1
|
Nitschke S, Montalbano AP, Whiting ME, Smith BH, Mukherjee-Roy N, Marchioni CR, Sullivan MA, Zhao X, Wang P, Mount H, Verma M, Minassian BA, Nitschke F. Glycogen synthase GYS1 overactivation contributes to glycogen insolubility and malto-oligoglucan-associated neurodegenerative disease. EMBO J 2025; 44:1379-1413. [PMID: 39806098 PMCID: PMC11876434 DOI: 10.1038/s44318-024-00339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Polyglucosans are glycogen molecules with overlong chains, which are hyperphosphorylated in the neurodegenerative Lafora disease (LD). Brain polyglucosan bodies (PBs) cause fatal neurodegenerative diseases including Lafora disease and adult polyglucosan body disease (ABPD), for which treatments, biomarkers, and good understanding of their pathogenesis are currently missing. Mutations in the genes for the phosphatase laforin or the E3 ubiquitin ligase malin can cause LD. By depleting PTG, an activator of the glycogen chain-elongating enzyme glycogen synthase (GYS1), in laforin- and malin-deficient LD mice, we show that abnormal glycogen chain lengths and not hyperphosphorylation underlie polyglucosan formation, and that polyglucosan bodies induce neuroinflammation. We provide evidence indicating that a small pool of overactive GYS1 contributes to glycogen insolubility in LD and APBD. In contrast to previous findings, metabolomics experiments using in situ-fixed brains reveal only modest metabolic changes in laforin-deficient mice. These changes are not replicated in malin-deficient or APBD mice, and are not normalized in rescued LD mice. Finally, we identify a pool of metabolically volatile malto-oligoglucans as a polyglucosan body- and neuroinflammation-associated brain energy source, and promising candidate biomarkers for LD and APBD, including malto-oligoglucans and the neurodegeneration marker CHI3L1/YKL40.
Collapse
Affiliation(s)
- Silvia Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alina P Montalbano
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Megan E Whiting
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Brandon H Smith
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Neije Mukherjee-Roy
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charlotte R Marchioni
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Biochemistry and Molecular Genetics Department, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mitchell A Sullivan
- Glycation and Diabetes Complications, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Howard Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Psychiatry and Physiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Skurat AV, Segvich DM, Contreras CJ, Hu YC, Hurley TD, DePaoli-Roach AA, Roach PJ. Impaired malin expression and interaction with partner proteins in Lafora disease. J Biol Chem 2024; 300:107271. [PMID: 38588813 PMCID: PMC11063907 DOI: 10.1016/j.jbc.2024.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Lafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.
Collapse
Affiliation(s)
- Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Christopher J Contreras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Ferrari Aggradi CR, Rimoldi M, Romagnoli G, Velardo D, Meneri M, Iacobucci D, Ripolone M, Napoli L, Ciscato P, Moggio M, Comi GP, Ronchi D, Corti S, Abati E. Lafora Disease: A Case Report and Evolving Treatment Advancements. Brain Sci 2023; 13:1679. [PMID: 38137127 PMCID: PMC10742041 DOI: 10.3390/brainsci13121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Lafora disease is a rare genetic disorder characterized by a disruption in glycogen metabolism. It manifests as progressive myoclonus epilepsy and cognitive decline during adolescence. Pathognomonic is the presence of abnormal glycogen aggregates that, over time, produce large inclusions (Lafora bodies) in various tissues. This study aims to describe the clinical and histopathological aspects of a novel Lafora disease patient, and to provide an update on the therapeutical advancements for this disorder. A 20-year-old Libyan boy presented with generalized tonic-clonic seizures, sporadic muscular jerks, eyelid spasms, and mental impairment. Electroencephalography showed multiple discharges across both brain hemispheres. Brain magnetic resonance imaging was unremarkable. Muscle biopsy showed increased lipid content and a very mild increase of intermyofibrillar glycogen, without the polyglucosan accumulation typically observed in Lafora bodies. Despite undergoing three lines of antiepileptic treatment, the patient's condition showed minimal to no improvement. We identified the homozygous variant c.137G>A, p.(Cys46Tyr), in the EPM2B/NHLRC1 gene, confirming the diagnosis of Lafora disease. To our knowledge, the presence of lipid aggregates without Lafora bodies is atypical. Lafora disease should be considered during the differential diagnosis of progressive, myoclonic, and refractory epilepsies in both children and young adults, especially when accompanied by cognitive decline. Although there are no effective therapies yet, the development of promising new strategies prompts the need for an early and accurate diagnosis.
Collapse
Affiliation(s)
- Carola Rita Ferrari Aggradi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| | - Martina Rimoldi
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gloria Romagnoli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Davide Iacobucci
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Patrizia Ciscato
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| |
Collapse
|
4
|
Mitra S, Gumusgoz E, Minassian BA. Lafora disease: Current biology and therapeutic approaches. Rev Neurol (Paris) 2021; 178:315-325. [PMID: 34301405 DOI: 10.1016/j.neurol.2021.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The ubiquitin system impacts most cellular processes and is altered in numerous neurodegenerative diseases. However, little is known about its role in neurodegenerative diseases due to disturbances of glycogen metabolism such as Lafora disease (LD). In LD, insufficiently branched and long-chained glycogen forms and precipitates into insoluble polyglucosan bodies (Lafora bodies), which drive neuroinflammation, neurodegeneration and epilepsy. LD is caused by mutations in the gene encoding the glycogen phosphatase laforin or the gene coding for the laforin interacting partner ubiquitin E3 ligase malin. The role of the malin-laforin complex in regulating glycogen structure remains with full of gaps. In this review we bring together the disparate body of data on these two proteins and propose a mechanistic hypothesis of the disease in which malin-laforin's role to monitor and prevent over-elongation of glycogen branch chains, which drive glycogen molecules to precipitate and accumulate into Lafora bodies. We also review proposed connections between Lafora bodies and the ensuing neuroinflammation, neurodegeneration and intractable epilepsy. Finally, we review the exciting activities in developing therapies for Lafora disease based on replacing the missing genes, slowing the enzyme - glycogen synthase - that over-elongates glycogen branches, and introducing enzymes that can digest Lafora bodies. Much more work is needed to fill the gaps in glycogen metabolism in which laforin and malin operate. However, knowledge appears already adequate to advance disease course altering therapies for this catastrophic fatal disease.
