1
|
Li H, Sharma R, Bharti K. iPSC-derived retinal pigment epithelium: an in vitro platform to reproduce key cellular phenotypes and pathophysiology of retinal degenerative diseases. Stem Cells Transl Med 2025; 14:szae097. [PMID: 39729520 PMCID: PMC11954503 DOI: 10.1093/stcltm/szae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/30/2024] [Indexed: 12/29/2024] Open
Abstract
Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment. When derived from patients, iRPE are able to recapitulate critical cellular phenotypes of retinal degenerative diseases, such as the drusen-like sub-RPE deposits in the L-ORD and AMD models; lipid droplets and cholesterol accumulation in the STGD1 and AMD models. The iRPE model has helped discover the unexpected role of RPE in understanding retinal degenerative diseases, such as a cell-autonomous function of ABCA4 in STGD1. The iRPE model has helped uncover the pathological mechanism of retinal degenerative diseases, including the roles of alternate complement cascades and oxidative stress in AMD pathophysiology, abnormal POS processing in STGD1 and L-ORD, and its association with lipid accumulation. These studies have helped better understand-the role of RPE in retinal degenerative diseases, and molecular mechanisms underlying RPE atrophy, and have provided a basis to discover therapeutics to target RPE-associated diseases.
Collapse
Affiliation(s)
- Huirong Li
- NEI/OSCTRS/OGVFB, Bethesda, MD, United States
| | | | | |
Collapse
|
2
|
Markowitz DM, Affel E, Hajnóczky G, Sergott RC. Future applications of fluorescence lifetime imaging ophthalmoscopy in neuro-ophthalmology, neurology, and neurodegenerative conditions. Front Neurol 2025; 16:1493876. [PMID: 40125394 PMCID: PMC11927091 DOI: 10.3389/fneur.2025.1493876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
Fluorescence lifetime imaging ophthalmoscopy (FLIO) has emerged as an innovative advancement in retinal imaging, with the potential to provide in vivo non-invasive insights into the mitochondrial metabolism of the retina. Traditional retinal imaging, such as optical coherence tomography (OCT) and fundus autofluorescence (FAF) intensity imaging, focus solely on structural changes to the retina. In contrast, FLIO provides data that may reflect retinal fluorophore activity, some of which may indicate mitochondrial metabolism. This review builds upon the existing literature to describe the principles of FLIO and established uses in retinal diseases while introducing the potential for FLIO in neurodegenerative conditions.
Collapse
Affiliation(s)
- Daniel M. Markowitz
- Drexel University College of Medicine, Philadelphia, PA, United States
- William H. Annesley, EyeBrain Center, Vicky and Jack Farber Neuroscience Institute, Thomas Jefferson University, Partnered with Wills Eye Hospital, Philadelphia, PA, United States
| | - Elizabeth Affel
- William H. Annesley, EyeBrain Center, Vicky and Jack Farber Neuroscience Institute, Thomas Jefferson University, Partnered with Wills Eye Hospital, Philadelphia, PA, United States
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Robert C. Sergott
- William H. Annesley, EyeBrain Center, Vicky and Jack Farber Neuroscience Institute, Thomas Jefferson University, Partnered with Wills Eye Hospital, Philadelphia, PA, United States
| |
Collapse
|
3
|
Lunegova DA, Gvozdev DA, Senin II, Gudkova VR, Sidorenko SV, Tiulina VV, Shebardina NG, Yakovleva MA, Feldman TB, Ramonova AA, Moysenovich AM, Semenov AN, Zernii EY, Maksimov EG, Sluchanko NN, Kirpichnikov MP, Ostrovsky MA. Antioxidant properties of the soluble carotenoprotein AstaP and its feasibility for retinal protection against oxidative stress. FEBS J 2025; 292:355-372. [PMID: 39580658 DOI: 10.1111/febs.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Photodamage to the outer segments of photoreceptor cells and their impaired utilization by retinal pigment epithelium (RPE) cells contribute to the development of age-related macular degeneration (AMD) leading to blindness. Degeneration of photoreceptor cells and RPE cells is triggered by reactive oxygen species (ROS) produced by photochemical reactions involving bisretinoids, by-products of the visual cycle, which accumulate in photoreceptor discs and lipofuscin granules of RPE. Carotenoids, natural antioxidants with high potential efficacy against a wide range of ROS, may protect against the cytotoxic properties of lipofuscin. To solve the problem of high hydrophobicity of carotenoids and increase their bioaccessibility, specialized proteins can ensure their targeted delivery to the affected tissues. In this study, we present new capabilities of the recombinant water-soluble protein AstaP from Coelastrella astaxanthina Ki-4 (Scenedesmaceae) for protein-mediated carotenoid delivery and demonstrate how zeaxanthin delivery suppresses oxidative stress in a lipofuscin-enriched model of photoreceptor and pigment epithelium cells. AstaP in complex with zeaxanthin can effectively scavenge various ROS (singlet oxygen, free radical cations, hydrogen peroxide) previously reported to be generated in AMD. In addition, we explore the potential of optimizing the structure of AstaP to enhance its thermal stability and resistance to proteolytic activity in the ocular media. This optimization aims to maximize the prevention of retinal degenerative changes in AMD.
Collapse
Affiliation(s)
- Daria A Lunegova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Danil A Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | | | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Natalia G Shebardina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana B Feldman
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alla A Ramonova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | | | - Alexey N Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Mikhail A Ostrovsky
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Rahman B, Anderson DMG, Chen C, Liu J, Migas LG, Van de Plas R, Schey KL, Kono M, Fan J, Koutalos Y. Sphingolipid Levels and Processing of the Retinyl Chromophore in the Retina of a Mouse Model of Niemann-Pick Disease. Invest Ophthalmol Vis Sci 2024; 65:24. [PMID: 39661357 PMCID: PMC11640910 DOI: 10.1167/iovs.65.14.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Mutations in the gene that encodes the enzyme acid sphingomyelinase (ASMase) are associated with Niemann-Pick disease, a lysosomal storage disorder. Mice that lack ASMase (ASMase-/-) exhibit age-related retinal degeneration and large increases in accumulation of lipofuscin in the retinal pigment epithelium (RPE). We examined which lipid species accumulate in the retina and the RPE of ASMase-/- mice and whether the retinal degeneration is associated with impaired photoreceptor metabolism and retinyl chromophore processing. Methods NADPH availability and all-trans retinol formation after rhodopsin bleaching were measured in isolated single rod photoreceptors with fluorescence imaging; sphingolipid levels in retinas and RPEs were measured with LC/MS; relative abundances of different lipid species in different retinal layers were measured with MALDI imaging mass spectrometry. Results There was no detectable difference in the kinetics of all-trans retinol formation or the NADPH-generating capacity between ASMase-/- and wild-type mice. Sphingomyelin levels were much higher in the retinas and RPEs of ASMase-/- animals compared to wild type, but there were no significant differences for ceramides. There was a large increase in the abundance of bis(monoacylglycero)phosphates (BMPs) in ASMase-/- mice, indicative of lysosomal dysfunction, but no substantial changes were detected for the bis-retinoid A2E. Conclusions Lysosomal dysfunction and retinal degeneration in ASMase-/- mice are not associated with defects in rod photoreceptor metabolism that affect all-trans retinol formation and availability of NADPH. Lysosomal dysfunction in ASMase-/- mice is not associated with bis-retinoid A2E accumulation.
Collapse
Affiliation(s)
- Bushra Rahman
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - David M. G. Anderson
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, Unites States
| | - Chunhe Chen
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jian Liu
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Lukasz G. Migas
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | - Raf Van de Plas
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | - Kevin L. Schey
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, Unites States
| | - Masahiro Kono
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jie Fan
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
5
|
Seol A, Kim JE, Jin YJ, Song HJ, Roh YJ, Kim TR, Park ES, Park KH, Park SH, Uddin MS, Lee SW, Choi YW, Hwang DY. Novel Therapeutic Effects of Euphorbia heterophylla L. Methanol Extracts in Macular Degeneration Caused by Blue Light in A2E-Laden ARPE-19 Cells and Retina of BALB/c Mice. Pharmaceuticals (Basel) 2024; 17:1193. [PMID: 39338355 PMCID: PMC11435363 DOI: 10.3390/ph17091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Natural products with high antioxidant activity are considered as innovative prevention strategies to effectively prevent age-related macular degeneration (AMD) in the early stage because the generation of reactive oxygen species (ROS) leading to the development of drusen is reported as an important cause of this disease. To investigate the prevention effects of the methanol extracts of Euphorbia heterophylla L. (MEE) on AMD, its effects on the antioxidant activity, inflammatory response, apoptosis pathway, neovascularization, and retinal tissue degeneration were analyzed in N-retinylidene-N-retinylethanolamine (A2E)-landed spontaneously arising retinal pigment epithelia (ARPE)-19 cells and BALB/c mice after exposure to blue light (BL). The MEE contained 10 active components and showed high free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and nitric oxide (NO) radicals. The pretreatments of high-dose MEE remarkably suppressed the production of intracellular ROS (88.2%) and NO (25.2%) and enhanced (SOD) activity (84%) and the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) in A2E + BL-treated ARPE-19 cells compared to Vehicle-treated group. The activation of the inducible nitric oxide synthase (iNOS)-induced cyclooxygenase-2 (COX-2) mediated pathway, inflammasome activation, and expression of inflammatory cytokines was significantly inhibited in A2E + BL-treated ARPE-19 cells after the MEE pretreatment. The activation of the apoptosis pathway and increased expression of neovascular proteins (36% for matrix metalloproteinase (MMP)-9) were inhibited in the MEE pretreated groups compared to the Vehicle-treated group. Furthermore, the thickness of the whole retina (31%), outer nuclear layer (ONL), inner nuclear layer (INL), and photoreceptor layer (PL) were significantly increased by the MEE pretreatment of BALB/c mice with BL-induced retinal degeneration. Therefore, these results suggest that the MEE, with its high antioxidative activity, protects against BL-induced retinal degeneration through the regulation of the antioxidative system, inflammatory response, apoptosis, and neovascularization in the AMD mouse model.
Collapse
Affiliation(s)
- Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji-Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You-Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee-Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu-Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae-Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Eun-Seo Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki-Ho Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - So-Hae Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | | | - Sang-Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Woo Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
6
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
7
|
Farnoodian M, Bose D, Barone F, Nelson LM, Boyle M, Jun B, Do K, Gordon W, Guerin MAK, Perera R, Ji JX, Cogliati T, Sharma R, Brooks BP, Bazan NG, Bharti K. Retina and RPE lipid profile changes linked with ABCA4 associated Stargardt's maculopathy. Pharmacol Ther 2023; 249:108482. [PMID: 37385300 PMCID: PMC10530239 DOI: 10.1016/j.pharmthera.2023.108482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Stargardt maculopathy, caused predominantly by mutations in the ABCA4 gene, is characterized by an accumulation of non-degradable visual pigment derivative, lipofuscin, in the retinal pigment epithelium (RPE) - resulting in RPE atrophy. RPE is a monolayer tissue located adjacent to retinal photoreceptors and regulates their health and functioning; RPE atrophy triggers photoreceptor cell death and vision loss in Stargardt patients. Previously, ABCA4 mutations in photoreceptors were thought to be the major contributor to lipid homeostasis defects in the eye. Recently, we demonstrated that ABCA4 loss of function in the RPE leads to cell-autonomous lipid homeostasis defects. Our work underscores that an incomplete understanding of lipid metabolism and lipid-mediated signaling in the retina and RPE are potential causes for lacking treatments for this disease. Here we report altered lipidomic in mouse and human Stargardt models. This work provides the basis for therapeutics that aim to restore lipid homeostasis in the retina and the RPE.
