1
|
Shen F, Zeng L, Gao Y. DOT1L in neural development and neurological and psychotic disorders. Neurochem Int 2025; 185:105955. [PMID: 39993657 DOI: 10.1016/j.neuint.2025.105955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Disruptor of Telomeric Silencing 1-Like (DOT1L) is the sole methyltransferase in mammals responsible for catalyzing the mono-, di-, and trimethylation of histone H3 at lysine 79 (H3K79), a modification crucial for various cellular processes, including gene transcription, cell cycle regulation, DNA repair, and development. Recent studies have increasingly linked DOT1L to the nervous system, where it plays a vital role in neurodevelopment and neuronal function. It has been shown to regulate the proliferation and differentiation of neural progenitor cells, promote neuronal maturation, and influence synaptic function, all of which are essential for proper neural circuit formation and brain function. Moreover, dysregulation of DOT1L has been associated with several neurological disorders, highlighting its potential role in disease pathology. Abnormal expression or activity of DOT1L has been implicated in cognitive deficits and neurodegenerative diseases, underscoring the enzyme's significance in both the development and maintenance of the nervous system. This review synthesizes recent findings on DOT1L's role in the nervous system, emphasizing its importance in neurodevelopment and exploring its potential as a therapeutic target for treating neurological disorders.
Collapse
Affiliation(s)
- Feiyan Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China; College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| | - Yanpan Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
2
|
Kurani H, Slingerland JM. DOT1L Mediates Stem Cell Maintenance and Represents a Therapeutic Vulnerability in Cancer. Cancer Res 2025; 85:838-847. [PMID: 39700409 PMCID: PMC11873724 DOI: 10.1158/0008-5472.can-24-3304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Tumor-initiating cancer stem cells (CSC) pose a challenge in human malignancies as they are largely treatment resistant and can seed local recurrence and metastasis. Epigenetic mechanisms governing cell fate decisions in embryonic and adult stem cells are deregulated in CSCs. This review focuses on the methyltransferase disruptor of telomeric silencing protein 1-like (DOT1L), which methylates histone H3 lysine 79 and is a key epigenetic regulator governing embryonic organogenesis and adult tissue stem cell maintenance. DOT1L is overexpressed in many human malignancies, and dysregulated histone H3 lysine 79 methylation is pathogenic in acute myeloid leukemia and several solid tumors. DOT1L regulates core stem cell genes governing CSC self-renewal, tumorigenesis, and multidrug resistance. Recent work has situated DOT1L as an attractive stem cell target in cancer. These reports showed that DOT1L is overexpressed and its protein activated specifically in malignant stem cells compared with bulk tumor cells, making them vulnerable to DOT1L inhibition in vitro and in vivo. Although early DOT1L inhibitor clinical trials were limited by inadequate drug bioavailability, accumulating preclinical data indicate that DOT1L critically regulates CSC self-renewal and might be more effective when given with other anticancer therapies. The appropriate combinations of DOT1L inhibitors with other agents and the sequence and timing of drug delivery for maximum efficacy warrant further investigation.
Collapse
Affiliation(s)
- Hetakshi Kurani
- Cancer Host Interactions Program, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Joyce M. Slingerland
- Cancer Host Interactions Program, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| |
Collapse
|
3
|
Nam D, Park J, Lee J, Son J, Kim JE. mTOR potentiates senescent phenotypes and primary cilia formation after cisplatin-induced G2 arrest in retinal pigment epithelial cells. Cell Signal 2024; 124:111402. [PMID: 39251051 DOI: 10.1016/j.cellsig.2024.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cisplatin, a platinum-based anticancer drug, is used to treat several types of cancer. Despite its effectiveness, cisplatin-induced side effects have often been reported. Although cisplatin-induced toxicities, such as apoptosis and/or necrosis, have been well studied, the fate of cells after exposure to sublethal doses of cisplatin needs further elucidation. Treatment with a sublethal dose of cisplatin induced cell cycle arrest at the G2 phase in retinal pigment epithelial cells. Following cisplatin withdrawal, the cells irreversibly exited the cell cycle and became senescent. Notably, the progression from the G2 to the G1 phase occurred without mitotic entry, a phenomenon referred to as mitotic bypass, resulting in the accumulation of cells containing 4N DNA content. Cisplatin-exposed cells exhibited morphological changes associated with senescence, including an enlarged size of cell and nucleus and increased granularity. In addition, the senescent cells possessed primary cilia and persistent DNA lesions. Senescence induced by transient exposure to cisplatin involves mTOR activation. Although transient co-exposure with an mTORC1 inhibitor rapamycin did not prevent mitotic bypass and entry into senescence, it delayed the progression of senescence and attenuated senescent phenotypes, resulting in shorter primary cilia formation. Conclusively, cisplatin induces senescence in retinal pigment epithelial cells by promoting mTOR activation.
Collapse
Affiliation(s)
- Dajeong Nam
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaejung Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaehong Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juyoung Son
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Qu P, Li L, Jin Q, Liu D, Qiao Y, Zhang Y, Sun Q, Ran S, Li Z, Liu T, Peng L. Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review). Int J Mol Med 2024; 54:104. [PMID: 39301658 DOI: 10.3892/ijmm.2024.5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end‑stage renal disease, and is characterized by persistent proteinuria and decreased glomerular filtration rate. Despite extensive efforts, the increasing incidence highlights the urgent need for more effective treatments. Histone methylation is a crucial epigenetic modification, and its alteration can destabilize chromatin structure, thereby regulating the transcriptional activity of specific genes. Histone methylation serves a substantial role in the onset and progression of various diseases. In patients with DKD, changes in histone methylation are pivotal in mediating the interactions between genetic and environmental factors. Targeting these modifications shows promise in ameliorating renal histological manifestations, tissue fibrosis and proteinuria, and represents a novel therapeutic frontier with the potential to halt DKD progression. The present review focuses on the alterations in histone methylation during the development of DKD, systematically summarizes its impact on various renal parenchymal cells and underscores the potential of targeted histone methylation modifications in improving DKD outcomes.
Collapse
Affiliation(s)
- Peng Qu
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lanfang Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Donghai Liu
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yuan Qiao
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yijia Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiuyue Sun
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Shuman Ran
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zecheng Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
5
|
Wang Y, Zhang N, Shang W, Peng H, Hu Z, Yang Y, Tan L, Zhang L, He F, Rao X. Dexamethasone Inhibits the Growth of B-Lymphoma Cells by Downregulating DOT1L. Cancer Rep (Hoboken) 2024; 7:e2150. [PMID: 39307938 PMCID: PMC11417011 DOI: 10.1002/cnr2.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Dexamethasone (Dex), a synthetic glucocorticoid that acts by binding to the glucocorticoid receptor (GR), has been widely applied to treat leukemia and lymphoma; however, the precise mechanism underlying Dex action is still not well elucidated. DOT1L, a histone H3-lysine79 (H3K79) methyltransferase, has been linked to multiple cancer types, particularly mixed lineage leukemia (MLL) gene rearranged leukemia, but its contribution to lymphoma is yet to be delineated. Analysis from the TCGA database displayed that DOT1L was highly expressed in lymphoma and leukemia. RESULTS We initially demonstrated that DOT1L served as a new target gene controlled by GR, and the downregulation of DOT1L was critical for the killing of B-lymphoma cells by Dex. Further study revealed that Dex had no impact on the transcriptional activity of the DOT1L promoter, rather it reduced the mRNA level of DOT1L at the posttranscriptional level. In addition, knockdown of DOT1L remarkably inhibited the B-lymphoma cell growth. CONCLUSIONS Overall, our findings indicated that DOT1L may serve as a potential drug target and a promising biomarker of Dex sensitivity when it comes to treating B lymphoma.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Nan Zhang
- Department of HematologyPeople's Liberation Army the General Hospital of Western Theater CommandChengduChina
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Li Zhang
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Fengtian He
- Department of Biochemistry and Molecular BiologyCollege of Basic Medical Sciences, Army Medical UniversityChongqingChina
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| |
Collapse
|
6
|
Tan Z, Guo N, Cao Z, Liu S, Zhang J, Ma D, Zhang J, Lv W, Jiang N, Zang L, Wang L, Zhai X. Discovery of first-in-class DOT1L inhibitors against the R231Q gain-of-function mutation in the catalytic domain with therapeutic potential of lung cancer. Acta Pharm Sin B 2024; 14:3605-3623. [PMID: 39220866 PMCID: PMC11365375 DOI: 10.1016/j.apsb.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 09/04/2024] Open
Abstract
Recent research certified that DOT1L and its mutations represented by R231Q were potential targets for the treatment of lung cancer. Herein, a series of adenosine-containing derivatives were identified with DOT1LR231Q inhibition through antiproliferation assay and Western blot analysis in the H460R231Q cell. The most promising compound 37 significantly reduced DOT1LR231Q mediated H3K79 methylation and effectively inhibited the proliferation, self-renewal, migration, and invasion of lung cancer cell lines at low micromolar concentrations. The cell permeability and cellular target engagement of 37 were verified by both CETSA and DARTS assays. In the H460R231Q OE cell-derived xenograft (CDX) model, 37 displayed pronounced tumor growth inhibition after intraperitoneal administration at 20 mg/kg dose for 3 weeks (TGI = 54.38%), without obvious toxicities. A pharmacokinetic study revealed that 37 possessed tolerable properties (t 1/2 = 1.93 ± 0.91 h, F = 97.2%) after intraperitoneal administration in rats. Mechanism study confirmed that 37 suppressed malignant phenotypes of lung cancer carrying R231Q gain-of-function mutation via the MAPK/ERK signaling pathway. Moreover, analysis of the binding modes between molecules and DOT1LWT/R231Q proteins put forward the "Induced-fit" allosteric model in favor to the discovery of potent DOT1L candidates.
