1
|
Zhuang D, Kang J, Luo H, Tian Y, Liu X, Shao C. ARv7 promotes the escape of prostate cancer cells from androgen deprivation therapy-induced senescence by mediating the SKP2/p27 axis. BMC Biol 2025; 23:66. [PMID: 40022149 PMCID: PMC11871636 DOI: 10.1186/s12915-025-02172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Androgen deprivation therapy (ADT) induces cellular senescence and tumor stasis, thus serving as the standard treatment for prostate cancer (PCa). However, continuous suppression of canonical androgen receptor signaling actually leads to the switch from androgen-responsive growth to androgen-independent growth, contributing to "escape" from this ADT-induced senescence (AIS) and, subsequently, the development of castration-resistant prostate cancer (CRPC). Unfortunately, the mechanism underlying this phenomenon remains elusive. RESULTS In this study, we demonstrated that androgen receptor splicing variant 7 (ARv7), a dominant factor mediating abnormal AR signaling and ADT resistance, is closely associated with outgrowth from AIS of PCa cells. Mechanistically, ARv7 binds to the promoter of SKP2, activating its transcription, and then promotes the proteasomal degradation of the cell cycle regulator p27 and G1/S transition. In addition, we applied bioinformatic and in vitro analyses to show that SKP2 expression level is dramatically inhibited upon ADT, but its reactivation is one key step during the establishment of CRPC. Finally, we also demonstrated that SKP2 inhibitor treatment can significantly inhibit the growth of androgen-independent cell lines and enhance the efficacy of ADT. CONCLUSIONS Our work reveals a novel role of ARv7 in regulating AIS and suggests that targeting the ARv7/SKP2/p27 axis could be a potential strategy to delay disease progression to the CRPC state during prolonged ADT.
Collapse
Affiliation(s)
- Dian Zhuang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jinsong Kang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Haoge Luo
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yu Tian
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaoping Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chen Shao
- Department of Biochemistry & Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
3
|
Ezine E, Lebbe C, Dumaz N. Unmasking the tumourigenic role of SIN1/MAPKAP1 in the mTOR complex 2. Clin Transl Med 2023; 13:e1464. [PMID: 37877351 PMCID: PMC10599286 DOI: 10.1002/ctm2.1464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Although the PI3K/AKT/mTOR pathway is one of the most altered pathways in human tumours, therapies targeting this pathway have shown numerous adverse effects due to positive feedback paradoxically activating upstream signaling nodes. The somewhat limited clinical efficacy of these inhibitors calls for the development of novel and more effective approaches for targeting the PI3K pathway for therapeutic benefit in cancer. MAIN BODY Recent studies have shown the central role of mTOR complex 2 (mTORC2) as a pro-tumourigenic factor of the PI3K/AKT/mTOR pathway in a number of cancers. SIN1/MAPKAP1 is a major partner of mTORC2, acting as a scaffold and responsible for the substrate specificity of the mTOR catalytic subunit. Its overexpression promotes the proliferation, invasion and metastasis of certain cancers whereas its inhibition decreases tumour growth in vitro and in vivo. It is also involved in epithelial-mesenchymal transition, stress response and lipogenesis. Moreover, the numerous interactions of SIN1 inside or outside mTORC2 connect it with other signaling pathways, which are often disrupted in human tumours such as Hippo, WNT, Notch and MAPK. CONCLUSION Therefore, SIN1's fundamental characteristics and numerous connexions with oncogenic pathways make it a particularly interesting therapeutic target. This review is an opportunity to highlight the tumourigenic role of SIN1 across many solid cancers and demonstrates the importance of targeting SIN1 with a specific therapy.
Collapse
Affiliation(s)
- Emilien Ezine
- INSERMU976Team 1Human Immunology Pathophysiology & Immunotherapy (HIPI)ParisFrance
- Département de DermatologieHôpital Saint LouisAP‐HPParisFrance
| | - Céleste Lebbe
- INSERMU976Team 1Human Immunology Pathophysiology & Immunotherapy (HIPI)ParisFrance
- Département de DermatologieHôpital Saint LouisAP‐HPParisFrance
- Université Paris CitéInstitut de Recherche Saint Louis (IRSL)ParisFrance
| | - Nicolas Dumaz
- INSERMU976Team 1Human Immunology Pathophysiology & Immunotherapy (HIPI)ParisFrance
- Université Paris CitéInstitut de Recherche Saint Louis (IRSL)ParisFrance
| |
Collapse
|
4
|
Krause W. Resistance to prostate cancer treatments. IUBMB Life 2022; 75:390-410. [PMID: 35978491 DOI: 10.1002/iub.2665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
A review of the current treatment options for prostate cancer and the formation of resistance to these regimens has been compiled including primary, acquired, and cross-resistance. The diversification of the pathways involved and the escape routes the tumor is utilizing have been addressed. Whereas early stages of tumor can be cured, there is no treatment available after a point of no return has been reached, leaving palliative treatment as the only option. The major reasons for this outcome are the heterogeneity of tumors, both inter- and intra-individually and the nearly endless number of escape routes, which the tumor can select to overcome the effects of treatment. This means that more focus should be applied to the individualization of both diagnosis and therapy of prostate cancer. In addition to current treatment options, novel drugs and ongoing clinical trials have been addressed in this review.
Collapse
|
5
|
Gan X, Huang H, Wen J, Liu K, Yang Y, Li X, Fang G, Liu Y, Wang X. α-Terthienyl induces prostate cancer cell death through inhibiting androgen receptor expression. Biomed Pharmacother 2022; 152:113266. [PMID: 35691152 DOI: 10.1016/j.biopha.2022.113266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
Prostate cancer is a disease that often occurs in elderly men. Androgen receptor signaling pathway runs through the occurrence and development of prostate cancer. Thereby, targeting androgen receptor is a crucial strategy for the treatment of prostate cancer. α-Terthienyl, which has been used as photosensitive activator and insecticide, is a natural compound rich in marigold. In the present study, we found α- terthienyl could inhibit the cell viability of four prostate cancer cell lines, especially on LNCaP and 22Rv1 cells which endogenously express androgen receptor. Then we proved that it could inhibit the proliferation of prostate cancer cells and induce apoptosis of prostate cancer cells by plate clone formation assay and flow cytometry respectively. Furthermore, we found α-terthienyl could inhibit androgen receptor nuclear translocation, reduce androgen receptor expression, reduce the mRNA and protein expression of androgen receptor target genes (KLK3, TMPRSS2, PCA3) and nuclear proliferation antigen Ki67 and PCNA. In addition, it inhibited the expression and phosphorylation of Akt protein while increasing the expression of tumor suppressor p27. Besides, we constructed a mouse xenograft prostate cancer model and confirmed that α-terthienyl also inhibited the growth of prostate cancer in vivo. In conclusively, α-terthienyl played an anti-prostate cancer role by inhibiting both the expression of androgen receptor and the transduction of its signal pathway, suggesting that it is a promising natural small molecule for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xia Gan
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China; Institute of Marine Drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Hailing Huang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Jing Wen
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Yuting Yang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Xiaoning Li
- School of Foreign Languages, Nanning Normal University, 3 Hexing Road, Qingxiu District, Nanning 530299, China
| | - Gang Fang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China.
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
6
|
Guney Eskiler G, Deveci Ozkan A, Haciefendi A, Bilir C. Mechanisms of abemaciclib, a CDK4/6 inhibitor, induced apoptotic cell death in prostate cancer cells in vitro. Transl Oncol 2022; 15:101243. [PMID: 34649150 PMCID: PMC8517924 DOI: 10.1016/j.tranon.2021.101243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022] Open
Abstract
The therapeutic effects of abemaciclib (ABE), an inhibitor of cyclin- dependent kinases (CDK) 4/6, on the proliferation of two types of prostate cancer (PC) cells were revealed. In this study, in vitro cytotoxic and apoptotic effects of ABE on metastatic castration-resistant prostate cancer (mCRPC) androgen receptor (AR) negative PC-3 and AR mutant LNCaP PC cells were analyzed with WST-1, Annexin V, cell cycle, reactive oxygen species (ROS), mitochondrial membrane potential, RT-PCR, western blot, and apoptosis protein array. ABE considerably inhibited the growth of PC cells in a dose-dependent manner (p<0.01) and caused significant apoptotic cell death through the suppression of CDK4/6-Cyclin D complex, ROS generation and depolarization of mitochondria membrane potential. However, PC-3 cells were more sensitive to ABE than LNCaP cells. Furthermore, the expression levels of several pro-apoptotic and cell cycle regulatory proteins were upregulated by ABE in especially PC-3 cells with the downregulation of apoptotic inhibitor proteins. Our results suggest that ABE inhibits PC cell growth and promotes apoptosis and thus ABE treatment may be a promising treatment strategy in especially mCRPC. Further preclinical and clinical studies should be performed to clarify the clinical use of ABE for the treatment of PC.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Korucuk Campus, Sakarya 54290, Turkey.
