1
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
2
|
Hokello J, Sharma AL, Tyagi M. Efficient Non-Epigenetic Activation of HIV Latency through the T-Cell Receptor Signalosome. Viruses 2020; 12:v12080868. [PMID: 32784426 PMCID: PMC7472175 DOI: 10.3390/v12080868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) can either undergo a lytic pathway to cause productive systemic infections or enter a latent state in which the integrated provirus remains transcriptionally silent for decades. The ability to latently infect T-cells enables HIV-1 to establish persistent infections in resting memory CD4+ T-lymphocytes which become reactivated following the disruption or cessation of intensive drug therapy. The maintenance of viral latency occurs through epigenetic and non-epigenetic mechanisms. Epigenetic mechanisms of HIV latency regulation involve the deacetylation and methylation of histone proteins within nucleosome 1 (nuc-1) at the viral long terminal repeats (LTR) such that the inhibition of histone deacetyltransferase and histone lysine methyltransferase activities, respectively, reactivates HIV from latency. Non-epigenetic mechanisms involve the nuclear restriction of critical cellular transcription factors such as nuclear factor-kappa beta (NF-κB) or nuclear factor of activated T-cells (NFAT) which activate transcription from the viral LTR, limiting the nuclear levels of the viral transcription transactivator protein Tat and its cellular co-factor positive transcription elongation factor b (P-TEFb), which together regulate HIV transcriptional elongation. In this article, we review how T-cell receptor (TCR) activation efficiently induces NF-κB, NFAT, and activator protein 1 (AP-1) transcription factors through multiple signal pathways and how these factors efficiently regulate HIV LTR transcription through the non-epigenetic mechanism. We further discuss how elongation factor P-TEFb, induced through an extracellular signal-regulated kinase (ERK)-dependent mechanism, regulates HIV transcriptional elongation before new Tat is synthesized and the role of AP-1 in the modulation of HIV transcriptional elongation through functional synergy with NF-κB. Furthermore, we discuss how TCR signaling induces critical post-translational modifications of the cyclin-dependent kinase 9 (CDK9) subunit of P-TEFb which enhances interactions between P-TEFb and the viral Tat protein and the resultant enhancement of HIV transcriptional elongation.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Basic Science, Faculty of Science and Technology, Kampala International University-Western Campus, P.O Box 71, Bushenyi, Uganda;
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
3
|
van Loo KMJ, van Schijndel JE, van Zweeden M, van Manen D, Trip MD, Petersen DC, Schuitemaker H, Hayes VM, Martens GJM. Correlation between HIV-1 seropositivity and prevalence of a gamma-secretase polymorphism in two distinct ethnic populations. J Med Virol 2009; 81:1847-51. [PMID: 19774691 DOI: 10.1002/jmv.21601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Susceptibility for human immunodeficiency virus type 1 (HIV-1) infection may be influenced by host genetics. Recent findings with a Wistar rat model raised the possibility that the gamma-secretase pathway may be associated with an individual's susceptibility to infection. A functional single-nucleotide polymorphism (SNP) in the gamma-secretase component APH1B (Phe217Leu; rs1047552) was therefore analyzed for association with HIV-1 infection. The SNP showed a tendency for association with HIV-1 infection in a Xhosa indigenous South African Bantu study (P = 0.087), and associated significantly in a Caucasian Dutch study (P = 0.049). Together, the results suggest a role for the gamma-secretase pathway in susceptibility to HIV-1 infection.