Collapse
Affiliation(s)
- S Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - E Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - B A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Sinha P, Verma B, Ganesh S. Trehalose Ameliorates Seizure Susceptibility in Lafora Disease Mouse Models by Suppressing Neuroinflammation and Endoplasmic Reticulum Stress. Mol Neurobiol 2021; 58:1088-1101. [PMID: 33094475 DOI: 10.1007/s12035-020-02170-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Lafora disease (LD) is one of the progressive and fatal forms of a neurodegenerative disorder and is characterized by teenage-onset myoclonic seizures. Neuropathological changes in LD include the formation of abnormal glycogen as Lafora bodies, gliosis, and neuroinflammation. LD is caused by defects in the gene coding for phosphatase (laforin) or ubiquitin ligase (malin). Mouse models of LD, developed by targeted disruption of these two genes, develop most symptoms of LD and show increased susceptibility to induced seizures. Studies on mouse models also suggest that defective autophagy might contribute to LD etiology. In an attempt to understand the specific role of autophagy in LD pathogenesis, in this study, we fed LD animals with trehalose, an inducer of autophagy, for 3 months and looked at its effect on the neuropathology and seizure susceptibility. We demonstrate here that trehalose ameliorates gliosis, neuroinflammation, and endoplasmic reticulum stress and reduces susceptibility to induced seizures in LD animals. However, trehalose did not affect the formation of Lafora bodies, suggesting the epileptic phenotype in LD could be either secondary to or independent of Lafora bodies. Taken together, our results suggest that autophagy inducers can be considered as potential therapeutic molecules for Lafora disease.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Bhupender Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
6
|
Sullivan MA, Nitschke S, Skwara EP, Wang P, Zhao X, Pan XS, Chown EE, Wang T, Perri AM, Lee JPY, Vilaplana F, Minassian BA, Nitschke F. Skeletal Muscle Glycogen Chain Length Correlates with Insolubility in Mouse Models of Polyglucosan-Associated Neurodegenerative Diseases. Cell Rep 2020; 27:1334-1344.e6. [PMID: 31042462 DOI: 10.1016/j.celrep.2019.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/29/2019] [Accepted: 04/02/2019] [Indexed: 01/31/2023] Open
Abstract
Lafora disease (LD) and adult polyglucosan body disease (APBD) are glycogen storage diseases characterized by a pathogenic buildup of insoluble glycogen. Mechanisms causing glycogen insolubility are poorly understood. Here, in two mouse models of LD (Epm2a-/- and Epm2b-/-) and one of APBD (Gbe1ys/ys), the separation of soluble and insoluble muscle glycogen is described, enabling separate analysis of each fraction. Total glycogen is increased in LD and APBD mice, which, together with abnormal chain length and molecule size distributions, is largely if not fully attributed to insoluble glycogen. Soluble glycogen consists of molecules with distinct chain length distributions and differential corresponding solubility, providing a mechanistic link between soluble and insoluble glycogen in vivo. Phosphorylation states differ across glycogen fractions and mouse models, demonstrating that hyperphosphorylation is not a basic feature of insoluble glycogen. Lastly, model-specific variances in protein and activity levels of key glycogen synthesis enzymes suggest uninvestigated regulatory mechanisms.
Collapse
Affiliation(s)
- Mitchell A Sullivan
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Glycation and Diabetes, Translational Research Institute, Mater Research Institute - University of Queensland, Brisbane, QLD 4102, Australia
| | - Silvia Nitschke
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Evan P Skwara
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Xiao S Pan
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Erin E Chown
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Travis Wang
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ami M Perri
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jennifer P Y Lee
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm 10691, Sweden
| | - Berge A Minassian
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Felix Nitschke
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
7
|
Brewer MK, Putaux JL, Rondon A, Uittenbogaard A, Sullivan MA, Gentry MS. Polyglucosan body structure in Lafora disease. Carbohydr Polym 2020; 240:116260. [PMID: 32475552 DOI: 10.1016/j.carbpol.2020.116260] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Abnormal carbohydrate structures known as polyglucosan bodies (PGBs) are associated with neurological disorders, glycogen storage diseases (GSDs), and aging. A hallmark of the GSD Lafora disease (LD), a fatal childhood epilepsy caused by recessive mutations in the EPM2A or EPM2B genes, are cytoplasmic PGBs known as Lafora bodies (LBs). LBs result from aberrant glycogen metabolism and drive disease progression. They are abundant in brain, muscle and heart of LD patients and Epm2a-/- and Epm2b-/- mice. LBs and PGBs are histologically reminiscent of starch, semicrystalline carbohydrates synthesized for glucose storage in plants. In this study, we define LB architecture, tissue-specific differences, and dynamics. We propose a model for how small polyglucosans aggregate to form LBs. LBs are very similar to PGBs of aging and other neurological disorders, and so these studies have direct relevance to the general understanding of PGB structure and formation.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA; Lafora Epilepsy Cure Initiative, Epilepsy and Brain Metabolism Center, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA; Institute for Research in Biomedicine (IRB Barcelona), 08028, Barcelona, Spain
| | - Jean-Luc Putaux
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000, Grenoble, France
| | - Alberto Rondon
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Annette Uittenbogaard
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA; Lafora Epilepsy Cure Initiative, Epilepsy and Brain Metabolism Center, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
8
|
Brewer MK, Uittenbogaard A, Austin GL, Segvich DM, DePaoli-Roach A, Roach PJ, McCarthy JJ, Simmons ZR, Brandon JA, Zhou Z, Zeller J, Young LEA, Sun RC, Pauly JR, Aziz NM, Hodges BL, McKnight TR, Armstrong DD, Gentry MS. Targeting Pathogenic Lafora Bodies in Lafora Disease Using an Antibody-Enzyme Fusion. Cell Metab 2019; 30:689-705.e6. [PMID: 31353261 PMCID: PMC6774808 DOI: 10.1016/j.cmet.2019.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Annette Uittenbogaard
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John J McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zoe R Simmons
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jason A Brandon
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jill Zeller
- Northern Biomedical Research, Spring Lake, MI 49456, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Ramon C Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; University of Kentucky Epilepsy & Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
9
|
Abstract
Lafora disease is a severe, autosomal recessive, progressive myoclonus epilepsy. The disease usually manifests in previously healthy adolescents, and death commonly occurs within 10 years of symptom onset. Lafora disease is caused by loss-of-function mutations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The absence of either protein results in poorly branched, hyperphosphorylated glycogen, which precipitates, aggregates and accumulates into Lafora bodies. Evidence from Lafora disease genetic mouse models indicates that these intracellular inclusions are a principal driver of neurodegeneration and neurological disease. The integration of current knowledge on the function of laforin-malin as an interacting complex suggests that laforin recruits malin to parts of glycogen molecules where overly long glucose chains are forming, so as to counteract further chain extension. In the absence of either laforin or malin function, long glucose chains in specific glycogen molecules extrude water, form double helices and drive precipitation of those molecules, which over time accumulate into Lafora bodies. In this article, we review the genetic, clinical, pathological and molecular aspects of Lafora disease. We also discuss traditional antiseizure treatments for this condition, as well as exciting therapeutic advances based on the downregulation of brain glycogen synthesis and disease gene replacement.