Collapse
Affiliation(s)
- Mitra Farnoodian
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Devika Bose
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Francesca Barone
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Luke Mathew Nelson
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Marisa Boyle
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Khanh Do
- Faculty of Medicine, Phenikaa University, Hanoi, Viet Nam
| | - William Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Marie-Audrey Kautzmann Guerin
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Rasangi Perera
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Jeff X Ji
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Tiziana Cogliati
- Division of Aging Biology, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Dörschmann P, Thalenhorst T, Seeba C, Tischhöfer MT, Neupane S, Roider J, Alban S, Klettner A. Comparison of Fucoidans from Saccharina latissima Regarding Age-Related Macular Degeneration Relevant Pathomechanisms in Retinal Pigment Epithelium. Int J Mol Sci 2023; 24:7939. [PMID: 37175646 PMCID: PMC10178501 DOI: 10.3390/ijms24097939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Fucoidans from brown algae are described as anti-inflammatory, antioxidative, and antiangiogenic. We tested two Saccharina latissima fucoidans (SL-FRO and SL-NOR) regarding their potential biological effects against age-related macular degeneration (AMD). Primary porcine retinal pigment epithelium (RPE), human RPE cell line ARPE-19, and human uveal melanoma cell line OMM-1 were used. Cell survival was assessed in tetrazolium assay (MTT). Oxidative stress assays were induced with erastin or H2O2. Supernatants were harvested to assess secreted vascular endothelial growth factor A (VEGF-A) in ELISA. Barrier function was assessed by measurement of trans-epithelial electrical resistance (TEER). Protectin (CD59) and retinal pigment epithelium-specific 65 kDa protein (RPE65) were evaluated in western blot. Polymorphonuclear elastase and complement inhibition assays were performed. Phagocytosis of photoreceptor outer segments was tested in a fluorescence assay. Secretion and expression of proinflammatory cytokines were assessed with ELISA and real-time PCR. Fucoidans were chemically analyzed. Neither toxic nor antioxidative effects were detected in ARPE-19 or OMM-1. Interleukin 8 gene expression was slightly reduced by SL-NOR but induced by SL-FRO in RPE. VEGF secretion was reduced in ARPE-19 by SL-FRO and in RPE by both fucoidans. Polyinosinic:polycytidylic acid induced interleukin 6 and interleukin 8 secretion was reduced by both fucoidans in RPE. CD59 expression was positively influenced by fucoidans, and they exhibited a complement and elastase inhibitory effect in cell-free assay. RPE65 expression was reduced by SL-NOR in RPE. Barrier function of RPE was transiently reduced. Phagocytosis ability was slightly reduced by both fucoidans in primary RPE but not in ARPE-19. Fucoidans from Saccharina latissima, especially SL-FRO, are promising agents against AMD, as they reduce angiogenic cytokines and show anti-inflammatory and complement inhibiting properties; however, potential effects on gene expression and RPE functions need to be considered for further research.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Tabea Thalenhorst
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Charlotte Seeba
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | | | - Sandesh Neupane
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Susanne Alban
- Pharmaceutical Institute, University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| |
Collapse
|
9
|
Xu T, Molday L, Molday R. Retinal-phospholipid Schiff-base conjugates and their interaction with ABCA4, the ABC transporter associated with Stargardt Disease. J Biol Chem 2023; 299:104614. [PMID: 36931393 PMCID: PMC10127136 DOI: 10.1016/j.jbc.2023.104614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff-base conjugate formed through the reversible reaction of retinal (Vitamin A-aldehyde) and phosphatidylethanolamine, plays a crucial role in the visual cycle and visual pigment photoregeneration. However, N-Ret-PE can react with another molecule of retinal to form toxic di-retinoids if not removed from photoreceptors through its transport across photoreceptor membranes by the ATP-binding-cassette transporter ABCA4. Loss-of-function mutations in ABCA4 are known to cause Stargardt disease (STGD1), an inherited retinal degenerative disease associated with the accumulation of fluorescent di-retinoids and severe loss in vision. A larger assessment of retinal-phospholipid Schiff-base conjugates in photoreceptors is needed, along with further investigation of ABCA4 residues important for N-Ret-PE binding. In this study we show that N-Ret-PE formation is dependent on pH and phospholipid content. When retinal is added to liposomes or photoreceptor membranes, 40-60% is converted to N-Ret-PE at physiological pH. Phosphatidylserine and taurine also react with retinal to form N-retinylidene-phosphatidylserine (N-Ret-PS) and N-retinylidene-taurine, respectively, but at significantly lower levels. N-Ret-PS is not a substrate for ABCA4 and reacts poorly with retinal to form di-retinoids. Additionally, amino acid residues within the binding pocket of ABCA4 that contribute to its interaction with N-Ret-PE were identified and characterized using site-directed mutagenesis together with functional and binding assays. Substitution of arginine residues and hydrophobic residues with alanine or residues implicated in STGD1 significantly reduced or in some cases eliminated substrate-activated ATPase activity and substrate binding. Collectively, this study provides important insight into conditions which affect retinal-phospholipid Schiff-base formation and mechanisms underlying the pathogenesis of STGD1.
Collapse
Affiliation(s)
- Tongzhou Xu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| | - LaurieL Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| | - RobertS Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada.
| |
Collapse
|
10
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
11
|
Lee SJ, Roh YJ, Kim JE, Jin YJ, Song HJ, Seol A, Park SH, Douangdeuane B, Souliya O, Choi SI, Hwang DY. Protective Effects of Dipterocarpus tuberculatus in Blue Light-Induced Macular Degeneration in A2E-Laden ARPE19 Cells and Retina of Balb/c Mice. Antioxidants (Basel) 2023; 12:antiox12020329. [PMID: 36829888 PMCID: PMC9952417 DOI: 10.3390/antiox12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Natural products with significant antioxidant activity have been receiving attention as one of the treatment strategies to prevent age-related macular degeneration (AMD). Reactive oxygen intermediates (ROI) including oxo-N-retinylidene-N-retinylethanolamine (oxo-A2E) and singlet oxygen-induced damage, are believed to be one of the major causes of the development of AMD. To investigate the therapeutic effects of methanol extracts of Dipterocarpus tuberculatus Roxb. (MED) against blue light (BL)-caused macular degeneration, alterations in the antioxidant activity, apoptosis pathway, neovascularization, inflammatory response, and retinal degeneration were analyzed in A2E-laden ARPE19 cells and Balb/c mice after exposure of BL. Seven bioactive components, including 2α-hydroxyursolic acid, ε-viniferin, asiatic acid, bergenin, ellagic acid, gallic acid and oleanolic acid, were detected in MED. MED exhibited high DPPH and ABTS free radical scavenging activity. BL-induced increases in intracellular reactive oxygen species (ROS) production and nitric oxide (NO) concentration were suppressed by MED treatment. A significant recovery of antioxidant capacity by an increase in superoxide dismutase enzyme (SOD) activity, SOD expression levels, and nuclear factor erythroid 2-related factor 2 (NRF2) expression were detected as results of MED treatment effects. The activation of the apoptosis pathway, the expression of neovascular proteins, cyclooxygenase-2 (COX-2)-induced inducible nitric oxide synthase (iNOS) mediated pathway, inflammasome activation, and expression of inflammatory cytokines was remarkably inhibited in the MED treated group compared to the Vehicle-treated group in the AMD cell model. Furthermore, MED displayed protective effects in BL-induced retinal degeneration through improvement in the thickness of the whole retina, outer nuclear layer (ONL), inner nuclear layer (INL), and photoreceptor layer (PL) in Balb/c mice. Taken together, these results indicate that MED exhibits protective effects in BL-induced retinal degeneration and has the potential in the future to be developed as a treatment option for dry AMD with atrophy of retinal pigment epithelial (RPE) cells.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - So Hae Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | | | - Onevilay Souliya
- Institute of Traditional Medicine, Ministry of Health, Vientiane 0103, Laos
| | - Sun Il Choi
- School of Pharmacy, Henan University, Kaifeng 475004, China
- Correspondence: (S.I.C.); (D.Y.H.); Tel.: +86-13271140312 (S.I.C.); +82-55-350-5388 (D.Y.H.)
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Correspondence: (S.I.C.); (D.Y.H.); Tel.: +86-13271140312 (S.I.C.); +82-55-350-5388 (D.Y.H.)
| |
Collapse
|
12
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
13
|
The novel visual cycle inhibitor (±)-RPE65-61 protects retinal photoreceptors from light-induced degeneration. PLoS One 2022; 17:e0269437. [PMID: 36227868 PMCID: PMC9560169 DOI: 10.1371/journal.pone.0269437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
The visual cycle refers to a series of biochemical reactions of retinoids in ocular tissues and supports the vision in vertebrates. The visual cycle regenerates visual pigments chromophore, 11-cis-retinal, and eliminates its toxic byproducts from the retina, supporting visual function and retinal neuron survival. Unfortunately, during the visual cycle, when 11-cis-retinal is being regenerated in the retina, toxic byproducts, such as all-trans-retinal and bis-retinoid is N-retinylidene-N-retinylethanolamine (A2E), are produced, which are proposed to contribute to the pathogenesis of the dry form of age-related macular degeneration (AMD). The primary biochemical defect in Stargardt disease (STGD1) is the accelerated synthesis of cytotoxic lipofuscin bisretinoids, such as A2E, in the retinal pigment epithelium (RPE) due to mutations in the ABCA4 gene. To prevent all-trans-retinal-and bisretinoid-mediated retinal degeneration, slowing down the retinoid flow by modulating the visual cycle with a small molecule has been proposed as a therapeutic strategy. The present study describes RPE65-61, a novel, non-retinoid compound, as an inhibitor of RPE65 (a key enzyme in the visual cycle), intended to modulate the excessive activity of the visual cycle to protect the retina from harm degenerative diseases. Our data demonstrated that (±)-RPE65-61 selectively inhibited retinoid isomerase activity of RPE65, with an IC50 of 80 nM. Furthermore, (±)-RPE65-61 inhibited RPE65 via an uncompetitive mechanism. Systemic administration of (±)-RPE65-61 in mice resulted in slower chromophore regeneration after light bleach, confirming in vivo target engagement and visual cycle modulation. Concomitant protection of the mouse retina from high-intensity light damage was also observed. Furthermore, RPE65-61 down-regulated the cyclic GMP-AMP synthase stimulator of interferon genes (cGAS-STING) pathway, decreased the inflammatory factor, and attenuated retinal apoptosis caused by light-induced retinal damage (LIRD), which led to the preservation of the retinal function. Taken together, (±)-RPE65-61 is a potent visual cycle modulator that may provide a neuroprotective therapeutic benefit for patients with STGD and AMD.