Collapse
Affiliation(s)
- Karen M J van Loo
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour and Nijmegen Center for Molecular Life Sciences, Nijmegen 6525 GA , The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gormley M, Tozeren A. Expression profiles of switch-like genes accurately classify tissue and infectious disease phenotypes in model-based classification. BMC Bioinformatics 2008; 9:486. [PMID: 19014681 PMCID: PMC2620272 DOI: 10.1186/1471-2105-9-486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 11/17/2008] [Indexed: 12/16/2022] Open
Abstract
Background Large-scale compilation of gene expression microarray datasets across diverse biological phenotypes provided a means of gathering a priori knowledge in the form of identification and annotation of bimodal genes in the human and mouse genomes. These switch-like genes consist of 15% of known human genes, and are enriched with genes coding for extracellular and membrane proteins. It is of interest to determine the prediction potential of bimodal genes for class discovery in large-scale datasets. Results Use of a model-based clustering algorithm accurately classified more than 400 microarray samples into 19 different tissue types on the basis of bimodal gene expression. Bimodal expression patterns were also highly effective in differentiating between infectious diseases in model-based clustering of microarray data. Supervised classification with feature selection restricted to switch-like genes also recognized tissue specific and infectious disease specific signatures in independent test datasets reserved for validation. Determination of "on" and "off" states of switch-like genes in various tissues and diseases allowed for the identification of activated/deactivated pathways. Activated switch-like genes in neural, skeletal muscle and cardiac muscle tissue tend to have tissue-specific roles. A majority of activated genes in infectious disease are involved in processes related to the immune response. Conclusion Switch-like bimodal gene sets capture genome-wide signatures from microarray data in health and infectious disease. A subset of bimodal genes coding for extracellular and membrane proteins are associated with tissue specificity, indicating a potential role for them as biomarkers provided that expression is altered in the onset of disease. Furthermore, we provide evidence that bimodal genes are involved in temporally and spatially active mechanisms including tissue-specific functions and response of the immune system to invading pathogens.
Collapse
Affiliation(s)
- Michael Gormley
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA.
| | | |
Collapse
|
5
|
|
6
|
Thibault S, Tardif MR, Barat C, Tremblay MJ. TLR2 Signaling Renders Quiescent Naive and Memory CD4+T Cells More Susceptible to Productive Infection with X4 and R5 HIV-Type 1. THE JOURNAL OF IMMUNOLOGY 2007; 179:4357-66. [PMID: 17878330 DOI: 10.4049/jimmunol.179.7.4357] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been recently demonstrated that circulating microbial products are responsible for a systemic immune activation in individuals infected with HIV-type 1. Bacterial products carry structural conserved motifs recognized by TLRs. Some TLR members are expressed in primary human CD4+ T cells but the precise functional role played by these pattern recognition receptors is still imprecise. In this study, we report that engagement of TLR2 in quiescent naive and memory CD4+ T cells leads to the acquisition of an effector-like phenotype. Interestingly, engagement of TLR2 renders both cell subsets more susceptible to productive infection with X4 virions and a higher virus production was seen with R5 viruses. It can be proposed that exposure of resting CD4+ T cells to pathogen-derived products that can engage TLR2 induces the acquisition of an effector-like phenotype in naive and memory CD4+ T lymphocytes, a phenomenon that might result in an acceleration of virus replication, immune dysregulation, and HIV-type 1-mediated disease progression.
Collapse
Affiliation(s)
- Sandra Thibault
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
7
|
Malcolm T, Chen J, Chang C, Sadowski I. Induction of chromosomally integrated HIV-1 LTR requires RBF-2 (USF/TFII-I) and Ras/MAPK signaling. Virus Genes 2007; 35:215-23. [PMID: 17546494 DOI: 10.1007/s11262-007-0109-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
The HIV-1 LTR is regulated by multiple signaling pathways responsive to T cell activation. In this study, we have examined the contribution of the MAPK, calcineurin-NFAT and TNFalpha-NF-kappaB pathways on induction of chromosomally integrated HIV-1 LTR reporter genes. We find that induction by T-cell receptor (CD3) cross-linking and PMA is completely dependent upon a binding site for RBF-2 (USF1/2-TFII-I), known as RBEIII at -120. The MAPK pathway is essential for induction of the wild type LTR by these treatments, as the MEK inhibitors PD98059 and U0126 block induction by both PMA treatment and CD3 cross-linking. Stimulation of cells with ionomycin on its own has no effect on the integrated LTR, indicating that calcineurin-NFAT is incapable of causing induction in the absence of additional signals, but stimulation with both PMA and ionomycin produces a synergistic response. In contrast, stimulation of NF-kappaB by treatment with TNFalpha causes induction of both the wild type and RBEIII mutant LTRs, an effect that is independent of MAPK signaling. USF1, USF2 and TFII-I from unstimulated cells are capable of binding RBEIII in vitro, and furthermore can be observed on the LTR in vivo by chromatin imunoprecipitation from untreated cells. DNA binding activity of USF1/2 is marginally stimulated by PMA/ ionomycin treatment, and all three factors appear to remain associated with the LTR throughout the course of induction. These results implicate major roles for the MAPK pathway and RBF-2 (USF1/2-TFII-I) in coordinating events necessary for transition of latent integrated HIV-1 to active transcription in response to T cell signaling.