Collapse
Affiliation(s)
- Zehui Tan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhi Cao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuyu Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiayu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Deyi Ma
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiahao Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wencai Lv
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linghe Zang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
7
|
Deng M, Yan P, Gong H, Li G, Wang J. β-hydroxybutyrate resensitizes colorectal cancer cells to oxaliplatin by suppressing H3K79 methylation in vitro and in vivo. Mol Med 2024; 30:95. [PMID: 38910244 PMCID: PMC11194918 DOI: 10.1186/s10020-024-00864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Ketone β-hydroxybutyrate (BHB) has been reported to prevent tumor cell proliferation and improve drug resistance. However, the effectiveness of BHB in oxaliplatin (Oxa)-resistant colorectal cancer (CRC) and the underlying mechanism still require further proof. METHODS CRC-Oxa-resistant strains were established by increasing concentrations of CRC cells to Oxa. CRC-Oxa cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) were checked following BHB intervention in vitro. The subcutaneous and metastasis models were established to assess the effects of BHB on the growth and metastasis of CRC-Oxa in vivo. Eight Oxa responders and seven nonresponders with CRC were enrolled in the study. Then, the serum BHB level and H3K79me, H3K27ac, H3K14ac, and H3K9me levels in tissues were detected. DOT1L (H3K79me methyltransferase) gene knockdown or GNE-049 (H3K27ac inhibitor) use was applied to analyze further whether BHB reversed CRC-Oxa resistance via H3K79 demethylation and/or H3K27 deacetylation in vivo and in vitro. RESULTS Following BHB intervention based on Oxa, the proliferation, migration, invasion, and EMT of CRC-Oxa cells and the growth and metastasis of transplanted tumors in mice were suppressed. Clinical analysis revealed that the differential change in BHB level was associated with drug resistance and was decreased in drug-resistant patient serum. The H3K79me, H3K27ac, and H3K14ac expressions in CRC were negatively correlated with BHB. Furthermore, results indicated that H3K79me inhibition may lead to BHB target deletion, resulting in its inability to function. CONCLUSIONS β-hydroxybutyrate resensitized CRC cells to Oxa by suppressing H3K79 methylation in vitro and in vivo.
Collapse
Affiliation(s)
- Meng Deng
- School of Basic Medicine, Jiamusi University, No. 258 Xuefu Street, Jiamusi, 154007, Heilongjiang Province, China
| | - Peijie Yan
- The Heilongjiang Hospital of Beijing Children's Hospital, Capital Medical University, Harbin, 150000, China
| | - Hui Gong
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan road, Nanshan district, Shenzhen, 518052, China
| | - Guiqiu Li
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan road, Nanshan district, Shenzhen, 518052, China.
| | - Jianjie Wang
- School of Basic Medicine, Jiamusi University, No. 258 Xuefu Street, Jiamusi, 154007, Heilongjiang Province, China.
| |
Collapse
|
8
|
Kealy L, Runting J, Thiele D, Scheer S. An emerging maestro of immune regulation: how DOT1L orchestrates the harmonies of the immune system. Front Immunol 2024; 15:1385319. [PMID: 38962004 PMCID: PMC11219580 DOI: 10.3389/fimmu.2024.1385319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 07/05/2024] Open
Abstract
The immune system comprises a complex yet tightly regulated network of cells and molecules that play a critical role in protecting the body from infection and disease. The activity and development of each immune cell is regulated in a myriad of ways including through the cytokine milieu, the availability of key receptors, via tailored intracellular signalling cascades, dedicated transcription factors and even by directly modulating gene accessibility and expression; the latter is more commonly known as epigenetic regulation. In recent years, epigenetic regulators have begun to emerge as key players involved in modulating the immune system. Among these, the lysine methyltransferase DOT1L has gained significant attention for its involvement in orchestrating immune cell formation and function. In this review we provide an overview of the role of DOT1L across the immune system and the implications of this role on health and disease. We begin by elucidating the general mechanisms of DOT1L-mediated histone methylation and its impact on gene expression within immune cells. Subsequently, we provide a detailed and comprehensive overview of recent studies that identify DOT1L as a crucial regulator of immune cell development, differentiation, and activation. Next, we discuss the potential mechanisms of DOT1L-mediated regulation of immune cell function and shed light on how DOT1L might be contributing to immune cell homeostasis and dysfunction. We then provide food for thought by highlighting some of the current obstacles and technical limitations precluding a more in-depth elucidation of DOT1L's role. Finally, we explore the potential therapeutic implications of targeting DOT1L in the context of immune-related diseases and discuss ongoing research efforts to this end. Overall, this review consolidates the current paradigm regarding DOT1L's role across the immune network and emphasises its critical role in governing the healthy immune system and its potential as a novel therapeutic target for immune-related diseases. A deeper understanding of DOT1L's immunomodulatory functions could pave the way for innovative therapeutic approaches which fine-tune the immune response to enhance or restore human health.
Collapse
Affiliation(s)
- Liam Kealy
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jessica Runting
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel Thiele
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sebastian Scheer
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
9
|
Crosswhite P, Sun Z. TNFα Induces DNA and Histone Hypomethylation and Pulmonary Artery Smooth Muscle Cell Proliferation Partly via Excessive Superoxide Formation. Antioxidants (Basel) 2024; 13:677. [PMID: 38929115 PMCID: PMC11200563 DOI: 10.3390/antiox13060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Objective: The level of tumor necrosis factor-α (TNF-α) is upregulated during the development of pulmonary vascular remodeling and pulmonary hypertension. A hallmark of pulmonary arterial (PA) remodeling is the excessive proliferation of PA smooth muscle cells (PASMCs). The purpose of this study is to investigate whether TNF-α induces PASMC proliferation and explore the potential mechanisms. Methods: PASMCs were isolated from 8-week-old male Sprague-Dawley rats and treated with 0, 20, or 200 ng/mL TNF-α for 24 or 48 h. After treatment, cell number, superoxide production, histone acetylation, DNA methylation, and histone methylation were assessed. Results: TNF-α treatment increased NADPH oxidase activity, superoxide production, and cell numbers compared to untreated controls. TNF-α-induced PASMC proliferation was rescued by a superoxide dismutase mimetic tempol. TNF-α treatment did not affect histone acetylation at either dose but did significantly decrease DNA methylation. DNA methyltransferase 1 activity was unchanged by TNF-α treatment. Further investigation using QRT-RT-PCR revealed that GADD45-α, a potential mediator of DNA demethylation, was increased after TNF-α treatment. RNAi inhibition of GADD45-α alone increased DNA methylation. TNF-α impaired the epigenetic mechanism leading to DNA hypomethylation, which can be abolished by a superoxide scavenger tempol. TNF-α treatment also decreased H3-K4 methylation. TNF-α-induced PASMC proliferation may involve the H3-K4 demethylase enzyme, lysine-specific demethylase 1 (LSD1). Conclusions: TNF-α-induced PASMC proliferation may be partly associated with excessive superoxide formation and histone and DNA methylation.
Collapse
Affiliation(s)
- Patrick Crosswhite
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Human Physiology, Gonzaga University, Spokane, WA 99205, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| |
Collapse
|
10
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
11
|
Nil Z, Deshwar AR, Huang Y, Barish S, Zhang X, Choufani S, Le Quesne Stabej P, Hayes I, Yap P, Haldeman-Englert C, Wilson C, Prescott T, Tveten K, Vøllo A, Haynes D, Wheeler PG, Zon J, Cytrynbaum C, Jobling R, Blyth M, Banka S, Afenjar A, Mignot C, Robin-Renaldo F, Keren B, Kanca O, Mao X, Wegner DJ, Sisco K, Shinawi M, Wangler MF, Weksberg R, Yamamoto S, Costain G, Bellen HJ. Rare de novo gain-of-function missense variants in DOT1L are associated with developmental delay and congenital anomalies. Am J Hum Genet 2023; 110:1919-1937. [PMID: 37827158 PMCID: PMC10645550 DOI: 10.1016/j.ajhg.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.
Collapse
Affiliation(s)
- Zelha Nil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ashish R Deshwar
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Polona Le Quesne Stabej
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Ian Hayes
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | - Patrick Yap
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | | | - Carolyn Wilson
- Mission Fullerton Genetics Center, Asheville, NC 28803, USA
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Arve Vøllo
- Department of Pediatrics, Hospital of Østfold, 1714 Grålum, Norway
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA; Clinical Genetics Service, Guy's Hospital, Guy's and St Thomas' NHS Trust, London, England, UK
| | - Patricia G Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA
| | - Jessica Zon
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rebekah Jobling
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Moira Blyth
- North of Scotland Regional Genetics Service, Clinical Genetics Centre, Ashgrove House, Foresterhill, Aberdeen, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9WL Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, M13 9WL Manchester, UK
| | - Alexandra Afenjar
- Service de génétique, CRMR des malformations et maladies congénitales du cervelet et CRMR déficience intellectuelle, hôpital Trousseau, AP-HP, Paris, France
| | - Cyril Mignot
- Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière and Hôpital Trousseau, Paris, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | | | - Boris Keren
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, 75013 Paris, France
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China; Clinical Research Center for Placental Medicine in Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen Sisco
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Ma Z, Han H, Zhou Z, Wang S, Liang F, Wang L, Ji H, Yang Y, Chen J. Machine learning-based establishment and validation of age-related patterns for predicting prognosis in non-small cell lung cancer within the context of the tumor microenvironment. IUBMB Life 2023; 75:941-956. [PMID: 37548145 DOI: 10.1002/iub.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023]
Abstract
Lung cancer (LC) is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) accounting for over 80% of cases. The impact of aging on clinical outcomes in NSCLC remains poorly understood, particularly with respect to the immune response. In this study, we explored the effects of aging on NSCLC using 307 genes associated with human aging from the Human Ageing Genomic Resources. We identified 53 aging-associated genes that significantly correlate with overall survival of NSCLC patients, including the clinically validated gene BUB1B. Furthermore, we developed an aging-associated enrichment score to categorize patients based on their aging subtypes and evaluated their prognostic and therapeutic response values in LC. Our analyses yielded two aging-associated subtypes with unique profiles in the tumor microenvironment, demonstrating varying responses to immunotherapy. Consensus clustering based on transcriptome profiles provided insights into the effects of aging on NSCLC and highlighted the potential of personalized therapeutic approaches tailored to aging subtypes. Our findings provide a new target and theoretical support for personalized therapeutic approaches in patients with NSCLC, offering insights into the potential impact of aging on cancer outcomes.