Collapse
|
10
|
Brewer MK, Gentry MS. Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future. ADVANCES IN NEUROBIOLOGY 2019; 23:17-81. [PMID: 31667805 PMCID: PMC7239500 DOI: 10.1007/978-3-030-27480-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter reviews the history of glycogen-related research and discusses in detail the structure, regulation, chemical properties and subcellular distribution of glycogen and its associated proteins, with particular focus on these aspects in brain tissue.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
11
|
|
12
|
Parihar R, Rai A, Ganesh S. Lafora disease: from genotype to phenotype. J Genet 2018; 97:611-624. [PMID: 30027899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The progressive myoclonic epilepsy of Lafora or Lafora disease (LD) is a neurodegenerative disorder characterized by recurrent seizures and cognitive deficits. With typical onset in the late childhood or early adolescence, the patients show progressive worsening of the disease symptoms, leading to death in about 10 years. It is an autosomal recessive disorder caused by the loss-of-function mutations in the EPM2A gene, coding for a protein phosphatase (laforin) or the NHLRC1 gene coding for an E3 ubiquitin ligase (malin). LD is characterized by the presence of abnormally branched water insoluble glycogen inclusions known as Lafora bodies in the neurons and other tissues, suggesting a role for laforin and malin in glycogen metabolic pathways. Mouse models of LD, developed by targeted disruption of the Epm2a or Nhlrc1 gene, recapitulated most of the symptoms and pathological features as seen in humans, and have offered insight into the pathomechanisms. Besides the formation of Lafora bodies in the neurons in the presymptomatic stage, the animal models have also demonstrated perturbations in the proteolytic pathways, such as ubiquitin proteasome system and autophagy, and inflammatory response. This review attempts to provide a comprehensive coverage on the genetic defects leading to the LD in humans, on the functional properties of the laforin and malin proteins, and on how defects in any one of these two proteins result in a clinically similar phenotype. We also discuss the disease pathologies as revealed by the studies on the animal models and, finally, on the progress with therapeutic attempts albeit in the animal models.
Collapse
Affiliation(s)
- Rashmi Parihar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| | | | | |
Collapse
|
13
|
Chambers JK, Thongtharb A, Shiga T, Azakami D, Saito M, Sato M, Morozumi M, Nakayama H, Uchida K. Accumulation of Laforin and Other Related Proteins in Canine Lafora Disease With EPM2B Repeat Expansion. Vet Pathol 2018; 55:543-551. [DOI: 10.1177/0300985818758471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Canine Lafora disease (LD) is an autosomal recessive genetic disorder causing nonfatal structural epilepsy, mainly affecting miniature wirehaired dachshunds. Repeat expansion in the EPM2B gene causes a functional impairment of the ubiquitin ligase malin which regulates glycogen metabolism. Abnormally structured glycogen accumulates and develop polyglucosan bodies predominantly in the central nervous system. The authors performed a comprehensive clinical, genetic, and pathological study of 4 LD cases affecting miniature wirehaired dachshund dogs with EPM2B repeat expansions, with systemic distribution of polyglucosan bodies and accumulation of laforin and other functionally associated proteins in the polyglucosan bodies. Myoclonic seizures first appeared at 7–9 years of age, and the dogs died at 14–16 years of age. Immunohistochemistry for calbindin revealed that the polyglucosan bodies were located in the cell bodies and dendritic processes of Purkinje cells. Polyglucosan bodies were also positive for laforin, hsp70, α/β-synuclein, ubiquitin, LC3, and p62. Laforin-positive polyglucosan bodies were located in neurofilament-positive neurons but not in GFAP-positive astrocytes. In nonneural tissues, periodic acid-Schiff (PAS)-positive polyglucosan bodies were observed in the heart, skeletal muscle, liver, apocrine sweat gland, and smooth muscle layer of the urinary bladder. In the skeletal muscle, polyglucosan bodies were observed only in type 1 fibers and not in type 2 fibers. The results indicate that although the repeat expansion of the EPM2B gene is specific to dogs, the immunohistochemical properties of polyglucosan body in canine LD are comparable to human LD. However, important phenotypic variations exist between the 2 species including the affected skeletal muscle fiber type.