Collapse
|
14
|
Farnoodian M, Bose D, Khristov V, Susaimanickam PJ, Maddileti S, Mariappan I, Abu-Asab M, Campos M, Villasmil R, Wan Q, Maminishkis A, McGaughey D, Barone F, Gundry RL, Riordon DR, Boheler KR, Sharma R, Bharti K. Cell-autonomous lipid-handling defects in Stargardt iPSC-derived retinal pigment epithelium cells. Stem Cell Reports 2022; 17:2438-2450. [DOI: 10.1016/j.stemcr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
|
15
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Rinaldi C, D’Angelo R, Sidoti A. Epitranscriptome Analysis of Oxidative Stressed Retinal Epithelial Cells Depicted a Possible RNA Editing Landscape of Retinal Degeneration. Antioxidants (Basel) 2022; 11:antiox11101967. [PMID: 36290689 PMCID: PMC9598096 DOI: 10.3390/antiox11101967] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress represents one of the principal causes of inherited retinal dystrophies, with many related molecular mechanisms still unknown. We investigated the posttranscriptional RNA editing landscape of human retinal pigment epithelium cells (RPE) exposed to the oxidant agent N-retinylidene-N-retinyl ethanolamine (A2E) for 1 h, 2 h, 3 h and 6 h. Using a transcriptomic approach, refined with a specific multialgorithm pipeline, 62,880 already annotated and de novo RNA editing sites within about 3000 genes were identified among all samples. Approximately 19% of these RNA editing sites were found within 3' UTR, including sites common to all time points that were predicted to change the binding capacity of 359 miRNAs towards 9654 target genes. A2E exposure also determined significant gene expression differences in deaminase family ADAR, APOBEC and ADAT members, involved in canonical and tRNA editing events. On GO and KEGG enrichment analyses, genes that showed different RNA editing levels are mainly involved in pathways strongly linked to a possible neovascularization of retinal tissue, with induced apoptosis mediated by the ECM and surface protein altered signaling. Collectively, this work demonstrated dynamic RNA editome profiles in RPE cells for the first time and shed more light on new mechanisms at the basis of retinal degeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-221-3136
| | - Sergio Zaccaria Scalinci
- DIMEC (Department of Medical and Surgical Sciences), University of Bologna, 40121 Bologna, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
16
|
Gong Y, Wang X, Wang Y, Hao P, Wang H, Guo Y, Zhang W. The effect of a chrysanthemum water extract in protecting the retina of mice from light damage. BMC Complement Med Ther 2022; 22:224. [PMID: 36028853 PMCID: PMC9414137 DOI: 10.1186/s12906-022-03701-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Oxidative stress can induce age-related diseases. Age-related retinal diseases, such as age-related macular degeneration (AMD), are difficult to cure owing to their complicated mechanisms. Although anti-neovascular therapeutics are used to treat wet AMD, vision cannot always be completely restored, and disease progression cannot always be inhibited. Therefore, determining a method to prevent or slow retinal damage is important. This study aimed to investigate the protective effect of a chrysanthemum water extract rich in flavone on the oxidatively stressed retina of mice.
Methods
Light damage was induced to establish oxidative stress mouse models. For in vitro experiments, ARPE-19 cells were cultured and divided into four groups: control, light-damaged, and low- and high-dose chrysanthemum extract. No treatment was administered in the control group. The light-damaged and low- and high-dose chrysanthemum extract groups were exposed to a similar white light level. The chrysanthemum extract was added at a low dose of 0.4 mg/mL or a high dose of 1.0 mg/mL before cell exposure to 2500-lx white light. Reactive oxygen species (ROS) level and cellular viability were measured using MTT and immunofluorescence staining. For in vivo experiments, C57BL/6 J mice were divided into the same four groups. Low- (0.23 g/kg/day) and high-dose (0.38 g/kg/day) chrysanthemum extracts were continuously intragastrically administered for 8 weeks before mouse exposure to 10,000-lx white light. Retinal function was evaluated using electroretinography. In vivo optical coherence tomography and in vitro haematoxylin and eosin staining were performed to observe the pathological retinal changes in each group after light damage. Fluorescein fundus angiography of the arteriovenous vessel was performed, and the findings were analysed using the AngioTool software. TUNEL immunofluorescence staining was used to assess isolated retinal apoptosis.
Results
In vitro, increased ROS production and decreased ARPE-19 cell viability were found in the light-damaged group. Improved ARPE-19 cell viability and reduced ROS levels were observed in the chrysanthemum extract treatment groups. In vivo, dysfunctional retinas and abnormal retinal structures were found in the light-damaged group, as well as increased apoptosis in the retinal ganglion cells (RGCs) and inner and outer nuclear layers. The apoptosis rate in the same layers was lower in the chrysanthemum extract treatment groups than in the light-damaged group. The production of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), increased in the treatment groups. NF-κB in the nucleus and TNF-α were more highly expressed in the light-damaged group than in the low- and high-dose chrysanthemum extract groups.
Conclusions
Light damage-induced retinal oxidative stress can lead to ROS accumulation in the retinal tissues. Herein, RGC and photoreceptor layer apoptosis was triggered, and NF-κB in the nucleus and TNF-α were highly expressed in the light-damaged group. Preventive chrysanthemum extract administration decreased ROS production by increasing SOD, CAT, and GSH-Px activities and reversing the negative changes, demonstrating a potential protective effect on the retina.
Collapse
|
17
|
Thirunavukarasu AJ, Ross AC, Gilbert RM. Vitamin A, systemic T-cells, and the eye: Focus on degenerative retinal disease. Front Nutr 2022; 9:914457. [PMID: 35923205 PMCID: PMC9339908 DOI: 10.3389/fnut.2022.914457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The first discovered vitamin, vitamin A, exists in a range of forms, primarily retinoids and provitamin carotenoids. The bioactive forms of vitamin A, retinol and retinoic acid, have many critical functions in body systems including the eye and immune system. Vitamin A deficiency is associated with dysfunctional immunity, and presents clinically as a characteristic ocular syndrome, xerophthalmia. The immune functions of vitamin A extend to the gut, where microbiome interactions and nutritional retinoids and carotenoids contribute to the balance of T cell differentiation, thereby determining immune status and contributing to inflammatory disease around the whole body. In the eye, degenerative conditions affecting the retina and uvea are influenced by vitamin A. Stargardt's disease (STGD1; MIM 248200) is characterised by bisretinoid deposits such as lipofuscin, produced by retinal photoreceptors as they use and recycle a vitamin A-derived chromophore. Age-related macular degeneration features comparable retinal deposits, such as drusen featuring lipofuscin accumulation; and is characterised by parainflammatory processes. We hypothesise that local parainflammatory processes secondary to lipofuscin deposition in the retina are mediated by T cells interacting with dietary vitamin A derivatives and the gut microbiome, and outline the current evidence for this. No cures exist for Stargardt's or age-related macular degeneration, but many vitamin A-based therapeutic approaches have been or are being trialled. The relationship between vitamin A's functions in systemic immunology and the eye could be further exploited, and further research may seek to leverage the interactions of the gut-eye immunological axis.
Collapse
Affiliation(s)
- Arun J. Thirunavukarasu
- Corpus Christi College, University of Cambridge, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Rose M. Gilbert
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
18
|
Fursova AZ, Derbeneva AS, Vasilyeva MS, Niculich IF, Tarasov MS, Gamza YA, Chubar NV, Gusarevich OG, Dmitrieva EI, Kozhevnikova OS, Kolosova NG, Elizarova AA. [New findings on pathogenetic mechanisms in the development of age-related macular degeneration]. Vestn Oftalmol 2022; 138:120-130. [PMID: 35488571 DOI: 10.17116/oftalma2022138021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial disease that occurs due to disfunction and degeneration of retinal pigment epithelium (RPE) and choriocapillaris, as well as death of photoreceptors. The exact pathogenetic mechanism remains uncertain. The aging process is the main and the clearest risk factor of AMD. In the development of this condition, a special role belongs to the secretory phenotype of aging spreading from one cell to another and mediated by the secretion and release of growth factors, cytokines, chemokines, proteases, and other molecules. Another major contributor is oxidative stress caused by violations in the recirculation of vitamin A in the vision cycle and accompanied by accumulation of lipofuscin, which mediates the formation of iron-based oxidants that are toxic for mitochondria. Furthermore, prolonged oxidative stress and constant light exposure induce the development of inflammation in the retina. Accumulation of metabolic products and cellular defects with age can induce an inflammatory reaction that amplifies the damage. The inflammatory processes including innate immune response, activation of microglia and parainflammation that occur locally in the vascular membrane, pigment epithelium and neuroretina are very significant contributors to the age-related changes, their progression, and the development of advanced stages of AMD. Various growth factors play a special role in the development of choroidal neovascularization (CNV). Vascular endothelial growth factor A (VEGF-A) has traditionally been considered the main factor of neoangiogenesis and, consequently, the main therapeutic target, but in recent years various studies have determined the role of other factors - VEGF-B, C, D, PGF, Gal-1, angiopoietins. This article describes the main underlying mechanisms in the development of choroidal neovascularization including retinal aging, impaired metabolic activity, mitochondrial dysfunction, inflammatory reactions and genetic variations, as well as the role of various growth factors.
Collapse
Affiliation(s)
- A Zh Fursova
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia.,Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A S Derbeneva
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia.,Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M S Vasilyeva
- Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - I F Niculich
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - M S Tarasov
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia.,Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu A Gamza
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - N V Chubar
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - O G Gusarevich
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - E I Dmitrieva
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - O S Kozhevnikova
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N G Kolosova
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Elizarova
- Novosibirsk State Medical University, Novosibirsk, Russia
| |
Collapse
|
19
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
20
|
Schultz R, Schwanengel L, Klemm M, Meller D, Hammer M. Spectral fundus autofluorescence peak emission wavelength in ageing and AMD. Acta Ophthalmol 2021; 100:e1223-e1231. [PMID: 34850573 DOI: 10.1111/aos.15070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate the spectral characteristics of fundus autofluorescence (FAF) in AMD patients and controls. METHODS Fundus autofluorescence spectral characteristics was described by the peak emission wavelength (PEW) of the spectra. Peak emission wavelength (PEW) was derived from the ratio of FAF recordings in two spectral channels at 500-560 nm and 560-720 nm by fluorescence lifetime imaging ophthalmoscopy. The ratio of FAF intensity in both channels was related to PEW by a calibration procedure. Peak emission wavelength (PEW) measurements were done in 44 young (mean age: 24.0 ± 3.8 years) and 18 elderly (mean age: 67.5 ± 10.2 years) healthy subjects as well as 63 patients with AMD (mean age: 74.0 ± 7.3 years) in each pixel of a 30° imaging field. The values were averaged over the central area, the inner and the outer ring of the ETDRS grid. RESULTS There was no significant difference between PEW in young and elderly controls. However, PEW was significantly shorter in AMD patients (ETDRS grid centre: 571 ± 26 nm versus 599 ± 17 nm for elderly controls, inner ring: 596 ± 17 nm versus 611 ± 11 nm, outer ring: 602 ± 16 nm versus 614 ± 11 nm). After a mean follow-up time of 50.8 ± 10.8 months, the PEW in the patients decreased significantly by 9 ± 19 nm in the inner ring of the grid. Patients, showing progression to atrophic AMD in the follow up, had significantly (p ≤ 0.018) shorter PEW at baseline than non-progressing patients. CONCLUSIONS Peak emission wavelength (PEW) is related to AMD pathology and might be a diagnostic marker in AMD. Possibly, a short PEW can predict progression to retinal and/or pigment epithelium atrophy.
Collapse
Affiliation(s)
- Rowena Schultz
- Department of Ophthalmology University Hospital Jena Jena Germany
| | | | - Matthias Klemm
- Institute of Biomedical Engineering and Informatics Technical Univ. Ilmenau Ilmenau Germany
| | - Daniel Meller
- Department of Ophthalmology University Hospital Jena Jena Germany
| | - Martin Hammer
- Department of Ophthalmology University Hospital Jena Jena Germany
- Center for Medical Optics and Photonics Univ. of Jena Jena Germany
| |
Collapse
|
21
|
Pan C, Banerjee K, Lehmann GL, Almeida D, Hajjar KA, Benedicto I, Jiang Z, Radu RA, Thompson DH, Rodriguez-Boulan E, Nociari MM. Lipofuscin causes atypical necroptosis through lysosomal membrane permeabilization. Proc Natl Acad Sci U S A 2021; 118:e2100122118. [PMID: 34782457 PMCID: PMC8617501 DOI: 10.1073/pnas.2100122118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
Lipofuscin granules enclose mixtures of cross-linked proteins and lipids in proportions that depend on the tissue analyzed. Retinal lipofuscin is unique in that it contains mostly lipids with very little proteins. However, retinal lipofuscin also presents biological and physicochemical characteristics indistinguishable from conventional granules, including indigestibility, tendency to cause lysosome swelling that results in rupture or defective functions, and ability to trigger NLRP3 inflammation, a symptom of low-level disruption of lysosomes. In addition, like conventional lipofuscins, it appears as an autofluorescent pigment, considered toxic waste, and a biomarker of aging. Ocular lipofuscin accumulates in the retinal pigment epithelium (RPE), whereby it interferes with the support of the neuroretina. RPE cell death is the primary cause of blindness in the most prevalent incurable genetic and age-related human disorders, Stargardt disease and age-related macular degeneration (AMD), respectively. Although retinal lipofuscin is directly linked to the cell death of the RPE in Stargardt, the extent to which it contributes to AMD is a matter of debate. Nonetheless, the number of AMD clinical trials that target lipofuscin formation speaks for the potential relevance for AMD as well. Here, we show that retinal lipofuscin triggers an atypical necroptotic cascade, amenable to pharmacological intervention. This pathway is distinct from canonic necroptosis and is instead dependent on the destabilization of lysosomes. We also provide evidence that necroptosis is activated in aged human retinas with AMD. Overall, this cytotoxicity mechanism may offer therapeutic targets and markers for genetic and age-related diseases associated with lipofuscin buildups.
