1
|
Zhang S, Dhakal S, Curtis E, Miller H, Paletta JT, Gee C, Rajca S, Kievit F, Rajca A. Towards Metabolic Organic Radical Contrast Agents (mORCAs) for Magnetic Resonance Imaging. Molecules 2025; 30:1581. [PMID: 40286150 PMCID: PMC11990138 DOI: 10.3390/molecules30071581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
We report two conjugates of gem-diethyl pyrroline nitroxide radicals with D-mannosamine as potential metabolic organic radical contrast agents, mORCAs, circumventing the need for biorthogonal reactions. In-cell EPR spectroscopy, using Jurkat cells and analogous conjugate, based on a pyrrolidine nitroxide radical, shows an efficient incorporation of highly immobilized nitroxides, with a correlation time of τcor = 20 ns. In vivo MRI experiments in mice show that the paramagnetic nitroxide radical shortens the T1 and T2 relaxation times of protons in water located in the kidney and brain by only up to ~10% after 3 d. Ex vivo EPR spectroscopic analyses indicate that the contrast agents in mouse tissues are primarily localized in the kidney, lung, liver, heart, and blood, which primarily contain immobilized nitroxide radicals with τcor = 4-9 ns. The spin concentrations in tissues remain low (1-3 nmol g⁻1) at 24 h after the third mORCA injection, approximately one to two orders of magnitude lower than those of ORCAFluor and BASP-ORCA (measured at ~24 h post-injection). These low spin concentrations explain the small proton T1 and T2 relaxation changes observed in in vivo MRI.
Collapse
Affiliation(s)
- Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA; (S.Z.); (S.D.); (J.T.P.); (S.R.)
| | - Sabina Dhakal
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA; (S.Z.); (S.D.); (J.T.P.); (S.R.)
| | - Evan Curtis
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583-0900, USA; (E.C.); (H.M.); (C.G.); (F.K.)
| | - Hunter Miller
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583-0900, USA; (E.C.); (H.M.); (C.G.); (F.K.)
| | - Joseph T. Paletta
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA; (S.Z.); (S.D.); (J.T.P.); (S.R.)
| | - Connor Gee
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583-0900, USA; (E.C.); (H.M.); (C.G.); (F.K.)
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA; (S.Z.); (S.D.); (J.T.P.); (S.R.)
| | - Forrest Kievit
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583-0900, USA; (E.C.); (H.M.); (C.G.); (F.K.)
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA; (S.Z.); (S.D.); (J.T.P.); (S.R.)
| |
Collapse
|
2
|
Shi T, Gao J, Xu W, Liu X, Yan B, Azra MN, Baloch WA, Wang P, Gao H. The mannose-binding lectin (MBL) gene cloned from Exopalaemon carinicauda plays a key role in resisting infection by Vibrio parahaemolyticus. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111001. [PMID: 38908544 DOI: 10.1016/j.cbpb.2024.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Mannose-binding lectin (MBL) is a vital member of the lectin family, crucial for mediating functions within the complement lectin pathway. In this study, following the cloning of the mannose-binding lectin (MBL) gene in the ridgetail white prawn, Exopalaemon carinicauda, we examined its expression patterns across various tissues and its role in combating challenges posed by Vibrio parahaemolyticus. The results revealed that the MBL gene spans 1342 bp, featuring an open reading frame of 972 bp. It encodes a protein comprising 323 amino acids, with a predicted relative molecular weight of 36 kDa and a theoretical isoelectric point of 6.18. The gene exhibited expression across various tissues including the eyestalk, heart, gill, hepatopancreas, stomach, intestine, ventral nerve cord, muscle, and hemolymph, with the highest expression detected in the hepatopancreas. Upon challenge with V. parahaemolyticus, RT-PCR analysis revealed a trend of MBL expression in hepatopancreatic tissues, characterized by an initial increase followed by a subsequent decrease, peaking at 24 h post-infection. Employing RNA interference to disrupt MBL gene expression resulted in a significant increase in mortality rates among individuals challenged with V. parahaemolyticus. Furthermore, we successfully generated the Pet32a-MBL recombinant protein through the construction of a prokaryotic expression vector for conducting in vitro bacterial inhibition assays, which demonstrated the inhibitory effect of the recombinant protein on V. parahaemolyticus, laying a foundation for further exploration into its immune mechanism in response to V. parahaemolyticus challenges.