Collapse
Affiliation(s)
- James K. Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Atigan Thongtharb
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Takanori Shiga
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Nursing, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Miyoko Saito
- Laboratory of Veterinary Surgery II, Azabu University, Chuo Ward, Sagamihara, Kanagawa Prefecture, Japan
| | - Masumi Sato
- National Institute of Animal Health, Tsukuba, Ibaraki Prefecture, Japan
| | | | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| |
Collapse
|
14
|
Abstract
Lafora disease (LD) is an autosomal recessive progressive myoclonus epilepsy due to mutations in the EPM2A (laforin) and EPM2B (malin) genes, with no substantial genotype-phenotype differences between the two. Founder effects and recurrent mutations are common, and mostly isolated to specific ethnic groups and/or geographical locations. Pathologically, LD is characterized by distinctive polyglucosans, which are formations of abnormal glycogen. Polyglucosans, or Lafora bodies (LB) are typically found in the brain, periportal hepatocytes of the liver, skeletal and cardiac myocytes, and in the eccrine duct and apocrine myoepithelial cells of sweat glands. Mouse models of the disease and other naturally occurring animal models have similar pathology and phenotype. Hypotheses of LB formation remain controversial, with compelling evidence and caveats for each hypothesis. However, it is clear that the laforin and malin functions regulating glycogen structure are key. With the exception of a few missense mutations LD is clinically homogeneous, with onset in adolescence. Symptoms begin with seizures, and neurological decline follows soon after. The disease course is progressive and fatal, with death occurring within 10 years of onset. Antiepileptic drugs are mostly non-effective, with none having a major influence on the progression of cognitive and behavioral symptoms. Diagnosis and genetic counseling are important aspects of LD, and social support is essential in disease management. Future therapeutics for LD will revolve around the pathogenesics of the disease. Currently, efforts at identifying compounds or approaches to reduce brain glycogen synthesis appear to be highly promising.
Collapse
|
15
|
Hedberg-Oldfors C, Glamuzina E, Ruygrok P, Anderson LJ, Elliott P, Watkinson O, Occleshaw C, Abernathy M, Turner C, Kingston N, Murphy E, Oldfors A. Cardiomyopathy as presenting sign of glycogenin-1 deficiency-report of three cases and review of the literature. J Inherit Metab Dis 2017; 40:139-149. [PMID: 27718144 PMCID: PMC5203857 DOI: 10.1007/s10545-016-9978-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 01/19/2023]
Abstract
We describe a new type of cardiomyopathy caused by a mutation in the glycogenin-1 gene (GYG1). Three unrelated male patients aged 34 to 52 years with cardiomyopathy and abnormal glycogen storage on endomyocardial biopsy were homozygous for the missense mutation p.Asp102His in GYG1. The mutated glycogenin-1 protein was expressed in cardiac tissue but had lost its ability to autoglucosylate as demonstrated by an in vitro assay and western blot analysis. It was therefore unable to form the primer for normal glycogen synthesis. Two of the patients showed similar patterns of heart dilatation, reduced ejection fraction and extensive late gadolinium enhancement on cardiac magnetic resonance imaging. These two patients were severely affected, necessitating cardiac transplantation. The cardiomyocyte storage material was characterized by large inclusions of periodic acid and Schiff positive material that was partly resistant to alpha-amylase treatment consistent with polyglucosan. The storage material had, unlike normal glycogen, a partly fibrillar structure by electron microscopy. None of the patients showed signs or symptoms of muscle weakness but a skeletal muscle biopsy in one case revealed muscle fibres with abnormal glycogen storage. Glycogenin-1 deficiency is known as a rare cause of skeletal muscle glycogen storage disease, usually without cardiomyopathy. We demonstrate that it may also be the cause of severe cardiomyopathy and cardiac failure without skeletal muscle weakness. GYG1 should be included in cardiomyopathy gene panels.
Collapse
Affiliation(s)
| | - Emma Glamuzina
- National Metabolic Service, Starship Children’s Hospital, Auckland, New Zealand
| | - Peter Ruygrok
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | | | | | | | - Chris Occleshaw
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | | | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Nicola Kingston
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Anders Oldfors
- Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Hajek I, Kettner F, Simerdova V, Rusbridge C, Wang P, Minassian BA, Palus V. NHLRC1 repeat expansion in two beagles with Lafora disease. J Small Anim Pract 2016; 57:650-652. [PMID: 27747878 DOI: 10.1111/jsap.12593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 11/25/2022]
Abstract
Lafora disease is a fatal genetic disorder characterised by neurotoxic deposits of malformed insoluble glycogen. In humans it is caused by mutation in the EPM2A or NHLRC1 genes. There is a known mutation in miniature wirehaired dachshunds which has not been documented in other dog breeds, including beagles, in which the disease is relatively commonly reported. This case report describes the causative defect in two affected beagles, namely the same massive expansion as in miniature wirehaired dachshunds of a 12-nucleotide repeat sequence that is unique to the canine NHLRC1 gene. This is the first mutation described in beagles with Lafora disease, and so far the only Lafora disease genetic variant in dogs.