Collapse
Affiliation(s)
- Chendong Pan
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Kalpita Banerjee
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Guillermo L Lehmann
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Dena Almeida
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065
| | | | - Ignacio Benedicto
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
- Centro Nacional de Investigaciones Cardiovasculares, Madrid 47907, Spain
| | - Zhichun Jiang
- UCLA Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA 90095
| | - Roxana A Radu
- UCLA Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA 90095
| | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN 28029
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Marcelo M Nociari
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065;
| |
Collapse
|
22
|
Meleppat RK, Ronning KE, Karlen SJ, Burns ME, Pugh EN, Zawadzki RJ. In vivo multimodal retinal imaging of disease-related pigmentary changes in retinal pigment epithelium. Sci Rep 2021; 11:16252. [PMID: 34376700 PMCID: PMC8355111 DOI: 10.1038/s41598-021-95320-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
Melanosomes, lipofuscin, and melanolipofuscin are the three principal types of pigmented granules found in retinal pigment epithelium (RPE) cells. Changes in the density of melanosomes and lipofuscin in RPE cells are considered hallmarks of various retinal diseases, including Stargardt disease and age-related macular degeneration (AMD). Herein, we report the potential of an in vivo multimodal imaging technique based on directional back-scattering and short-wavelength fundus autofluorescence (SW-FAF) to study disease-related changes in the density of melanosomes and lipofuscin granules in RPE cells. Changes in the concentration of these granules in Abca4-/- mice (a model of Stargardt disease) relative to age-matched wild-type (WT) controls were investigated. Directional optical coherence tomography (dOCT) was used to assess melanosome density in vivo, whereas the autofluorescence (AF) images and emission spectra acquired with a spectrometer-integrated scanning laser ophthalmoscope (SLO) were used to characterize lipofuscin and melanolipofuscin granules in the same RPE region. Subcellular-resolution ex vivo imaging using confocal fluorescence microscopy and electron microscopy was performed on the same tissue region to visualize and quantify melanosomes, lipofuscin, and melanolipofuscin granules. Comparisons between in vivo and ex vivo results confirmed an increased concentration of lipofuscin granules and decreased concentration of melanosomes in the RPE of Abca4-/- mice, and provided an explanation for the differences in fluorescence and directionality of RPE scattering observed in vivo between the two mouse strains.
Collapse
Affiliation(s)
- Ratheesh K Meleppat
- UC Davis Eyepod Imaging Laboratory, University of California Davis, Davis, CA, 95616, USA
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA
| | - Kaitryn E Ronning
- Center for Neuroscience, University of California Davis, Davis, CA, 95618, USA
| | - Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
| | - Marie E Burns
- Center for Neuroscience, University of California Davis, Davis, CA, 95618, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA
| | - Edward N Pugh
- UC Davis Eyepod Imaging Laboratory, University of California Davis, Davis, CA, 95616, USA
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
| | - Robert J Zawadzki
- UC Davis Eyepod Imaging Laboratory, University of California Davis, Davis, CA, 95616, USA.
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA.
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
23
|
Boyer NP, Thompson DA, Koutalos Y. Relative Contributions of All-Trans and 11-Cis Retinal to Formation of Lipofuscin and A2E Accumulating in Mouse Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 33523199 PMCID: PMC7862733 DOI: 10.1167/iovs.62.2.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Bis-retinoids are a major component of lipofuscin that accumulates in the retinal pigment epithelium (RPE) in aging and age-related macular degeneration (AMD). Although bis-retinoids are known to originate from retinaldehydes required for the light response of photoreceptor cells, the relative contributions of the chromophore, 11-cis retinal, and photoisomerization product, all-trans retinal, are unknown. In photoreceptor outer segments, all-trans retinal, but not 11-cis retinal, is reduced by retinol dehydrogenase 8 (RDH8). Using Rdh8−/− mice, we evaluated the contribution of increased all-trans retinal to the formation and stability of RPE lipofuscin. Methods Rdh8−/− mice were reared in cyclic-light or darkness for up to 6 months, with selected light-reared cohorts switched to dark-rearing for the final 1 to 8 weeks. The bis-retinoid A2E was measured from chloroform-methanol extracts of RPE-choroid using HPLC-UV/VIS spectroscopy. Lipofuscin fluorescence was measured from whole flattened eyecups (excitation, 488 nm; emission, 565–725 nm). Results Cyclic-light-reared Rdh8−/− mice accumulated A2E and RPE lipofuscin approximately 1.5 times and approximately 2 times faster, respectively, than dark-reared mice. Moving Rdh8−/− mice from cyclic-light to darkness resulted in A2E levels less than expected to have accumulated before the move. Conclusions Our findings establish that elevated levels of all-trans retinal present in cyclic-light-reared Rdh8−/− mice, which remain low in wild-type mice, contribute only modestly to RPE lipofuscin formation and accumulation. Furthermore, decreases in A2E levels occurring after moving cyclic-light-reared Rdh8−/− mice to darkness are consistent with processing of A2E within the RPE and the existence of a mechanism that could be a therapeutic target for controlling A2E cytotoxicity.
Collapse
Affiliation(s)
- Nicholas P Boyer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Debra A Thompson
- Department of Ophthalmology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States.,Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan, United States
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
24
|
Pole C, Ameri H. Fundus Autofluorescence and Clinical Applications. J Ophthalmic Vis Res 2021; 16:432-461. [PMID: 34394872 PMCID: PMC8358768 DOI: 10.18502/jovr.v16i3.9439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
Fundus autofluorescence (FAF) has allowed in vivo mapping of retinal metabolic derangements and structural changes not possible with conventional color imaging. Incident light is absorbed by molecules in the fundus, which are excited and in turn emit photons of specific wavelengths that are captured and processed by a sensor to create a metabolic map of the fundus. Studies on the growing number of FAF platforms has shown each may be suited to certain clinical scenarios. Scanning laser ophthalmoscopes, fundus cameras, and modifications of these each have benefits and drawbacks that must be considered before and after imaging to properly interpret the images. Emerging clinical evidence has demonstrated the usefulness of FAF in diagnosis and management of an increasing number of chorioretinal conditions, such as age-related macular degeneration, central serous chorioretinopathy, retinal drug toxicities, and inherited retinal degenerations such as retinitis pigmentosa and Stargardt disease. This article reviews commercial imaging platforms, imaging techniques, and clinical applications of FAF.
Collapse
Affiliation(s)
- Cameron Pole
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| | - Hossein Ameri
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Jadeja RN, Martin PM. Oxidative Stress and Inflammation in Retinal Degeneration. Antioxidants (Basel) 2021; 10:antiox10050790. [PMID: 34067655 PMCID: PMC8156590 DOI: 10.3390/antiox10050790] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ravirajsinh N. Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Pamela M. Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +70-6721-4220; Fax: +70-6721-6608
| |
Collapse
|
26
|
Meleppat RK, Ronning KE, Karlen SJ, Kothandath KK, Burns ME, Pugh EN, Zawadzki RJ. In Situ Morphologic and Spectral Characterization of Retinal Pigment Epithelium Organelles in Mice Using Multicolor Confocal Fluorescence Imaging. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 33137194 PMCID: PMC7645167 DOI: 10.1167/iovs.61.13.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose To investigate the major organelles of the retinal pigment epithelium (RPE) in wild-type (WT, control) mice and their changes in pigmented Abca4 knockout (Abca4−/−) mice with in situ morphologic, spatial, and spectral characterization of live ex vivo flat-mounted RPE using multicolor confocal fluorescence microscopy (MCFM). Methods In situ imaging of RPE flat-mounts of agouti Abca4−/− (129S4), agouti WT (129S1/SvlmJ) controls, and B6 albino mice (C57BL/6J-Tyrc-Brd) was performed with a Nikon A1 confocal microscope. High-resolution confocal image z-stacks of the RPE cell mosaic were acquired with four different excitation wavelengths (405 nm, 488 nm, 561 nm, and 640 nm). The autofluorescence images of RPE, including voxel-by-voxel emission spectra, were acquired and processed with Nikon NIS-AR Elements software. Results The 3-dimensional multicolor confocal images provided a detailed visualization of the RPE cell mosaic, including its melanosomes and lipofuscin granules, and their varying characteristics in the different mice strains. The autofluorescence spectra, spatial distribution, and morphologic features of melanosomes and lipofuscin granules were measured. Increased numbers of lipofuscin and reduced numbers of melanosomes were observed in the RPE of Abca4−/− mice relative to controls. Conclusions A detailed assessment of the RPE autofluorescent granules and their changes ex vivo was possible with MCFM. For all excitation wavelengths, autofluorescence from the RPE cells was predominantly contributed by lipofuscin granules, while melanosomes were found to be essentially nonfluorescent. The red shift of the emission peak confirmed the presence of multiple chromophores within lipofuscin granules. The elevated autofluorescence levels in Abca4−/− mice correlated well with the increased number of lipofuscin granules.
Collapse
Affiliation(s)
- Ratheesh K Meleppat
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Kaitryn E Ronning
- Center for Neuroscience, University of California Davis, Davis, California, United States
| | - Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Karuna K Kothandath
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Marie E Burns
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States.,Center for Neuroscience, University of California Davis, Davis, California, United States.,Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Edward N Pugh
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Robert J Zawadzki
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| |
Collapse
|
27
|
Navaratnam J, Salvanos P, Vavvas DG, Bragadóttir R. Ultra-widefield autofluorescence imaging findings in retinoschisis, rhegmatogenous retinal detachment and combined retinoschisis retinal detachment. Acta Ophthalmol 2021; 99:195-200. [PMID: 32602221 DOI: 10.1111/aos.14521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/26/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Retinoschisis (RS), rhegmatogenous retinal detachment (RRD) and combined RS retinal detachment (RSRD) may resemble clinically and pose a diagnostic challenge. This study investigates the role of the fundus autofluorescence (AF) in differentiating RS, RRD and RSRD. METHODS Fundus AF changes of 34 eyes diagnosed with RRD, 30 eyes with RS and 12 eyes with RSRD were retrospectively analysed. Ultra-widefield AF (UW-AF) image intensities obtained with the Optomap 200Tx were interpreted as hypo-, hyper- and isoautofluorescent or a mixed pattern with hypo- and hyperautofluorescence over and at the posterior margin (PM) of RRD, RS and RSRD. RESULTS All RS eyes revealed isoautofluorescence over the area of RS, and nine eyes (30%) showed hypoautofluorescent PM. Among RRD, acute (≤2 weeks) and chronic (>2 weeks) RRD demonstrated distinct AF characteristics. Sixty-two per cent of RRD eyes had acute RRD. From those, 16 eyes (76%) demonstrated hypoautofluorescence over the detached area and 19 (90%) eyes with hyperautofluorescent PM. Sixty-two per cent of chronic RRD eyes demonstrated isoautofluorecence over the detached area. Eight RSRD eyes (67%) revealed hyperautofluorescence in the detached area. The positive predictive value (PPV) for hypoautofluorescence over the area of subretinal fluid (SRF) in RRD was 95%. The PPV for hyperautofluorescence over the area of SRF in RSRD was 100% and for isoautofluorescence for schitic area in RSRD and RS was 76%. CONCLUSION The UW-AF can be a useful non-invasive adjuvant tool to distinguish between RRD, RS and RSRD. Hypo- or hyperautofluorescence over the area of interest and hyperautofluorescent PM indicates the presence of SRF.