Collapse
Affiliation(s)
- Tingting Shi
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiayi Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wanyuan Xu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xue Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China
| | - Mohamad Nor Azra
- Institute of Marine Biotechnology, University of Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wazir Ali Baloch
- Department of Freshwater Biology and Fisheries, University of Sindh, Jamshoro 76080, Pakistan
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China.
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China.
| |
Collapse
|
3
|
Haroon HB, Dhillon E, Farhangrazi ZS, Trohopoulos PN, Simberg D, Moghimi SM. Activation of the complement system by nanoparticles and strategies for complement inhibition. Eur J Pharm Biopharm 2023; 193:227-240. [PMID: 37949325 DOI: 10.1016/j.ejpb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The complement system is a multicomponent and multifunctional arm of the innate immune system. Complement contributes to non-specific host defence and maintains homeostasis through multifaceted processes and pathways, including crosstalk with the adaptive immune system, the contact (coagulation) and the kinin systems, and alarmin high-mobility group box 1. Complement is also present intracellularly, orchestrating a wide range of housekeeping and physiological processes in both immune and nonimmune cells, thus showing its more sophisticated roles beyond innate immunity, but its roles are still controversial. Particulate drug carriers and nanopharmaceuticals typically present architectures and surface patterns that trigger complement system in different ways, resulting in both beneficial and adverse responses depending on the extent of complement activation and regulation as well as pathophysiological circumstances. Here we consider the role of complement system and complement regulations in host defence and evaluate the mechanisms by which nanoparticles trigger and modulate complement responses. Effective strategies for the prevention of nanoparticle-mediated complement activation are introduced and discussed.
Collapse
Affiliation(s)
- Hajira B Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elisha Dhillon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | | | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
4
|
Iqbal H, Fung KW, Gor J, Bishop AC, Makhatadze GI, Brodsky B, Perkins SJ. A solution structure analysis reveals a bent collagen triple helix in the complement activation recognition molecule mannan-binding lectin. J Biol Chem 2023; 299:102799. [PMID: 36528062 PMCID: PMC9898670 DOI: 10.1016/j.jbc.2022.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Collagen triple helices are critical in the function of mannan-binding lectin (MBL), an oligomeric recognition molecule in complement activation. The MBL collagen regions form complexes with the serine proteases MASP-1 and MASP-2 in order to activate complement, and mutations lead to common immunodeficiencies. To evaluate their structure-function properties, we studied the solution structures of four MBL-like collagen peptides. The thermal stability of the MBL collagen region was much reduced by the presence of a GQG interruption in the typical (X-Y-Gly)n repeat compared to controls. Experimental solution structural data were collected using analytical ultracentrifugation and small angle X-ray and neutron scattering. As controls, we included two standard Pro-Hyp-Gly collagen peptides (POG)10-13, as well as three more peptides with diverse (X-Y-Gly)n sequences that represented other collagen features. These data were quantitatively compared with atomistic linear collagen models derived from crystal structures and 12,000 conformations obtained from molecular dynamics simulations. All four MBL peptides were bent to varying degrees up to 85o in the best-fit molecular dynamics models. The best-fit benchmark peptides (POG)n were more linear but exhibited a degree of conformational flexibility. The remaining three peptides showed mostly linear solution structures. In conclusion, the collagen helix is not strictly linear, the degree of flexibility in the triple helix depends on its sequence, and the triple helix with the GQG interruption showed a pronounced bend. The bend in MBL GQG peptides resembles the bend in the collagen of complement C1q and may be key for lectin pathway activation.
