1
|
Chen G, Chen L, Li X, Mohammadi M. FGF-based drug discovery: advances and challenges. Nat Rev Drug Discov 2025; 24:335-357. [PMID: 39875570 DOI: 10.1038/s41573-024-01125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible. However, the observation that paracrine FGFs can exert FGF hormone-like metabolic activities has restored interest in these FGFs. The recent structural elucidation of the FGF cell surface signalling machinery and the formulation of a new threshold model for FGF signalling specificity have paved the way for therapeutically harnessing paracrine FGFs for the treatment of a range of metabolic diseases.
Collapse
Affiliation(s)
- Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Moosa Mohammadi
- Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Rivoira MA, Peralta López ME, Areco V, Díaz de Barboza G, Dionisi MP, Tolosa de Talamoni N. Emerging concepts on the FGF23 regulation and activity. Mol Cell Biochem 2025; 480:75-89. [PMID: 38581553 DOI: 10.1007/s11010-024-04982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 04/08/2024]
Abstract
Fibroblast growth factor 23 (FGF23) discovery has provided new insights into the regulation of Pi and Ca homeostasis. It is secreted by osteoblasts and osteocytes, and acts mainly in the kidney, parathyroid, heart, and bone. The aim of this review is to highlight the current knowledge on the factors modulating the synthesis of FGF23, the canonical and non-canonical signaling pathways of the hormone, the role of FGF23 in different pathophysiological conditions, and the anti-FGF23 therapy. This is a narrative review based on the search of PubMed database in the range of years 2000-2023 using the keywords local and systemic regulators of FGF23 synthesis, FGF23 receptors, canonical and non-canonical pathways, pathophysiological conditions and FGF23, and anti-FGF23 therapy, focusing the data on the molecular mechanisms. The regulation of FGF23 synthesis is complex and multifactorial. It is regulated by local factors and systemic regulators mainly involved in bone mineralization. The excessive FGF23 production is associated with different congenital diseases and with diseases occurring with a secondary high FGF23 production such as in chronic disease kidney and tumor-induced osteomalacia (TIO). The anti-FGF23 therapy appears to be useful to treat chromosome X-linked hypophosphatemia and TIO, but there are doubts about the handle of excessive FGF23 production in CKD. FGF23 biochemistry and pathophysiology are generating a plethora of knowledge to reduce FGF23 bioactivity at many levels that might be useful for future therapeutics of diseases associated with high-serum FGF23 levels.
Collapse
Affiliation(s)
- María Angélica Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María Elena Peralta López
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Vanessa Areco
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, CONICET-UNVM), Córdoba, Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María Paula Dionisi
- Cátedra de Clínica Médica II - UHMI Nº 2, Hospital San Roque, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
3
|
Bouju A, Nusse R, Wu PV. A primer on the pleiotropic endocrine fibroblast growth factor FGF19/FGF15. Differentiation 2024; 140:100816. [PMID: 39500656 DOI: 10.1016/j.diff.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
Fibroblast Growth Factor 19 (FGF19) is a member of the Fibroblast Growth Factor (FGF) family, known for its role in various cellular processes including embryonic development and metabolic regulation. FGF19 functions as an endocrine factor, influencing energy balance, bile acid synthesis, glucose and lipid metabolism, as well as cell proliferation. FGF19 has a conserved structure typical of FGFs but exhibits unique features. Unlike most FGFs, which act locally, FGF19 travels through the bloodstream to distant targets including the liver. Its interaction with the β-Klotho (KLB) co-receptor and FGF Receptor 4 (FGFR4) in hepatocytes or FGFR1c in extrahepatic tissues initiates signaling cascades crucial for its biological functions. Although the mouse ortholog, FGF15, diverges significantly from human FGF19 in protein sequence and receptor binding, studies of FGF15-deficient mice have led to a better understanding of the proteins' role in bile acid regulation, metabolism, and embryonic development. Overexpression studies in transgenic mice have further revealed roles in not only ameliorating metabolic diseases but also in promoting hepatocyte proliferation and tumorigenesis. This review summarizes the gene and protein structure of FGF19/15, its expression patterns, phenotypes in mutant models, and implication in human diseases, providing insights into potential therapeutic strategies targeting the FGF19 signaling pathway.