Collapse
Affiliation(s)
- Jesintha Navaratnam
- Department of Ophthalmology Oslo University Hospital Oslo Norway
- University of Oslo Oslo Norway
| | - Panagiotis Salvanos
- University of Oslo Oslo Norway
- Department of Ophthalmology Drammen Hospital Vestre Viken Hospital Trust Drammen Norway
| | - Demetrios G. Vavvas
- Department of Ophthalmology Retina Service Massachusetts Eye and Ear Infirmary Harvard Medical School Boston Massachusetts USA
| | - Ragnheiður Bragadóttir
- Department of Ophthalmology Oslo University Hospital Oslo Norway
- University of Oslo Oslo Norway
| |
Collapse
|
28
|
Pham TNM, Shin CY, Park SH, Lee TH, Ryu HY, Kim SB, Auh K, Jeong KW. Solanum melongena L. Extract Protects Retinal Pigment Epithelial Cells from Blue Light-Induced Phototoxicity in In Vitro and In Vivo Models. Nutrients 2021; 13:nu13020359. [PMID: 33503991 PMCID: PMC7912168 DOI: 10.3390/nu13020359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023] Open
Abstract
N-retinylidene-N-retinylethanolamine (A2E) accumulation in the retina is a prominent marker of retinal degenerative diseases. Blue light exposure is considered as an important factor contributing to dry age-related macular degeneration (AMD). Eggplant and its constituents have been shown to confer health benefits, but their therapeutic effects on dry AMD remain incompletely understood. In this study, we showed that an extract of Solanum melongena L. (EPX) protected A2E-laden ARPE-19 cells against blue light-induced cell death via attenuating reactive oxygen species. Transcriptomic analysis demonstrated that blue light modulated the expression of genes associated with stress response, inflammation, and cell death, and EPX suppressed the inflammatory pathway induced by blue light in A2E-laden ARPE-19 cells by inhibiting the nuclear translocation of nuclear factor kappa B and transcription of pro-inflammatory genes (CXCL8 and IL1B). The degradation of intracellular A2E was considered the major mechanism underlying the protective effect of EPX. Moreover, chlorogenic acid isolated from EPX exerted protective effects against blue light-induced cell damage in A2E-laden ARPE-19 cells. In vivo, EPX administration in BALB/c mice reduced the fundus damage and degeneration of the retinal layer in a blue light-induced retinal damage model. Collectively, our findings suggest the potential role of Solanum melongena L. extract for AMD treatment.
Collapse
Affiliation(s)
- Thu Nguyen Minh Pham
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.N.M.P.); (C.-Y.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Hong Bang International University, Ho Chi Minh 215, Vietnam
| | - Chae-Young Shin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.N.M.P.); (C.-Y.S.)
| | - Seo Hyun Park
- R&D Center, Ahn-Gook Health Co., Ltd., Seoul 06164, Korea; (S.H.P.); (T.H.L.); (K.A.)
| | - Taek Hwan Lee
- R&D Center, Ahn-Gook Health Co., Ltd., Seoul 06164, Korea; (S.H.P.); (T.H.L.); (K.A.)
| | - Hyeon Yeol Ryu
- Korea Conformity Laboratories, Incheon 21999, Korea; (H.Y.R.); (S.-B.K.)
| | - Sung-Bae Kim
- Korea Conformity Laboratories, Incheon 21999, Korea; (H.Y.R.); (S.-B.K.)
| | - Kwang Auh
- R&D Center, Ahn-Gook Health Co., Ltd., Seoul 06164, Korea; (S.H.P.); (T.H.L.); (K.A.)
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.N.M.P.); (C.-Y.S.)
- Correspondence: ; Tel.: +82-32-820-4925; Fax: +82-32-820-4829
| |
Collapse
|
29
|
Sauer L, Vitale AS, Modersitzki NK, Bernstein PS. Fluorescence lifetime imaging ophthalmoscopy: autofluorescence imaging and beyond. Eye (Lond) 2021; 35:93-109. [PMID: 33268846 PMCID: PMC7852552 DOI: 10.1038/s41433-020-01287-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Fluorescence lifetime imaging ophthalmoscopy, FLIO, has gained large interest in the scientific community in the recent years. It is a noninvasive imaging modality that has been shown to provide additional information to conventional imaging modalities. The FLIO device is based on a Heidelberg Engineering Spectralis system. Autofluorescence lifetimes are excited at 473 nm and recorded in two spectral wavelength channels, a short spectral channel (SSC, 498-560 nm) and a long spectral channel (LSC, 560-720 nm). Typically, mean autofluorescence lifetimes in a 30° retinal field are investigated. FLIO shows a clear benefit for imaging different retinal diseases. For example, in age-related macular degeneration (AMD), ring patterns of prolonged FLIO lifetimes 1.5-3.0 mm from the fovea can be appreciated. Macular telangiectasia type 2 (MacTel) shows a different pattern, with prolonged FLIO lifetimes within the typical MacTel zone. In Stargardt disease, retinal flecks can be appreciated even before they are visible with other imaging modalities. Early hydroxychloroquine toxicity appears to be detectable with FLIO. This technique has more potential that has yet to be discovered. This review article focuses on current knowledge as well as pitfalls of this technology. It highlights clinical benefits of FLIO imaging in different ophthalmic and systemic diseases, and provides an outlook with perspectives from the authors.
Collapse
Affiliation(s)
- Lydia Sauer
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Alexandra S Vitale
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Natalie K Modersitzki
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
30
|
Garces FA, Scortecci JF, Molday RS. Functional Characterization of ABCA4 Missense Variants Linked to Stargardt Macular Degeneration. Int J Mol Sci 2020; 22:ijms22010185. [PMID: 33375396 PMCID: PMC7796138 DOI: 10.3390/ijms22010185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
ABCA4 is an ATP-binding cassette (ABC) transporter expressed in photoreceptors, where it transports its substrate, N-retinylidene-phosphatidylethanolamine (N-Ret-PE), across outer segment membranes to facilitate the clearance of retinal from photoreceptors. Mutations in ABCA4 cause Stargardt macular degeneration (STGD1), an autosomal recessive disorder characterized by a loss of central vision and the accumulation of bisretinoid compounds. The purpose of this study was to determine the molecular properties of ABCA4 variants harboring disease-causing missense mutations in the transmembrane domains. Thirty-eight variants expressed in culture cells were analyzed for expression, ATPase activities, and substrate binding. On the basis of these properties, the variants were divided into three classes: Class 1 (severe variants) exhibited significantly reduced ABCA4 expression and basal ATPase activity that was not stimulated by its substrate N-Ret-PE; Class 2 (moderate variants) showed a partial reduction in expression and basal ATPase activity that was modestly stimulated by N-Ret-PE; and Class 3 (mild variants) displayed expression and functional properties comparable to normal ABCA4. The p.R653C variant displayed normal expression and basal ATPase activity, but lacked substrate binding and ATPase activation, suggesting that arginine 653 contributes to N-Ret-PE binding. Our classification provides a basis for better understanding genotype–phenotype correlations and evaluating therapeutic treatments for STGD1.
Collapse
Affiliation(s)
- Fabian A. Garces
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (F.A.G.); (J.F.S.)
| | - Jessica F. Scortecci
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (F.A.G.); (J.F.S.)
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (F.A.G.); (J.F.S.)
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
- Correspondence: ; Tel.: +1-604-822-6173
| |
Collapse
|
31
|
Parmar T, Ortega JT, Jastrzebska B. Retinoid analogs and polyphenols as potential therapeutics for age-related macular degeneration. Exp Biol Med (Maywood) 2020; 245:1615-1625. [PMID: 32438835 PMCID: PMC7787542 DOI: 10.1177/1535370220926938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT Age-related macular degeneration (AMD) is a devastating retinal degenerative disease. Epidemiological reports showed an expected increasing prevalence of AMD in the near future. The only one existing FDA-approved pharmacological treatment involves an anti-vascular endothelial growth factor (VEGF) therapy with serious disadvantages. This limitation emphasizes an alarming need to develop new therapeutic approaches to prevent and treat AMD. In this review, we summarize scientific data unraveling the therapeutic potential of the specific retinoid and natural compounds. The experimental results reported by us and other research groups demonstrated that retinoid analogs and compounds with natural product scaffolds could serve as lead compounds for the development of new therapeutic agents with potential to prevent or slow down the pathogenesis of AMD.
Collapse
Affiliation(s)
- Tanu Parmar
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T Ortega
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
32
|
Chen C, Kono M, Koutalos Y. Photooxidation mediated by 11- cis and all- trans retinal in single isolated mouse rod photoreceptors. Photochem Photobiol Sci 2020; 19:1300-1307. [PMID: 32812970 DOI: 10.1039/d0pp00060d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal, the vitamin A aldehyde, is a potent photosensitizer that plays a major role in light-induced damage to vertebrate photoreceptors. 11-Cis retinal is the light-sensitive chromophore of rhodopsin, the photopigment of vertebrate rod photoreceptors. It is isomerized by light to all-trans, activating rhodopsin and beginning the process of light detection. All-trans retinal is released by activated rhodopsin, allowing its regeneration by fresh 11-cis retinal continually supplied to photoreceptors. The released all-trans retinal is reduced to all-trans retinol in a reaction using NADPH. We have examined the photooxidation mediated by 11-cis and all-trans retinal in single living rod photoreceptors isolated from mouse retinas. Photooxidation was measured with fluorescence imaging from the oxidation of internalized BODIPY C11, a fluorescent dye whose fluorescence changes upon oxidation. We found that photooxidation increased with the concentration of exogenously added 11-cis or all-trans retinal to metabolically compromised rod outer segments that lacked NADPH supply. In dark-adapted metabolically intact rod outer segments with access to NADPH, there was no significant increase in photooxidation following exposure of the cell to light, but there was significant increase following addition of exogenous 11-cis retinal. The results indicate that both 11-cis and all-trans retinal can mediate light-induced damage in rod photoreceptors. In metabolically intact cells, the removal of the all-trans retinal generated by light through its reduction to retinol minimizes all-trans retinal-mediated photooxidation. However, because the enzymatic machinery of the rod outer segment cannot remove 11-cis retinal, 11-cis-retinal-mediated photooxidation may play a significant role in light-induced damage to photoreceptor cells.
Collapse
Affiliation(s)
- Chunhe Chen
- Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, Charleston, SC 29425, USA.
| | - Masahiro Kono
- Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, Charleston, SC 29425, USA.
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
33
|
Bermond K, Wobbe C, Tarau IS, Heintzmann R, Hillenkamp J, Curcio CA, Sloan KR, Ach T. Autofluorescent Granules of the Human Retinal Pigment Epithelium: Phenotypes, Intracellular Distribution, and Age-Related Topography. Invest Ophthalmol Vis Sci 2020; 61:35. [PMID: 32433758 PMCID: PMC7405767 DOI: 10.1167/iovs.61.5.35] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The human retinal pigment epithelium (RPE) accumulates granules significant for autofluorescence imaging. Knowledge of intracellular accumulation and distribution is limited. Using high-resolution microscopy techniques, we determined the total number of granules per cell, intracellular distribution, and changes related to retinal topography and age. Methods RPE cells from the fovea, perifovea, and near-periphery of 15 human RPE flat mounts were imaged using structured illumination microscopy (SIM) and confocal fluorescence microscopy in young (≤51 years, n = 8) and older (>80 years, n = 7) donors. Using custom FIJI plugins, granules were marked with computer assistance, classified based on morphological and autofluorescence properties, and analyzed with regard to intracellular distribution, total number per cell, and granule density. Results A total of 193,096 granules in 450 RPE cell bodies were analyzed. Based on autofluorescence properties, size, and composition, the RPE granules exhibited nine different phenotypes (lipofuscin, two; melanolipofuscin, five; melanosomes, two), distinguishable by SIM. Overall, lipofuscin (low at the fovea but increases with eccentricity and age) and melanolipofuscin (equally distributed at all three locations with no age-related changes) were the major granule types. Melanosomes were under-represented due to suboptimal visualization of apical processes in flat mounts. Conclusions Low lipofuscin and high melanolipofuscin content within foveal RPE cell bodies and abundant lipofuscin at the perifovea suggest a different genesis, plausibly related to the population of overlying photoreceptors (fovea, cones only; perifovea, highest rod density). This systematic analysis provides further insight into RPE cell and granule physiology and links granule load to cell autofluorescence, providing a subcellular basis for the interpretation of clinical fundus autofluorescence.