Collapse
Affiliation(s)
- Hina Iqbal
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Ka Wai Fung
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Jayesh Gor
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Anthony C Bishop
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - George I Makhatadze
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Barbara Brodsky
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts, USA
| | - Stephen J Perkins
- Department of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
5
|
Kalia N, Singh J, Kaur M. The ambiguous role of mannose-binding lectin (MBL) in human immunity. Open Med (Wars) 2021; 16:299-310. [PMID: 33681468 PMCID: PMC7917369 DOI: 10.1515/med-2021-0239] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/30/2022] Open
Abstract
Mannose-binding lectin (MBL) and lectin complement pathway have become targets of increasing clinical interest. Many aspects of MBL have been recently explored, including the structural properties that allow it to distinguish self from non-self/altered-self structures. Experimental evidences have declared the additional 5′- and 3′-variants that in amalgamation with well-known secretor polymorphisms change MBL function and concentration. Moreover, the current review highlights the differential behavior of MBL on exposure with extra/intracellular pathogens and in autoimmune diseases, stressing the fact that “high MBL levels can increase diseases susceptibility,” a paradox that needs justification. Attributable to these discrepancies, no absolute level of MBL deficiency could be defined so far and thus must be interpreted for specific diseases through case–control population-specific designs. Overall, it is evident that further research is needed about MBL and the lectin pathway of complement. Particularly, the transformative role of MBL over evolution is of interest and its role with regard to pathogenesis of different diseases and potential therapeutic targets within the respective pathways should be further explored. Apart from this, it is necessary to adopt an extensive locus-wide methodology to apprehend the clinical significance of MBL2 polymorphisms in a variety of infectious diseases by the future studies.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India.,Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
6
|
Nørregaard KS, Krigslund O, Behrendt N, Engelholm LH, Jürgensen HJ. The collagen receptor uPARAP/Endo180 regulates collectins through unique structural elements in its FNII domain. J Biol Chem 2020; 295:9157-9170. [PMID: 32424040 PMCID: PMC7335807 DOI: 10.1074/jbc.ra120.013710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Indexed: 11/06/2022] Open
Abstract
C-type lectins that contain collagen-like domains are known as collectins. These proteins are present both in the circulation and in extravascular compartments and are central players of the innate immune system, contributing to first-line defenses against viral, bacterial, and fungal pathogens. The collectins mannose-binding lectin (MBL) and surfactant protein D (SP-D) are regulated by tissue fibroblasts at extravascular sites via an endocytic mechanism governed by urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180), which is also a collagen receptor. Here, we investigated the molecular mechanisms that drive the uPARAP-mediated cellular uptake of MBL and SP-D. We found that the uptake depends on residues within a protruding loop in the fibronectin type-II (FNII) domain of uPARAP that are also critical for collagen uptake. Importantly, however, we also identified FNII domain residues having an exclusive role in collectin uptake. We noted that these residues are absent in the related collagen receptor, the mannose receptor (MR or CD206), which consistently does not interact with collectins. We also show that the second C-type lectin-like domain (CTLD2) is critical for the uptake of SP-D, but not MBL, indicating an additional level of complexity in the interactions between collectins and uPARAP. Finally, we demonstrate that the same molecular mechanisms enable uPARAP to engage MBL immobilized on the surface of pathogens, thereby expanding the potential biological implications of this interaction. Our study reveals molecular details of the receptor-mediated cellular regulation of collectins and offers critical clues for future investigations into collectin biology and pathology.
Collapse
Affiliation(s)
- Kirstine Sandal Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Oliver Krigslund
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Henrik Jessen Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
7
|
Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj 2019; 1863:1480-1497. [PMID: 31121217 PMCID: PMC6686077 DOI: 10.1016/j.bbagen.2019.05.012] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation is a ubiquitous post-translational modification responsible for a multitude of crucial biological roles. As obligate parasites, viruses exploit host-cell machinery to glycosylate their own proteins during replication. Viral envelope proteins from a variety of human pathogens including HIV-1, influenza virus, Lassa virus, SARS, Zika virus, dengue virus, and Ebola virus have evolved to be extensively glycosylated. These host-cell derived glycans facilitate diverse structural and functional roles during the viral life-cycle, ranging from immune evasion by glycan shielding to enhancement of immune cell infection. In this review, we highlight the imperative and auxiliary roles glycans play, and how specific oligosaccharide structures facilitate these functions during viral pathogenesis. We discuss the growing efforts to exploit viral glycobiology in the development of anti-viral vaccines and therapies.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
8
|
Kiran P, Kumari S, Dernedde J, Haag R, Bhatia S. Synthesis and comparison of linear and hyperbranched multivalent glycosides for C-type lectin binding. NEW J CHEM 2019. [DOI: 10.1039/c9nj02018g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperbranched and linear polyglycerol-based mannoside and fucosyllactoside residues with different ligand densities showed nanomolar binding affinities for MBL and DC-SIGN proteins.