Collapse
Affiliation(s)
- Zeming Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Haibo Han
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhiwei Zhou
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Shijie Wang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Fan Liang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Liang Wang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Hong Ji
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jinfeng Chen
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
13
|
Guo T, Wang Z, Wang S, Zhang Y, Pang J, Ying Y, Ou Q, Shen D, Li G. Predictive value of DOT1L mutations for clinical outcomes in non-small-cell lung cancer patients receiving immune checkpoint inhibitor therapy. Clin Transl Med 2023; 13:e1430. [PMID: 37784247 PMCID: PMC10545889 DOI: 10.1002/ctm2.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Affiliation(s)
- Tianxing Guo
- Department of Thoracic SurgeryShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial HospitalFuzhouChina
| | - Zhaofeng Wang
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Song Wang
- Geneseeq Research InstituteNanjing Geneseeq Technology Inc.NanjingChina
| | - Yaru Zhang
- Geneseeq Research InstituteNanjing Geneseeq Technology Inc.NanjingChina
| | - Jiaohui Pang
- Geneseeq Research InstituteNanjing Geneseeq Technology Inc.NanjingChina
| | - Yajun Ying
- Department of PathologyTaizhou Cancer Hospital, TaizhouZhejiangChina
| | - Qiuxiang Ou
- Geneseeq Research InstituteNanjing Geneseeq Technology Inc.NanjingChina
| | - Dong Shen
- Department of OncologyThe Affiliated Jiangyin Hospital of Nantong University, JiangyinJiangsuChina
| | - Gang Li
- Department of Thoracic SurgerySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
- Department of Thoracic SurgerySichuan Translational Medicine Research Hospital, Chinese Academy of SciencesChengduChina
| |
Collapse
|
14
|
Yang D, He Y, Li R, Huang Z, Zhou Y, Shi Y, Deng Z, Wu J, Gao Y. Histone H3K79 methylation by DOT1L promotes Aurora B localization at centromeres in mitosis. Cell Rep 2023; 42:112885. [PMID: 37494186 DOI: 10.1016/j.celrep.2023.112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Centromere localization of the chromosome passenger complex (CPC) is paramount for achieving accurate sister chromosome segregation in mitosis. Although it has been widely recognized that the recruitment of CPC is directly regulated by two histone codes, phosphorylation of histone H3 at threonine 3 (H3T3ph) and phosphorylation of histone H2A at threonine 120 (H2AT120ph), the regulation of CPC localization by other histone codes remains elusive. We show that dysfunction of disruptor of telomeric silencing 1 like (DOT1L) leads to mislocation of the CPC in prometaphase, caused by disturbing the level of H3T3ph and its reader Survivin. This cascade is initiated by over-dephosphorylation of H3T3ph mediated by the phosphatase RepoMan-PP1, whose scaffold RepoMan translocalizes to chromosomes, while the level of H3K79me2/3 is diminished. Together, our findings uncover a biological function of DOT1L and H3K79 methylation in mitosis and give insight into how genomic stability is coordinated by different histone codes.
Collapse
Affiliation(s)
- Dan Yang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yanji He
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Renyan Li
- Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
| | - Zhenting Huang
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhou
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yingxu Shi
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhongliang Deng
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jingxian Wu
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yanfei Gao
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Zhang J, Yang T, Han M, Wang X, Yang W, Guo N, Ren Y, Cui W, Li S, Zhao Y, Zhai X, Jia L, Yang J, Wu C, Wang L. Gain-of-function mutations in the catalytic domain of DOT1L promote lung cancer malignant phenotypes via the MAPK/ERK signaling pathway. SCIENCE ADVANCES 2023; 9:eadc9273. [PMID: 37256945 PMCID: PMC10413674 DOI: 10.1126/sciadv.adc9273] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Lung cancer is a lethal malignancy lacking effective therapies. Emerging evidence suggests that epigenetic enzyme mutations are closely related to the malignant phenotype of lung cancer. Here, we identified a series of gain-of-function mutations in the histone methyltransferase DOT1L. The strongest of them is R231Q, located in the catalytic DOT domain. R231Q can enhance the substrate binding ability of DOT1L. Moreover, R231Q promotes cell growth and drug resistance of lung cancer cells in vitro and in vivo. Mechanistic studies also revealed that the R231Q mutant specifically activates the MAPK/ERK signaling pathway by enriching H3K79me2 on the RAF1 promoter and epigenetically regulating the expression of downstream targets. The combination of a DOT1L inhibitor (SGC0946) and a MAPK/ERK axis inhibitor (binimetinib) can effectively reverse the R231Q-induced phenomena. Our results reveal gain-of-function mutations in an epigenetic enzyme and provide promising insights for the precise treatment of lung cancer patients.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Ting Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Mei Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Xiaoxuan Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Weiming Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Ning Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan 430070, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shangxiao Li
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongshan Zhao
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| |
Collapse
|
16
|
Wei W, Zhao Y, Chai Y, Shou S, Jin H. A novel role of DOT1L in kidney diseases. Mol Biol Rep 2023; 50:5415-5423. [PMID: 37085741 DOI: 10.1007/s11033-023-08415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND We systematically summarized the structure and biological function of DOT1L in detail, and further discussed the role of DOT1L in kidney diseases through different mechanisms. METHODS AND RESULTS We first described the role of DOT1L in various kidney diseases including AKI, CKD, DN and kidney tumor diseases. CONCLUSIONS A better understanding of DOT1L as a histone methylase based on characteristics of regulating telomere silencing, transcriptional extension, DNA damage repair and cell cycle could lead to the development of new therapeutic targets for various kidney diseases, thereby improving the prognosis of kidney disease patients.
Collapse
Affiliation(s)
- Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yibo Zhao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
17
|
Shen WC, Yuh CH, Lu YT, Lin YH, Ching TT, Wang CY, Wang HD. Reduced Ribose-5-Phosphate Isomerase A-1 Expression in Specific Neurons and Time Points Promotes Longevity in Caenorhabditis elegans. Antioxidants (Basel) 2023; 12:antiox12010124. [PMID: 36670987 PMCID: PMC9854458 DOI: 10.3390/antiox12010124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Deregulation of redox homeostasis is often associated with an accelerated aging process. Ribose-5-phosphate isomerase A (RPIA) mediates redox homeostasis in the pentose phosphate pathway (PPP). Our previous study demonstrated that Rpi knockdown boosts the healthspan in Drosophila. However, whether the knockdown of rpia-1, the Rpi ortholog in Caenorhabditis elegans, can improve the healthspan in C. elegans remains unknown. Here, we report that spatially and temporally limited knockdown of rpia-1 prolongs lifespan and improves the healthspan in C. elegans, reflecting the evolutionarily conserved phenotypes observed in Drosophila. Ubiquitous and pan-neuronal knockdown of rpia-1 both enhance tolerance to oxidative stress, reduce polyglutamine aggregation, and improve the deteriorated body bending rate caused by polyglutamine aggregation. Additionally, rpia-1 knockdown temporally in the post-developmental stage and spatially in the neuron display enhanced lifespan. Specifically, rpia-1 knockdown in glutamatergic or cholinergic neurons is sufficient to increase lifespan. Importantly, the lifespan extension by rpia-1 knockdown requires the activation of autophagy and AMPK pathways and reduced TOR signaling. Moreover, the RNA-seq data support our experimental findings and reveal potential novel downstream targets. Together, our data disclose the specific spatial and temporal conditions and the molecular mechanisms for rpia-1 knockdown-mediated longevity in C. elegans. These findings may help the understanding and improvement of longevity in humans.
Collapse
Affiliation(s)
- Wen-Chi Shen
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Mioali Country 35053, Taiwan
| | - Yu-Ting Lu
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Yen-Hung Lin
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memory Hospital, Linkou Main Branch, Chang Gung University, Taoyuan 33305, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, HsinChu 300044, Taiwan
- Correspondence: ; Tel.: +886-3-5742470
| |
Collapse
|
18
|
Gu X, Hua Y, Yu J, Yang L, Ge S, Jia R, Chai P, Zhuang A, Fan X. Epigenetic drug library screening reveals targeting DOT1L abrogates NAD + synthesis by reprogramming H3K79 methylation in uveal melanoma. J Pharm Anal 2023; 13:24-38. [PMID: 36820078 PMCID: PMC9937798 DOI: 10.1016/j.jpha.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Uveal melanoma (UM) is the most frequent and life-threatening ocular malignancy in adults. Aberrant histone methylation contributes to the abnormal transcriptome during oncogenesis. However, a comprehensive understanding of histone methylation patterns and their therapeutic potential in UM remains enigmatic. Herein, using a systematic epi-drug screening and a high-throughput transcriptome profiling of histone methylation modifiers, we observed that disruptor of telomeric silencing-1-like (DOT1L), a methyltransferase of histone H3 lysine 79 (H3K79), was activated in UM, especially in the high-risk group. Concordantly, a systematic epi-drug library screening revealed that DOT1L inhibitors exhibited salient tumor-selective inhibitory effects on UM cells, both in vitro and in vivo. Combining Cleavage Under Targets and Tagmentation (CUT&Tag), RNA sequencing (RNA-seq), and bioinformatics analysis, we identified that DOT1L facilitated H3K79 methylation of nicotinate phosphoribosyltransferase (NAPRT) and epigenetically activated its expression. Importantly, NAPRT served as an oncogenic accelerator by enhancing nicotinamide adenine dinucleotide (NAD+) synthesis. Therapeutically, DOT1L inhibition epigenetically silenced NAPRT expression through the diminishment of dimethylation of H3K79 (H3K79me2) in the NAPRT promoter, thereby inhibiting the malignant behaviors of UM. Conclusively, our findings delineated an integrated picture of the histone methylation landscape in UM and unveiled a novel DOT1L/NAPRT oncogenic mechanism that bridges transcriptional addiction and metabolic reprogramming.
Collapse
|
19
|
Kazemizadeh H, Kashefizadeh A. CRISPR-Cas9-mediated gene therapy in lung cancer. Clin Transl Oncol 2022; 25:1156-1166. [PMID: 36495467 DOI: 10.1007/s12094-022-03039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
As the largest cause of cancer-related deaths worldwide, pulmonary cancer is the most common form of the disease. Several genetic, epigenetic, and environmental factors come into play during the multi-step mechanism of tumorigenesis. The heterogeneity that makes discovering successful therapeutics for pulmonary cancer problematic is significantly influenced by the epigenetic landscape, including DNA methylation, chromatin architecture, histone modifications, and noncoding RNA control. Clinical activity of epigenetic-targeted medicines has been reported in hematological tumors, and these compounds may also have therapeutic effects in solid tumors. Over the course of the past few years, some researchers have successfully modified the expression of genes in cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) technique. The utilization of this technology allows for the induction of site-specific mutagenesis, epigenetic alterations, and the regulation of gene expression. This study will present an overview of the primary epigenetic alterations seen in pulmonary cancer, as well as a summary of therapeutic implications for targeting epigenetics in the management of pulmonary cancer, with a particular emphasis on the technique known as CRISPR/Cas9.