Collapse
|
34
|
Curtis SB, Molday LL, Garces FA, Molday RS. Functional analysis and classification of homozygous and hypomorphic ABCA4 variants associated with Stargardt macular degeneration. Hum Mutat 2020; 41:1944-1956. [PMID: 32845050 DOI: 10.1002/humu.24100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Stargardt macular degeneration (Stargardt disease 1 [STGD1]) is caused by mutations in the gene encoding ABCA4, an ATP-binding cassette protein that transports N-retinylidene-phosphatidylethanolamine (N-Ret-PE) across photoreceptor membranes. Reduced ABCA4 activity results in retinoid accumulation leading to photoreceptor degeneration. The disease onset and severity vary from severe loss in visual acuity in the first decade to mild visual impairment late in life. We determined the effect of 22 disease-causing missense mutations on the expression and ATPase activity of ABCA4 in the absence and presence of N-Ret-PE. Three classes were identified that correlated with the disease onset in homozygous STGD1 individuals: Class 1 exhibited reduced ABCA4 expression and ATPase activity that was not stimulated by N-Ret-PE; individuals homozygous for these variants had an early disease onset (≤13 years); Class 2 showed reduced ATPase activity with limited stimulation by N-Ret-PE; these correlated with moderate disease onset (14-40 years); and Class 3 displayed high expression and ATPase activity that was strongly activated by N-Ret-PE; these were associated with late disease onset (>40 years). On the basis of our results, we introduce a functionality index for gauging the effect of missense mutations on STGD1 severity. Our studies support the mild phenotype exhibited by the p.Gly863Ala, p.Asn1868Ile, and p.Gly863Ala/p.Asn1868Ile variants.
Collapse
Affiliation(s)
- Susan B Curtis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian A Garces
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
De Bruyne S, Van den Broecke C, Vrielinck H, Khelifi S, De Wever O, Bracke K, Huizing M, Boston N, Himpe J, Speeckaert M, Vral A, Van Dorpe J, Van Aken E, Delanghe JR. Fructosamine-3-Kinase as a Potential Treatment Option for Age-Related Macular Degeneration. J Clin Med 2020; 9:jcm9092869. [PMID: 32899850 PMCID: PMC7565857 DOI: 10.3390/jcm9092869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration is the leading cause of blindness in the developed world. Since advanced glycation end products (AGEs) are implicated in the pathogenesis of AMD through various lines of evidence, we investigated the potential of fructosamine-3-kinase (FN3K) in the disruption of retinal AGEs, drusenoid material and drusenoid lesions in patients with AMD. AGE-type autofluorescence was measured to evaluate the effects of FN3K on glycolaldehyde-induced AGE-modified neural porcine retinas and unmodified human neural retinas. Eye pairs from cigarette-smoke- and air-exposed mice were treated and evaluated histologically. Automated optical image analysis of human tissue sections was performed to compare control- and FN3K-treated drusen and near-infrared (NIR) microspectroscopy was performed to examine biochemical differences. Optical coherence tomography (OCT) was used to evaluate the effect of FN3K on drusenoid deposits after treatment of post-mortem human eyes. FN3K treatment provoked a significant decrease (41%) of AGE-related autofluorescence in the AGE-modified porcine retinas. Furthermore, treatment of human neural retinas resulted in significant decreases of autofluorescence (−24%). FN3K-treated murine eyes showed less drusenoid material. Pairwise comparison of drusen on tissue sections revealed significant changes in color intensity after FN3K treatment. NIR microspectroscopy uncovered clear spectral differences in drusenoid material (Bruch’s membrane) and drusen after FN3K treatment. Ex vivo treatment strongly reduced size of subretinal drusenoid lesions on OCT imaging (up to 83%). In conclusion, our study demonstrated for the first time a potential role of FN3K in the disruption of AGE-related retinal autofluorescence, drusenoid material and drusenoid lesions in patients with AMD.
Collapse
Affiliation(s)
- Sander De Bruyne
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
| | | | - Henk Vrielinck
- Department of Solid State Sciences, Ghent University, 9000 Ghent, Belgium; (H.V.); (S.K.)
| | - Samira Khelifi
- Department of Solid State Sciences, Ghent University, 9000 Ghent, Belgium; (H.V.); (S.K.)
| | - Olivier De Wever
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (O.D.W.); (A.V.)
| | - Ken Bracke
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (K.B.); (M.S.)
| | - Manon Huizing
- Biobank, Antwerp University Hospital, 2650 Antwerp, Belgium; (M.H.); (N.B.)
| | - Nezahat Boston
- Biobank, Antwerp University Hospital, 2650 Antwerp, Belgium; (M.H.); (N.B.)
| | - Jonas Himpe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
| | - Marijn Speeckaert
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (K.B.); (M.S.)
- Research Foundation Flanders, 1000 Brussels, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (O.D.W.); (A.V.)
| | - Jo Van Dorpe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Elisabeth Van Aken
- Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
- Correspondence: (E.V.A.); (J.R.D.)
| | - Joris R. Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
- Correspondence: (E.V.A.); (J.R.D.)
| |
Collapse
|
36
|
Saito Y, Yako T, Otsu W, Nakamura S, Inoue Y, Muramatsu A, Nakagami Y, Shimazawa M, Hara H. A triterpenoid Nrf2 activator, RS9, promotes LC3-associated phagocytosis of photoreceptor outer segments in a p62-independent manner. Free Radic Biol Med 2020; 152:235-247. [PMID: 32217192 DOI: 10.1016/j.freeradbiomed.2020.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
Daily phagocytosis of shed photoreceptor outer segments (POS) by the retinal pigment epithelium (RPE) is required to sustain the visual function. Recent reports revealed that POS phagocytosis is progressed with LC3-associated manner. Patients with age-related macular degeneration (AMD) had impaired autophagic degradation in the RPE. Nrf2 is a key antioxidant transcriptional regulator that ameliorates oxidative stress which is another contributor to AMD pathogenesis. Nrf2 activation also induces the autophagy receptor protein, p62. However, the role of the Nrf2-p62 pathway in LC3-associated phagocytosis of POS is poorly understood. Here, we investigated the relationships between Nrf2 activation and POS phagocytosis progression. A triterpenoid Nrf2 activator, RS9, facilitated POS uptake into phagolysosomes in RPE cells. RS9 also induced the expression of the autophagy-related proteins, LC3-II and p62, as well as phase-2 antioxidant enzymes. The effect of RS9 on POS phagocytosis was abolished by autophagy inhibition. Unexpectedly, p62 knockdown did not inhibit the effect of RS9 on POS phagocytosis, although, RS9-mediated LC3-II induction by RS9 was inhibited in p62 knockdown RPE cells. We also found that RS9 activated the AMPKα-mTOR signaling pathway earlier than p62 induction. Knockdown of AMPKα1, but not α2, inhibited the RS9-mediated activation of LC3-associated phagocytosis and RS9-mediated induction of LC3-II. Furthermore, intravitreal treatment of RS9 to adult mice decreased the size of POS phagolysosomes after light exposure. Collectively, these results showed that RS9-mediated activation of POS phagocytosis was mainly ascribed to the enhancement of autophagy via AMPKα1 activation. Our findings reveal novel effects of Nrf2 and AMPK α1 activation that contribute to the maintenance of the RPE function via LC3-associated POS phagocytosis.
Collapse
Affiliation(s)
- Yuichi Saito
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| | - Tomohiro Yako
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan.
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| | - Yuki Inoue
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| | - Aomi Muramatsu
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| | | | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan; Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan.
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan; Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
37
|
Tisi A, Parete G, Flati V, Maccarone R. Up-regulation of pro-angiogenic pathways and induction of neovascularization by an acute retinal light damage. Sci Rep 2020; 10:6376. [PMID: 32286488 PMCID: PMC7156521 DOI: 10.1038/s41598-020-63449-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
The light damage (LD) model was mainly used to study some of the main aspects of age related macular degeneration (AMD), such as oxidative stress and photoreceptor death. Several protocols of light-induced retinal degeneration exist. Acute light damage is characterized by a brief exposure (24 hours) to high intensity light (1000 lux) and leads to focal degeneration of the retina which progresses over time. To date there are not experimental data that relate this model to neovascular events. Therefore, the purpose of this study was to characterize the retina after an acute light damage to assess whether the vascularization was affected. Functional, molecular and morphological investigations were carried out. The electroretinographic response was assessed at all recovery times (7, 60, 120 days after LD). Starting from 7 days after light damage there was a significant decrease in the functional response, which remained low up to 120 days of recovery. At 7 days after light exposure, neo-vessels invaded the photoreceptor layer and retinal neovascularization occurred. Remarkably, neoangiogenesis was associated to the up-regulation of VEGF, bFGF and their respective receptors (VEGFR2 and FGFR1) with the progression of degeneration. These important results indicate that a brief exposure to bright light induces the up-regulation of pro-angiogenic pathways with subsequent neovascularization.
Collapse
Affiliation(s)
- A Tisi
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, via Vetoio, Coppito 2, 67100, L'Aquila, Italy
| | - G Parete
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, via Vetoio, Coppito 2, 67100, L'Aquila, Italy
| | - V Flati
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, via Vetoio, Coppito 2, 67100, L'Aquila, Italy
| | - R Maccarone
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| |
Collapse
|
38
|
Ward R, Kaylor JJ, Cobice DF, Pepe DA, McGarrigle EM, Brockerhoff SE, Hurley JB, Travis GH, Kennedy BN. Non-photopic and photopic visual cycles differentially regulate immediate, early, and late phases of cone photoreceptor-mediated vision. J Biol Chem 2020; 295:6482-6497. [PMID: 32238432 DOI: 10.1074/jbc.ra119.011374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/30/2020] [Indexed: 11/06/2022] Open
Abstract
Cone photoreceptors in the retina enable vision over a wide range of light intensities. However, the processes enabling cone vision in bright light (i.e. photopic vision) are not adequately understood. Chromophore regeneration of cone photopigments may require the retinal pigment epithelium (RPE) and/or retinal Müller glia. In the RPE, isomerization of all-trans-retinyl esters to 11-cis-retinol is mediated by the retinoid isomerohydrolase Rpe65. A putative alternative retinoid isomerase, dihydroceramide desaturase-1 (DES1), is expressed in RPE and Müller cells. The retinol-isomerase activities of Rpe65 and Des1 are inhibited by emixustat and fenretinide, respectively. Here, we tested the effects of these visual cycle inhibitors on immediate, early, and late phases of cone photopic vision. In zebrafish larvae raised under cyclic light conditions, fenretinide impaired late cone photopic vision, while the emixustat-treated zebrafish unexpectedly had normal vision. In contrast, emixustat-treated larvae raised under extensive dark-adaptation displayed significantly attenuated immediate photopic vision concomitant with significantly reduced 11-cis-retinaldehyde (11cRAL). Following 30 min of light, early photopic vision was recovered, despite 11cRAL levels remaining significantly reduced. Defects in immediate cone photopic vision were rescued in emixustat- or fenretinide-treated larvae following exogenous 9-cis-retinaldehyde supplementation. Genetic knockout of Des1 (degs1) or retinaldehyde-binding protein 1b (rlbp1b) did not eliminate photopic vision in zebrafish. Our findings define molecular and temporal requirements of the nonphotopic or photopic visual cycles for mediating vision in bright light.