Collapse
Affiliation(s)
- I Hajek
- Small Animal Referral Centre Sibra, Bratislava 84101, Slovak Republic.
| | - F Kettner
- Tygerberg Animal Hospital, Cape Town 7550, South Africa
| | - V Simerdova
- Small Animal Referral Centre Sibra, Bratislava 84101, Slovak Republic.,Department of Animal Nutrition, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno 612 42, Czech Republic
| | - C Rusbridge
- Fitzpatrick Referrals, Godalming, Surrey GU7 2QQ.,School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey GU2 7TE
| | - P Wang
- Program in Genetics and Genome Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - B A Minassian
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S, Canada
| | - V Palus
- Veterinary Clinic ELPA, Trencin 91105, Slovak Republic
| |
Collapse
|
17
|
|
18
|
Romá-Mateo C, Aguado C, García-Giménez JL, Knecht E, Sanz P, Pallardó FV. Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy. Free Radic Biol Med 2015; 88:30-41. [PMID: 25680286 DOI: 10.1016/j.freeradbiomed.2015.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/16/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
Abstract
Lafora disease (LD; OMIM 254780, ORPHA501) is a devastating neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in most cases, by mutations in either the EPM2A or the EPM2B gene, encoding respectively laforin, a phosphatase with dual specificity that is involved in the dephosphorylation of glycogen, and malin, an E3-ubiquitin ligase involved in the polyubiquitination of proteins related to glycogen metabolism. Thus, it has been reported that laforin and malin form a functional complex that acts as a key regulator of glycogen metabolism and that also plays a crucial role in protein homeostasis (proteostasis). Regarding this last function, it has been shown that cells are more sensitive to ER stress and show defects in proteasome and autophagy activities in the absence of a functional laforin-malin complex. More recently, we have demonstrated that oxidative stress accompanies these proteostasis defects and that various LD models show an increase in reactive oxygen species and oxidative stress products together with a dysregulated antioxidant enzyme expression and activity. In this review we discuss possible connections between the multiple defects in protein homeostasis present in LD and oxidative stress.
Collapse
Affiliation(s)
- Carlos Romá-Mateo
- Fundación Investigación Clinico de Valencia, Instituto de Investigación Sanitaria, Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, E46010 Valencia, Spain
| | - Carmen Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - José Luis García-Giménez
- Fundación Investigación Clinico de Valencia, Instituto de Investigación Sanitaria, Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, E46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain
| | - Erwin Knecht
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Pascual Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Federico V Pallardó
- Fundación Investigación Clinico de Valencia, Instituto de Investigación Sanitaria, Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, E46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain.
| |
Collapse
|
19
|
Orhan Akman H, Emmanuele V, Kurt YG, Kurt B, Sheiko T, DiMauro S, Craigen WJ. A novel mouse model that recapitulates adult-onset glycogenosis type 4. Hum Mol Genet 2015; 24:6801-10. [PMID: 26385640 DOI: 10.1093/hmg/ddv385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/14/2015] [Indexed: 01/11/2023] Open
Abstract
Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by deficiency of the glycogen-branching enzyme (GBE). The diagnostic hallmark of the disease is the accumulation of a poorly branched form of glycogen known as polyglucosan (PG). The disease is clinically heterogeneous, with variable tissue involvement and age at onset. Complete loss of enzyme activity is lethal in utero or in infancy and affects primarily the muscle and the liver. However, residual enzyme activity as low as 5-20% leads to juvenile or adult onset of a disorder that primarily affects the central and peripheral nervous system and muscles and in the latter is termed adult polyglucosan body disease (APBD). Here, we describe a mouse model of GSD IV that reflects this spectrum of disease. Homologous recombination was used to knock in the most common GBE1 mutation p.Y329S c.986A > C found in APBD patients of Ashkenazi Jewish decent. Mice homozygous for this allele (Gbe1(ys/ys)) exhibit a phenotype similar to APBD, with widespread accumulation of PG. Adult mice exhibit progressive neuromuscular dysfunction and die prematurely. While the onset of symptoms is limited to adult mice, PG accumulates in tissues of newborn mice but is initially absent from the cerebral cortex and heart muscle. Thus, PG is well tolerated in most tissues, but the eventual accumulation in neurons and their axons causes neuropathy that leads to hind limb spasticity and premature death. This mouse model mimics the pathology and pathophysiologic features of human adult-onset branching enzyme deficiency.
Collapse
Affiliation(s)
- H Orhan Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA,
| | - Valentina Emmanuele
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Bülent Kurt
- Department of Pathology, Gülhane Medical Military Academy, Ankara, Turkey
| | | | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - William J Craigen
- Department of Molecular and Human Genetics and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Glycogen Fuels Survival During Hyposmotic-Anoxic Stress in Caenorhabditis elegans. Genetics 2015; 201:65-74. [PMID: 26116152 PMCID: PMC4566277 DOI: 10.1534/genetics.115.179416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Oxygen is an absolute requirement for multicellular life. Animals that are deprived of oxygen for sufficient periods of time eventually become injured and die. This is largely due to the fact that, without oxygen, animals are unable to generate sufficient quantities of energy. In human diseases triggered by oxygen deprivation, such as heart attack and stroke, hyposmotic stress and cell swelling (edema) arise in affected tissues as a direct result of energetic failure. Edema independently enhances tissue injury in these diseases by incompletely understood mechanisms, resulting in poor clinical outcomes. Here, we present investigations into the effects of osmotic stress during complete oxygen deprivation (anoxia) in the genetically tractable nematode Caenorhabditis elegans. Our findings demonstrate that nematode survival of a hyposmotic environment during anoxia (hyposmotic anoxia) depends on the nematode’s ability to engage in glycogen metabolism. We also present results of a genome-wide screen for genes affecting glycogen content and localization in the nematode, showing that nematode survival of hyposmotic anoxia depends on a large number of these genes. Finally, we show that an inability to engage in glycogen synthesis results in suppression of the enhanced survival phenotype observed in daf-2 insulin-like pathway mutants, suggesting that alterations in glycogen metabolism may serve as a basis for these mutants’ resistance to hyposmotic anoxia.
Collapse
|
21
|
Poyrazoğlu HG, Karaca E, Per H, Gümüs H, Onay H, Canpolat M, Canöz Ö, Ozkınay F, Kumandas S. Three patients with lafora disease: different clinical presentations and a novel mutation. J Child Neurol 2015; 30:777-81. [PMID: 25015673 DOI: 10.1177/0883073814535489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 04/14/2014] [Indexed: 11/15/2022]
Abstract
Lafora disease is a rare, fatal, autosomal recessive hereditary disease characterized by epilepsy, myoclonus and progressive neurological deterioration. Diagnosis is made by polyglucosan inclusion bodies (Lafora bodies) shown in skin biopsy. Responsible mutations of Lafora disease involves either the EPM2A or NHLRC1 (EPM2B) gene. Mutations in the NHLRC1 gene are described as having a more benign clinical course and a later age of death compared with EPM2A mutations. We report 2 genetic mutations and clinical courses of Lafora disease in 3 adolescents with homozygote NHLRC1 mutation and novel homozygous EPM2A mutation.