Collapse
Affiliation(s)
- Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics, LSI, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
8
|
Fierro NA, Pedraza-Alva G, Rosenstein Y. TCR-Dependent Cell Response Is Modulated by the Timing of CD43 Engagement. THE JOURNAL OF IMMUNOLOGY 2006; 176:7346-53. [PMID: 16751378 DOI: 10.4049/jimmunol.176.12.7346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Binding of Ag by the Ag receptor in combination with other stimuli provided by costimulatory receptors triggers the expansion and differentiation of T lymphocytes. However, it is unclear whether the time when costimulatory molecules interact with their counterreceptors with regards to Ag recognition leads to different T cell responses. Provided that the coreceptor molecule CD43 is a very abundant molecule evenly distributed on the membrane of T cell surface protruding 45 nm from the cell, we hypothesized that CD43 is one of the first molecules that interacts with the APC and thus modulates TCR activation. We show that engaging CD43 before or simultaneously with the TCR inhibited Lck-Src homology 2 domain containing phosphatase-1 interaction, preventing the onset of a negative feedback loop on TCR signals, favoring high levels of IL-2, cell proliferation, and secretion of proinflammatory cytokines and chemokines. In contrast, the intracellular signals resulting of engaging the TCR before CD43 were insufficient to induce IL-2 production and cell proliferation. Interestingly, when stimulated through the TCR and CD28, cells proliferated vigorously, independent of the order with which molecules were engaged. These results indicate that CD43 induces a signaling cascade that prolongs the duration of TCR signaling and support the temporal summation model for T cell activation. In addition to the strength and duration of intracellular signals, our data underscore temporality with which certain molecules are engaged as yet another mechanism to fine tune T cell signal quality, and ultimately immune function.
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Cell Proliferation
- Cells, Cultured
- Clonal Anergy/immunology
- Cytokines/biosynthesis
- Humans
- Intracellular Signaling Peptides and Proteins/metabolism
- JNK Mitogen-Activated Protein Kinases/physiology
- Leukosialin/immunology
- Leukosialin/metabolism
- Leukosialin/physiology
- Ligands
- Lymphocyte Activation/immunology
- MAP Kinase Signaling System/immunology
- Membrane Proteins/metabolism
- Mitogen-Activated Protein Kinase 1/physiology
- Phosphorylation
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Nora A Fierro
- Instituto de Biotecnología and Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | |
Collapse
|
9
|
Yang P, Henderson AJ. Nef enhances c-Cbl phosphorylation in HIV-infected CD4+ T lymphocytes. Virology 2005; 336:219-28. [PMID: 15892963 DOI: 10.1016/j.virol.2005.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/16/2004] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
The multifunctional HIV-1 protein Nef possesses several motifs that interact with signaling molecules in infected T cells. In order to determine whether Nef influences T cell activation, cells were infected with Nef-positive and Nef-negative clones of HIV. CD28 expression and changes in tyrosine phosphorylation were monitored. We observed no Nef-dependent changes in CD28 expression or function. However, infection with Nef-positive virus led to changes in tyrosine phosphorylation. This Nef-induced phosphorylation was observed in unstimulated cells, and c-Cbl was identified as one of the proteins whose phosphorylation was upregulated by Nef. Furthermore, Lck is required for Nef-mediated c-Cbl tyrosine phosphorylation. These results suggest that Nef modifies T cell signaling in the absence of T cell receptor engagement and co-stimulation.