Collapse
Affiliation(s)
- Rebecca Ward
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| | - Joanna J Kaylor
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
| | - Diego F Cobice
- Mass Spectrometry Centre, School of Biomedical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland
| | - Dionissia A Pepe
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Dublin D04 V1W8, Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Dublin D04 V1W8, Ireland
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, Washington 98109.,Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, Washington 98109.,Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Gabriel H Travis
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095.,Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| |
Collapse
|
39
|
Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2020; 77:789-805. [PMID: 31897543 PMCID: PMC11105088 DOI: 10.1007/s00018-019-03420-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease underlined by the death of photoreceptors and degeneration of retinal pigment epithelium (RPE) and choriocapillaris (CC). The mechanism(s) responsible for massive and progressive retinal degeneration is not completely known. Senescence, a state of permanent inhibition of cell growth, may be induced by many factors important for AMD pathogenesis and results in senescence-associated secretory phenotype (SASP) that releases growth factors, cytokines, chemokines, proteases and other molecules inducing inflammation and other AMD-related effects. These effects can be induced in the affected cell and neighboring cells, leading to progression of AMD phenotype. Senescent cells also release reactive oxygen species that increase SASP propagation. Many other pathways of senescence-related AMD pathogenesis, including autophagy, the cGAS-STING signaling, degeneration of CC by membrane attack complex, can be considered. A2E, a fluorophore present in lipofuscin, amyloid-beta peptide and humanin, a mitochondria-derived peptide, may link AMD with senescence. Further studies on senescence in AMD pathogenesis to check the possibility of opening a perspective of the use of drugs killing senescent cells (senolytics) and terminating SASP bystander effects (senostatics) might be beneficial for AMD that at present is an incurable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, Poland.
| |
Collapse
|
40
|
Racz B, Varadi A, Pearson PG, Petrukhin K. Comparative pharmacokinetics and pharmacodynamics of the advanced Retinol-Binding Protein 4 antagonist in dog and cynomolgus monkey. PLoS One 2020; 15:e0228291. [PMID: 31978148 PMCID: PMC6980506 DOI: 10.1371/journal.pone.0228291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Accumulation of lipofuscin bisretinoids in the retina contributes to pathogenesis of macular degeneration. Retinol-Binding Protein 4 (RBP4) antagonists reduce serum retinol concentrations thus partially reducing retinol delivery to the retina which decreases bisretinoid synthesis. BPN-14136 is a novel RBP4 antagonist with good in vitro potency and selectivity and optimal rodent pharmacokinetic (PK) and pharmacodynamic (PD) characteristics. To select a non-rodent species for regulatory toxicology studies, we conducted PK and PD evaluation of BPN-14136 in dogs and non-human primates (NHP). PK properties were determined following oral and intravenous administration of BPN-14136 in beagle dogs and cynomolgus monkeys. Dynamics of plasma RBP4 reduction in response to compound administration was used as a PD marker. BPN-14136 exhibited favorable PK profile in both species. Dose-normalized exposure was significantly higher in NHP than in dog. Baseline concentrations of RBP4 were considerably lower in dog than in NHP, reflecting the atypical reliance of canids on non-RBP4 mechanisms of retinoid trafficking. Oral administration of BPN-14136 to NHP induced a strong 99% serum RBP4 reduction. Dynamics of RBP4 lowering in both species correlated with compound exposure. Despite adequate PK and PD characteristics of BPN-14136 in dog, reliance of canids on non-RBP4 mechanisms of retinoid trafficking precludes evaluation of on-target toxicities for RBP4 antagonists in this species. Strong RBP4 lowering combined with good PK attributes and high BPN-14136 exposure achieved in NHP, along with the biology of retinoid trafficking that is similar to that of humans, support the choice of NHP as a non-rodent safety species.
Collapse
Affiliation(s)
- Boglarka Racz
- Department of Ophthalmology, Columbia University, New York, New York, Unites States of America
| | - Andras Varadi
- Department of Ophthalmology, Columbia University, New York, New York, Unites States of America
| | - Paul G. Pearson
- Pearson Pharma Partners, Westlake Village, California, United States of America
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University, New York, New York, Unites States of America
- * E-mail:
| |
Collapse
|
41
|
Navaratnam J, Bærland TP, Eide NA, Faber RT, Rekstad BL, Vavvas DG, Bragadóttir R. Fundus Autofluorescence Change as an Early Indicator of Treatment Effect of Brachytherapy for Choroidal Melanomas. Ocul Oncol Pathol 2019; 5:445-453. [PMID: 31768369 DOI: 10.1159/000499403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/05/2019] [Indexed: 12/29/2022] Open
Abstract
Background Early confirmation of the effect of brachytherapy for choroidal melanoma showing that tumour coverage is valuable. The irradiated retinal pigment epithelium (RPE) commonly develops atrophy. This study compares the fundus autofluorescence (AF) changes to the development of RPE atrophy following brachytherapy. Methods Retrospective study of 19 patients treated with <sup>106</sup>Ru and 2 with <sup>125</sup>I plaques with either a 3- or 6-month follow-up period. Ultra-widefield (UW) composite colour and AF images were obtained with Optomap 200Tx and interpreted as complete, partial, or no RPE changes and complete or partial hyperautofluorescence, hypoautofluorescence, or isoautofluorescence. Results At the 3-month follow-up, 9 of 13 patients (69%) (95% confidence interval [CI], 0.389-0.896) treated with <sup>106</sup>Ru plaques developed complete homogenous hyperautofluorescence surrounding the tumour, but only 1 of 13 (8%) (95% CI, 0.004-0.379) developed complete RPE atrophy at the same time point. Six patients in the <sup>106</sup>Ru plaque group had their first follow-up with UW imaging at 6 months. Four of them developed homogenous hyperautofluorescence and none developed complete RPE atrophy around the tumour. The 2 patients treated with <sup>125</sup>I did not demonstrate any clear RPE or AF changes. Conclusion The effect of <sup>106</sup>Ru plaque treatment on fundus UW imaging is detected as homogenous and well-demarcated hyperautofluorescence before visible RPE atrophy.
Collapse
Affiliation(s)
- Jesintha Navaratnam
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Thomas P Bærland
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Nils A Eide
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Rowan T Faber
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Bernt L Rekstad
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Demetrios G Vavvas
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Ragnheiður Bragadóttir
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Garces F, Jiang K, Molday LL, Stöhr H, Weber BH, Lyons CJ, Maberley D, Molday RS. Correlating the Expression and Functional Activity of ABCA4 Disease Variants With the Phenotype of Patients With Stargardt Disease. Invest Ophthalmol Vis Sci 2019; 59:2305-2315. [PMID: 29847635 PMCID: PMC5937799 DOI: 10.1167/iovs.17-23364] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Stargardt disease (STGD1), the most common early-onset recessive macular degeneration, is caused by mutations in the gene encoding the ATP-binding cassette transporter ABCA4. Although extensive genetic studies have identified more than 1000 mutations that cause STGD1 and related ABCA4-associated diseases, few studies have investigated the extent to which mutations affect the biochemical properties of ABCA4. The purpose of this study was to correlate the expression and functional activities of missense mutations in ABCA4 identified in a cohort of Canadian patients with their clinical phenotype. Methods Eleven patients from British Columbia were diagnosed with STGD1. The exons and exon-intron boundaries were sequenced to identify potential pathologic mutations in ABCA4. Missense mutations were expressed in HEK293T cells and their level of expression, retinoid substrate binding properties, and ATPase activities were measured and correlated with the phenotype of the STGD1 patients. Results Of the 11 STGD1 patients analyzed, 7 patients had two mutations in ABCA4, 3 patients had one detected mutation, and 1 patient had no mutations in the exons and flanking regions. Included in this cohort of patients was a severely affected 11-year-old child who was homozygous for the novel p.Ala1794Pro mutation. Expression and functional analysis of this variant and other disease-associated variants compared favorably with the phenotypes of this cohort of STGD1 patients. Conclusions Although many factors contribute to the phenotype of STGD1 patients, the expression and residual activity of ABCA4 mutants play a major role in determining the disease severity of STGD1 patients.
Collapse
Affiliation(s)
- Fabian Garces
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kailun Jiang
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Christopher J Lyons
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Maberley
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Molday LL, Wahl D, Sarunic MV, Molday RS. Localization and functional characterization of the p.Asn965Ser (N965S) ABCA4 variant in mice reveal pathogenic mechanisms underlying Stargardt macular degeneration. Hum Mol Genet 2019; 27:295-306. [PMID: 29145636 DOI: 10.1093/hmg/ddx400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/08/2017] [Indexed: 11/12/2022] Open
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) proteins that transports N-retinylidene-phosphatidylethanolamine (N-Ret-PE) across outer segment disc membranes thereby facilitating the removal of potentially toxic retinoid compounds from photoreceptor cells. Mutations in the gene encoding ABCA4 are responsible for Stargardt disease (STGD1), an autosomal recessive retinal degenerative disease that causes severe vision loss. To define the molecular basis for STGD1 associated with the p.Asn965Ser (N965S) mutation in the Walker A motif of nucleotide binding domain 1 (NBD1), we generated a p.Asn965Ser knockin mouse and compared the subcellular localization and molecular properties of the disease variant with wild-type (WT) ABCA4. Here, we show that the p.Asn965Ser ABCA4 variant expresses at half the level of WT ABCA4, partially mislocalizes to the endoplasmic reticulum (ER) of photoreceptors, is devoid of N-Ret-PE activated ATPase activity, and causes an increase in autofluorescence and the bisretinoid A2E associated with lipofuscin deposits in retinal pigment epithelial cells as found in Stargardt patients and Abca4 knockout mice. We also show for the first time that a significant fraction of WT ABCA4 is retained in the inner segment of photoreceptors. On the basis of these studies we conclude that loss in substrate-dependent ATPase activity and protein misfolding are mechanisms underlying STGD1 associated with the p.Asn965Ser mutation in ABCA4. Functional and molecular modeling studies further suggest that similar pathogenic mechanisms are responsible for Tangiers disease associated with the p.Asn935Ser (N935S) mutation in the NBD1 Walker A motif of ABCA1.
Collapse
Affiliation(s)
- Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Daniel Wahl
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada V5Z 3N9
| |
Collapse
|
44
|
Lenis TL, Hu J, Ng SY, Jiang Z, Sarfare S, Lloyd MB, Esposito NJ, Samuel W, Jaworski C, Bok D, Finnemann SC, Radeke MJ, Redmond TM, Travis GH, Radu RA. Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration. Proc Natl Acad Sci U S A 2018; 115:E11120-E11127. [PMID: 30397118 PMCID: PMC6255167 DOI: 10.1073/pnas.1802519115] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recessive Stargardt disease (STGD1) is an inherited blinding disorder caused by mutations in the Abca4 gene. ABCA4 is a flippase in photoreceptor outer segments (OS) that translocates retinaldehyde conjugated to phosphatidylethanolamine across OS disc membranes. Loss of ABCA4 in Abca4-/- mice and STGD1 patients causes buildup of lipofuscin in the retinal pigment epithelium (RPE) and degeneration of photoreceptors, leading to blindness. No effective treatment currently exists for STGD1. Here we show by several approaches that ABCA4 is additionally expressed in RPE cells. (i) By in situ hybridization analysis and by RNA-sequencing analysis, we show the Abca4 mRNA is expressed in human and mouse RPE cells. (ii) By quantitative immunoblotting, we show that the level of ABCA4 protein in homogenates of wild-type mouse RPE is about 1% of the level in neural retina homogenates. (iii) ABCA4 immunofluorescence is present in RPE cells of wild-type and Mertk-/- but not Abca4-/- mouse retina sections, where it colocalizes with endolysosomal proteins. To elucidate the role of ABCA4 in RPE cells, we generated a line of genetically modified mice that express ABCA4 in RPE cells but not in photoreceptors. Mice from this line on the Abca4-/- background showed partial rescue of photoreceptor degeneration and decreased lipofuscin accumulation compared with nontransgenic Abca4-/- mice. We propose that ABCA4 functions to recycle retinaldehyde released during proteolysis of rhodopsin in RPE endolysosomes following daily phagocytosis of distal photoreceptor OS. ABCA4 deficiency in the RPE may play a role in the pathogenesis of STGD1.