Collapse
Affiliation(s)
- Hatice Gamze Poyrazoğlu
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emin Karaca
- Department of Medical Genetics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Hüseyin Per
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hakan Gümüs
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Huseyin Onay
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Canpolat
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özlem Canöz
- Department of Pathology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ferda Ozkınay
- Department of Medical Genetics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Sefer Kumandas
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
22
|
DePaoli-Roach AA, Contreras CJ, Segvich DM, Heiss C, Ishihara M, Azadi P, Roach PJ. Glycogen phosphomonoester distribution in mouse models of the progressive myoclonic epilepsy, Lafora disease. J Biol Chem 2014; 290:841-50. [PMID: 25416783 DOI: 10.1074/jbc.m114.607796] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycogen is a branched polymer of glucose that acts as an energy reserve in many cell types. Glycogen contains trace amounts of covalent phosphate, in the range of 1 phosphate per 500-2000 glucose residues depending on the source. The function, if any, is unknown, but in at least one genetic disease, the progressive myoclonic epilepsy Lafora disease, excessive phosphorylation of glycogen has been implicated in the pathology by disturbing glycogen structure. Some 90% of Lafora cases are attributed to mutations of the EPM2A or EPM2B genes, and mice with either gene disrupted accumulate hyperphosphorylated glycogen. It is, therefore, of importance to understand the chemistry of glycogen phosphorylation. Rabbit skeletal muscle glycogen contained covalent phosphate as monoesters of C2, C3, and C6 carbons of glucose residues based on analyses of phospho-oligosaccharides by NMR. Furthermore, using a sensitive assay for glucose 6-P in hydrolysates of glycogen coupled with measurement of total phosphate, we determined the proportion of C6 phosphorylation in rabbit muscle glycogen to be ∼20%. C6 phosphorylation also accounted for ∼20% of the covalent phosphate in wild type mouse muscle glycogen. Glycogen phosphorylation in Epm2a(-/-) and Epm2b(-/-) mice was increased 8- and 4-fold compared with wild type mice, but the proportion of C6 phosphorylation remained unchanged at ∼20%. Therefore, our results suggest that C2, C3, and/or C6 phosphate could all contribute to abnormal glycogen structure or to Lafora disease.
Collapse
Affiliation(s)
- Anna A DePaoli-Roach
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | - Christopher J Contreras
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | - Dyann M Segvich
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | - Christian Heiss
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Mayumi Ishihara
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Parastoo Azadi
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Peter J Roach
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| |
Collapse
|
23
|
Pederson BA, Turnbull J, Epp JR, Weaver SA, Zhao X, Pencea N, Roach PJ, Frankland PW, Ackerley CA, Minassian BA. Inhibiting glycogen synthesis prevents Lafora disease in a mouse model. Ann Neurol 2014; 74:297-300. [PMID: 23913475 DOI: 10.1002/ana.23899] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/05/2013] [Accepted: 03/15/2013] [Indexed: 11/10/2022]
Abstract
Lafora disease (LD) is a fatal progressive myoclonus epilepsy characterized neuropathologically by aggregates of abnormally structured glycogen and proteins (Lafora bodies [LBs]), and neurodegeneration. Whether LBs could be prevented by inhibiting glycogen synthesis and whether they are pathogenic remain uncertain. We genetically eliminated brain glycogen synthesis in LD mice. This resulted in long-term prevention of LB formation, neurodegeneration, and seizure susceptibility. This study establishes that glycogen synthesis is requisite for LB formation and that LBs are pathogenic. It opens a therapeutic window for potential treatments in LD with known and future small molecule inhibitors of glycogen synthesis.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This review highlights recent contributions regarding clinical heterogeneity, pathogenic mechanisms, therapeutic trials, and animal models of the muscle glycogenoses. RECENT FINDINGS Most recent publications have dealt with the clinical effects of enzyme replacement therapy (ERT) in glycogenosis type II (Pompe disease), including the cognitive development of children with the infantile form who have reached school age. Standardized exercise testing has shown the similarity between McArdle disease and one of the most recently described muscle glycogenoses, phosphoglucomutase deficiency. Cycle ergometry in patients with glycogenosis type III (debrancher deficiency) without overt weakness has documented exercise intolerance relieved by glucose infusion, consistent with the glycogenolytic block. A mouse model of McArdle disease faithfully recapitulates most features of the human disease and will prove valuable for a better understanding of pathogenesis and therapeutic modalities. Polyglucosan body myopathy with cardiomyopathy has been associated with mutations in RBCK1, a ubiquitin ligase, which have also been reported in children with early-onset immune disorder. The role of polyglucosan storage in muscle and in both central and peripheral nervous systems has been confirmed in the infantile and late-onset forms of glycogenosis type IV (brancher enzyme deficiency). Additional novel findings include the involvement of the heart in one patient with phosphofructokinase (PFK) deficiency and the presence of tubular aggregates in a manifesting heterozygote with phosphoglycerate mutase deficiency. SUMMARY Important recent developments in the field of muscle glycogenoses include a new disease entity, a new animal model of McArdle disease, and better knowledge of the pathogenesis in some glycogenoses and of the long-term effects of enzyme replacement therapy in Pompe disease.
