H1X are enriched at gene-rich chromosomes, whereas H1.2 is depleted. In short, histone H1 is not uniformly distributed along the genome and there are differences between variants, H1.2 being the one showing the most specific pattern and strongest correlation with low gene expression.
Collapse
Affiliation(s)
- Lluís Millán-Ariño
- Department of Molecular Genomics, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, E-08028 Spain, Research Programme on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, E-08003 Spain, Department of Genetic Engineering, Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh, Centro de Investigación Príncipe Felipe, Valencia, E-46012 Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, E-08010 Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet 2013; 46:176-181. [PMID: 24362818 PMCID: PMC3907271 DOI: 10.1038/ng.2856] [Citation(s) in RCA: 582] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022]
Abstract
Follicular lymphoma is an incurable malignancy, with transformation to an aggressive subtype representing a critical event during disease progression. Here we performed whole-genome or whole-exome sequencing on 10 follicular lymphoma-transformed follicular lymphoma pairs followed by deep sequencing of 28 genes in an extension cohort, and we report the key events and evolutionary processes governing tumor initiation and transformation. Tumor evolution occurred through either a 'rich' or 'sparse' ancestral common progenitor clone (CPC). We identified recurrent mutations in linker histone, JAK-STAT signaling, NF-κB signaling and B cell developmental genes. Longitudinal analyses identified early driver mutations in chromatin regulator genes (CREBBP, EZH2 and KMT2D (MLL2)), whereas mutations in EBF1 and regulators of NF-κB signaling (MYD88 and TNFAIP3) were gained at transformation. Collectively, this study provides new insights into the genetic basis of follicular lymphoma and the clonal dynamics of transformation and suggests that personalizing therapies to target key genetic alterations in the CPC represents an attractive therapeutic strategy.
Collapse
|
42
|
Machha VR, Waddle JR, Turner AL, Wellman S, Le VH, Lewis EA. Calorimetric studies of the interactions of linker histone H1(0) and its carboxyl (H1(0)-C) and globular (H1(0)-G) domains with calf-thymus DNA. Biophys Chem 2013; 184:22-8. [PMID: 24036047 DOI: 10.1016/j.bpc.2013.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/04/2023]
Abstract
Histone H1 is a chromatin protein found in most eukaryotes. ITC and CD have been used to study the binding of H1(0) and its C-terminal, H1(0)-C, and globular, H1(0)-G, domains to a highly polymerized DNA. ITC results indicate that H1(0) and H1(0)-C bind tightly to DNA (Ka≈1×10(7)), with an unfavorable ΔH (ΔH≈+22kcal/mol) and a favorable ΔS (-TΔS≈-30kcal/mol). Binding H1(0)-G to DNA at 25°C is calorimetrically silent. A multiple independent site model fits the ITC data, with the anomaly in the data near saturation attributed to rearrangement of bound H1, maximizing the number of binding sites. CD experiments indicate that H1(0)/DNA and H1(0)-C/DNA complexes form with little change in protein structure but with some DNA restructuring. Salt dependent ITC experiments indicate that the electrostatic contribution to binding H1(0) or H1(0)-C is small ranging from 6% to 17% of the total ΔG.
Collapse
Affiliation(s)
- V R Machha
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, United States
| | | | | | | | | | | |
Collapse
|
43
|
Harshman SW, Young NL, Parthun MR, Freitas MA. H1 histones: current perspectives and challenges. Nucleic Acids Res 2013; 41:9593-609. [PMID: 23945933 PMCID: PMC3834806 DOI: 10.1093/nar/gkt700] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry.
Collapse
Affiliation(s)
- Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
44
|
Kosterin OE, Bogdanova VS, Kechin AA, Zaytseva OO, Yadrikhinskiy AK. Polymorphism in a histone H1 subtype with a short N-terminal domain in three legume species (Fabaceae, Fabaeae). Mol Biol Rep 2012; 39:10681-95. [PMID: 23053965 DOI: 10.1007/s11033-012-1959-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
Abstract
A number of alleles of an orthologous gene His6 encoding histone H1 subtype f (H1-6 in pea) accumulated in chromatin of old tissues were sequenced in three legume species: seven alleles in Pisum sativum, four in Vicia unijuga and eight in Lathyrus gmelinii. In the total of 19 alleles sequenced in the three species, 29 non-synonymous substitutions and six indels were found in the coding region; most of amino acid substitutions (26 of 29) and all indels occurred in the C-terminal hydrophilic domain of the encoded protein. All species were polymorphic for some non-synonymous substitutions, V. unijuga was also polymorphic for one and P. sativum for two indels. Three near-isogenic lines of P. sativum bearing different alleles showed differences in many quantitative traits; that in the growth dynamic could be tentatively attributed to the allelic substitution of subtype H1-6. The frequencies of four electromorphs in a sampled locality of V. unijuga were found to be close to those observed 25 years ago, although their rapid change in the past was supposed in the previous study.
Collapse
Affiliation(s)
- Oleg E Kosterin
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentyev Ave 10, Novosibirsk, Russia, 630090.
| | | | | | | | | |
Collapse
|
45
|
Öberg C, Belikov S. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin. Biochem Biophys Res Commun 2012; 420:321-4. [DOI: 10.1016/j.bbrc.2012.02.157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
|
46
|
Peng Z, Mizianty MJ, Xue B, Kurgan L, Uversky VN. More than just tails: intrinsic disorder in histone proteins. MOLECULAR BIOSYSTEMS 2012; 8:1886-901. [DOI: 10.1039/c2mb25102g] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|