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Korucuk Campus, Sakarya 54290, Turkey
| | - Ayten Haciefendi
- Department of Medical Biology, Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | - Cemil Bilir
- Department of Medical Oncology, Faculty of Medicine, Istinye University VMMedical Park Pendik Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Tien AH, Sadar MD. Cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with ralaniten analogues for the treatment of androgen receptor-positive prostate and breast cancers. Mol Cancer Ther 2021; 21:294-309. [PMID: 34815359 DOI: 10.1158/1535-7163.mct-21-0411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) has essential roles in the growth of prostate cancer and some breast cancers. Inhibition of AR transcriptional activity by targeting its N-terminal domain with ralaniten or an analogue such as EPI-7170 causes accumulation of cells in the G1 phase of the cell cycle. Inhibition of cyclin-dependent kinases 4/6 with palbociclib also leads to accumulation of cells in the G1 phase. Here a combination of EPI-7170 with palbociclib attenuated the in vivo growth of human castration-resistant prostate cancer xenografts that are resistant to antiandrogens. Cell-cycle tracing experiments in cultured cells revealed that EPI-7170 targeted cells in S phase, possibly through inducing DNA damage or impairing the DNA damage response, whereas palbociclib targeted the G1-S transition to delay the cell cycle. Combination treatment prevented cells in G1 and G2/M from progressing in the cell cycle and caused a portion of cells in S phase to arrest which contributed to a two-fold increase in doubling time to >63 hours compared to 25 hours in control cells. Importantly, sequential combination treatments with palbociclib administered first then followed by EPI-7170, resulted in more cells accumulating in G1 and less cells in S phase than concomitant combination which was presumably because each inhibitor has a unique mechanism in modulating the cell cycle in cancer cells. Together these data support that the combination therapy was more effective than individual monotherapies to reduce tumor growth by targeting different phases of the cell cycle.
Collapse
|
8
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Brohée L, Crémer J, Colige A, Deroanne C. Lipin-1, a Versatile Regulator of Lipid Homeostasis, Is a Potential Target for Fighting Cancer. Int J Mol Sci 2021; 22:ijms22094419. [PMID: 33922580 PMCID: PMC8122924 DOI: 10.3390/ijms22094419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
The rewiring of lipid metabolism is a major adaptation observed in cancer, and it is generally associated with the increased aggressiveness of cancer cells. Targeting lipid metabolism is therefore an appealing therapeutic strategy, but it requires a better understanding of the specific roles played by the main enzymes involved in lipid biosynthesis. Lipin-1 is a central regulator of lipid homeostasis, acting either as an enzyme or as a co-regulator of transcription. In spite of its important functions it is only recently that several groups have highlighted its role in cancer. Here, we will review the most recent research describing the role of lipin-1 in tumor progression when expressed by cancer cells or cells of the tumor microenvironment. The interest of its inhibition as an adjuvant therapy to amplify the effects of anti-cancer therapies will be also illustrated.
Collapse
|
10
|
Shen T, Wang W, Zhou W, Coleman I, Cai Q, Dong B, Ittmann MM, Creighton CJ, Bian Y, Meng Y, Rowley DR, Nelson PS, Moore DD, Yang F. MAPK4 promotes prostate cancer by concerted activation of androgen receptor and AKT. J Clin Invest 2021; 131:135465. [PMID: 33586682 DOI: 10.1172/jci135465] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/10/2020] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in American men. Androgen receptor (AR) signaling is essential for PCa cell growth/survival and remains a key therapeutic target for lethal castration-resistant PCa (CRPC). GATA2 is a pioneer transcription factor crucial for inducing AR expression/activation. We recently reported that MAPK4, an atypical MAPK, promotes tumor progression via noncanonical activation of AKT. Here, we demonstrated that MAPK4 activated AR by enhancing GATA2 transcriptional expression and stabilizing GATA2 protein through repression of GATA2 ubiquitination/degradation. MAPK4 expression correlated with AR activation in human CRPC. Concerted activation of both GATA2/AR and AKT by MAPK4 promoted PCa cell proliferation, anchorage-independent growth, xenograft growth, and castration resistance. Conversely, knockdown of MAPK4 decreased activation of both AR and AKT and inhibited PCa cell and xenograft growth, including castration-resistant growth. Both GATA2/AR and AKT activation were necessary for MAPK4 tumor-promoting activity. Interestingly, combined overexpression of GATA2 plus a constitutively activated AKT was sufficient to drive PCa growth and castration resistance, shedding light on an alternative, MAPK4-independent tumor-promoting pathway in human PCa. We concluded that MAPK4 promotes PCa growth and castration resistance by cooperating parallel pathways of activating GATA2/AR and AKT and that MAPK4 is a novel therapeutic target in PCa, especially CRPC.
Collapse
Affiliation(s)
- Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wolong Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Qinbo Cai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Chad J Creighton
- Department of Medicine, and.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yingnan Bian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yanling Meng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - David R Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Lang F, Rajaxavier J, Singh Y, Brucker SY, Salker MS. The Enigmatic Role of Serum & Glucocorticoid Inducible Kinase 1 in the Endometrium. Front Cell Dev Biol 2020; 8:556543. [PMID: 33195190 PMCID: PMC7609842 DOI: 10.3389/fcell.2020.556543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is subject to genetic up-regulation by diverse stimulators including glucocorticoids, mineralocorticoids, dehydration, ischemia, radiation and hyperosmotic shock. To become active, the expressed kinase requires phosphorylation, which is accomplished by PI3K/PDK1 and mTOR dependent signaling. SGK1 enhances the expression/activity of various transport proteins including Na+/K+-ATPase as well as ion-, glucose-, and amino acid- carriers in the plasma membrane. SGK1 can further up-regulate diverse ion channels, such as Na+-, Ca2+-, K+- and Cl- channels. SGK1 regulates expression/activity of a wide variety of transcription factors (such as FKHRL1/Foxo3a, β-catenin, NFκB and p53). SGK1 thus contributes to the regulation of transport, glycolysis, angiogenesis, cell survival, immune regulation, cell migration, tissue fibrosis and tissue calcification. In this review we summarized the current findings that SGK1 plays a crucial function in the regulation of endometrial function. Specifically, it plays a dual role in the regulation of endometrial receptivity necessary for implantation and, subsequently in pregnancy maintenance. Furthermore, fetal programming of blood pressure regulation requires maternal SGK1. Underlying mechanisms are, however, still ill-defined and there is a substantial need for additional information to fully understand the role of SGK1 in the orchestration of embryo implantation, embryo survival and fetal programming.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard-Karls University, Tübingen, Germany
| | - Janet Rajaxavier
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| | - Yogesh Singh
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University, Tübingen, Germany
| | - Sara Y. Brucker
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| | - Madhuri S. Salker
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| |
Collapse
|
12
|
Kase AM, Copland III JA, Tan W. Novel Therapeutic Strategies for CDK4/6 Inhibitors in Metastatic Castrate-Resistant Prostate Cancer. Onco Targets Ther 2020; 13:10499-10513. [PMID: 33116629 PMCID: PMC7576355 DOI: 10.2147/ott.s266085] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of patients with castrate-resistant prostate cancer will have metastatic disease at the time of diagnosis. Investigative efforts on new therapeutics for this patient population have improved with the development of androgen signaling inhibitors, such as abiraterone and enzalutamide, and PARP inhibitors, such as rucaparib and olaparib, to accompany the previously FDA-approved docetaxel, cabazitaxel, sipuleucel-T, and Radium 223. However, new therapeutic strategies are necessary to prolong survival as progression after these agents is inevitable. CDK4/6 inhibitors have advanced the field of estrogen receptor positive breast cancer treatment and are being investigated in prostate cancer given the role of androgen receptor signaling effects on the cell cycle. Response to CDK4/6 inhibitors may be predicted by the tumors' genomic profile and may provide insight into combinatory therapy with CDK4/6 inhibitors in order to delay resistance or provide synergistic effects. Here, we review the use of CDK4/6 inhibitors in prostate cancer and potential combinations based on known resistance mechanisms to CDK4/6 inhibitors, prostate cancer regulatory pathways, and prostate-cancer-specific genomic alterations.
Collapse
Affiliation(s)
- Adam M Kase
- Mayo Clinic Florida Division of Hematology Oncology, Jacksonville, FL32224, USA
| | - John A Copland III
- Mayo Clinic Florida Department of Cancer Biology, Jacksonville, FL32224, USA
| | - Winston Tan
- Mayo Clinic Florida Division of Hematology Oncology, Jacksonville, FL32224, USA
| |
Collapse
|
13
|
Briganti S, Flori E, Mastrofrancesco A, Ottaviani M. Acne as an altered dermato‐endocrine response problem. Exp Dermatol 2020; 29:833-839. [DOI: 10.1111/exd.14168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Stefania Briganti
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research San Gallicano Dermatological Institute IRCCS Rome Italy
| | - Enrica Flori
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research San Gallicano Dermatological Institute IRCCS Rome Italy
| | - Arianna Mastrofrancesco
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research San Gallicano Dermatological Institute IRCCS Rome Italy
| | - Monica Ottaviani
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research San Gallicano Dermatological Institute IRCCS Rome Italy
| |
Collapse
|
14
|
Britto FA, Dumas K, Giorgetti-Peraldi S, Ollendorff V, Favier FB. Is REDD1 a metabolic double agent? Lessons from physiology and pathology. Am J Physiol Cell Physiol 2020; 319:C807-C824. [PMID: 32877205 DOI: 10.1152/ajpcell.00340.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Akt/mechanistic target of rapamycin (mTOR) signaling pathway governs macromolecule synthesis, cell growth, and metabolism in response to nutrients and growth factors. Regulated in development and DNA damage response (REDD)1 is a conserved and ubiquitous protein, which is transiently induced in response to multiple stimuli. Acting like an endogenous inhibitor of the Akt/mTOR signaling pathway, REDD1 protein has been shown to regulate cell growth, mitochondrial function, oxidative stress, and apoptosis. Recent studies also indicate that timely REDD1 expression limits Akt/mTOR-dependent synthesis processes to spare energy during metabolic stresses, avoiding energy collapse and detrimental consequences. In contrast to this beneficial role for metabolic adaptation, REDD1 chronic expression appears involved in the pathogenesis of several diseases. Indeed, REDD1 expression is found as an early biomarker in many pathologies including inflammatory diseases, cancer, neurodegenerative disorders, depression, diabetes, and obesity. Moreover, prolonged REDD1 expression is associated with cell apoptosis, excessive reactive oxygen species (ROS) production, and inflammation activation leading to tissue damage. In this review, we decipher several mechanisms that make REDD1 a likely metabolic double agent depending on its duration of expression in different physiological and pathological contexts. We also discuss the role played by REDD1 in the cross talk between the Akt/mTOR signaling pathway and the energetic metabolism.