Collapse
Affiliation(s)
- Polung Yang
- Integrated Bioscience Graduate Program in Immunobiology, Department of Veterinary Science, Immunology Research Laboratories, 115 Henning Building, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
10
|
Tardif MR, Tremblay MJ. Tetraspanin CD81 provides a costimulatory signal resulting in increased human immunodeficiency virus type 1 gene expression in primary CD4+ T lymphocytes through NF-kappaB, NFAT, and AP-1 transduction pathways. J Virol 2005; 79:4316-28. [PMID: 15767432 PMCID: PMC1061526 DOI: 10.1128/jvi.79.7.4316-4328.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The tetraspanin superfamily member CD81 has been shown to form microdomains in the plasma membrane and to participate in the recruitment of numerous adhesion molecules, receptors, and signaling proteins in the central zone of the immune synapse. Beside its structural role, CD81 also delivers a cosignal for T cells to trigger cytokine production and cellular proliferation, thus suggesting a key role in some fundamental biological functions. It has been shown that signaling events initiated through the T-cell receptor (TCR)/CD3 complex and the coactivator CD28 positively affect human immunodeficiency virus type 1 (HIV-1) gene expression, but no study had investigated the putative costimulatory activity of CD81 on HIV-1 transcriptional activity. We observed that CD81 engagement potentiates TCR/CD3-mediated signaling, resulting in an enhancement of HIV-1 transcription and de novo virus production in both established Jurkat cells and primary CD4+ T lymphocytes at a magnitude that approximates that with CD28. These observations were made by using transiently transfected plasmids (i.e., nonintegrated viral DNA) and fully competent viruses (i.e., stably integrated provirus). Moreover, the CD81-mediated enhancement of HIV-1 gene expression is linked with increased nuclear translocation of transcription factors known to positively regulate virus transcription, i.e., NF-kappaB, NFAT, and AP-1. These findings suggest that engagement of CD81 decreases the signaling threshold required to initiate TCR/CD3-mediated induction of integrated HIV-1 proviral DNA in primary CD4+ T cells.
Collapse
Affiliation(s)
- Mélanie R Tardif
- Research Center in Infectious Diseases, CHUL Research Center, Faculty of Medicine, Laval University, Quebec, Canada
| | | |
Collapse
|
11
|
del Rio R, Rincón M, Layseca-Espinosa E, Fierro NA, Rosenstein Y, Pedraza-Alva G. PKCtheta is required for the activation of human T lymphocytes induced by CD43 engagement. Biochem Biophys Res Commun 2005; 325:133-43. [PMID: 15522211 DOI: 10.1016/j.bbrc.2004.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Indexed: 12/12/2022]
Abstract
The turnover of phosphoinositides leading to PKC activation constitutes one of the principal axes of intracellular signaling. In T lymphocytes, the enhanced and prolonged PKC activation resulting from the engagement of the TcR and co-receptor molecules ensures a productive T cell response. The CD43 co-receptor promotes activation and proliferation, by inducing IL-2 secretion and CD69 expression. CD43 engagement has been shown to promote phosphoinositide turnover and DAG production. Moreover, PKC activation was found to be required for the activation of the MAP kinase pathway in response to CD43 ligation. Here we show that CD43 engagement led to the membrane translocation and enzymatic activity of specific PKC isoenzymes: cPKC (alpha/beta), nPKC (epsilon and theta;), aPKC (zeta) and PKCmu. We also show that activation of PKCtheta; resulting from CD43 ligation induced CD69 expression through an ERK-dependent pathway leading to AP-1, NF-kappaB activation and an ERK independent pathway promoting NFAT activation. Together, these data suggest that PKCtheta; plays a critical role in the co-stimulatory functions of CD43 in human T cells.