Collapse
Affiliation(s)
- Pallavi Kiran
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Shalini Kumari
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Jens Dernedde
- Charité-Universitäts Medizin Berlin
- Corporate Member of Freie Universität Berlin
- Humboldt-Universität zu Berlin, and Berlin Institute of Health
- Institute of Laboratory Medicine
- Clinical Chemistry and Pathobiochemistry
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
9
|
Albuquerque DAP, Cavalcanti IT, Vasconcelos LRS, Montenegro F, Pereira LMMB, Cavalcanti MSM, Moura P, Júnior LBC, de Almeida SMV, Beltrão EIC. Molecular profile of mannan-binding lectin in hepatitis C patients with MBL gene polymorphisms by a modified mannan-coated nitrocellulose assay. J Immunol Methods 2018; 460:101-106. [PMID: 30056939 DOI: 10.1016/j.jim.2018.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 02/08/2023]
Abstract
The aim of this study was to develop an assay to analyze the serum profile of Mannose-binding lectin (MBL) through a simple and "in-house" method (called "dot-N-man"). Furthermore, the study attempted to associate molecular masses of MBL to the profile of MBL gene polymorphisms in patients with hepatitis C. Heterogeneity in molecular masses of MBL is due to the impairment of oligomers formation, which is linked to genetic polymorphisms in the MBL gene. Individuals with AA genotype (wild-type) produce high-molecular-mass proteins, whereas AO and OO individuals produce intermediate and low-molecular-mass proteins, respectively. Sera of thirty patients carrying the hepatitis C virus (HCV) were investigated using MBL binding assay with mannan-coated nitrocellulose (dot-N-man). Purified MBL was evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Dot-N-Man assay yielded MBL with molecular masses ranging between 55 and 320 kDa, comparable to low and high molecular mass forms of MBL. Nonreducing SDS-PAGE showed high molecular mass bands in all AA individuals while bands of 270 and 205 kDa were observed in sera for a number of patients with AO and OO genotypes, respectively. Immunoblotting confirmed the MBL samples obtained from the dot-N-man. These results provide new insights to understand the MBL molecular forms profile in patients infected with HCV- which could be useful in future investigations on the influence of the MBL structure/genotype on both the progression of infection and the response to hepatitis C therapy.
Collapse
Affiliation(s)
- Diego A P Albuquerque
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Igor T Cavalcanti
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Luydson R S Vasconcelos
- Instituto do Fígado e Transplantes de Pernambuco - IFP, Recife, PE, Brazil; Faculdade de Ciências Médicas, Universidade de Pernambuco (UPE), Recife, PE, Brazil; Instituto de Pesquisas Aggeu Magalhães - FIOCRUZ, Recife, PE, Brazil
| | - Francisco Montenegro
- Laboratório de Biologia Molecular de Vírus, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, PE, Brazil
| | - Leila M M B Pereira
- Instituto do Fígado e Transplantes de Pernambuco - IFP, Recife, PE, Brazil; Faculdade de Ciências Médicas, Universidade de Pernambuco (UPE), Recife, PE, Brazil
| | - Maria S M Cavalcanti
- Laboratório de Biologia Molecular de Vírus, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, PE, Brazil; Faculdade de Ciências Médicas, Universidade de Pernambuco (UPE), Recife, PE, Brazil
| | - Patrícia Moura
- Laboratório de Biologia Molecular de Vírus, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, PE, Brazil; Faculdade de Ciências Médicas, Universidade de Pernambuco (UPE), Recife, PE, Brazil
| | - Luiz B C Júnior
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil; Universidade de Pernambuco (UPE), Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Garanhuns, PE, Brazil.