Collapse
Affiliation(s)
| | - Karine Dumas
- Université Cote d'Azur, INSERM, UMR1065, C3M, Nice, France
| | | | | | | |
Collapse
|
15
|
Feng G, Cai J, Huang Y, Zhu X, Gong B, Yang Z, Yan C, Hu Z, Yang L, Wang Z. G-Protein-Coupled Estrogen Receptor 1 Promotes Gender Disparities in Hepatocellular Carcinoma via Modulation of SIN1 and mTOR Complex 2 Activity. Mol Cancer Res 2020; 18:1863-1875. [PMID: 32873626 DOI: 10.1158/1541-7786.mcr-20-0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Due to its intricate heterogeneity and limited treatment, hepatocellular carcinoma (HCC) has been considered a major cause of cancer-related mortality worldwide. Increasing evidence indicates that G-protein-coupled estrogen receptor 1 (GPER1) can promote estrogen-dependent hepatocellular proliferation by activating AKT signaling. The mTOR complex 2 (mTORC2), whose integrity and activity are modulated by its subunit Sin1, controls the activation of AKT by phosphorylation at position S473. In this study, we investigate the modulation of Sin1 and how estrogen signaling may influence the mTORC2-AKT cascade in HCC cells and a DEN-induced mouse model. We have found that estradiol-dependent Sin1 expression is transcriptionally modulated by GPER1 as well as ERα. GPER1 is able to regulate Sin1 stability via nuclear translocation, therefore increasing Sin1-mTORC2-AKT activation. Moreover, Sin1 interacts with ERα and further enhances its transcriptional activity. Sin1 is highly expressed in acute liver injury and in cases of HCC harboring high expression of GPER1 and constitutive activation of mTORC2-AKT signaling. GPER1 inhibition using the antagonist G-15 reverses DEN-induced acute liver injury by suppressing Sin1 expression and mTORC2-AKT activation. Notably, SIN1 expression varies between male and female mice in the context of both liver injury and liver cancer. In addition, high SIN1 expression is predictive of good prognosis in both male and female patients with HCC who are free from hepatitis virus infection and who report low alcohol consumption. Hence, here we demonstrate that Sin1 can be regulated by GPER1 both through nongenomic and indirect genomic signaling. IMPLICATIONS: This study suggests that Sin1 may be a novel HCC biomarker which is gender-dependent and sensitive to particular risk factor.
Collapse
Affiliation(s)
- Guanying Feng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingshu Cai
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunchuanxiang Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenglin Yang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, Georgia
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zhuowei Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ziyan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Li H, Wei Z, Wang C, Chen W, He Y, Zhang C. Gender Differences in Gastric Cancer Survival: 99,922 Cases Based on the SEER Database. J Gastrointest Surg 2020; 24:1747-1757. [PMID: 31346960 DOI: 10.1007/s11605-019-04304-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/10/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To evaluate gender differences in initial presentation, pathology and outcomes with GC (GC). METHODS The 1973-2013 Surveillance Epidemiology and End Results (SEER) 17-registry database was analysed for renal tumours from 1973 to 2013 coded as primary site "stomach". After various exclusions, a final study group of 99,922 cases with complete data was obtained. Demographic variables analysed included age, sex, marital status and race. Tumour variables included size, stage at diagnosis, grade, primary site, treatment and histology. Primary outcome variables included overall survival (OS) and cancer-specific survival (CSS). RESULTS Overall, 96,501 gastric cancer patients were identified. Of those, 34,862 (36.2%) were women. For woman, log-rank test showed that OS and CSS were significantly longer in man (p < 0.0001). In Cox regression analysis, woman was associated with a significantly improved OS [(HR of death in 1973 to 2003 = 0.87, 95% CI = 0.85-0.89, P < 0.001) (HR of death in 2004 to 2013 = 0.94, 95% CI = 0.91-0.97, P < 0.001)] and cancer-specific survival [(HR of death in 1973 to 2003 = 0.90, 95% CI = 0.87-0.92, P < 0.001) (HR of death in 2004 to 2013 = 0.90, 95% CI = 0.87-0.93, P < 0.001)]. When performing a Kaplan-Meier curve analysis after propensity score matching, gender persisted to be a significant survival of woman for OS and CSS. CONCLUSIONS Men present with larger, higher stage, higher grade GC than women. OS and CSS are better in women, which is significantly different.
Collapse
Affiliation(s)
- Huafu Li
- Dermatovenerology Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628, Zhenyuan Rd, Guangming (New) Dist., Shenzhen, China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Zhewei Wei
- Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Chunming Wang
- Dermatovenerology Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628, Zhenyuan Rd, Guangming (New) Dist., Shenzhen, China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wei Chen
- Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yulong He
- Dermatovenerology Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628, Zhenyuan Rd, Guangming (New) Dist., Shenzhen, China. .,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Changhua Zhang
- Dermatovenerology Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628, Zhenyuan Rd, Guangming (New) Dist., Shenzhen, China. .,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Lim SC, Jansson PJ, Assinder SJ, Maleki S, Richardson DR, Kovacevic Z. Unique targeting of androgen-dependent and -independent AR signaling in prostate cancer to overcome androgen resistance. FASEB J 2020; 34:11511-11528. [PMID: 32713076 DOI: 10.1096/fj.201903167r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
The androgen receptor (AR) is a major driver of prostate cancer (PCa) and a key therapeutic target for AR inhibitors (ie, Enzalutamide). However, Enzalutamide only inhibits androgen-dependent AR signaling, enabling intrinsic AR activation via androgen-independent pathways, leading to aggressive castration-resistant PCa (CRPC). We investigated the ability of novel anti-cancer agents, Dp44mT and DpC, to overcome androgen resistance. The effect of Dp44mT and DpC on androgen-dependent and independent AR signaling was assessed in androgen-dependent and -independent PCa cells using 2D- and 3D-tissue culture. The clinically trialed DpC was then examined in vivo and compared to Enzalutamide. These agents uniquely promote AR proteasomal degradation and inhibit AR transcription in PCa cells via the upregulation of c-Jun, potently reducing the AR target, prostate-specific antigen (PSA). These agents also inhibited the activation of key molecules in both androgen-dependent and independent AR signaling (ie, EGFR, MAPK, PI3K), which promote CRPC. The clinically trialed DpC also significantly inhibited PCa tumor growth, AR, and PSA expression in vivo, being more potent than Enzalutamide. DpC is a promising candidate for a unique, structurally distinct generation of AR inhibitors that simultaneously target both androgen-dependent and independent arms of AR signaling. No other therapies exhibit such comprehensive and potent AR suppression, which is critical for overcoming the development of androgen resistance.
Collapse
Affiliation(s)
- Syer C Lim
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia
| | - Stephen J Assinder
- Discipline of Physiology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia
| | - Sanaz Maleki
- Histopathology Laboratory, Department of Pathology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Centre for Cancer Cell Biology, Griffith Institute of Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Zaklina Kovacevic
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
18
|
Huang Y, Feng G, Cai J, Peng Q, Yang Z, Yan C, Yang L, Wang Z. Sin1 promotes proliferation and invasion of prostate cancer cells by modulating mTORC2-AKT and AR signaling cascades. Life Sci 2020; 248:117449. [PMID: 32088212 DOI: 10.1016/j.lfs.2020.117449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/29/2022]
Abstract
AIMS Prostate cancer (PCa) is the most common type of cancer and a major cause of death in men worldwide. Aberrant Androgen receptor (AR) and PI3K-AKT signaling are very frequent in PCa patients and, therefore, considered as therapeutic targets in the clinic. Sin1 is an essential component of mTORC2 complex, which determines full AKT activation and PCa development in PTEN-/- mice. Here we examined the role of Sin1 in human PCa cell lines and respective tumor samples. MAIN METHODS Western blotting and immunohistochemistry (IHC) were performed to analyze the expression of Sin1-mTORC2-AKT related proteins in human PCa cells, as well as prostate tumors and normal tissue counterparts. Cell viability and invasion assays were also pursued in the presence or not of Sin1 in PCa cells. Immunoprecipitation assays were additionally carried out to examine the interaction of Sin1 with AR. KEY FINDINGS We have presently demonstrated that high levels of Sin1 expression in human PCa tissues correlate with cancer progression. Sin1-mediated cell proliferation and invasion of PCa cells occurs by regulating mTORC2-AKT signaling, epithelial-mesenchymal transition and matrix metalloproteinases. Moreover, androgens are able to induce Sin1 expression, which is further translocated to the nucleus of PCa cells. Finally, Sin1 interacts with AR to suppress its transcriptional activity. SIGNIFICANCE Taken together, these data indicate that both Sin1-mediated mTORC2-AKT signaling and Sin1-AR interaction regulate PCa development. Hence, Sin1 may be considered a novel biomarker of PCa progression.