Collapse
Affiliation(s)
- Roxana del Rio
- Instituto de Biotecnología/Universidad Nacional Autónoma de México, AP 510-3 Cuernavaca, Mor. 62250, Mexico
| | | | | | | | | | | |
Collapse
|
12
|
Mattioli I, Dittrich-Breiholz O, Livingstone M, Kracht M, Schmitz ML. Comparative analysis of T-cell costimulation and CD43 activation reveals novel signaling pathways and target genes. Blood 2004; 104:3302-4. [PMID: 15280197 DOI: 10.1182/blood-2004-04-1536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The CD43 lymphocyte surface receptor is involved in the regulation of lymphocyte adhesion and activation. Many CD43 functions remain controversial or unclear, and it is not known to which extent CD43 signaling pathways are shared with or distinct from those used by the T-cell receptor (TCR). Here, we systematically compared signaling events and target gene expression induced by CD43 or T-cell costimulation in primary human peripheral T cells. These studies identify nuclear factor-κB (NF-κB) p65 serine 468 as a novel inducible phosphorylation site strongly induced by T-cell costimulation and only weakly triggered by CD43 ligation. We also identified CD43 as a novel Jun N-terminal kinase (JNK) activator and a comprehensive analysis of further signaling events suggests that both stimuli use overlapping but also distinct signaling pathways. Microarray analysis of inflammatory genes shows 1 group of genes coregulated by both stimuli and 2 further groups of target genes affected solely by costimulation or primarily by CD43. (Blood. 2004;104:3302-3304)
Collapse
Affiliation(s)
- Ivan Mattioli
- Department of Chemistry and Biochemistry, University of Bern, Freiestr. 3, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Barat C, Gervais P, Tremblay MJ. Engagement of ICAM-3 provides a costimulatory signal for human immunodeficiency virus type 1 replication in both activated and quiescent CD4+ T lymphocytes: implications for virus pathogenesis. J Virol 2004; 78:6692-7. [PMID: 15163761 PMCID: PMC416497 DOI: 10.1128/jvi.78.12.6692-6697.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is regulated by several extracellular signals. We demonstrate that intercellular adhesion molecule 3 (ICAM-3) acts as a costimulating molecule to increase HIV-1 transcription and viral production, a process allowing productive infection of quiescent CD4+ T lymphocytes. The present work suggests an important role for ICAM-3 in HIV-1 replication.
Collapse
Affiliation(s)
- Corinne Barat
- Laboratory of Human Immuno-Retrovirology, Research Center in Infectious Diseases, RC709, CHUL Research Center, 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2
| | | | | |
Collapse
|
14
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) has evolved to coordinate its replication with the activation state of the host CD4T cell. To this end, it taps into major host cell signaling pathways and their associated transcription factors. Of these, T-cell activation and the transcription factor NF-kappaB, respectively, have become the best-studied examples. The past several years have revealed compelling evidence that another transcription factor family involved in T-cell activation, the nuclear factor of activated T cells (NFAT), plays an important role in the regulation of HIV-1. Major advances have been made in our understanding of the interaction of HIV-1 with this intriguing transcription factor. The duplicated NF-kappaB binding sites in the HIV-1 enhancer surprisingly also bind NFAT proteins and appear to be the most important targets for NFAT transactivation of the HIV-1 long terminal repeat. The crystal structure of NFAT1 bound to one of these duplicated sites was solved recently. Interestingly, it showed that NFAT1 binds to this site as a homodimer and occupies the core of the NF-kappaB site, suggesting mutually exclusive binding and alternate transactivation by these two factors. NFAT also regulates HIV-1 infection indirectly, as it can relieve a block to reverse transcription in quiescent T cells. In turn, HIV-1, and particularly its Tat and Nef gene products, can upregulate NFAT expression and activity. This reciprocal regulation between virus and transcription factor potentially creates a positive feedback loop, which may facilitate the establishment of early HIV-1 infection and, later, the transition from latent to productive infection. The immunosuppressive drug cyclosporin A (CsA) inhibits NFAT activity and thus represents a potential treatment for HIV-1 infection. Recent small-scale clinical trials have yielded optimistic results, suggesting roles for CsA after organ transplantation in HIV-1+ individuals and as adjunct treatment in stable early HIV-1 infection.