| | - Eduardo I C Beltrão
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
10
|
Miller ML, Porollo A, Wert S. Ultrastructure of Highly Ordered Granules in Alveolar Type II Cells in Several Species. Anat Rec (Hoboken) 2018; 301:1290-1302. [PMID: 29544026 DOI: 10.1002/ar.23805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/30/2017] [Accepted: 02/02/2018] [Indexed: 01/26/2023]
Abstract
Alveolar Type II cells from seven mammalian species were examined for a protein in the rough endoplasmic reticulum (RER), which showed a multilayered, repeating motif. Each motif, 100 nm in width, comprised two parallel outer dense layers, a less dense central layer, and often 1-3 faint layers on either side of the latter. Outer layers showed periodicities at 3-4 densities/100 nm of width, while layers on either side of the central layer showed 5-7 densities/100 nm of width. RER membranes were ribosome-free when parallel to these layers, but showed four ribosomes per motif at the growing ends: one ribosome at each outer dense layer, and one on either side of the less dense central layer. Granules appeared as single or as multiple motifs, stacked, curved, folded, or branching together within the same RER profile. Hexagons of around 30 nm in diameter with central densities were seen in tangential cuts of outer dense layers. Granule incidence varied: guinea pig > ferret > dog. Possible homologous structures occurred in rabbit and cat, but not in rat or mouse. Surfactant protein A (SP-A), a C-type lectin produced in Type II cells, forms trimers and bouquet-like 18-mer and can oligomerize further. Two pairs of SP-A 18-mers with carbohydrate recognition domains pointing inwardly and outwardly, stacked vertically as a column of four molecules, then repeated side by side in rows, approximated the size and layering patterns observed in these granules. Sequence analyses of SP-A from these species showed phylogenetic distances consistent with the observed occurrence and frequency of patterned granules. Anat Rec, 301:1290-1302, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marian L Miller
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Aleksey Porollo
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio.,Center for Autoimmune Genomics and Etiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Susan Wert
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio.,Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
11
|
Nan R, Furze CM, Wright DW, Gor J, Wallis R, Perkins SJ. Flexibility in Mannan-Binding Lectin-Associated Serine Proteases-1 and -2 Provides Insight on Lectin Pathway Activation. Structure 2017; 25:364-375. [PMID: 28111019 PMCID: PMC5300068 DOI: 10.1016/j.str.2016.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/08/2016] [Accepted: 12/21/2016] [Indexed: 01/19/2023]
Abstract
The lectin pathway of complement is activated by complexes comprising a recognition component (mannose-binding lectin, serum ficolins, collectin-LK or collectin-K1) and a serine protease (MASP-1 or MASP-2). MASP-1 activates MASP-2, and MASP-2 cleaves C4 and C4b-bound C2. To clarify activation, new crystal structures of Ca2+-bound MASP dimers were determined, together with their solution structures from X-ray scattering, analytical ultracentrifugation, and atomistic modeling. Solution structures of the CUB1-EGF-CUB2 dimer of each MASP indicate that the two CUB2 domains were tilted by as much as 90° compared with the crystal structures, indicating considerable flexibility at the EGF-CUB2 junction. Solution structures of the full-length MASP dimers in their zymogen and activated forms revealed similar structures that were much more bent than anticipated from crystal structures. We conclude that MASP-1 and MASP-2 are flexible at multiple sites and that this flexibility may permit both intra- and inter-complex activation.
Collapse
Affiliation(s)
- Ruodan Nan
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Christopher M Furze
- Departments of Infection, Immunity and Inflammation and Molecular Cell Biology, University of Leicester, University Road, Leicester, LE1 9HN, UK
| | - David W Wright
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Jayesh Gor
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Russell Wallis
- Departments of Infection, Immunity and Inflammation and Molecular Cell Biology, University of Leicester, University Road, Leicester, LE1 9HN, UK
| | - Stephen J Perkins
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Rowland LM, Demyanovich HK, Wijtenburg SA, Eaton WW, Rodriguez K, Gaston F, Cihakova D, Talor MV, Liu F, McMahon RR, Hong LE, Kelly DL. Antigliadin Antibodies (AGA IgG) Are Related to Neurochemistry in Schizophrenia. Front Psychiatry 2017; 8:104. [PMID: 28674504 PMCID: PMC5474459 DOI: 10.3389/fpsyt.2017.00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Inflammation may play a role in schizophrenia; however, subgroups with immune regulation dysfunction may serve as distinct illness phenotypes with potential different treatment and prevention strategies. Emerging data show that about 30% of people with schizophrenia have elevated antigliadin antibodies of the IgG type, representing a possible subgroup of schizophrenia patients with immune involvement. Also, recent data have shown a high correlation of IgG-mediated antibodies between the periphery and cerebral spinal fluid in schizophrenia but not healthy controls, particularly AGA IgG suggesting that these antibodies may be crossing the blood-brain barrier with resulting neuroinflammation. Proton magnetic resonance spectroscopy (MRS) is a non-invasive technique that allows the quantification of certain neurochemicals in vivo that may proxy inflammation in the brain such as myoinositol and choline-containing compounds (glycerophosphorylcholine and phosphorylcholine). The objective of this exploratory study was to examine the relationship between serum AGA IgG levels and MRS neurochemical levels. We hypothesized that higher AGA IgG levels would be associated with higher levels of myoinositol and choline-containing compounds (glycerophosphorylcholine plus phosphorylcholine; GPC + PC) in the anterior cingulate cortex. Thirty-three participants with a DSM-IV diagnosis of schizophrenia or schizoaffective disorder had blood drawn and underwent neuroimaging using MRS within 9 months. We found that 10/33 (30%) had positive AGA IgG (≥20 U) similar to previous findings. While there were no significant differences in myoinositol and GPC + PC levels between patients with and without AGA IgG positivity, there were significant relationships between both myoinositol (r = 0.475, p = 0.007) and GPC + PC (r = 0.36, p = 0.045) with AGA IgG levels. This study shows a possible connection of AGA IgG antibodies to putative brain inflammation as measured by MRS in schizophrenia.