Collapse
Affiliation(s)
- Hossein Kazemizadeh
- Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Kashefizadeh
- Department of Pulmonology, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J 2022; 13:649-669. [PMID: 36505890 PMCID: PMC9727004 DOI: 10.1007/s13167-022-00300-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer has a very high mortality in females and males. Most (~ 85%) of lung cancers are non-small cell lung cancers (NSCLC). When lung cancer is diagnosed, most of them have either local or distant metastasis, with a poor prognosis. In order to achieve better outcomes, it is imperative to identify the molecular signature based on genetic and epigenetic variations for different NSCLC subgroups. We hypothesize that DNA and histone modifications play significant roles in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Epigenetics has a significant impact on tumorigenicity, tumor heterogeneity, and tumor resistance to chemotherapy, targeted therapy, and immunotherapy. An increasing interest is that epigenomic regulation is recognized as a potential treatment option for NSCLC. Most attention has been paid to the epigenetic alteration patterns of DNA and histones. This article aims to review the roles DNA and histone modifications play in tumorigenesis, early detection and diagnosis, and advancements and therapies of NSCLC, and also explore the connection between DNA and histone modifications and PPPM, which may provide an important contribution to improve the prognosis of NSCLC. We found that the success of targeting DNA and histone modifications is limited in the clinic, and how to combine the therapies to improve patient outcomes is necessary in further studies, especially for predictive diagnostics, targeted prevention, and personalization of medical services in the 3P medicine approach. It is concluded that DNA and histone modifications are potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine.
Collapse
Affiliation(s)
- Guodong Zhang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhengdan Wang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Pingping Song
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
21
|
Farina FM, Serio S, Hall IF, Zani S, Cassanmagnago GA, Climent M, Civilini E, Condorelli G, Quintavalle M, Elia L. The epigenetic enzyme DOT1L orchestrates vascular smooth muscle cell-monocyte crosstalk and protects against atherosclerosis via the NF-κB pathway. Eur Heart J 2022; 43:4562-4576. [PMID: 35292818 DOI: 10.1093/eurheartj/ehac097] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
AIMS Histone H3 dimethylation at lysine 79 is a key epigenetic mark uniquely induced by methyltransferase disruptor of telomeric silencing 1-like (DOT1L). We aimed to determine whether DOT1L modulates vascular smooth muscle cell (VSMC) phenotype and how it might affect atherosclerosis in vitro and in vivo, unravelling the related mechanism. METHODS AND RESULTS Gene expression screening of VSMCs stimulated with the BB isoform of platelet-derived growth factor led us to identify Dot1l as an early up-regulated epigenetic factor. Mouse and human atherosclerotic lesions were assessed for Dot1l expression, which resulted specifically localized in the VSMC compartment. The relevance of Dot1l to atherosclerosis pathogenesis was assessed through deletion of its gene in the VSMCs via an inducible, tissue-specific knock-out mouse model crossed with the ApoE-/- high-fat diet model of atherosclerosis. We found that the inactivation of Dot1l significantly reduced the progression of the disease. By combining RNA- and H3K79me2-chromatin immunoprecipitation-sequencing, we found that DOT1L and its induced H3K79me2 mark directly regulate the transcription of Nf-κB-1 and -2, master modulators of inflammation, which in turn induce the expression of CCL5 and CXCL10, cytokines fundamentally involved in atherosclerosis development. Finally, a correlation between coronary artery disease and genetic variations in the DOT1L gene was found because specific polymorphisms are associated with increased mRNA expression. CONCLUSION DOT1L plays a key role in the epigenetic control of VSMC gene expression, leading to atherosclerosis development. Results identify DOT1L as a potential therapeutic target for vascular diseases.
Collapse
Affiliation(s)
- Floriana Maria Farina
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
| | - Simone Serio
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | | | - Stefania Zani
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Giada Andrea Cassanmagnago
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Montserrat Climent
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy
| | - Efrem Civilini
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Gianluigi Condorelli
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Manuela Quintavalle
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Astrazeneca, V.le Decumano, 39, 20157 Milano (MI), Italy
| | - Leonardo Elia
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
22
|
Abe K, Li J, Liu YY, Brent GA. Thyroid Hormone-mediated Histone Modification Protects Cortical Neurons From the Toxic Effects of Hypoxic Injury. J Endocr Soc 2022; 6:bvac139. [PMID: 36817622 PMCID: PMC9562813 DOI: 10.1210/jendso/bvac139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Context Thyroid hormone has been shown to have a protective role in neuronal injury, although the mechanisms have not been established. The cellular response to stress that promotes adaptation and survival has been shown to involve epigenetic modifications. Objective We hypothesized that the neuroprotective role of thyroid hormone was associated with epigenetic modifications of histone proteins. We used hypoxic neurons as a model system for hypoxia-induced brain injury. Methods Mouse primary cortical neurons were exposed to 0.2% oxygen for 7 hours, with or without, treatment with triiodothyronine (T3). We analyzed the expression of histone-modifying enzymes by RNA-seq and the post-translationally modified histone 3 proteins by enzyme-linked immunosorbent assay (ELISA) and Western blot. Results We found that methylation of H3K27, associated with inactive promoters, was highly induced in hypoxic neurons, and this histone methylation was reduced by T3 treatment. H3K4 methylation is the hallmark of active promoters. The expression of 3 (Set1db, Kmta2c, and Kmt2e) out of 6 H3K4 methyltransferases was downregulated by hypoxia and expression was restored by T3 treatment. H3K4me3 protein, measured by ELISA, was increased 76% in T3-treated hypoxic neurons compared with the levels without T3 treatment. H3K56ac plays a critical role in transcription initiation and was markedly increased in T3-treated hypoxic neurons compared with those without T3 treatment, indicating stimulation of gene transcription. Additionally, T3 treatment restored hypoxia-induced downregulation of histone acetyltransferase, Kat6a, Kat6b, and Crebbp, which function as transcription factors. Conclusion These findings indicate that T3 treatment mitigates hypoxia-induced histone modifications and protects neurons from hypoxia-induced injury.
Collapse
Affiliation(s)
- Kiyomi Abe
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Jianrong Li
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Yan Yun Liu
- Correspondence: Yan-Yun Liu, PhD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. ; or Gregory A. Brent, MD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Gregory A Brent
- Correspondence: Yan-Yun Liu, PhD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. ; or Gregory A. Brent, MD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| |
Collapse
|
23
|
Zhao YB, Wei W, Lin XX, Chai YF, Jin H. The Role of Histone H3 Methylation in Acute Kidney Injury. Drug Des Devel Ther 2022; 16:2453-2461. [PMID: 35941926 PMCID: PMC9356748 DOI: 10.2147/dddt.s376673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 12/28/2022] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome in which kidney function declines sharply due to various reasons. Although the morbidity and mortality of AKI are high, the mechanism of occurrence and development of AKI has not been fully elucidated, and precise prevention and treatment measures are lacking. Epigenetics is a branch of genetics that provides a new perspective to explore the pathophysiology of AKI and renal repair. A large amount of literature shows that the methylation mechanism of H3 in histones is closely related to the development of kidney diseases. The sorting out of histone H3 methylation mechanism in AKI and kidney repair can help understand the pathophysiological process of the disease more deeply. It may also provide new ideas for diagnosing and treating of the disease.
Collapse
Affiliation(s)
- Yi-Bo Zhao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Xiao-Xi Lin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
- Correspondence: Heng Jin; Yan-Fen Chai, Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China, Email ;
| |
Collapse
|
24
|
Xu B, Zhang C, Jiang A, Zhang X, Liang F, Wang X, Li D, Liu C, Liu X, Xia J, Li Y, Wang Y, Yang Z, Chen J, Zhou Y, Chen L, Sun H. Histone methyltransferase Dot1L recruits O-GlcNAc transferase to target chromatin sites to regulate histone O-GlcNAcylation. J Biol Chem 2022; 298:102115. [PMID: 35690146 PMCID: PMC9283943 DOI: 10.1016/j.jbc.2022.102115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/05/2022] Open
Abstract
O-GlcNAc transferase (OGT) is the distinctive enzyme responsible for catalyzing O-GlcNAc addition to the serine or threonine residues of thousands of cytoplasmic and nuclear proteins involved in such basic cellular processes as DNA damage repair, RNA splicing, and transcription preinitiation and initiation complex assembly. However, the molecular mechanism by which OGT regulates gene transcription remains elusive. Using proximity labeling-based mass spectrometry, here, we searched for functional partners of OGT and identified interacting protein Dot1L, a conserved and unique histone methyltransferase known to mediate histone H3 Lys79 methylation, which is required for gene transcription, DNA damage repair, cell proliferation, and embryo development. Although this specific interaction with OGT does not regulate the enzymatic activity of Dot1L, we show that it does facilitate OGT-dependent histone O-GlcNAcylation. Moreover, we demonstrate that OGT associates with Dot1L at transcription start sites and that depleting Dot1L decreases OGT associated with chromatin globally. Notably, we also show that downregulation of Dot1L reduces the levels of histone H2B S112 O-GlcNAcylation and histone H2B K120 ubiquitination in vivo, which are associated with gene transcription regulation. Taken together, these results reveal that O-GlcNAcylation of chromatin is dependent on Dot1L.
Collapse
Affiliation(s)
- Bo Xu
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Can Zhang
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Ao Jiang
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Xianhong Zhang
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Fenfei Liang
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Xueqing Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Danni Li
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Chenglong Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Xiaomei Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jing Xia
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Yang Li
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Yirong Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Zelan Yang
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jia Chen
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Yu Zhou
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Liang Chen
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China.