Collapse
|
25
|
Brewer MK, Husodo S, Dukhande VV, Johnson MB, Gentry MS. Expression, purification and characterization of soluble red rooster laforin as a fusion protein in Escherichia coli. BMC BIOCHEMISTRY 2014; 15:8. [PMID: 24690255 PMCID: PMC4234410 DOI: 10.1186/1471-2091-15-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/27/2014] [Indexed: 01/20/2023]
Abstract
Background The gene that encodes laforin, a dual-specificity phosphatase with a carbohydrate-binding module, is mutated in Lafora disease (LD). LD is an autosomal recessive, fatal progressive myoclonus epilepsy characterized by the intracellular buildup of insoluble, hyperphosphorylated glycogen-like particles, called Lafora bodies. Laforin dephosphorylates glycogen and other glucans in vitro, but the structural basis of its activity remains unknown. Recombinant human laforin when expressed in and purified from E. coli is largely insoluble and prone to aggregation and precipitation. Identification of a laforin ortholog that is more soluble and stable in vitro would circumvent this issue. Results In this study, we cloned multiple laforin orthologs, established a purification scheme for each, and tested their solubility and stability. Gallus gallus (Gg) laforin is more stable in vitro than human laforin, Gg-laforin is largely monomeric, and it possesses carbohydrate binding and phosphatase activity similar to human laforin. Conclusions Gg-laforin is more soluble and stable than human laforin in vitro, and possesses similar activity as a glucan phosphatase. Therefore, it can be used to model human laforin in structure-function studies. We have established a protocol for purifying recombinant Gg-laforin in sufficient quantity for crystallographic and other biophysical analyses, in order to better understand the function of laforin and define the molecular mechanisms of Lafora disease.
Collapse
Affiliation(s)
| | | | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, 741 S, Limestone, Lexington, Kentucky 40536-0509, USA.
| |
Collapse
|
26
|
Turnbull J, Epp JR, Goldsmith D, Zhao X, Pencea N, Wang P, Frankland PW, Ackerley CA, Minassian BA. PTG protein depletion rescues malin-deficient Lafora disease in mouse. Ann Neurol 2014; 75:442-6. [PMID: 24419970 DOI: 10.1002/ana.24104] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 11/11/2022]
Abstract
Ubiquitin ligases regulate quantities and activities of target proteins, often pleiotropically. The malin ubiquitin E3 ligase is reported to regulate autophagy, the misfolded protein response, microRNA silencing, Wnt signaling, neuronatin-mediated endoplasmic reticulum stress, and the laforin glycogen phosphatase. Malin deficiency causes Lafora disease, pathologically characterized by neurodegeneration and accumulations of malformed glycogen (Lafora bodies). We show that reducing glycogen production in malin-deficient mice by genetically removing PTG, a glycogen synthesis activator protein, nearly completely eliminates Lafora bodies and rescues the neurodegeneration, myoclonus, seizure susceptibility, and behavioral abnormality. Glycogen synthesis downregulation is a potential therapy for the fatal adolescence onset epilepsy Lafora disease.
Collapse
Affiliation(s)
- Julie Turnbull
- Program in Genetics and Genome Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Minassian BA. Lafora's odyssey reaches a mysterious port of call. Brain 2014; 137:646-8. [PMID: 24549808 DOI: 10.1093/brain/awu018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Berge A Minassian
- Division of Neurology, Department of Paediatrics, and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto Canada, Institute of Medical Sciences, University of Toronto, University of Toronto Michael Bahen Chair in Epilepsy Research
| |
Collapse
|
28
|
Gayarre J, Duran-Trío L, Criado Garcia O, Aguado C, Juana-López L, Crespo I, Knecht E, Bovolenta P, Rodríguez de Córdoba S. The phosphatase activity of laforin is dispensable to rescue Epm2a−/− mice from Lafora disease. Brain 2014; 137:806-18. [DOI: 10.1093/brain/awt353] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
29
|
Cenci U, Nitschke F, Steup M, Minassian BA, Colleoni C, Ball SG. Transition from glycogen to starch metabolism in Archaeplastida. TRENDS IN PLANT SCIENCE 2014; 19:18-28. [PMID: 24035236 DOI: 10.1016/j.tplants.2013.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 05/18/2023]
Abstract
In this opinion article we propose a scenario detailing how two crucial components have evolved simultaneously to ensure the transition of glycogen to starch in the cytosol of the Archaeplastida last common ancestor: (i) the recruitment of an enzyme from intracellular Chlamydiae pathogens to facilitate crystallization of α-glucan chains; and (ii) the evolution of novel types of polysaccharide (de)phosphorylating enzymes from preexisting glycogen (de)phosphorylation host pathways to allow the turnover of such crystals. We speculate that the transition to starch benefitted Archaeplastida in three ways: more carbon could be packed into osmotically inert material; the host could resume control of carbon assimilation from the chlamydial pathogen that triggered plastid endosymbiosis; and cyanobacterial photosynthate export could be integrated in the emerging Archaeplastida.
Collapse
Affiliation(s)
- Ugo Cenci
- Laboratoire de Chimie Biologique, Université des Sciences et Technologies de Lille, CNRS, UMR8576, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - Felix Nitschke
- Institute of Biochemistry and Biology and Plant Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Martin Steup
- Institute of Biochemistry and Biology and Plant Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Christophe Colleoni
- Laboratoire de Chimie Biologique, Université des Sciences et Technologies de Lille, CNRS, UMR8576, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - Steven G Ball
- Laboratoire de Chimie Biologique, Université des Sciences et Technologies de Lille, CNRS, UMR8576, Cité Scientifique, 59655 Villeneuve d'Ascq, France.