Collapse
Affiliation(s)
- Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Haley K Demyanovich
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - William W Eaton
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Katrina Rodriguez
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Frank Gaston
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniela Cihakova
- Immunologic Disorders Laboratory, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Monica V Talor
- Immunologic Disorders Laboratory, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Fang Liu
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert R McMahon
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Stravalaci M, De Blasio D, Orsini F, Perego C, Palmioli A, Goti G, Bernardi A, De Simoni MG, Gobbi M. A New Surface Plasmon Resonance Assay for In Vitro Screening of Mannose-Binding Lectin Inhibitors. ACTA ACUST UNITED AC 2016; 21:749-57. [PMID: 26969323 DOI: 10.1177/1087057116637563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/15/2016] [Indexed: 12/12/2022]
Abstract
Mannose-binding lectin (MBL) is a circulating protein that acts as a soluble pattern recognition molecule of the innate immunity. It binds to carbohydrate patterns on the surface of pathogens or of altered self-cells, with activation of the lectin pathway of the complement system. Recent evidence indicates that MBL contributes to the pathophysiology of ischemia-reperfusion injury and other conditions. Thus, MBL inhibitors offer promising therapeutic strategies, since they prevent the interaction of MBL with its target sugar arrays. We developed and characterized a novel assay based on surface plasmon resonance for in vitro screening of these compounds, which may be useful before the more expensive and time-consuming in vivo studies. The assay measures the inhibitor's ability to interfere with the binding of murine MBL-A or MBL-C, or of human recombinant MBL, to mannose residues immobilized on the sensor chip surface. We have applied the assay to measure the IC50 of synthetic glycodendrimers, two of them with neuroprotective properties in animal models of MBL-mediated injuries.
Collapse
Affiliation(s)
- Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Daiana De Blasio
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca'Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Franca Orsini
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Carlo Perego
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Giulio Goti
- Department of Chemistry, University of Milan, Milan, Italy
| | - Anna Bernardi
- Department of Chemistry, University of Milan, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
14
|
Patel PK, Hindala M, Kohli B, Hajela K. Divalent metal ions binding properties of goat serum mannose binding lectin. Int J Biol Macromol 2015; 80:324-7. [PMID: 26126945 DOI: 10.1016/j.ijbiomac.2015.06.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 11/17/2022]
Abstract
Mannose binding lectin (MBL) is a collectin with C-terminus Carbohydrate Recognition Domain (CRD) which binds with pathogen and arbitrate functions like activation of complement pathway, opsonization etc. The CRD required Ca(2+) ions to recognize the sugar moieties. In the present study the binding properties of CRD with divalent ions were characterized by Electron Paramagnetic Resonance (EPR) spectroscopy. The results revealed that the metal binding site of CRD is of approximately 1 Å diameter and ions greater than the size are not able to enter.
Collapse
Affiliation(s)
| | - Maliram Hindala
- School of Life Sciences, Devi Ahilya University, Indore, India
| | - Bavita Kohli
- School of Life Sciences, Devi Ahilya University, Indore, India; Department of Bio-Technology, ISLE, IPS Academy, Indore, India
| | - Krishnan Hajela
- School of Life Sciences, Devi Ahilya University, Indore, India.