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China; Hubei Province key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430072, Hubei Province, China.
| |
Collapse
|
25
|
Alexandrova E, Salvati A, Pecoraro G, Lamberti J, Melone V, Sellitto A, Rizzo F, Giurato G, Tarallo R, Nassa G, Weisz A. Histone Methyltransferase DOT1L as a Promising Epigenetic Target for Treatment of Solid Tumors. Front Genet 2022; 13:864612. [PMID: 35495127 PMCID: PMC9043692 DOI: 10.3389/fgene.2022.864612] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
The histone lysine methyltransferase DOT1L (DOT1-like histone lysine methyltransferase) is responsible for the epigenetic regulation of gene expression through specific methylation of lysine79 residue of histone H3 (H3K79) in actively transcribed genes. Its normal activity is crucial for embryonic development and adult tissues functions, whereas its aberrant functioning is known to contribute to leukemogenesis. DOT1L is the only lysine methyltransferase that does not contain a SET domain, which is a feature that allowed the development of selective DOT1L inhibitors that are currently investigated in Phase I clinical trials for cancer treatment. Recently, abnormal expression of this enzyme has been associated with poor survival and increased aggressiveness of several solid tumors. In this review evidences of aberrant DOT1L expression and activity in breast, ovarian, prostate, colon, and other solid tumors, and its relationships with biological and clinical behavior of the disease and response to therapies, are summarized. Current knowledge of the structural basis of DOT1L ability to regulate cell proliferation, invasion, plasticity and stemness, cell cycle progression, cell-to-cell signaling, epithelial-to-mesenchymal transition, and chemoresistance, through cooperation with several molecular partners including noncoding RNAs, is also reviewed. Finally, available options for the treatment of therapeutically challenging solid tumors by targeting DOT1L are discussed.
Collapse
Affiliation(s)
- Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Medical Genomics Program and Division of Oncology, AOU “S. Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, Salerno, Italy
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Viola Melone
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
- *Correspondence: Giovanni Nassa, ; Alessandro Weisz,
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Medical Genomics Program and Division of Oncology, AOU “S. Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, Salerno, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
- *Correspondence: Giovanni Nassa, ; Alessandro Weisz,
| |
Collapse
|
26
|
The histone methyltransferase DOT1L is a new epigenetic regulator of pulmonary fibrosis. Cell Death Dis 2022; 13:60. [PMID: 35039472 PMCID: PMC8763868 DOI: 10.1038/s41419-021-04365-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with increasing occurrence, high death rates, and unfavorable treatment regimens. The pathogenesis underlying IPF is complex and the epigenetic contributions to IPF are largely unknown. Recent studies have shown that DOT1L (Disruptor of telomeric silencing-1 like), a histone H3K79 methyltransferase, contributes to fibrosis response, but its role in IPF remains unclear. DOT1L, H3K79me3, and the profibrotic proteins levels were upregulated in the pulmonary fibrosis models both in vivo and in vitro. Lentivirus-mediated DOT1L knockdown or DOT1L-specific inhibitor EPZ5676 alleviated the pathogenesis of bleomycin-induced mouse pulmonary fibrosis. Furthermore, heterozygous DOT1L-deficient mice (Dot1l+/−) showed less sensitive to pulmonary fibrosis, as shown by decreased lung fibrosis phenotypes in vivo. Mechanically, DOT1L regulated TGF-β1-induced fibroblasts fibrosis by increasing enrichments of H3K79me3 on the promoter of Jag1 gene (encoding the Notch ligand Jagged1), enhancing the expression of Jagged1, which in turn stimulated exuberant Notch signaling and actuated the fibrosis response. In conclusion, our study confirmed DOT1L to be an epigenetic modifier in the pathogenesis of lung fibrosis, revealed a counterbalancing mechanism governing Jag1 transcription by modulating H3K79 trimethylation at the Jag1 promoter, activating the Notch signaling, and affecting the expression of profibrotic proteins to accelerate the lung fibrosis.
Collapse
|
27
|
Talukdar A, Mukherjee A, Bhattacharya D. Fascinating Transformation of SAM-Competitive Protein Methyltransferase Inhibitors from Nucleoside Analogues to Non-Nucleoside Analogues. J Med Chem 2022; 65:1662-1684. [PMID: 35014841 DOI: 10.1021/acs.jmedchem.1c01208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The abnormal expression of protein methyltransferase (PMT) has been linked with many diseases such as diabetes, neurological disorders, and cancer. S-Adenyl-l-methionine (SAM) is a universal methyl donor and gets converted to S-adenyl-l-homocysteine (SAH), an endogenous competitive inhibitor of SAM. Initially developed SAM/SAH mimetic nucleoside analogues were pan methyltransferase inhibitors. The gradual understanding achieved through ligand-receptor interaction paved the way for various rational approaches of drug design leading to potent and selective nucleoside inhibitors. The present perspective is based on the systematic evolution of selective SAM-competitive heterocyclic non-nucleoside inhibitors from nucleoside inhibitors. This fascinating transition has resolved several issues inherent to nucleoside analogues such as poor pharmacokinetics leading to poor in vivo efficacy. The perspective has brought together various concepts and strategies of drug design that contributed to this rational transition. We firmly believe that the strategies described herein will serve as a template for the future development of drugs in general.
Collapse
Affiliation(s)
- Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ayan Mukherjee
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| |
Collapse
|
28
|
Li F, Li L, Zhang J, Yang X, Liu Y. Histone methyltransferase DOT1L mediates the TGF-β1/Smad3 signaling pathway through epigenetic modification of SYK in myocardial infarction. Hum Cell 2022; 35:98-110. [PMID: 34635982 DOI: 10.1007/s13577-021-00625-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Myocardial infarction (MI) represents the most critical condition in coronary artery disease, and the fibrotic process, detrimental to optimal recovery, often sustains. In the present work, we assessed whether suppression of disruptor of telomeric silencing 1-like (DOT1L) could alleviate fibrosis in vivo and cardiac fibroblast (CFS) proliferation in vitro, and elucidated the possible mechanism involved in these events. After left coronary artery ligation, we found that the MI mice exhibited a decrease in cardiac function, along with evident MI and myocardial fibrosis. In addition, AngII increased CFS viability and migration, and enhanced the expression of fibrotic proteins. Inhibition of DOT1L ameliorated proliferation and fibrosis in CFS. Furthermore, DOT1L promoted the expression of spleen tyrosine kinase (SYK) by increasing the H3K79me2 modification of the SYK promoter. SYK upregulation reversed the inhibitory effect of DOT1L knockdown on CFS proliferation and fibrosis by activating the TGF-β1/Smad3 signaling. SYK also mitigated the ameliorative effect of DOT1L knockdown on myocardial injury and fibrosis caused by MI in vivo. In conclusion, these data indicated that DOT1L depletion might be a promising therapeutic target for fibrosis in MI.
Collapse
Affiliation(s)
- Fei Li
- Department of Cardiology, Yantai Mountain Hospital, Yantai, 264001, Shandong, People's Republic of China
| | - Lei Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Jiacheng Zhang
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Xuesong Yang
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China
| | - Yang Liu
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
29
|
An update on allosteric modulators as a promising strategy targeting histone methyltransferase. Pharmacol Res 2021; 172:105865. [PMID: 34474102 DOI: 10.1016/j.phrs.2021.105865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Histone methylation is a vital post-translational modification process in epigenetic regulation. The perturbation of histone methylation accounts for many diseases, including malignant cancers. Although achieving significant advances over past decades, orthosteric inhibitors targeting histone methyltransferases still suffer from challenges on subtype selectivity and acquired drug-resistant mutations. As an alternative, new compounds targeting the evolutionarily less conserved allosteric sites, exemplified by HKMTs and PRMTs inhibitors, offer a promising strategy to address this quandary. Herein, we highlight the allosteric sites and mechanisms in histone methyltransferases along with representative allosteric modulators, expecting to facilitate the discovery of allosteric modulators in favor of epigenetic therapy.
Collapse
|
30
|
Leon KE, Buj R, Lesko E, Dahl ES, Chen CW, Tangudu NK, Imamura-Kawasawa Y, Kossenkov AV, Hobbs RP, Aird KM. DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A. J Cell Biol 2021; 220:e202008101. [PMID: 34037658 PMCID: PMC8160577 DOI: 10.1083/jcb.202008101] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Oncogene-induced senescence (OIS) is a stable cell cycle arrest that occurs in normal cells upon oncogene activation. Cells undergoing OIS express a wide variety of secreted factors that affect the senescent microenvironment termed the senescence-associated secretory phenotype (SASP), which is beneficial or detrimental in a context-dependent manner. OIS cells are also characterized by marked epigenetic changes. We globally assessed histone modifications of OIS cells and discovered an increase in the active histone marks H3K79me2/3. The H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) was necessary and sufficient for increased H3K79me2/3 occupancy at the IL1A gene locus, but not other SASP genes, and was downstream of STING. Modulating DOT1L expression did not affect the cell cycle arrest. Together, our studies establish DOT1L as an epigenetic regulator of the SASP, whose expression is uncoupled from the senescence-associated cell cycle arrest, providing a potential strategy to inhibit the negative side effects of senescence while maintaining the beneficial inhibition of proliferation.
Collapse
Affiliation(s)
- Kelly E. Leon
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Biomedical Sciences Graduate Program, Penn State College of Medicine, Hershey, PA
| | - Raquel Buj
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Elizabeth Lesko
- Department of Dermatology, Penn State College of Medicine, Hershey, PA
| | - Erika S. Dahl
- Biomedical Sciences Graduate Program, Penn State College of Medicine, Hershey, PA
| | - Chi-Wei Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Naveen Kumar Tangudu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | - Ryan P. Hobbs
- Department of Dermatology, Penn State College of Medicine, Hershey, PA
| | - Katherine M. Aird
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
31
|
The role of DOT1L in the proliferation and prognosis of gastric cancer. Biosci Rep 2021; 40:221857. [PMID: 31939604 PMCID: PMC6997103 DOI: 10.1042/bsr20193515] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/12/2019] [Accepted: 01/10/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Disruptor of telomeric silencing-1-like (DOT1L), a methyltransferase of H3K79, was observed to be amplified and overexpressed in certain malignancies. This work was aimed at investigating the differences in DOT1L expression and its regulatory mechanism in gastric cancer (GC) and healthy samples. METHODS Immunohistochemistry was used to detect DOT1L levels in 101 cases of GC and marching adjacent normal tissues. DOT1L was inhibited by small interfering RNA (siRNA) and EPZ5676; a targeting drug. The ability of cells to proliferate were checked by cell counting kit-8 (CCK-8) and clone formation assays, with flow cytometry for observing the cell cycle. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot revealed the gene and protein profiles. Finally, the outcome of EPZ5676 administration was checked on a murine model. RESULTS The expression of DOT1L is significantly increased in gastric malignant tumors that is related to the degree of differentiation, lymph node metastasis and TNM staging. DOT1L serves as an independent marker for the prognosis of overall survival (OS) with high levels implying worse prognosis. In addition, DOT1L regulates cyclin-dependent kinase (CDK) 4 (CDK4) and CDK6 through H3K79me2, which leads to a change in the cell cycle at G1, thereby affecting the proliferation of tumors in vitro and in vivo. CONCLUSIONS This is a first clinical demonstration of the applicability of DOT1L overexpression in gastric tumors. The work is suggestive of altered proliferation of cells by DOT1L via regulating cyclins and H3K79 methylation. This indicates the role of DOT1L in the prognosis and possible medical intervention of GC.