Collapse
Affiliation(s)
- Yunchuanxiang Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guanying Feng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingshu Cai
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Peng
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenglin Yang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Science (2019RU026), Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ziyan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Science (2019RU026), Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Xie J, Merrett JE, Jensen KB, Proud CG. The MAP kinase-interacting kinases (MNKs) as targets in oncology. Expert Opin Ther Targets 2019; 23:187-199. [DOI: 10.1080/14728222.2019.1571043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jianling Xie
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - James E. Merrett
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Kirk B. Jensen
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Christopher G. Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
20
|
Lang F, Stournaras C, Zacharopoulou N, Voelkl J, Alesutan I. Serum- and glucocorticoid-inducible kinase 1 and the response to cell stress. Cell Stress 2018; 3:1-8. [PMID: 31225494 PMCID: PMC6551677 DOI: 10.15698/cst2019.01.170] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Expression of the serum- and glucocorticoid-inducible kinase 1 (SGK1) is up-regulated by several types of cell stress, such as ischemia, radiation and hyperosmotic shock. The SGK1 protein is activated by a signaling cascade involving phosphatidylinositide-3-kinase (PI3K), 3-phosphoinositide-dependent kinase 1 (PDK1) and mammalian target of rapamycin (mTOR). SGK1 up-regulates Na+/K+-ATPase, a variety of carriers including Na+-,K+-,2Cl−- cotransporter (NKCC), NaCl cotransporter (NCC), Na+/H+ exchangers, diverse amino acid transporters and several glucose carriers such as Na+-coupled glucose transporter SGLT1. SGK1 further up-regulates a large number of ion channels including epithelial Na+ channel ENaC, voltagegated Na+ channel SCN5A, Ca2+ release-activated Ca2+ channel (ORAI1) with its stimulator STIM1, epithelial Ca2+ channels TRPV5 and TRPV6 and diverse K+ channels. Furthermore, SGK1 influences transcription factors such as nuclear factor kappa-B (NF-κB), p53 tumor suppressor protein, cAMP responsive element-binding protein (CREB), activator protein-1 (AP-1) and forkhead box O3 protein (FOXO3a). Thus, SGK1 supports cellular glucose uptake and glycolysis, angiogenesis, cell survival, cell migration, and wound healing. Presumably as last line of defense against tissue injury, SGK1 fosters tissue fibrosis and tissue calcification replacing energy consuming cells.
Collapse
Affiliation(s)
- Florian Lang
- Department of Vegetative and Clinical Physiology, Eberhard-Karls-University, Tübingen, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Nefeli Zacharopoulou
- Department of Biochemistry, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
21
|
Rad E, Murray JT, Tee AR. Oncogenic Signalling through Mechanistic Target of Rapamycin (mTOR): A Driver of Metabolic Transformation and Cancer Progression. Cancers (Basel) 2018; 10:cancers10010005. [PMID: 29301334 PMCID: PMC5789355 DOI: 10.3390/cancers10010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 12/29/2022] Open
Abstract
Throughout the years, research into signalling pathways involved in cancer progression has led to many discoveries of which mechanistic target of rapamycin (mTOR) is a key player. mTOR is a master regulator of cell growth control. mTOR is historically known to promote cell growth by enhancing the efficiency of protein translation. Research in the last decade has revealed that mTOR’s role in promoting cell growth is much more multifaceted. While mTOR is necessary for normal human physiology, cancer cells take advantage of mTOR signalling to drive their neoplastic growth and progression. Oncogenic signal transduction through mTOR is a common occurrence in cancer, leading to metabolic transformation, enhanced proliferative drive and increased metastatic potential through neovascularisation. This review focuses on the downstream mTOR-regulated processes that are implicated in the “hallmarks” of cancer with focus on mTOR’s involvement in proliferative signalling, metabolic reprogramming, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Ellie Rad
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - James T Murray
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Andrew R Tee
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
22
|
|
23
|
D'Abronzo LS, Bose S, Crapuchettes ME, Beggs RE, Vinall RL, Tepper CG, Siddiqui S, Mudryj M, Melgoza FU, Durbin-Johnson BP, deVere White RW, Ghosh PM. The androgen receptor is a negative regulator of eIF4E phosphorylation at S209: implications for the use of mTOR inhibitors in advanced prostate cancer. Oncogene 2017; 36:6359-6373. [PMID: 28745319 PMCID: PMC5690844 DOI: 10.1038/onc.2017.233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 05/22/2017] [Accepted: 06/06/2017] [Indexed: 01/25/2023]
Abstract
The anti-androgen bicalutamide is widely used in the treatment of advanced prostate cancer (PCa) in many countries, but its effect on castration resistant PCa (CRPC) is limited. We previously showed that resistance to bicalutamide results from activation of mechanistic target of rapamycin (mTOR). Interestingly, clinical trials testing combinations of the mTOR inhibitor RAD001 with bicalutamide were effective in bicalutamide-naïve CRPC patients, but not in bicalutamide-pre-treated ones. Here we investigate causes for their difference in response. Evaluation of CRPC cell lines identified resistant vs sensitive in-vitro models, and revealed that increased eIF4E(S209) phosphorylation is associated with resistance to the combination. We confirmed using a human-derived tumor-xenograft mouse model that bicalutamide pre-treatment is associated with an increase in eIF4E(S209) phosphorylation. Thus, AR suppressed eIF4E phosphorylation, while the use of anti-androgens relieved this suppression, thereby triggering its increase. Additional investigation in human prostatectomy samples showed that increased eIF4E phosphorylation strongly correlated with the cell proliferation marker Ki67. SiRNA-mediated knock-down of eIF4E sensitized CRPC cells to RAD001+bicalutamide, while eIF4E overexpression induced resistance. Inhibition of eIF4E phosphorylation by treatment with CGP57380 (an inhibitor of MAPK interacting serine-threonine kinases Mnk1/2, the eIF4E upstream kinase) or inhibitors of ERK1/2, the upstream kinase regulating Mnk1/2, also sensitized CRPC cells to RAD001+bicalutamide. Examination of downstream targets of eIF4E-mediated translation, including survivin, demonstrated that eIF4E(S209) phosphorylation increased cap-independent translation whereas its inhibition restored cap-dependent translation which could be inhibited by mTOR inhibitors. Thus, our results demonstrate that while combinations of AR and mTOR inhibitors were effective in suppressing tumor growth by inhibiting both AR-induced transcription and mTOR-induced cap-dependent translation, pre-treatment with AR antagonists including bicalutamide increased eIF4E phosphorylation that induced resistance to combinations of AR and mTOR inhibitors by inducing cap-independent translation. We conclude that this resistance can be overcome by inhibiting eIF4E phosphorylation with Mnk1/2 or ERK1/2 inhibitors.
Collapse
Affiliation(s)
- L S D'Abronzo
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA.,Department of Urology, University of California Davis School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - S Bose
- Department of Urology, University of California Davis School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - M E Crapuchettes
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA
| | - R E Beggs
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA
| | - R L Vinall
- Department of Urology, University of California Davis School of Medicine, University of California at Davis, Sacramento, CA, USA.,California Northstate University College of Pharmacy, Elk Grove, CA, USA
| | - C G Tepper
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA, USA
| | - S Siddiqui
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA
| | - M Mudryj
- Department of Medical Microbiology and Immunology, University of California at Davis, Sacramento, CA, USA
| | - F U Melgoza
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA
| | - B P Durbin-Johnson
- Department of Public Health, Division of Biostatistics, University of California at Davis, Sacramento, CA, USA
| | - R W deVere White
- Department of Urology, University of California Davis School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - P M Ghosh
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA.,Department of Urology, University of California Davis School of Medicine, University of California at Davis, Sacramento, CA, USA.,Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
24
|
Abstract
Testes-specific protease 50 (TSP50), a novelly identified oncogene, has the capacity to induce cell proliferation, cell invasion and tumor growth. Further studies indicated that CAGA-luc (an activin-responsive reporter construct) reporter activity could be significantly suppressed by TSP50 overexpression, implying that the activin signaling may participate in TSP50-mediated cell proliferation. Here, we reported that TSP50 had an inhibitory effect on activin signaling. Mechanistic studies revealed that TSP50 could interact with ActRIIA, inhibit activin typeIreceptor (ActRIB) phosphorylation, repress Smad2/3 nuclear accumulation and finally promote cell proliferation by reducing the expression of activin signal target gene p27. Additionally, we found that ActRIB activation could reverse TSP50-mediated cell proliferation and tumor growth. Furthermore, analysis of human breast cancer specimens by immunohistochemistry indicated that TSP50 expression was negatively related to p-Smad2/3 and p27 protein levels. Most importantly, breast cancer diagnosis-related indicators such as tumor size, tumor grade, estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) levels, were correlated well with TSP50/p-Samd2/3 and TSP50/p27 expression status. Thus, our studies revealed a novel regulatory mechanism underlying TSP50-induced cell proliferation and provided a new favorable intervention target for the treatment of breast cancer.
Collapse
|
25
|
Lal-Nag M, McGee L, Guha R, Lengyel E, Kenny HA, Ferrer M. A High-Throughput Screening Model of the Tumor Microenvironment for Ovarian Cancer Cell Growth. SLAS DISCOVERY 2017; 22:494-506. [PMID: 28346091 DOI: 10.1177/2472555216687082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor microenvironment plays an important role in the processes of tumor growth, metastasis, and drug resistance. We have used a multilayered 3D primary cell culture model that reproduces the human ovarian cancer metastatic microenvironment to study the effect of the microenvironment on the pharmacological responses of different classes of drugs on cancer cell proliferation. A collection of oncology drugs was screened to identify compounds that inhibited the proliferation of ovarian cancer cells growing as monolayers or forming spheroids, on plastic and on a 3D microenvironment culture model of the omentum metastatic site, and also cells already in preformed spheroids. Target-based analysis of the pharmacological responses revealed that several classes of targets were more efficacious in cancer cells growing in the absence of the metastatic microenvironment, and other target classes were less efficacious in cancer cells in preformed spheres compared to forming spheroid cultures. These findings show that both the cellular context of the tumor microenvironment and cell adhesion mode have an essential role in cancer cell drug resistance. Therefore, it is important to perform screens for new drugs using model systems that more faithfully recapitulate the tissue composition at the site of tumor growth and metastasis.