| |
Collapse
|
15
|
Wright DW, Perkins SJ. SCT: a suite of programs for comparing atomistic models with small-angle scattering data. J Appl Crystallogr 2015; 48:953-961. [PMID: 26089768 PMCID: PMC4453981 DOI: 10.1107/s1600576715007062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Small-angle X-ray and neutron scattering techniques characterize proteins in solution and complement high-resolution structural studies. They are of particular utility when large proteins cannot be crystallized or when the structure is altered by solution conditions. Atomistic models of the averaged structure can be generated through constrained modelling, a technique in which known domain or subunit structures are combined with linker models to produce candidate global conformations. By randomizing the configuration adopted by the different elements of the model, thousands of candidate structures are produced. Next, theoretical scattering curves are generated for each model for trial-and-error fits to the experimental data. From these, a small family of best-fit models is identified. In order to facilitate both the computation of theoretical scattering curves from atomistic models and their comparison with experiment, the SCT suite of tools was developed. SCT also includes programs that provide sequence-based estimates of protein volume (either incorporating hydration or not) and add a hydration layer to models for X-ray scattering modelling. The original SCT software, written in Fortran, resulted in the first atomistic scattering structures to be deposited in the Protein Data Bank, and 77 structures for antibodies, complement proteins and anionic oligosaccharides were determined between 1998 and 2014. For the first time, this software is publicly available, alongside an easier-to-use reimplementation of the same algorithms in Python. Both versions of SCT have been released as open-source software under the Apache 2 license and are available for download from https://github.com/dww100/sct.
Collapse
Affiliation(s)
- David W. Wright
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Stephen J. Perkins
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
16
|
Human lectins and their roles in viral infections. Molecules 2015; 20:2229-71. [PMID: 25642836 PMCID: PMC6272597 DOI: 10.3390/molecules20022229] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of virus proteins is an important component of the immune response to viral pathogens. A component of this immune recognition is the family of lectins; pattern recognition receptors (PRRs) that recognise viral pathogen-associated molecular patterns (PAMPs) including viral glycoproteins. In this review we discuss the contribution of soluble and membrane-associated PRRs to immunity against virus pathogens, and the potential role of these molecules in facilitating virus replication. These processes are illustrated with examples of viruses including human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Ebola virus (EBOV). We focus on the structure, function and genetics of the well-characterised C-type lectin mannose-binding lectin, the ficolins, and the membrane-bound CD209 proteins expressed on dendritic cells. The potential for lectin-based antiviral therapies is also discussed.
Collapse
|
17
|
Kjaer TR, Le LTM, Pedersen JS, Sander B, Golas MM, Jensenius JC, Andersen GR, Thiel S. Structural insights into the initiating complex of the lectin pathway of complement activation. Structure 2015; 23:342-51. [PMID: 25579818 DOI: 10.1016/j.str.2014.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
The proteolytic cascade of the complement system is initiated when pattern-recognition molecules (PRMs) bind to ligands, resulting in the activation of associated proteases. In the lectin pathway of complement, the complex of mannan-binding lectin (MBL) and MBL-associated serine protease-1 (MASP-1) initiates the pathway by activating a second protease, MASP-2. Here we present a structural study of a PRM/MASP complex and derive the overall architecture of the 450 kDa MBL/MASP-1 complex using small-angle X-ray scattering and electron microscopy. The serine protease (SP) domains from the zymogen MASP-1 dimer protrude from the cone-like MBL tetramer and are separated by at least 20 nm. This suggests that intracomplex activation within a single MASP-1 dimer is unlikely and instead supports intercomplex activation, whereby the MASP SP domains are accessible to nearby PRM-bound MASPs. This activation mechanism differs fundamentally from the intracomplex initiation models previously proposed for both the lectin and the classical pathway.
Collapse
Affiliation(s)
- Troels R Kjaer
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Le T M Le
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Bjoern Sander
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark; Center for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark; Center for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Jens Christian Jensenius
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| |
Collapse
|
18
|
Wang SK, Cheng CM. Glycan-based diagnostic devices: current progress, challenges and perspectives. Chem Commun (Camb) 2015; 51:16750-62. [DOI: 10.1039/c5cc06876b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of glycan-based diagnostic devices is illustrated with recent examples from both carbohydrate recognition and device design aspects.
Collapse
Affiliation(s)
- Sheng-Kai Wang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 300
- Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering
- National Tsing Hua University
- Taiwan
| |
Collapse
|
19
|
Reynolds SL, Pike RN, Mika A, Blom AM, Hofmann A, Wijeyewickrema LC, Kemp D, Fischer K. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway. PLoS Negl Trop Dis 2014; 8:e2872. [PMID: 24854034 PMCID: PMC4031079 DOI: 10.1371/journal.pntd.0002872] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics.