Collapse
|
32
|
Zhang Z, Xing X, Jiang S, Qiu C, Mo Z, Chen S, Chen L, Wang Q, Xiao Y, Dong G, Zheng Y, Chen W, Li D. Global H3K79 di-methylation mediates DNA damage response to PAH exposure in Chinese coke oven workers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115956. [PMID: 33158619 DOI: 10.1016/j.envpol.2020.115956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the main contaminants of coke oven emissions which can induce serious genetic damage in coke oven workers. Epigenetic alternations play essential roles in the regulation of DNA damage effect of PAHs. Previous studies indicate that H3K79 di-methylation (H3K79me2) is integral in DNA damage repair. However, the potential role of H3K79me2 in DNA damage response (DDR) following PAHs exposure is still unclear. In this study, we recruited 256 male coke oven workers and control workers, and examined H3K79me2 and DNA damage in their peripheral blood lymphocytes (PBLCs). The results showed that global H3K79me2 of coke oven workers was 29.3% less than that of the controls (P < 0.001). The H3K79me2 was negatively correlated with the concentration of urinary 1-hydroxypyrene (1-OHP) (β = -0.235, P < 0.001) and level of genetic damage evaluated by comet assay (βTail DNA % = -0.313, P < 0.001; βOTM = -0.251, P = 0.008). Consistently, we found that benzo(a)pyrene (BaP) inhibited H3K79me2 in immortalized human bronchial epithelial (HBE) cells in a time-dependent manner. In order to explore the function of H3K79me2 in PAHs DDR, we established histone 3.1/3.3 K79A mutant cells (H3K79 A) to suppress H3K79me2. H3K79 A cells showed more serious DNA damage and decreased cell viability than control cells after BaP treatment. In addition, we also found that the expression of DOT1L, the only methyltransferase in H3K79, was repressed by BaP dose-dependently. DOT1L knockdown resulted in decreased H3K79me2 level and aggravated DNA damage after BaP exposure. This suggests that BaP induces H3K79me2 repression via inhibiting DOT1L expression. In conclusion, these findings indicate that PAH exposure decreases the level of global H3K79me2, which is integral for DNA damage response regulation of PAHs.
Collapse
Affiliation(s)
- Zhengbao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuyun Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chunfang Qiu
- Department of Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, 58, Zhongshan Road 2, Guangzhou, China
| | - Ziying Mo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guanghui Dong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | | | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
33
|
Kang JY, Park JW, Hahm JY, Jung H, Seo SB. Histone H3K79 demethylation by KDM2B facilitates proper DNA replication through PCNA dissociation from chromatin. Cell Prolif 2020; 53:e12920. [PMID: 33029857 PMCID: PMC7653264 DOI: 10.1111/cpr.12920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives The level of histone H3 lysine 79 methylation is regulated by the cell cycle and involved in cell proliferation. KDM2B is an H3K79 demethylase. Proliferating cell nuclear antigen (PCNA) is a component of the DNA replication machinery. This study aimed at elucidating a molecular link between H3K79me recognition of PCNA and cell cycle control. Materials and methods We generated KDM2B‐depleted 293T cells and histone H3‐K79R mutant‐expressing 293T cells. Western blots were primarily utilized to examine the H3K79me level and its effect on subsequent PCNA dissociation from chromatin. We applied IP, peptide pull‐down, isothermal titration calorimetry (ITC) and ChIP experiments to show the PCNA binding towards methylated H3K79 and DNA replication origins. Flow cytometry, MTT, iPOND and DNA fibre assays were used to assess the necessity of KDM2B for DNA replication and cell proliferation. Results We revealed that KDM2B‐mediated H3K79 demethylation regulated cell cycle progression. We found that PCNA bound chromatin in an H3K79me‐dependent manner during S phase. KDM2B was responsible for the timely dissociation of PCNA from chromatin, allowing to efficient DNA replication. Depletion of KDM2B aberrantly enriched chromatin with PCNA and caused slow dissociation of residual PCNA, leading to a negative effect on cell proliferation. Conclusions We suggested a novel interaction between PCNA and H3K79me. Thus, our findings provide a new mechanism of KDM2B in regulation of DNA replication and cell proliferation.
Collapse
Affiliation(s)
- Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Hyeonsoo Jung
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| |
Collapse
|
34
|
Banday S, Farooq Z, Ganai SA, Altaf M. Therapeutic strategies against hDOT1L as a potential drug target in MLL-rearranged leukemias. Clin Epigenetics 2020; 12:73. [PMID: 32450905 PMCID: PMC7249331 DOI: 10.1186/s13148-020-00860-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Therapeutic intervention of proteins participating in chromatin-mediated signaling with small-molecules is a novel option to reprogram expression networks for restraining disease states. Protein methyltransferases form the prominent family of such proteins regulating gene expression via epigenetic mechanisms thereby representing novel targets for pharmacological intervention. Disruptor of telomeric silencing, hDot1L is the only non-SET domain containing histone methyltransferase that methylates histone H3 at lysine 79. H3K79 methylation mediated by hDot1L plays a crucial role in mixed lineage leukemia (MLL) pathosis. MLL fusion protein mediated mistargeting of DOT1L to aberrant gene locations results in ectopic H3K79 methylation culminating in aberrant expression of leukemogenic genes like HOXA9 and MEIS1. hDOT1L has thus been proposed as a potential target for therapeutic intervention in MLL. This review presents the general overview of hDOT1L and its functional role in distinct biological processes. Furthermore, we discuss various therapeutic strategies against hDOT1L as a promising drug target to vanquish therapeutically challenging MLL.
Collapse
Affiliation(s)
- Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Shabir Ahmad Ganai
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India.,Present Address: Division of Basic Sciences and Humanities, Faculty of Agriculture, SKUAST-Kashmir, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India. .,Centre for Interdisciplinary Research and Innovations, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| |
Collapse
|
35
|
Kaur J, Daoud A, Eblen ST. Targeting Chromatin Remodeling for Cancer Therapy. Curr Mol Pharmacol 2020; 12:215-229. [PMID: 30767757 PMCID: PMC6875867 DOI: 10.2174/1874467212666190215112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Background: Epigenetic alterations comprise key regulatory events that dynamically alter gene expression and their deregulation is commonly linked to the pathogenesis of various diseases, including cancer. Unlike DNA mutations, epigenetic alterations involve modifications to proteins and nucleic acids that regulate chromatin structure without affecting the underlying DNA sequence, altering the accessibility of the transcriptional machinery to the DNA, thus modulating gene expression. In cancer cells, this often involves the silencing of tumor suppressor genes or the increased expression of genes involved in oncogenesis. Advances in laboratory medicine have made it possible to map critical epigenetic events, including histone modifications and DNA methylation, on a genome-wide scale. Like the identification of genetic mutations, mapping of changes to the epigenetic landscape has increased our understanding of cancer progression. However, in contrast to irreversible genetic mutations, epigenetic modifications are flexible and dynamic, thereby making them promising therapeutic targets. Ongoing studies are evaluating the use of epigenetic drugs in chemotherapy sensitization and immune system modulation. With the preclinical success of drugs that modify epigenetics, along with the FDA approval of epigenetic drugs including the DNA methyltransferase 1 (DNMT1) inhibitor 5-azacitidine and the histone deacetylase (HDAC) inhibitor vorinostat, there has been a rise in the number of drugs that target epigenetic modulators over recent years. Conclusion: We provide an overview of epigenetic modulations, particularly those involved in cancer, and discuss the recent advances in drug development that target these chromatin-modifying events, primarily focusing on novel strategies to regulate the epigenome.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Abdelkader Daoud
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
36
|
Sarno F, Nebbioso A, Altucci L. DOT1L: a key target in normal chromatin remodelling and in mixed-lineage leukaemia treatment. Epigenetics 2019; 15:439-453. [PMID: 31790636 PMCID: PMC7188393 DOI: 10.1080/15592294.2019.1699991] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methylation of histone 3 at lysine 79 (H3K79) is one of the principal mechanisms involved in gene expression. The histone methyltransferase DOT1L, which mono-, di- and trimethylates H3K79 using S-adenosyl-L-methionine as a co-factor, is involved in cell development, cell cycle progression, and DNA damage repair. However, changes in normal expression levels of this enzyme are found in prostate, breast, and ovarian cancer. High levels of H3K79me are also detected in acute myeloid leukaemia patients bearing MLL rearrangements (MLL-r). MLL translocations are found in approximately 80% of paediatric patients, leading to poor prognosis. DOT1L is recruited on DNA and induces hyperexpression of HOXA9 and MEIS1. Based on these findings, selective drugs have been developed to induce apoptosis in MLL-r leukaemia cells by specifically inhibiting DOT1L. The most potent DOT1L inhibitor pinometostat has been investigated in Phase I clinical trials for treatment of paediatric and adult patients with MLL-driven leukaemia, showing promising results.