Collapse
Affiliation(s)
- Madhu Lal-Nag
- 1 Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Lauren McGee
- 1 Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Rajarshi Guha
- 1 Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Ernst Lengyel
- 2 Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Hilary A Kenny
- 2 Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Marc Ferrer
- 1 Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Sklarz T, Guan P, Gohil M, Cotton RM, Ge MQ, Haczku A, Das R, Jordan MS. mTORC2 regulates multiple aspects of NKT-cell development and function. Eur J Immunol 2017; 47:516-526. [PMID: 28078715 DOI: 10.1002/eji.201646343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/29/2016] [Accepted: 01/10/2017] [Indexed: 11/11/2022]
Abstract
Invariant NKT (iNKT) cells bridge innate and adaptive immunity by rapidly secreting cytokines and lysing targets following TCR recognition of lipid antigens. Based on their ability to secrete IFN-γ, IL-4 and IL-17A, iNKT-cells are classified as NKT-1, NKT-2, and NKT-17 subsets, respectively. The molecular pathways regulating iNKT-cell fate are not fully defined. Recent studies implicate Rictor, a required component of mTORC2, in the development of select iNKT-cell subsets, however these reports are conflicting. To resolve these questions, we used Rictorfl/fl CD4cre+ mice and found that Rictor is required for NKT-17 cell development and normal iNKT-cell cytolytic function. Conversely, Rictor is not absolutely required for IL-4 and IFN-γ production as peripheral iNKT-cells make copious amounts of these cytokines. Overall iNKT-cell numbers are dramatically reduced in the absence of Rictor. We provide data indicating Rictor regulates cell survival as well as proliferation of developing and mature iNKT-cells. Thus, mTORC2 regulates multiple aspects of iNKT-cell development and function.
Collapse
Affiliation(s)
- Tammarah Sklarz
- Abramson Family Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Guan
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mercy Gohil
- Abramson Family Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Renee M Cotton
- Abramson Family Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Moyar Q Ge
- Department of Medicine, University of California at Davis, Davis, CA, USA
| | - Angela Haczku
- Department of Medicine, University of California at Davis, Davis, CA, USA
| | - Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Lou Y, Hu M, Mao L, Zheng Y, Jin F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success. FASEB J 2016; 31:447-456. [PMID: 27871060 DOI: 10.1096/fj.201600760r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
Reproductive processes, in particular events that concern pregnancy, are fine-tuned to produce offspring. Reproductive success is of prime importance for the survival of every species. The highly conserved and ubiquitously expressed serum glucocorticoid-regulated kinase 1 (SGK1) was first implicated in infertility as a regulator of a Na+ channel. In this review, we emphasize the prominent role of SGK1 during early pregnancy: 1) balancing uterine luminal fluid secretion and reabsorption to aid blastocyst adhesion and to import nutrients and energy; 2) transducing signals from the blastocyst to the receptive endometrium; 3) inducing multiple genes that are involved in uterine receptivity and trophoblast invasion; 4) regulating cell differentiation and antioxidant defenses at the fetomaternal interface; and 5) contributing to the proliferation and survival of decidual stromal cells. Accordingly, SGK1 coordinates many cellular processes that are crucial to reproductive activities. Aberrant expression or function of SGK1 results in implantation failure and early pregnancy loss. Further investigation of the molecular mechanisms of the function of SGK1 might provide novel diagnostic tools and interventions for reproductive complications.-Lou, Y., Hu, M., Mao, L., Zheng, Y., Jin, F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China.,Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Luna Mao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yingming Zheng
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China; .,Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Zhejiang, China.,Key Laboratory of Reproductive Genetics, National Ministry of Education, Zhejiang University, Zhejiang, China.,Women's Reproductive Health Laboratory of Zhejiang Province, National Ministry of Education, Zhejiang University, Zhejiang, China
| |
Collapse
|
28
|
Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, San Segundo L, Inogés S, Santos-Briz Á, García-Briñón J, Corchete LA, San Miguel JF, Del Cañizo C, Blanco B. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J Hematol Oncol 2016; 9:113. [PMID: 27765055 PMCID: PMC5072323 DOI: 10.1186/s13045-016-0343-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Graft-versus-host disease (GvHD) remains the major obstacle to successful allogeneic hematopoietic stem cell transplantation, despite of the immunosuppressive regimens administered to control T cell alloreactivity. PI3K/AKT/mTOR pathway is crucial in T cell activation and function and, therefore, represents an attractive therapeutic target to prevent GvHD development. Recently, numerous PI3K inhibitors have been developed for cancer therapy. However, few studies have explored their immunosuppressive effect. METHODS The effects of a selective PI3K inhibitor (BKM120) and a dual PI3K/mTOR inhibitor (BEZ235) on human T cell proliferation, expression of activation-related molecules, and phosphorylation of PI3K/AKT/mTOR pathway proteins were analyzed. Besides, the ability of BEZ235 to prevent GvHD development in mice was evaluated. RESULTS Simultaneous inhibition of PI3K and mTOR was efficient at lower concentrations than PI3K specific targeting. Importantly, BEZ235 prevented naïve T cell activation and induced tolerance of alloreactive T cells, while maintaining an adequate response against cytomegalovirus, more efficiently than BKM120. Finally, BEZ235 treatment significantly improved the survival and decreased the GvHD development in mice. CONCLUSIONS These results support the use of PI3K inhibitors to control T cell responses and show the potential utility of the dual PI3K/mTOR inhibitor BEZ235 in GvHD prophylaxis.
Collapse
Affiliation(s)
- Mª Carmen Herrero-Sánchez
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Concepción Rodríguez-Serrano
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Julia Almeida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Servicio de Citometría, Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Laura San Segundo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Susana Inogés
- Laboratorio de Inmunoterapia, Clínica Universidad de Navarra, Avda. Pío XII 55, 31008, Pamplona, Spain
| | - Ángel Santos-Briz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Departamento de Patología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain
| | - Jesús García-Briñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Departamento de Biología Celular y Patología, Facultad de Medicina, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Luis Antonio Corchete
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, Avda. Pío XII 55, 31008, Pamplona, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Belén Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
29
|
Liu X, Han W, Gulla S, Simon NI, Gao Y, Liu J, Wang L, Yang H, Zhang X, Chen S. Androgen ablation elicits PP1-dependence for AR stabilization and transactivation in prostate cancer. Prostate 2016; 76:649-61. [PMID: 26847655 DOI: 10.1002/pros.23157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/08/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous reports have documented protein phosphatase 1 (PP1) as an essential androgen receptor (AR) activator. However, more systemic studies are needed to further define PP1 effects on AR, particularly in the settings of prostate cancer cells and under conditions mimicking androgen ablation. METHODS PP1 effects on AR protein expression, degradation, ubiquitination, and stabilization were examined in non-prostate cancer cells, followed by validation on exogenous settings in androgen-sensitive (LNCaP and VCaP) and castration-resistant (C4-2) prostate cancer cells. Effects of PP1 on AR protein expression, on AR-mediated transcription of exogenous reporter and endogenous gene, and on LNCaP and C4-2 cell proliferation were monitored under androgen-containing versus androgen-depleted conditions to assess the effects of PP1 on AR responsiveness to androgen. RESULTS In this report, we determined that PP1 functions to stabilize AR proteins that exclusively undergo the proteasome-dependent degradation, and the stimulatory effects of PP1 were predominantly mediated by the AR ligand-binding domain (LBD). Consistently, PP1 enhances AR protein stability by disrupting the LBD-mediated and K48-linked ubiquitination cascade. We further validated the above findings in the prostate cancer cells by showing that PP1 inhibition can increase ubiquitin- and proteasome-dependent degradation of endogenous AR under androgen deprivation. Significantly, we found that PP1 could markedly activate AR transcriptional activities under conditions mimicking androgen ablation and that androgen sensitivity was substantially evoked by PP1 inhibition in the prostate cancer cell lines. CONCLUSIONS As summarized in a simplified model, our studies defined an essential PP1-mediated pathway for AR protein stabilization that can compensate the loss of androgen and established a mechanistic link between PP1 and androgen responsiveness. The amplified PP1-dependence for AR activation under the androgen ablated conditions provides a rationale to therapeutically target the PP1-AR module in the castration-resistant prostate cancer (CRPC). Our findings also suggested an alternative AR-targeting compounds screening strategy that aims to circumvent PP1-AR interaction.
Collapse
Affiliation(s)
- Xiaming Liu
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Han
- Department of Urology, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Sarah Gulla
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Nicholas I Simon
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Yanfei Gao
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Pathogen Biology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Brohée L, Demine S, Willems J, Arnould T, Colige AC, Deroanne CF. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget 2016; 6:11264-80. [PMID: 25834103 PMCID: PMC4484455 DOI: 10.18632/oncotarget.3595] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/20/2015] [Indexed: 01/30/2023] Open
Abstract
Lipogenesis inhibition was reported to induce apoptosis and repress proliferation of cancer cells while barely affecting normal cells. Lipins exhibit dual function as enzymes catalyzing the dephosphorylation of phosphatidic acid to diacylglycerol and as co-transcriptional regulators. Thus, they are able to regulate lipid homeostasis at several nodal points. Here, we show that lipin-1 is up-regulated in several cancer cell lines and overexpressed in 50 % of high grade prostate cancers. The proliferation of prostate and breast cancer cells, but not of non-tumorigenic cells, was repressed upon lipin-1 knock-down. Lipin-1 depletion also decreased cancer cell migration through RhoA activation. Lipin-1 silencing did not significantly affect global lipid synthesis but enhanced the cellular concentration of phosphatidic acid. In parallel, autophagy was induced while AKT and ribosomal protein S6 phosphorylation were repressed. We also observed a compensatory regulation between lipin-1 and lipin-2 and demonstrated that their co-silencing aggravates the phenotype induced by lipin-1 silencing alone. Most interestingly, lipin-1 depletion or lipins inhibition with propranolol sensitized cancer cells to rapamycin. These data indicate that lipin-1 controls main cellular processes involved in cancer progression and that its targeting, alone or in combination with other treatments, could open new avenues in anticancer therapy.