Collapse
Affiliation(s)
- Simone L Reynolds
- Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Robert N Pike
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Angela Mika
- Diagnostics Development, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anna M Blom
- Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Australia
| | | | - Dave Kemp
- Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Katja Fischer
- Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
20
|
Kjaer TR, Thiel S, Andersen GR. Toward a structure-based comprehension of the lectin pathway of complement. Mol Immunol 2013; 56:222-31. [DOI: 10.1016/j.molimm.2013.05.220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/09/2013] [Indexed: 01/19/2023]
|
21
|
Kjaer TR, Thiel S, Andersen GR. Toward a structure-based comprehension of the lectin pathway of complement. Mol Immunol 2013; 56:413-22. [DOI: 10.1016/j.molimm.2013.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/14/2013] [Indexed: 01/19/2023]
|
22
|
Matsushita M, Endo Y, Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication. Arch Immunol Ther Exp (Warsz) 2013; 61:273-83. [PMID: 23563865 DOI: 10.1007/s00005-013-0229-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 03/25/2013] [Indexed: 01/19/2023]
Abstract
The complement system is an effector mechanism in immunity. It is activated in three ways, the classical, alternative and lectin pathways. The lectin pathway is initiated by the binding of mannose-binding lectin (MBL) or ficolins to carbohydrates on the surfaces of pathogens. In humans, MBL and three types of ficolins (L-ficolin, H-ficolin, and M-ficolin) are present in plasma. Of these lectins, at least, MBL, L-ficolin, and H-ficolin are complexed with three types of MBL-associated serine proteases (MASPs), MASP-1, MASP-2, and MASP-3 and their truncated proteins (MAp44 and sMAP). In the lectin pathway, the lectin-MASP complex (i.e., a complex of lectin, MASPs and their truncated proteins) binds to pathogens, resulting in the activation of C4 and C2 to generate a C3 convertase capable of activating C3. MASP-2 is involved in the activation of C4 and C2. MASP-1 activates C2 and MASP-2. The functions of MASP-3, sMAP, and MAp44 in the lectin pathway remain unknown. MASP-1 and MASP-3 also have a role in the alternative pathway. MBL and ficolins are able to bind to a variety of pathogens depending on their carbohydrate binding specificity, resulting in the activation of the lectin pathway. Deficiencies of the components of the lectin pathway are associated to susceptibility to infection, indicating an important role of the lectin pathway in innate immunity. The lectin-MASP complex is also involved in innate immunity by activating the coagulation system. Recent findings suggest a crucial role of MASP-3 in development.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | | | | |
Collapse
|
23
|
Jacquet M, Lacroix M, Ancelet S, Gout E, Gaboriaud C, Thielens NM, Rossi V. Deciphering complement receptor type 1 interactions with recognition proteins of the lectin complement pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3721-31. [PMID: 23460739 DOI: 10.4049/jimmunol.1202451] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement receptor type 1 (CR1) is a membrane receptor expressed on a wide range of cells. It is involved in immune complex clearance, phagocytosis, and complement regulation. Its ectodomain is composed of 30 complement control protein (CCP) modules, organized into four long homologous repeats (A-D). In addition to its main ligands C3b and C4b, CR1 was reported to interact with C1q and mannan-binding lectin (MBL) likely through its C-terminal region (CCP22-30). To decipher the interaction of human CR1 with the recognition proteins of the lectin complement pathway, a recombinant fragment encompassing CCP22-30 was expressed in eukaryotic cells, and its interaction with human MBL and ficolins was investigated using surface plasmon resonance spectroscopy. MBL and L-ficolin were shown to interact with immobilized soluble CR1 and CR1 CCP22-30 with apparent dissociation constants in the nanomolar range, indicative of high affinity. The binding site for CR1 was located at or near the MBL-associated serine protease (MASP) binding site in the collagen stalks of MBL and L-ficolin, as shown by competition experiments with MASP-3. Accordingly, the mutation of an MBL conserved lysine residue essential for MASP binding (K55) abolished binding to soluble CR1 and CCP22-30. The CR1 binding site for MBL/ficolins was mapped to CCP24-25 of long homologous repeat D using deletion mutants. In conclusion, we show that ficolins are new CR1 ligands and propose that MBL/L-ficolin binding involves major ionic interactions between conserved lysine residues of their collagen stalks and surface exposed acidic residues located in CR1 CCP24 and/or CCP25.
Collapse
Affiliation(s)
- Mickaël Jacquet
- Commissariat à l'Energie Atomique, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|