Collapse
Affiliation(s)
- Tamara L Lenis
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Jane Hu
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Sze Yin Ng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Zhichun Jiang
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Shanta Sarfare
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Marcia B Lloyd
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | | | - William Samuel
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20814
| | - Cynthia Jaworski
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20814
| | - Dean Bok
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | | | - Monte J Radeke
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20814
| | - Gabriel H Travis
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Roxana A Radu
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
| |
Collapse
|
45
|
Zhao J, Ueda K, Riera M, Kim HJ, Sparrow JR. Bisretinoids mediate light sensitivity resulting in photoreceptor cell degeneration in mice lacking the receptor tyrosine kinase Mer. J Biol Chem 2018; 293:19400-19410. [PMID: 30352873 DOI: 10.1074/jbc.ra118.005949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
The receptor tyrosine kinase Mer is expressed by retinal pigment epithelial (RPE) cells and participates in photoreceptor outer-segment phagocytosis, a process enabling membrane renewal. Mutations in the gene encoding MERTK cause blinding retinitis pigmentosa in humans. Targeted Mertk disruption in mice causes defective RPE-mediated phagocytosis of the outer segments, leading to deposition of autofluorescent debris at the RPE-photoreceptor cell interface, followed by photoreceptor cell degeneration. Here, we show that retinaldehyde adducts (bisretinoid fluorophores) that form in photoreceptor outer segments occupy the unphagocytosed outer-segment debris that accumulates in Mertk -/- mice. Bisretinoids measured by HPLC were elevated in Mertk -/- mice compared with WT animals. Bisretinoids were also more abundant in albino Mertk -/- mice expressing leucine at position 450 of the isomerase RPE65 (Rpe65-Leu450) rather than the variant methionine (Rpe65-450Met) that yields lower bisretinoid levels. In Royal College of Surgeons rats having dysfunctional Mertk, bisretinoids were higher than in WT rats. Intensities of in vivo fundus autofluorescence were higher in Mertk -/- mice than in WT mice and peaked earlier in albino Mertk -/-/Rpe65-Leu450 mice than in albino Mertk -/-/Rpe65-450Met mice. Of note, the rate of photoreceptor cell degeneration was more rapid in albino Mertk -/- mice exposed to higher levels of intraocular light (albino versus pigmented mice) and in mice carrying Rpe65-Leu450 than in Rpe65-450Met mice, revealing a link between bisretinoid accumulation and light-mediated acceleration of photoreceptor cell degeneration. In conclusion, the light sensitivity of photoreceptor cell degeneration arising from Mertk deficiency is consistent with the known phototoxicity of bisretinoids.
Collapse
Affiliation(s)
- Jin Zhao
- From the Departments of Ophthalmology and
| | - Keiko Ueda
- From the Departments of Ophthalmology and
| | | | | | - Janet R Sparrow
- From the Departments of Ophthalmology and .,Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
46
|
Hussain RM, Ciulla TA, Berrocal AM, Gregori NZ, Flynn HW, Lam BL. Stargardt macular dystrophy and evolving therapies. Expert Opin Biol Ther 2018; 18:1049-1059. [PMID: 30129371 DOI: 10.1080/14712598.2018.1513486] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stargardt macular dystrophy (STGD1) is a hereditary retinal degeneration that lacks effective treatment options. Gene therapy, stem cell therapy, and pharmacotherapy with visual cycle modulators (VCMs) and complement inhibitors are discussed as potential treatments. AREAS COVERED Investigational therapies for STGD1 aim to reduce toxic bisretinoids and lipofuscin in the retina and retinal pigment epithelium (RPE). These agents include C20-D3-vitamin A (ALK-001), isotretinoin, VM200, emixustat, and A1120. Avacincaptad pegol is a C5 complement inhibitor that may reduce inflammation-related RPE damage. Animal models of STGD1 show promising data for these treatments, though proof of efficacy in humans is lacking. Fenretinide and emixustat are VCMs for dry AMD and STGD1 that failed to halt geographic atrophy progression or improve vision in trials for AMD. A1120 prevents retinol transport into RPE and may spare side effects typically seen with VCMs (nyctalopia and chromatopsia). Stem cell transplantation suggests potential biologic plausibility in a phase I/II trial. Gene therapy aims to augment the mutated ABCA4 gene, though results of a phase I/II trial are pending. EXPERT OPINION Stem cell transplantation, ABCA4 gene therapy, VCMs, and complement inhibitors offer biologically plausible treatment mechanisms for treatment of STGD1. Further trials are warranted to assess efficacy and safety in humans.
Collapse
Affiliation(s)
- Rehan M Hussain
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Thomas A Ciulla
- b Retina Service , Midwest Eye Institute and Department of Ophthalmology, Indiana University School of Medicine , Indianapolis , IN , USA
| | - Audina M Berrocal
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Ninel Z Gregori
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Harry W Flynn
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Byron L Lam
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|
47
|
Sauer L, Andersen KM, Dysli C, Zinkernagel MS, Bernstein PS, Hammer M. Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-20. [PMID: 30182580 PMCID: PMC8357196 DOI: 10.1117/1.jbo.23.9.091415] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/24/2018] [Indexed: 05/04/2023]
Abstract
Autofluorescence-based imaging techniques have become very important in the ophthalmological field. Being noninvasive and very sensitive, they are broadly used in clinical routines. Conventional autofluorescence intensity imaging is largely influenced by the strong fluorescence of lipofuscin, a fluorophore that can be found at the level of the retinal pigment epithelium. However, different endogenous retinal fluorophores can be altered in various diseases. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an imaging modality to investigate the autofluorescence of the human fundus in vivo. It expands the level of information, as an addition to investigating the fluorescence intensity, and autofluorescence lifetimes are captured. The Heidelberg Engineering Spectralis-based fluorescence lifetime imaging ophthalmoscope is used to investigate a 30-deg retinal field centered at the fovea. It detects FAF decays in short [498 to 560 nm, short spectral channel (SSC) and long (560 to 720 nm, long spectral channel (LSC)] spectral channels, the mean fluorescence lifetimes (τm) are calculated using bi- or triexponential approaches. These are meant to be relatively independent of the fluorophore's intensity; therefore, fluorophores with less intense fluorescence can be detected. As an example, FLIO detects the fluorescence of macular pigment, retinal carotenoids that help protect the human fundus from light damages. Furthermore, FLIO is able to detect changes related to various retinal diseases, such as age-related macular degeneration, albinism, Alzheimer's disease, diabetic retinopathy, macular telangiectasia type 2, retinitis pigmentosa, and Stargardt disease. Some of these changes can already be found in healthy eyes and may indicate a risk to developing such diseases. Other changes in already affected eyes seem to indicate disease progression. This review article focuses on providing detailed information on the clinical findings of FLIO. This technique detects not only structural changes at very early stages but also metabolic and disease-related alterations. Therefore, it is a very promising tool that might soon be used for early diagnostics.
Collapse
Affiliation(s)
- Lydia Sauer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Karl M. Andersen
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Chantal Dysli
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Martin S. Zinkernagel
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Paul S. Bernstein
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Martin Hammer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Jena, Center for Biomedical Optics and Photonics, Jena, Germany
- Address all correspondence to: Martin Hammer, E-mail:
| |
Collapse
|
48
|
Nafar Z, Wen R, Jiao S. Visible light OCT-based quantitative imaging of lipofuscin in the retinal pigment epithelium with standard reference targets. BIOMEDICAL OPTICS EXPRESS 2018; 9:3768-3782. [PMID: 30338154 PMCID: PMC6191616 DOI: 10.1364/boe.9.003768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 05/24/2023]
Abstract
We developed a technology for quantitative retinal autofluorescence (AF, or FAF for fundus AF) imaging for quantifying lipofuscin in the retinal pigment epithelium (RPE). The technology is based on simultaneous visible light optical coherence tomography (VIS-OCT) and AF imaging of the retina and a pair of reference standard targets at the intermediate retinal imaging plane with known reflectivity for the OCT and fluorescence efficiency for the FAF. The technology is able to eliminate the pre-RPE attenuation in FAF imaging by using the simultaneously acquired VIS-OCT image. With the OCT and fluorescence images of the reference targets, the effects of illumination power and detector sensitivity can be eliminated.
Collapse
Affiliation(s)
- Zahra Nafar
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174, USA
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10 Ave, Miami, FL 33136, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174, USA
| |
Collapse
|
49
|
Racz B, Varadi A, Kong J, Allikmets R, Pearson PG, Johnson G, Cioffi CL, Petrukhin K. A non-retinoid antagonist of retinol-binding protein 4 rescues phenotype in a model of Stargardt disease without inhibiting the visual cycle. J Biol Chem 2018; 293:11574-11588. [PMID: 29871924 DOI: 10.1074/jbc.ra118.002062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
A primary pathological defect in the heritable eye disorder Stargardt disease is excessive accumulation of cytotoxic lipofuscin bisretinoids in the retina. Age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) matches the age-dependent increase in the incidence of the atrophic (dry) form of age-related macular degeneration (AMD) and therefore may be one of several pathogenic factors contributing to AMD progression. Lipofuscin bisretinoid synthesis in the retina depends on the influx of serum retinol from the circulation into the RPE. Formation of the tertiary retinol-binding protein 4 (RBP4)-transthyretin-retinol complex in the serum is required for this influx. Herein, we report the pharmacological effects of the non-retinoid RBP4 antagonist, BPN-14136. BPN-14136 dosing in the Abca4-/- mouse model of increased lipofuscinogenesis significantly reduced serum RBP4 levels and inhibited bisretinoid synthesis, and this inhibition correlated with a partial reduction in visual cycle retinoids such as retinaldehydes serving as bisretinoid precursors. BPN-14136 administration at doses inducing maximal serum RBP4 reduction did not produce changes in the rate of the visual cycle, consistent with minimal changes in dark adaptation. Abca4-/- mice exhibited dysregulation of the complement system in the retina, and BPN-14136 administration normalized the retinal levels of proinflammatory complement cascade components such as complement factors D and H, C-reactive protein, and C3. We conclude that BPN-14136 has several beneficial characteristics, combining inhibition of bisretinoid synthesis and reduction in retinaldehydes with normalization of the retinal complement system. BPN-14136, or a similar compound, may be a promising drug candidate to manage Stargardt disease and dry AMD.
Collapse
Affiliation(s)
- Boglarka Racz
- Department of Ophthalmology, Columbia University, New York, New York 10032
| | - Andras Varadi
- Department of Ophthalmology, Columbia University, New York, New York 10032
| | - Jian Kong
- Department of Ophthalmology, Columbia University, New York, New York 10032
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York 10032; Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Paul G Pearson
- Pearson Pharma Partners, Westlake Village, California 91361
| | | | - Christopher L Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208
| | | |
Collapse
|
50
|
Bisretinoid Photodegradation Is Likely Not a Good Thing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:395-401. [PMID: 29721969 DOI: 10.1007/978-3-319-75402-4_49] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Retinaldehyde adducts (bisretinoids) accumulate in retinal pigment epithelial (RPE) cells as lipofuscin. Bisretinoids are implicated in some inherited and age-related forms of macular degeneration that lead to the death of RPE cells and diminished vision. By comparing albino and black-eyed mice and by rearing mice in darkness and in cyclic light, evidence indicates that bisretinoid fluorophores undergo photodegradation in the eye (Ueda et al. Proc Natl Acad Sci 113:6904-6909, 2016). Given that the photodegradation products modify and impair cellular and extracellular molecules, these processes likely impart cumulative damage to retina.
Collapse
|