| |
Collapse
|
30
|
Strnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. Compr Physiol 2013; 3:1393-436. [DOI: 10.1002/cphy.c120032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Laforin-malin complex degrades polyglucosan bodies in concert with glycogen debranching enzyme and brain isoform glycogen phosphorylase. Mol Neurobiol 2013; 49:645-57. [PMID: 24068615 DOI: 10.1007/s12035-013-8546-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
In Lafora disease (LD), the deficiency of either EPM2A or NHLRC1, the genes encoding the phosphatase laforin and E3 ligase, respectively, causes massive accumulation of less-branched glycogen inclusions, known as Lafora bodies, also called polyglucosan bodies (PBs), in several types of cells including neurons. The biochemical mechanism underlying the PB accumulation, however, remains undefined. We recently demonstrated that laforin is a phosphatase of muscle glycogen synthase (GS1) in PBs, and that laforin recruits malin, together reducing PBs. We show here that accomplishment of PB degradation requires a protein assembly consisting of at least four key enzymes: laforin and malin in a complex, and the glycogenolytic enzymes, glycogen debranching enzyme 1 (AGL1) and brain isoform glycogen phosphorylase (GPBB). Once GS1-synthesized polyglucosan accumulates into PBs, laforin recruits malin to the PBs where laforin dephosphorylates, and malin degrades the GS1 in concert with GPBB and AGL1, resulting in a breakdown of polyglucosan. Without fountional laforin-malin complex assembled on PBs, GPBB and AGL1 together are unable to efficiently breakdown polyglucosan. All these events take place on PBs and in cytoplasm. Deficiency of each of the four enzymes causes PB accumulation in the cytoplasm of affected cells. Demonstration of the molecular mechanisms underlying PB degradation lays a substantial biochemical foundation that may lead to understanding how PB metabolizes and why mutations of either EPM2A or NHLRC1 in humans cause LD. Mutations in AGL1 or GPBB may cause diseases related to PB accumulation.
Collapse
|
32
|
Kakhlon O, Glickstein H, Feinstein N, Liu Y, Baba O, Terashima T, Akman HO, Dimauro S, Lossos A. Polyglucosan neurotoxicity caused by glycogen branching enzyme deficiency can be reversed by inhibition of glycogen synthase. J Neurochem 2013; 127:101-13. [PMID: 23607684 DOI: 10.1111/jnc.12277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/10/2013] [Accepted: 04/18/2013] [Indexed: 12/25/2022]
Abstract
Uncontrolled elongation of glycogen chains, not adequately balanced by their branching, leads to the formation of an insoluble, presumably neurotoxic, form of glycogen called polyglucosan. To test the suspected pathogenicity of polyglucosans in neurological glycogenoses, we have modeled the typical glycogenosis Adult Polyglucosan Body Disease (APBD) by suppressing glycogen branching enzyme 1 (GBE1, EC 2.4.1.18) expression using lentiviruses harboring short hairpin RNA (shRNA). GBE1 suppression in embryonic cortical neurons led to polyglucosan accumulation and associated apoptosis, which were reversible by rapamycin or starvation treatments. Further analysis revealed that rapamycin and starvation led to phosphorylation and inactivation of glycogen synthase (GS, EC 2.4.1.11), dephosphorylated and activated in the GBE1-suppressed neurons. These protective effects of rapamycin and starvation were reversed by overexpression of phosphorylation site mutant GS only if its glycogen binding site was intact. While rapamycin and starvation induce autophagy, autophagic maturation was not required for their corrective effects, which prevailed even if autophagic flux was inhibited by vinblastine. Furthermore, polyglucosans were not observed in any compartment along the autophagic pathway. Our data suggest that glycogen branching enzyme repression in glycogenoses can cause pathogenic polyglucosan buildup, which might be corrected by GS inhibition.
Collapse
Affiliation(s)
- Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nitschke F, Wang P, Schmieder P, Girard JM, Awrey DE, Wang T, Israelian J, Zhao X, Turnbull J, Heydenreich M, Kleinpeter E, Steup M, Minassian BA. Hyperphosphorylation of glucosyl C6 carbons and altered structure of glycogen in the neurodegenerative epilepsy Lafora disease. Cell Metab 2013; 17:756-67. [PMID: 23663739 DOI: 10.1016/j.cmet.2013.04.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/01/2013] [Accepted: 03/29/2013] [Indexed: 11/29/2022]
Abstract
Laforin or malin deficiency causes Lafora disease, characterized by altered glycogen metabolism and teenage-onset neurodegeneration with intractable and invariably fatal epilepsy. Plant starches possess small amounts of metabolically essential monophosphate esters. Glycogen contains similar phosphate amounts, which are thought to originate from a glycogen synthase error side reaction and therefore lack any specific function. Glycogen is also believed to lack monophosphates at glucosyl carbon C6, an essential phosphorylation site in plant starch metabolism. We now show that glycogen phosphorylation is not due to a glycogen synthase side reaction, that C6 is a major glycogen phosphorylation site, and that C6 monophosphates predominate near centers of glycogen molecules and positively correlate with glycogen chain lengths. Laforin or malin deficiency causes C6 hyperphosphorylation, which results in malformed long-chained glycogen that accumulates in many tissues, causing neurodegeneration in brain. Our work advances the understanding of Lafora disease pathogenesis and suggests that glycogen phosphorylation has important metabolic function.
Collapse
Affiliation(s)
- Felix Nitschke
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang Y, Ma K, Wang P, Baba O, Zhang H, Parent JM, Zheng P, Liu Y, Minassian BA, Liu Y. Laforin prevents stress-induced polyglucosan body formation and Lafora disease progression in neurons. Mol Neurobiol 2013; 48:49-61. [PMID: 23546741 DOI: 10.1007/s12035-013-8438-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/04/2013] [Indexed: 11/29/2022]
Abstract
Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in the brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1) and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice, stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.
Collapse
Affiliation(s)
- Yin Wang
- Section of General Surgery, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stapleton D, Nelson C, Parsawar K, Flores-Opazo M, McClain D, Parker G. The 3T3-L1 adipocyte glycogen proteome. Proteome Sci 2013; 11:11. [PMID: 23521774 PMCID: PMC3622581 DOI: 10.1186/1477-5956-11-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/04/2013] [Indexed: 01/10/2023] Open
Abstract
Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle.
Collapse
Affiliation(s)
- David Stapleton
- University of Utah School of Medicine, Rm 4C464B SOM, 30 N 1900 E, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | |
Collapse
|