Collapse
Affiliation(s)
- Federica Sarno
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| |
Collapse
|
37
|
Yang C, Chen Z, Yu H, Liu X. Inhibition of Disruptor of Telomeric Silencing 1-Like Alleviated Renal Ischemia and Reperfusion Injury-Induced Fibrosis by Blocking PI3K/AKT-Mediated Oxidative Stress. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4375-4387. [PMID: 31920287 PMCID: PMC6939406 DOI: 10.2147/dddt.s224909] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Abstract
Background Ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury, usually occurs during renal surgeries, and may eventually lead to chronic kidney diseases. However, effective therapeutic targets for renal I/R injury remain limited. Purpose In the present study, we investigated whether inhibition of disruptor of telomeric silencing 1-like (Dot1l) could alleviate renal I/R in vivo and in vitro, as well as the potential mechanisms involved in this process. Methods Sprague–Dawley rats were subjected to right renal ischemia for 45 mins and reperfusion for 0, 7, or 14 days with and without the Dot1l inhibitor EPZ004777. In addition, human renal proximal tubular epithelial cell line human kidney-2 cells were subjected to the hypoxia/reoxygenation (H/R) process (ie, 3 hrs hypoxia, 12 hrs and 24 hrs reoxygenation), with or without Dot1l inhibitor or genetic knockdown. Results Inhibition of Dot1l through EPZ004777 or genetic knockdown reduced the expression of alpha-smooth muscle actin, vimentin, and fibronectin in I/R- and H/R-induced injury. Moreover, H/R-induced fibrosis depended on oxidative stress in vitro. In addition, I/R- and H/R-induced generation of reactive oxygen species (ROS) was attenuated by EPZ004777 or small interfering RNA for Dot1l. Furthermore, the elevation of ROS induced by Dot1l was regulated via phosphatidylinositol 3-kinase (PI3K) and serine-threonine protein kinase (AKT) phosphorylation in vivo and in vitro. Conclusion Inhibition of Dot1l alleviated renal fibrosis by preventing the generation of ROS via the PI3K/AKT pathway. These results indicate that inhibitor of Dot1l could be a potential therapeutic target for renal I/R injury.
Collapse
Affiliation(s)
- Chuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Department of Urology, The People's Hospital of Hanchuan City, Hanchuan, People's Republic of China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Hua Yu
- Department of Urology, The People's Hospital of Hanchuan City, Hanchuan, People's Republic of China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
38
|
Salgado C, Kwesi-Maliepaard EM, Jochemsen AG, Visser M, Harland M, van Leeuwen F, van Doorn R, Gruis N. A novel germline variant in the DOT1L gene co-segregating in a Dutch family with a history of melanoma. Melanoma Res 2019; 29:582-589. [DOI: 10.1097/cmr.0000000000000640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Ocker M, Bitar SA, Monteiro AC, Gali-Muhtasib H, Schneider-Stock R. Epigenetic Regulation of p21 cip1/waf1 in Human Cancer. Cancers (Basel) 2019; 11:1343. [PMID: 31514410 PMCID: PMC6769618 DOI: 10.3390/cancers11091343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
p21cip1/waf1 is a central regulator of cell cycle control and survival. While mutations are rare, it is commonly dysregulated in several human cancers due to epigenetic mechanisms influencing its transcriptional control. These mechanisms include promoter hypermethylation as well as additional pathways such as histone acetylation or methylation. The epigenetic regulators include writers, such as DNA methyltransferases (DNMTs); histone acetyltransferases (HATs) and histone lysine methyltransferases; erasers, such as histone deacetylases (HDACs); histone lysine demethylases [e.g., the Lysine Demethylase (KDM) family]; DNA hydroxylases; readers, such as the methyl-CpG-binding proteins (MBPs); and bromodomain-containing proteins, including the bromo- and extraterminal domain (BET) family. We further discuss the roles that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play in the epigenetic control of p21cip1/waf1 expression and its function in human cancers.
Collapse
Affiliation(s)
- Matthias Ocker
- Bayer AG, Translational Medicine Oncology, 13353 Berlin, Germany
- Department of Gastroenterology, CBF, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 110236, Lebanon
| | - Ana Carolina Monteiro
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut 110236, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut 110236, Lebanon
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany.
- Experimental Tumor Pathology, FAU Erlangen-Nuremberg, Universitaetsstrasse 22, 91054 Erlangen, Germany.
| |
Collapse
|
40
|
Franz H, Villarreal A, Heidrich S, Videm P, Kilpert F, Mestres I, Calegari F, Backofen R, Manke T, Vogel T. DOT1L promotes progenitor proliferation and primes neuronal layer identity in the developing cerebral cortex. Nucleic Acids Res 2019; 47:168-183. [PMID: 30329130 PMCID: PMC6326801 DOI: 10.1093/nar/gky953] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
Cortical development is controlled by transcriptional programs, which are orchestrated by transcription factors. Yet, stable inheritance of spatio-temporal activity of factors influencing cell fate and localization in different layers is only partly understood. Here we find that deletion of Dot1l in the murine telencephalon leads to cortical layering defects, indicating DOT1L activity and chromatin methylation at H3K79 impact on the cell cycle, and influence transcriptional programs conferring upper layer identity in early progenitors. Specifically, DOT1L prevents premature differentiation by increasing expression of genes that regulate asymmetric cell division (Vangl2, Cenpj). Loss of DOT1L results in reduced numbers of progenitors expressing genes including SoxB1 gene family members. Loss of DOT1L also leads to altered cortical distribution of deep layer neurons that express either TBR1, CTIP2 or SOX5, and less activation of transcriptional programs that are characteristic for upper layer neurons (Satb2, Pou3f3, Cux2, SoxC family members). Data from three different mouse models suggest that DOT1L balances transcriptional programs necessary for proper neuronal composition and distribution in the six cortical layers. Furthermore, because loss of DOT1L in the pre-neurogenic phase of development impairs specifically generation of SATB2-expressing upper layer neurons, our data suggest that DOT1L primes upper layer identity in cortical progenitors.
Collapse
Affiliation(s)
- Henriette Franz
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Alejandro Villarreal
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Stefanie Heidrich
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Pavankumar Videm
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany
| | - Fabian Kilpert
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Ivan Mestres
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), School of Medicine, Technical University Dresden, 01307 Dresden, Germany
| | - Federico Calegari
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), School of Medicine, Technical University Dresden, 01307 Dresden, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Center for non-coding RNA in Technology and Health, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Tanja Vogel
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
41
|
Vlaming H, McLean CM, Korthout T, Alemdehy MF, Hendriks S, Lancini C, Palit S, Klarenbeek S, Kwesi‐Maliepaard EM, Molenaar TM, Hoekman L, Schmidlin TT, Altelaar AFM, van Welsem T, Dannenberg J, Jacobs H, van Leeuwen F. Conserved crosstalk between histone deacetylation and H3K79 methylation generates DOT1L-dose dependency in HDAC1-deficient thymic lymphoma. EMBO J 2019; 38:e101564. [PMID: 31304633 PMCID: PMC6627229 DOI: 10.15252/embj.2019101564] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
DOT1L methylates histone H3K79 and is aberrantly regulated in MLL-rearranged leukemia. Inhibitors have been developed to target DOT1L activity in leukemia, but cellular mechanisms that regulate DOT1L are still poorly understood. We have identified the histone deacetylase Rpd3 as a negative regulator of budding yeast Dot1. At its target genes, the transcriptional repressor Rpd3 restricts H3K79 methylation, explaining the absence of H3K79me3 at a subset of genes in the yeast genome. Similar to the crosstalk in yeast, inactivation of the murine Rpd3 homolog HDAC1 in thymocytes led to an increase in H3K79 methylation. Thymic lymphomas that arise upon genetic deletion of Hdac1 retained the increased H3K79 methylation and were sensitive to reduced DOT1L dosage. Furthermore, cell lines derived from Hdac1Δ/Δ thymic lymphomas were sensitive to a DOT1L inhibitor, which induced apoptosis. In summary, we identified an evolutionarily conserved crosstalk between HDAC1 and DOT1L with impact in murine thymic lymphoma development.
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
- Present address:
Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMAUSA
| | - Chelsea M McLean
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Tessy Korthout
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mir Farshid Alemdehy
- Division of Tumor Biology & ImmunologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Sjoerd Hendriks
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Cesare Lancini
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Sander Palit
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | | | - Thom M Molenaar
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Liesbeth Hoekman
- Experimental Animal PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Thierry T Schmidlin
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular ResearchUtrecht Institute for Pharmaceutical SciencesUtrecht University and Netherlands Proteomics CentreUtrechtThe Netherlands
| | - AF Maarten Altelaar
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular ResearchUtrecht Institute for Pharmaceutical SciencesUtrecht University and Netherlands Proteomics CentreUtrechtThe Netherlands
- Proteomics FacilityNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Tibor van Welsem
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jan‐Hermen Dannenberg
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
- Present address:
Genmab B.V.Antibody SciencesUtrechtThe Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & ImmunologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Fred van Leeuwen
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
42
|
Jang S, Song JJ. The big picture of chromatin biology by cryo-EM. Curr Opin Struct Biol 2019; 58:76-87. [PMID: 31233978 DOI: 10.1016/j.sbi.2019.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/10/2019] [Accepted: 05/20/2019] [Indexed: 01/07/2023]
Abstract
Modifications of chromatin structure are one of the key mechanisms regulating epigenetic gene expression. Proteins involved in chromatin modification mainly function as large multi-subunit complexes, and each component in the complex contributes to the function and activity of the complex. However, little is known about the structures of whole complexes and the mechanisms by which the chromatin-modifying complexes function, the functional roles of each component in the complexes, and how the complexes recognize the central unit of chromatin, the nucleosome. This lack of information is partially due to the lack of structural information for whole complexes. Recent advances in cryo-EM have begun to reveal the structures of whole chromatin-modifying complexes that enable us to understand the big picture of chromatin biology. In this review, we discuss the recent discoveries related to the mechanisms of chromatin-modifying complexes.