Collapse
Affiliation(s)
- Laura Brohée
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Tour de Pathologie, Sart-Tilman, Belgium
| | - Stéphane Demine
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Jérome Willems
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Tour de Pathologie, Sart-Tilman, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Alain C Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Tour de Pathologie, Sart-Tilman, Belgium
| | - Christophe F Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Tour de Pathologie, Sart-Tilman, Belgium
| |
Collapse
|
31
|
Zheng Y, Murphy LC. Regulation of steroid hormone receptors and coregulators during the cell cycle highlights potential novel function in addition to roles as transcription factors. NUCLEAR RECEPTOR SIGNALING 2016; 14:e001. [PMID: 26778927 PMCID: PMC4714463 DOI: 10.1621/nrs.14001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/01/2015] [Indexed: 01/15/2023]
Abstract
Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M.
Collapse
Affiliation(s)
- Yingfeng Zheng
- Department of Biochemistry and Medical Genetics (YZ, LCM), University of Manitoba; Manitoba Institute of Cell Biology (YZ, LCM), CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Leigh C Murphy
- Department of Biochemistry and Medical Genetics (YZ, LCM), University of Manitoba; Manitoba Institute of Cell Biology (YZ, LCM), CancerCare Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
32
|
Choi JP, Desai R, Zheng Y, Yao M, Dong Q, Watson G, Handelsman DJ, Simanainen U. Androgen actions via androgen receptor promote PTEN inactivation induced uterine cancer. Endocr Relat Cancer 2015; 22:687-701. [PMID: 26285813 DOI: 10.1530/erc-15-0203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Haploinsufficient inactivating phosphatase and tensin homolog (Pten) mutations cause Cowden syndrome, an autosomal dominant risk genotype for hormone dependent reproductive cancers. As androgen actions mediated via the androgen receptor (AR) supports uterine growth and may modify uterine cancer risk, we hypothesized that a functional AR may increase PTEN inactivation induced uterine cancer. To test the hypothesis, we compared the PTEN knockout (PTENKO) induced uterine pathology in heterozygous PTENKO and combined heterozygous PTEN and complete AR knockout (PTENARKO) female mice. PTENKO induced uterine pathology was significantly reduced by AR inactivation with severe macroscopic uterine pathology present in 21% of PTENARKO vs 46% of PTENKO at a median age of 45 weeks. This could be due to reduced stroma ERα expression in PTENARKO compared to PTENKO uterus, while AR inactivation did not modify PTEN or P-AKT levels. Unexpectedly, while progesterone (P4) is assumed protective in uterine cancers, serum P4 was significantly higher in PTENKO females compared to WT, ARKO, and PTENARKO females consistent with more corpora lutea in PTENKO ovaries. Serum testosterone and ovarian estradiol were similar between all females. Hence, our results demonstrated AR inactivation mediated protection against PTENKO induced uterine pathology and suggests a potential role for antiandrogens in uterine cancer prevention and treatment.
Collapse
Affiliation(s)
- Jaesung Peter Choi
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Reena Desai
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Yu Zheng
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Mu Yao
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Qihan Dong
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Geoff Watson
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - David J Handelsman
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Ulla Simanainen
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| |
Collapse
|
33
|
Zhang BG, Du T, Zang MD, Chang Q, Fan ZY, Li JF, Yu BQ, Su LP, Li C, Yan C, Gu QL, Zhu ZG, Yan M, Liu B. Androgen receptor promotes gastric cancer cell migration and invasion via AKT-phosphorylation dependent upregulation of matrix metalloproteinase 9. Oncotarget 2015; 5:10584-95. [PMID: 25301736 PMCID: PMC4279395 DOI: 10.18632/oncotarget.2513] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/24/2014] [Indexed: 12/29/2022] Open
Abstract
Androgen receptor (AR) plays an important role in many kinds of cancers. However, the molecular mechanisms of AR in gastric cancer (GC) are poorly characterized. Here, we investigated the role of AR in GC cell migration, invasion and metastatic potential. Our data showed that AR expression was positively correlated with lymph node metastasis and late TNM stages. These findings were accompanied by activation of AKT and upregulation of matrix metalloproteinase 9 (MMP9). AR overexpression induced increases in GC cell migration, invasion and proliferation in vitro and in vivo. These effects were attenuated by inhibition of AKT, AR and MMP9. AR overexpression upregulated MMP9 protein levels, whereas this effect was counteracted by AR siRNA. Inhibition of AKT by siRNA or an inhibitor (MK-2206 2HC) decreased AR protein expression in both stably transfected and parental SGC-7901 cells. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that AR bound to the AR-binding sites of the MMP9 promoter. In summary, AR overexpression induced by AKT phosphorylation upregulated MMP9 by binding to its promoter region to promote gastric carcinogenesis. The AKT/AR/MMP9 pathway plays an important role in GC metastasis and may be a novel therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Bao-gui Zhang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Du
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Department of Surgery, Shanghai East Hospital, Tongji University School of Medicine, No 150 Jimo Road, Shanghai, China
| | - Ming-de Zang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-yuan Fan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-fang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei-qin Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-ping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin-long Gu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-gang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Abstract
The androgen receptor (AR) is critical for the normal development of prostate and for its differentiated functions. The consistent expression of AR in prostate cancer (PCa), and its continued activity in PCa that relapse after androgen deprivation therapy (castration-resistant prostate cancer (CRPC)), indicate that at least a subset of these genes are also critical for PCa development and progression. This review addressed AR regulated genes that may be critical for PCa, and how AR may acquire new functions during PCa development and progression.
Collapse
Affiliation(s)
- Steven P Balk
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Abstract
A long ncRNA (lncRNA) prostate cancer non-coding RNA 1 (PRNCR1) in the 8q24 has been reported to be upregulated in prostate cancer with a function of activating androgen receptor (AR). AR plays a key role in the gender disparity, cell migration, and invasion of gastric cancer (GC). We hypothesized that single nucleotide polymorphisms (SNPs) in the lncRNA PRNCR1 may be related to the risk of GC. We conducted a case-control study to investigate the association between SNPs in the lncRNA PRNCR1 and the risk of GC. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was used to determine the genotypes of 613 subjects including 219 cases with GC and 394 controls. We found that patients with the rs13252298AG genotype displayed a 1.50-fold increased risk of GC (AG vs. AA, 95 % confidence interval (CI) = 1.05-2.12, p = 0.02). Interestingly, the rs7007694CT and CC and the rs1456315GG genotypes displayed a decreased risk of GC (rs7007694CT vs. TT, odds ratio (OR) = 0.68, 95 % CI = 0.48-0.97, p = 0.03; rs7007694CC vs. TT, OR = 0.36, 95 % CI = 0.13-0.97, p = 0.04; rs1456315GG vs. AA, OR = 0.30, 95 % CI = 0.13-0.70, p = 0.004, respectively). Our results suggest that SNPs in the lncRNA PRNCR1 may be a biomarker for the etiology of GC.
Collapse
|
36
|
Abstract
Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abundant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ (PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and Δ6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. Free palmitate functions as a "danger signal," stimulating toll-like receptor-2-mediated inflammasome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet-induced metabolomic alterations promote the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting nutrition therapy of acne vulgaris.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Germany
| |
Collapse
|
37
|
Abstract
In this issue, Hellmann-Regen et al. suggested that anti-acne effects of erythromycin and tetracyclines may be related to their inhibitory effect of cytochrome P450-mediated degradation of all-trans-retinoic acid (ATRA). We have recently proposed that all anti-acne agents function by attenuation of increased mTORC1 signalling. This commentary links the P450 system to mTORC1 regulation in acne. Drug-mediated induction of P450 activity or P450 mutants with increased catabolic activity may reduce cellular ATRA levels and FoxO1 expression, thus reducing FoxO-mediated mTORC1 inhibition. In contrast, agents blocking ATRA degradation such as erythromycin and tetracyclines may improve acne by increasing FoxO1 expression with consecutive inhibition of mTORC1 signalling.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
38
|
Abstract
While it has been known for decades that androgen hormones influence normal breast development and breast carcinogenesis, the underlying mechanisms have only been recently elucidated. To date, most studies have focused on androgen action in breast cancer cell lines, yet these studies represent artificial systems that often do not faithfully replicate/recapitulate the cellular, molecular and hormonal environments of breast tumours in vivo. It is critical to have a better understanding of how androgens act in the normal mammary gland as well as in in vivo systems that maintain a relevant tumour microenvironment to gain insights into the role of androgens in the modulation of breast cancer development. This in turn will facilitate application of androgen-modulation therapy in breast cancer. This is particularly relevant as current clinical trials focus on inhibiting androgen action as breast cancer therapy but, depending on the steroid receptor profile of the tumour, certain individuals may be better served by selectively stimulating androgen action. Androgen receptor (AR) protein is primarily expressed by the hormone-sensing compartment of normal breast epithelium, commonly referred to as oestrogen receptor alpha (ERa (ESR1))-positive breast epithelial cells, which also express progesterone receptors (PRs) and prolactin receptors and exert powerful developmental influences on adjacent breast epithelial cells. Recent lineage-tracing studies, particularly those focussed on NOTCH signalling, and genetic analysis of cancer risk in the normal breast highlight how signalling via the hormone-sensing compartment can influence normal breast development and breast cancer susceptibility. This provides an impetus to focus on the relationship between androgens, AR and NOTCH signalling and the crosstalk between ERa and PR signalling in the hormone-sensing component of breast epithelium in order to unravel the mechanisms behind the ability of androgens to modulate breast cancer initiation and growth.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL)Faculty of Health Sciences, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL)Faculty of Health Sciences, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL)Faculty of Health Sciences, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL)Faculty of Health Sciences, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
39
|
Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene 2014; 33:2815-25. [PMID: 23752196 PMCID: PMC4890635 DOI: 10.1038/onc.2013.235] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/17/2022]
Abstract
The metabolic functions of androgen receptor (AR) in normal prostate are circumvented in prostate cancer (PCa) to drive tumor growth, and the AR also can acquire new growth-promoting functions during PCa development and progression through genetic and epigenetic mechanisms. Androgen deprivation therapy (ADT, surgical or medical castration) is the standard treatment for metastatic PCa, but patients invariably relapse despite castrate androgen levels (castration-resistant PCa, CRPC). Early studies from many groups had shown that AR was highly expressed and transcriptionally active in CRPC, and indicated that steroids from the adrenal glands were contributing to this AR activity. More recent studies showed that CRPC cells had increased expression of enzymes mediating androgen synthesis from adrenal steroids, and could synthesize androgens de novo from cholesterol. Phase III clinical trials showing a survival advantage in CRPC for treatment with abiraterone (inhibitor of the enzyme CYP17A1 required for androgen synthesis that markedly reduces androgens and precursor steroids) and for enzalutamide (new AR antagonist) have now confirmed that AR activity driven by residual androgens makes a major contribution to CRPC, and led to the recent Food and Drug Administration approval of both agents. Unfortunately, patients treated with these agents for advanced CRPC generally relapse within a year and AR appears to be active in the relapsed tumors, but the molecular mechanisms mediating intrinsic or acquired resistance to these AR-targeted therapies remain to be defined. This review outlines AR functions that contribute to PCa development and progression, the roles of intratumoral androgen synthesis and AR structural alterations in driving AR activity in CRPC, mechanisms of action for abiraterone and enzalutamide, and possible mechanisms of resistance to these agents.