Collapse
Affiliation(s)
- F Pessler
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
15
|
Layseca-Espinosa E, Pedraza-Alva G, Montiel JL, del Río R, Fierro NA, González-Amaro R, Rosenstein Y. T cell aggregation induced through CD43: intracellular signals and inhibition by the immunomodulatory drug leflunomide. J Leukoc Biol 2003; 74:1083-93. [PMID: 12972508 DOI: 10.1189/jlb.0303095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The CD43 coreceptor molecule has been shown to participate in lymphocyte adhesion and activation. Leukocyte homotypic aggregation results from a cascade of intracellular signals delivered to the cells upon engagement of different cell-surface molecules with their natural ligands. This phenomenon requires an active metabolism, reorganization of the cytoskeleton, and relocalization of cell-surface molecules. The aim of this study was to identify some of the key members of the signaling cascade leading to T lymphocyte homotypic aggregation following CD43 engagement. CD43-mediated homotypic aggregation of T lymphocytes required the participation of Src kinases, phospholipase C-gamma2, protein kinase C, phosphatidylinositol-3 kinase, as well as extracellular-regulated kinase 1/2 and p38. Data shown here suggest that these signaling molecules play a central role in regulating actin cytoskeleton remodeling after CD43 ligation. We also evaluated the ability of immunomodulatory drugs such as leflunomide to block the CD43-mediated homotypic aggregation. Leflunomide blocked the recruitment of targets of the Src family kinases as well as actin polymerization, diminishing the ability of T lymphocytes to aggregate in response to CD43-specific signals, suggesting that this drug might control the migration and recruitment of lymphoid cells to inflamed tissues.
Collapse
|
16
|
Cruz-Muñoz ME, Salas-Vidal E, Salaiza-Suazo N, Becker I, Pedraza-Alva G, Rosenstein Y. The CD43 coreceptor molecule recruits the zeta-chain as part of its signaling pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1901-8. [PMID: 12902492 DOI: 10.4049/jimmunol.171.4.1901] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD43 is an abundant cell surface sialoglycoprotein implicated in hemopoietic cell adhesion and activation. Cell stimulation through CD43 results in recruitment of different signaling proteins, including members of the Src family kinases, Syk, phospholipase Cgamma2, the adapter protein Shc, the guanine nucleotide exchange factor Vav, and activation of protein kinase C. In this study, we report that in human T lymphocytes, the zeta-chain is part of the CD43 signaling pathway. Upon CD43 engagement, the zeta-chain was tyrosine-phosphorylated, generating docking sites for tyrosine-phosphorylated zeta-associated protein of 70 kDa and Vav. In vitro kinase assays suggested that zeta-associated protein of 70 kDa could account for the kinase activity associated with the zeta-chain following CD43 engagement. Cross-linking CD43 on the surface of the Lck-deficient JCaM.1 cells failed to phosphorylate the zeta-chain and associated proteins, suggesting that Lck is a key element in the CD43 signaling pathway leading to zeta phosphorylation. CD43 engagement with beads coated with anti-CD43 mAb resulted in concentration of the zeta-chain toward the bead attachment site, but interestingly, the distribution of the T cell Ag receptor complex remained unaffected. Recruitment of the zeta-chain through CD43-mediated signals was not restricted to T lymphocytes because phosphorylation and redistribution of the zeta-chain was also observed in NK cells. Our results provide evidence that the zeta-chain functions as a scaffold molecule in the CD43 signaling pathway, favoring the recruitment and formation of downstream signaling complexes involved in the CD43-mediated cell activation of T lymphocytes and other leukocytes such as NK cells.
Collapse
MESH Headings
- Adult
- Antigens, CD
- Enzyme Activation/immunology
- Humans
- Jurkat Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukosialin
- Ligands
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Muromonab-CD3/metabolism
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Sialoglycoproteins/immunology
- Sialoglycoproteins/metabolism
- Sialoglycoproteins/physiology
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tyrosine/metabolism
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Mario Ernesto Cruz-Muñoz
- Instituto de Biotecnología and Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | |
Collapse
|