Collapse
Affiliation(s)
- Seongmin Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
43
|
Bourguignon LYW. Matrix Hyaluronan-CD44 Interaction Activates MicroRNA and LncRNA Signaling Associated With Chemoresistance, Invasion, and Tumor Progression. Front Oncol 2019; 9:492. [PMID: 31293964 PMCID: PMC6598393 DOI: 10.3389/fonc.2019.00492] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor malignancies involve cancer cell growth, issue invasion, metastasis and often drug resistance. A great deal of effort has been placed on searching for unique molecule(s) overexpressed in cancer cells that correlate(s) with tumor cell-specific behaviors. Hyaluronan (HA), one of the major ECM (extracellular matrix) components have been identified as a physiological ligand for surface CD44 isoforms which are frequently overexpressed in malignant tumor cells during cancer progression. The binding interaction between HA and CD44 isoforms often stimulates aberrant cellular signaling processes and appears to be responsible for the induction of multiple oncogenic events required for cancer-specific phenotypes and behaviors. In recent years, both microRNAs (miRNAs) (with ~20–25 nucleotides) and long non-coding RNAs (lncRNAs) (with ~200 nucleotides) have been found to be abnormally expressed in cancer cells and actively participate in numerous oncogenic signaling events needed for tumor cell-specific functions. In this review, I plan to place a special emphasis on HA/CD44-induced signaling pathways and the presence of several novel miRNAs (e.g., miR-10b/miR-302/miR-21) and lncRNAs (e.g., UCA1) together with their target functions (e.g., tumor cell migration, invasion, and chemoresistance) during cancer development and progression. I believe that important information can be obtained from these studies on HA/CD44-activated miRNAs and lncRNA that may be very valuable for the future development of innovative therapeutic drugs for the treatment of matrix HA/CD44-mediated cancers.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Endocrine Unit (111N2), Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
44
|
Li Y, Li Z, Zhu WG. Molecular Mechanisms of Epigenetic Regulators as Activatable Targets in Cancer Theranostics. Curr Med Chem 2019; 26:1328-1350. [PMID: 28933282 DOI: 10.2174/0929867324666170921101947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
Epigenetics is defined as somatically inheritable changes that are not accompanied by alterations in DNA sequence. Epigenetics encompasses DNA methylation, covalent histone modifications, non-coding RNA as well as nucleosome remodeling. Notably, abnormal epigenetic changes play a critical role in cancer development including malignant transformation, metastasis, prognosis, drug resistance and tumor recurrence, which can provide effective targets for cancer prognosis, diagnosis and therapy. Understanding these changes provide effective means for cancer diagnosis and druggable targets for better clinical applications. Histone modifications and related enzymes have been found to correlate well with cancer incidence and prognosis in recent years. Dysregulated expression or mutation of histone modification enzymes and histone modification status abnormalities have been considered to play essential roles in tumorigenesis and clinical outcomes of cancer treatment. Some of the histone modification inhibitors have been extensively employed in clinical practice and many others are still under laboratory research or pre-clinical assessment. Here we summarize the important roles of epigenetics, especially histone modifications in cancer diagnostics and therapeutics, and also discuss the developmental implications of activatable epigenetic targets in cancer theranostics.
Collapse
Affiliation(s)
- Yinglu Li
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhiming Li
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
45
|
Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Direct and Indirect Targeting of HOXA9 Transcription Factor in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060837. [PMID: 31213012 PMCID: PMC6627208 DOI: 10.3390/cancers11060837] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
HOXA9 (Homeobox A9) is a homeotic transcription factor known for more than two decades to be associated with leukemia. The expression of HOXA9 homeoprotein is associated with anterior-posterior patterning during embryonic development, and its expression is then abolished in most adult cells, with the exception of hematopoietic progenitor cells. The oncogenic function of HOXA9 was first assessed in human acute myeloid leukemia (AML), particularly in the mixed-phenotype associated lineage leukemia (MPAL) subtype. HOXA9 expression in AML is associated with aggressiveness and a poor prognosis. Since then, HOXA9 has been involved in other hematopoietic malignancies and an increasing number of solid tumors. Despite this, HOXA9 was for a long time not targeted to treat cancer, mainly since, as a transcription factor, it belongs to a class of protein long considered to be an "undruggable" target; however, things have now evolved. The aim of the present review is to focus on the different aspects of HOXA9 targeting that could be achieved through multiple ways: (1) indirectly, through the inhibition of its expression, a strategy acting principally at the epigenetic level; or (2) directly, through the inhibition of its transcription factor function by acting at either the protein/protein interaction or the protein/DNA interaction interfaces.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Meryem Alioui
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Samy Jambon
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Sabine Depauw
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Isabelle Van Seuningen
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
| | - Marie-Hélène David-Cordonnier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| |
Collapse
|
46
|
Computational de-orphanization of the olive oil biophenol oleacein: Discovery of new metabolic and epigenetic targets. Food Chem Toxicol 2019; 131:110529. [PMID: 31150784 DOI: 10.1016/j.fct.2019.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
The health promoting effects of extra virgin olive oil (EVOO) relate to its unique repertoire of phenolic compounds. Here, we used a chemoinformatics approach to computationally identify endogenous ligands and assign putative biomolecular targets to oleacein, one of the most abundant secoiridoids in EVOO. Using a structure-based virtual profiling software tool and reference databases containing more than 9000 binding sites protein cavities, we identified 996 putative oleacein targets involving more than 700 proteins. We subsequently identified the high-level functions of oleacein in terms of biomolecular interactions, signaling pathways, and protein-protein interaction (PPI) networks. Delineation of the oleacein target landscape revealed that the most significant modules affected by oleacein were associated with metabolic processes (e.g., glucose and lipid metabolism) and chromatin-modifying enzymatic activities (i.e., histone post-translational modifications). We experimentally confirmed that, in a low-micromolar physiological range (<20 μmol/l), oleacein was capable of inhibiting the catalytic activities of predicted metabolic and epigenetic targets including nicotinamide N-methyltransferase, ATP-citrate lyase, lysine-specific demethylase 6A, and N-methyltransferase 4. Our computational de-orphanization of oleacein provides new mechanisms through which EVOO biophenols might operate as chemical prototypes capable of modulating the biologic machinery of healthy aging.
Collapse
|
47
|
Kim JE. Bookmarking by histone methylation ensures chromosomal integrity during mitosis. Arch Pharm Res 2019; 42:466-480. [PMID: 31020544 DOI: 10.1007/s12272-019-01156-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022]
Abstract
The cell cycle is an orchestrated process that replicates DNA and transmits genetic information to daughter cells. Cell cycle progression is governed by diverse histone modifications that control gene transcription in a timely fashion. Histone modifications also regulate cell cycle progression by marking specific chromatic regions. While many reviews have covered histone phosphorylation and acetylation as regulators of the cell cycle, little attention has been paid to the roles of histone methylation in the faithful progression of mitosis. Indeed, specific histone methylations occurring before, during, or after mitosis affect kinetochore assembly and chromosome condensation and segregation. In addition to timing, histone methylations specify the chromatin regions such as chromosome arms, pericentromere, and centromere. Therefore, spatiotemporal programming of histone methylations ensures epigenetic inheritance through mitosis. This review mainly discusses histone methylations and their relevance to mitotic progression.
Collapse
Affiliation(s)
- Ja-Eun Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
48
|
Francipane MG, Bulanin D, Lagasse E. Establishment and Characterization of 5-Fluorouracil-Resistant Human Colorectal Cancer Stem-Like Cells: Tumor Dynamics under Selection Pressure. Int J Mol Sci 2019; 20:ijms20081817. [PMID: 31013771 PMCID: PMC6515384 DOI: 10.3390/ijms20081817] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
5-Fluorouracil (5-FU) remains the gold standard of first-line treatment for colorectal cancer (CRC). Although it may initially debulk the tumor mass, relapses frequently occur, indicating the existence of cancer cells that are therapy-resistant and are capable of refueling tumor growth. To identify mechanisms of drug resistance, CRC stem-like cells were subjected to long-term 5-FU selection using either intermittent treatment regimen with the IC50 drug dose or continuous treatment regimen with escalating drug doses. Parental cancer cells were cultivated in parallel. Real-time PCR arrays and bioinformatic tools were used to investigate gene expression changes. We found the first method selected for cancer cells with more aggressive features. We therefore transplanted these cancer cells or parental cells in mice, and again, found that not only did the 5-FU-selected cancer cells generate more aggressive tumors with respect to their parental counterpart, but they also showed a different gene expression pattern as compared to what we had observed in vitro, with ID1 the top upregulated gene. We propose ID1 as a stemness marker pervasively expressed in secondary lesions emerging after completion of chemotherapy.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
- Ri.MED Foundation, 90133 Palermo, Italy.
| | - Denis Bulanin
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan.
| | - Eric Lagasse
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
49
|
Worden EJ, Hoffmann NA, Hicks CW, Wolberger C. Mechanism of Cross-talk between H2B Ubiquitination and H3 Methylation by Dot1L. Cell 2019; 176:1490-1501.e12. [PMID: 30765112 PMCID: PMC6498860 DOI: 10.1016/j.cell.2019.02.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022]
Abstract
Methylation of histone H3 K79 by Dot1L is a hallmark of actively transcribed genes that depends on monoubiquitination of H2B K120 (H2B-Ub) and is an example of histone modification cross-talk that is conserved from yeast to humans. We report here cryo-EM structures of Dot1L bound to ubiquitinated nucleosome that show how H2B-Ub stimulates Dot1L activity and reveal a role for the histone H4 tail in positioning Dot1L. We find that contacts mediated by Dot1L and the H4 tail induce a conformational change in the globular core of histone H3 that reorients K79 from an inaccessible position, thus enabling this side chain to insert into the active site in a position primed for catalysis. Our study provides a comprehensive mechanism of cross-talk between histone ubiquitination and methylation and reveals structural plasticity in histones that makes it possible for histone-modifying enzymes to access residues within the nucleosome core.
Collapse
Affiliation(s)
- Evan J Worden
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Niklas A Hoffmann
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chad W Hicks
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
50
|
Singh PK. Histone methyl transferases: A class of epigenetic opportunities to counter uncontrolled cell proliferation. Eur J Med Chem 2019; 166:351-368. [PMID: 30735901 DOI: 10.1016/j.ejmech.2019.01.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
With each newly disclosed resistance mechanism, management of cancer with previously established targets have become a "failure" oriented approach. Molecular targets such as kinases did initially provide a ray of hope against cancer but with decades of struggle between novel therapeutic agents and more sophisticated resistance mechanisms, they seem to have saturated as anti-cancer targets. Now, with more exhaustive molecular recognition techniques and approaches, epigenetic targets have accessed the centre stage as anti-cancer targets. Accordingly, several classes of epigenetic enzymes are being studied for this role and histone methyltransferases form one such class. They include a class of epigenetic enzymes which transfer methyl group from histone proteins and maintain genetic homeostasis. In cancer, several reports have deduced upregulation of different members of this family according to the tumor environment, establishing them as one of the novel anti-cancer targets. This compilation provides an updated information on several members of histone methyltransferases family as epigenetic targets for developing novel anti-cancer agents.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|