Collapse
MESH Headings
- Androgen Receptor Antagonists/therapeutic use
- Androgens/metabolism
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Progression
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Receptors, Androgen/chemistry
- Receptors, Androgen/metabolism
- Repressor Proteins/metabolism
- Steroid 17-alpha-Hydroxylase/antagonists & inhibitors
- Steroid 17-alpha-Hydroxylase/metabolism
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- X Yuan
- Hematology Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C Cai
- Hematology Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S Chen
- Hematology Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S Chen
- Hematology Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Z Yu
- Hematology Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S P Balk
- Hematology Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Mok KW, Mruk DD, Cheng CY. Regulation of blood-testis barrier (BTB) dynamics during spermatogenesis via the "Yin" and "Yang" effects of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:291-358. [PMID: 23317821 DOI: 10.1016/b978-0-12-407704-1.00006-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammalian testes, haploid spermatozoa are formed from diploid spermatogonia during spermatogenesis, which is a complicated cellular process. While these cellular events were reported in the 1960s and 1970s, the underlying molecular mechanism(s) that regulates these events remained unexplored until the past ∼10 years. For instance, adhesion proteins were shown to be integrated components at the Sertoli cell-cell interface and/or the Sertoli-spermatid interface in the late 1980s. But only until recently, studies have demonstrated that some of the adhesion proteins serve as the platform for signal transduction that regulates cell adhesion. In this chapter, a brief summary and critical discussion are provided on the latest findings regarding these cell-adhesion proteins in the testis and their relationship to spermatogenesis. Moreover, antagonistic effects of two mammalian target of rapamycin (mTOR) complexes, known as mTORC1 and mTORC2, on cell-adhesion function in the testis are discussed. Finally, a hypothetic model is presented to depict how these two mTOR-signaling complexes having the "yin" and "yang" antagonistic effects on the Sertoli cell tight junction (TJ)-permeability barrier can maintain the blood-testis barrier (BTB) integrity during the epithelial cycle while preleptotene spermatocytes are crossing the BTB.
Collapse
Affiliation(s)
- Ka Wai Mok
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | | | | |
Collapse
|
41
|
Su S, Minges JT, Grossman G, Blackwelder AJ, Mohler JL, Wilson EM. Proto-oncogene activity of melanoma antigen-A11 (MAGE-A11) regulates retinoblastoma-related p107 and E2F1 proteins. J Biol Chem 2013; 288:24809-24. [PMID: 23853093 DOI: 10.1074/jbc.m113.468579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Melanoma antigen-A11 (MAGE-A11) is a low-abundance, primate-specific steroid receptor coregulator in normal tissues of the human reproductive tract that is expressed at higher levels in prostate cancer. Increased expression of MAGE-A11 enhances androgen receptor transcriptional activity and promotes prostate cancer cell growth. Further investigation into the mechanisms of MAGE-A11 function in prostate cancer demonstrated interactions with the retinoblastoma-related protein p107 and Rb tumor suppressor but no interaction with p130 of the Rb family. MAGE-A11 interaction with p107 was associated with transcriptional repression in cells with low MAGE-A11 and transcriptional activation in cells with higher MAGE-A11. Selective interaction of MAGE-A11 with retinoblastoma family members suggested the regulation of E2F transcription factors. MAGE-A11 stabilized p107 by inhibition of ubiquitination and linked p107 to hypophosphorylated E2F1 in association with the stabilization and activation of E2F1. The androgen receptor and MAGE-A11 modulated endogenous expression of the E2F1-regulated cyclin-dependent kinase inhibitor p27(Kip1). The ability of MAGE-A11 to increase E2F1 transcriptional activity was similar to the activity of adenovirus early oncoprotein E1A and depended on MAGE-A11 interactions with p107 and p300. The immunoreactivity of p107 and MAGE-A11 was greater in advanced prostate cancer than in benign prostate, and knockdown with small inhibitory RNA showed that p107 is a transcriptional activator in prostate cancer cells. These results suggest that MAGE-A11 is a proto-oncogene whose increased expression in prostate cancer reverses retinoblastoma-related protein p107 from a transcriptional repressor to a transcriptional activator of the androgen receptor and E2F1.
Collapse
Affiliation(s)
- Shifeng Su
- Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
42
|
Melnik BC, Schmitz G. Are therapeutic effects of antiacne agents mediated by activation of FoxO1 and inhibition of mTORC1? Exp Dermatol 2013; 22:502-4. [PMID: 23800068 PMCID: PMC3746104 DOI: 10.1111/exd.12172] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2013] [Indexed: 12/16/2022]
Abstract
Acne pathogenesis has recently been linked to decreased nuclear FoxO1 levels and increased mTORC1 activity. This hypothesis postulates that antiacne agents either enhance nuclear FoxO activity or inhibit mTORC1. Benzoyl peroxide (BPO), by activation of oxidative stress-inducible kinases, increases nuclear FoxO levels promoting Sestrin3-mediated AMPK activation. Furthermore, BPO-derived ROS may activate AMPK via ataxia-telangiectasia mutated. Isotretinoin and all-trans retinoic acid may stimulate FoxO gene expression. Doxycycline may enhance FoxOs nuclear retention by inhibiting the expression of exportin 1. Suppression of TNFα signalling by tetracyclines, erythromycin and other macrolides may attenuate IKKβ-TSC1-mediated mTORC1 activation. Erythromycin attenuates ERK1/2 activity and thereby increases TSC2. Azelaic acid may decrease mTORC1 by inhibiting mitochondrial respiration, increasing cellular ROS and nuclear FoxO levels. Antiandrogens may attenuate mTORC1 by suppressing mTORC2-mediated Akt/TSC2 signalling. This hypothesis unmasks a common mode of action of antiacne agents as either FoxO enhancers or mTORC1 inhibitors and thus provides a rational approach for the development of new antiacne agents.
Collapse
|
43
|
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is a key signaling pathway that has been linked to both tumorigenesis and resistance to therapy in prostate cancer and other solid tumors. Given the significance of the PI3K/Akt/mTOR pathway in integrating cell survival signals and the high prevalence of activating PI3K/Akt/mTOR pathway alterations in prostate cancer, inhibitors of this pathway have great potential for clinical benefit. Here, we review the role of the PI3K/Akt/mTOR pathway in prostate cancer and discuss the potential use of pathway inhibitors as single agents or in combination in the evolving treatment landscape of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Rhonda L Bitting
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, North Carolina 27710, USA
| | | |
Collapse
|
44
|
Melnik BC, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp Dermatol 2013; 22:311-5. [PMID: 23614736 PMCID: PMC3746128 DOI: 10.1111/exd.12142] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/13/2022]
Abstract
Acne in adolescents of developed countries is an epidemic skin disease and has currently been linked to the Western diet (WD). It is the intention of this viewpoint to discuss the possible impact of WD-mediated nutrient signalling in the pathogenesis of acne. High glycaemic load and dairy protein consumption both increase insulin/insulin-like growth factor-1 (IGF-1) signalling (IIS) that is superimposed on elevated IGF-1 signalling of puberty. The cell's nutritional status is primarily sensed by the forkhead box transcription factor O1 (FoxO1) and the serine/threonine kinase mammalian target of rapamycin complex 1 (mTORC1). Increased IIS extrudes FoxO1 into the cytoplasm, whereas nuclear FoxO1 suppresses hepatic IGF-1 synthesis and thus impairs somatic growth. FoxO1 attenuates androgen signalling, interacts with regulatory proteins important for sebaceous lipogenesis, regulates the activity of innate and adaptive immunity, antagonizes oxidative stress and most importantly functions as a rheostat of mTORC1, the master regulator of cell growth, proliferation and metabolic homoeostasis. Thus, FoxO1 links nutrient availability to mTORC1-driven processes: increased protein and lipid synthesis, cell proliferation, cell differentiation including hyperproliferation of acroinfundibular keratinocytes, sebaceous gland hyperplasia, increased sebaceous lipogenesis, insulin resistance and increased body mass index. Enhanced androgen, TNF-α and IGF-1 signalling due to genetic polymorphisms promoting the risk of acne all converge in mTORC1 activation, which is further enhanced by nutrient signalling of WD. Deeper insights into the molecular interplay of FoxO1/mTORC1-mediated nutrient signalling are thus of critical importance to understand the impact of WD on the promotion of epidemic acne and more serious mTORC1-driven diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany.
| | | |
Collapse
|
45
|
Xu M, Tao G, Kang M, Gao Y, Zhu H, Gong W, Wang M, Wu D, Zhang Z, Zhao Q. A polymorphism (rs2295080) in mTOR promoter region and its association with gastric cancer in a Chinese population. PLoS One 2013; 8:e60080. [PMID: 23555892 PMCID: PMC3612103 DOI: 10.1371/journal.pone.0060080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/21/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND As an imperative part of PI3K/Akt/mTOR pathway, mammalian target of rapamycin (mTOR) has been demonstrated to increase in gastric cancer cells and tumors. Our research explored the relationship between single nucleotide polymorphism (SNP) rs2295080 in mTOR promoter region and the risk of gastric cancer (GC). METHODS Seven hundred and fifty-three (753) gastric adenocarcinoma patients and 854 matched healthy subjects were recruited in the cancer association study and 60 tissues were used to test the expression of mTOR. Unconditional logistic regression was selected to evaluate the association between the rs2295080 T>G polymorphism and GC risk. We then examined the functionality of this promoter genetic variant by luciferase assay and EMSA. RESULTS Individuals with G allele had a 23% decreased risk of GC, comparing with those carrying T allele (adjusted OR = 0.77, 95% CI = 0.65-0.92). This protective effect of G allele stood out better in male group. Meanwhile, GC patients carrying TG/GG genotype also displayed a decreased mRNA level of mTOR (P = 0.004). In luciferase assay, T allele tended to enhance the transcriptional activity of mTOR with an approximate 0.5-fold over G allele. Furthermore, EMSA tests explained that different alleles of rs2295080 displayed different affinities to some transcriptional factor. CONCLUSION The mTOR promoter polymorphism rs2295080 was significantly associated with GC risk. This SNP, which effectively influenced the expression of mTOR, may be a new biomarker of early diagnosis of gastric cancer and a suitable indicator of utilizing mTOR inhibitor for treatment of GC.
Collapse
Affiliation(s)
- Ming Xu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guoquan Tao
- Department of General Surgery, Huai-An First People’s Hospital Affiliated to Nanjing Medical University, Huai-an, China
| | - Meiyun Kang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Gao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haixia Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Core Laboratory of Nantong Tumor Hospital, Nantong, China
| | - Weida Gong
- Department of General Surgery, Yixing Cancer Hospital, Yixing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Wu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail: (ZZ); (QZ)
| | - Qinghong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (ZZ); (QZ)
| |
Collapse
|
46
|
|
47
|
Lang F, Voelkl J. Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opin Investig Drugs 2013; 22:701-14. [PMID: 23506284 DOI: 10.1517/13543784.2013.778971] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Expression of serum-and-glucocorticoid-inducible kinase-1 (SGK1) is low in most cells, but dramatically increases under certain pathophysiological conditions, such as glucocorticoid or mineralocorticoid excess, inflammation with TGFβ release, hyperglycemia, cell shrinkage and ischemia. SGK1 is activated by insulin and growth factors via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase and mammalian target of rapamycin. SGK1 sensitive functions include activation of ion channels (including epithelial Na(+) channel ENaC, voltage gated Na(+) channel SCN5A transient receptor potential channels TRPV4 - 6, Ca(2+) release activated Ca(2+) channel Orai1/STIM1, renal outer medullary K(+) channel ROMK, voltage gated K(+) channels KCNE1/KCNQ1, kainate receptor GluR6, cystic fibrosis transmembrane regulator CFTR), carriers (including Na(+),Cl(-) symport NCC, Na(+),K(+),2Cl(-) symport NKCC, Na(+)/H(+) exchangers NHE1 and NHE3, Na(+), glucose symport SGLT1, several amino acid transporters), and Na(+)/K(+)-ATPase. SGK1 regulates several enzymes (e.g., glycogen synthase kinase-3, ubiquitin-ligase Nedd4-2) and transcription factors (e.g., forkhead transcription factor 3a, β-catenin, nuclear factor kappa B). AREAS COVERED The phenotype of SGK1 knockout mice is mild and SGK1 is apparently dispensible for basic functions. Excessive SGK1 expression and activity, however, contributes to the pathophysiology of several disorders, including hypertension, obesity, diabetes, thrombosis, stroke, fibrosing disease, infertility and tumor growth. A SGK1 gene variant (prevalence ∼ 3 - 5% in Caucasians and ∼ 10% in Africans) is associated with hypertension, stroke, obesity and type 2 diabetes. SGK1 inhibitors have been developed and shown to reduce blood pressure of hyperinsulinemic mice and to counteract tumor cell survival. EXPERT OPINION Targeting SGK1 may be a therapeutic option in several clinical conditions, including metabolic syndrome and tumor growth.
Collapse
Affiliation(s)
- Florian Lang
- University of Tuebingen, Department of Physiology, Tuebingen, Germany.
| | | |
Collapse
|
48
|
Tian Y, Wan H, Lin Y, Xie X, Li Z, Tan G. Androgen receptor may be responsible for gender disparity in gastric cancer. Med Hypotheses 2013; 80:672-4. [PMID: 23414681 DOI: 10.1016/j.mehy.2013.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/13/2022]
Abstract
Men are at a higher risk of developing gastric cancer than women. However, the exact mechanisms responsible for the gender differences remain unclear. Recently, a number of epidemiological and genotyping studies have attributed the gender disparity in male-predominant cancers to the disruption of androgen receptor (AR) homeostasis. Moreover, previous data indicated that AR expression is an independent unfavorable prognostic factor in gastric cancer, suggesting that AR may play an important role in gastric carcinogenesis. In addition, mounting evidence suggests that AR is involved in many signaling pathways associated with gastric carcinogenesis. On the basis of the aforementioned evidence, we postulate that AR exhibits oncogenic properties in gastric cancer via several possible mechanisms, which may partly explain the higher prevalence of gastric cancer among males.
Collapse
Affiliation(s)
- Ye Tian
- Department of General Surgery, First Affiliated Hospital, Dalian Medical University, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Passtoors WM, Beekman M, Deelen J, van der Breggen R, Maier AB, Guigas B, Derhovanessian E, van Heemst D, de Craen AJM, Gunn DA, Pawelec G, Slagboom PE. Gene expression analysis of mTOR pathway: association with human longevity. Aging Cell 2013; 12:24-31. [PMID: 23061800 DOI: 10.1111/acel.12015] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2012] [Indexed: 01/27/2023] Open
Abstract
mTOR signalling is implicated in the development of disease and in lifespan extension in model organisms. This pathway has been associated with human diseases such as diabetes and cancer, but has not been investigated for its impact on longevity per se. Here, we investigated whether transcriptional variation within the mTOR pathway is associated with human longevity using whole-blood samples from the Leiden Longevity Study. This is a unique cohort of Dutch families with extended survival across generations, decreased morbidity and beneficial metabolic profiles in middle-age. By comparing mRNA levels of nonagenarians and middle-aged controls, the mTOR signalling gene set was found to associate with old age (P = 4.6 × 10(-7)). Single gene analysis showed that seven of 40 mTOR pathway genes had a significant differential expression of at least 5%. Of these, the RPTOR (Raptor) gene was found to be differentially expressed also when the offspring of nonagenarians was compared with their spouses, indicating association with familial longevity in middle-age. This association was not explained by variation between the groups in the prevalence of type 2 diabetes and cancer or glucose levels. Thus, the mTOR pathway not only plays a role in the regulation of disease and aging in animal models, but also in human health and longevity.
Collapse
Affiliation(s)
- Willemijn M. Passtoors
- Section of Molecular Epidemiology; Leiden University Medical Center; Leiden; The Netherlands
| | | | | | - Ruud van der Breggen
- Section of Molecular Epidemiology; Leiden University Medical Center; Leiden; The Netherlands
| | - Andrea B. Maier
- Department of Gerontology and Geriatrics; Leiden University Medical Center; Leiden; The Netherlands
| | - Bruno Guigas
- Department of Molecular Cell Biology; Leiden University Medical Center; Leiden; The Netherlands
| | | | - Diana van Heemst
- Department of Gerontology and Geriatrics; Leiden University Medical Center; Leiden; The Netherlands
| | - Anton J. M. de Craen
- Department of Gerontology and Geriatrics; Leiden University Medical Center; Leiden; The Netherlands
| | - David A. Gunn
- Unilever Discover; Colworth, Sharnbrook, Bedfordshire; UK
| | - Graham Pawelec
- Center for Medical Research; University of Tübingen; Tübingen; Germany
| | | |
Collapse
|
50
|
Abstract
The androgen receptor (AR) has been identified for decades and mediates essential steroid functions. Like most of biological molecules, AR functional activities are modulated by post-translational modifications. This review is focused on the reported activities and significance of AR phosphorylation, with particular emphasis on proline-directed serine/threonine phosphorylation that occurs predominantly on the receptor. The marked enrichment of AR phosphorylation in the most diverse N-terminal domain suggests that targeting AR phosphorylation can be synergistic to antagonizing the C-terminal domain by clinical antiandrogens.
Collapse
Affiliation(s)
- Yanfei Gao
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School 330 Brookline, MA 02115, USA
| | - Shaoyong Chen
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School 330 Brookline, MA 02115, USA
| |
Collapse
|