Collapse
Affiliation(s)
- Agathe Bouju
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Sorbonne University, Paris, France
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peng V Wu
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA; Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
4
|
Phan P, Ternier G, Edirisinghe O, Kumar TKS. Exploring endocrine FGFs - structures, functions and biomedical applications. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:68-99. [PMID: 39309613 PMCID: PMC11411148 DOI: 10.62347/palk2137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
The family of fibroblast growth factors (FGFs) consists of 22 members with diverse biological functions in cells, from cellular development to metabolism. The family can be further categorized into three subgroups based on their three modes of action. FGF19, FGF21, and FGF23 are endocrine FGFs that act in a hormone-like/endocrine manner to regulate various metabolic activities. However, all three members of the endocrine family require both FGF receptors (FGFRs) and klotho co-receptors to elicit their functions. α-klotho and β-klotho act as scaffolds to bring endocrine FGFs closer to their receptors (FGFRs) to form active complexes. Numerous novel studies about metabolic FGFs' structures, mechanisms, and physiological insights have been published to further understand the complex molecular interactions and physiological activities of endocrine FGFs. Herein, we aim to review the structures, physiological functions, binding mechanisms to cognate receptors, and novel biomedical applications of endocrine FGFs in recent years.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Gaёtane Ternier
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of ArkansasFayetteville, AR 72701, USA
| | | |
Collapse
|
5
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factor (FGF) 23 is a bone-derived hormone that regulates phosphate and vitamin D metabolism by targeting the kidney. When highly elevated, such as in chronic kidney disease (CKD), FGF23 can also target the heart and induce pathologic remodeling. Here we discuss the mechanisms that underlie the physiologic and pathologic actions of FGF23, with focus on its FGF receptors (FGFR) and co-receptors. RECENT FINDINGS Klotho is a transmembrane protein that acts as an FGFR co-receptor for FGF23 on physiologic target cells. Klotho also exists as a circulating variant, and recent studies suggested that soluble klotho (sKL) can mediate FGF23 effects in cells that do not express klotho. Furthermore, it has been assumed that the actions of FGF23 do not require heparan sulfate (HS), a proteoglycan that acts as a co-receptor for other FGF isoforms. However, recent studies revealed that HS can be part of the FGF23:FGFR signaling complex and modulate FGF23-induced effects. SUMMARY sKL and HS have appeared as circulating FGFR co-receptors that modulate the actions of FGF23. Experimental studies suggest that sKL protects from and HS accelerates CKD-associated heart injury. However, the in vivo relevance of these findings is still speculative.
Collapse
Affiliation(s)
- S Madison Thomas
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
7
|
Lu Y, Xu S, Tang R, Han C, Zheng C. A potential link between fibroblast growth factor-23 and the progression of AKI to CKD. BMC Nephrol 2023; 24:87. [PMID: 37016338 PMCID: PMC10074805 DOI: 10.1186/s12882-023-03125-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Patients who recover from acute kidney injury (AKI) have a 25% increase in the risk of chronic kidney disease (CKD) and a 50% increase in mortality after a follow-up of approximately 10 years. Circulating FGF-23 increases significantly early in the development of AKI, is significantly elevated in patients with CKD and has become a major biomarker of poor clinical prognosis in CKD. However, the potential link between fibroblast growth factor-23 levels and the progression of AKI to CKD remains unclear. METHOD Serum FGF-23 levels in AKI patients and ischaemia‒reperfusion injury (IRI) mice were detected with ELISA. Cultured HK2 cells were incubated with FGF-23 and PD173074, a blocker of FGFR, and then TGFβ/Smad and Wnt/β-catenin were examined with immunofluorescence and immunoblotting. Quantitative real-time polymerase chain reaction was used to detect the expression of COL1A1 and COL4A1. Histologic staining confirmed renal fibrosis. RESULTS The level of serum FGF-23 was significantly different between AKI patients and healthy controls (P < 0.01). Moreover, serum FGF-23 levels in the CKD progression group were significantly higher than those in the non-CKD progression group of AKI patients (P < 0.01). In the AKI-CKD mouse model, serum FGF-23 levels were increased, and renal fibrosis occurred; moreover, the protein expression of β-catenin and p-Smad3 was upregulated. PD173074 downregulated the expression of β-catenin and p-Smad3 and reduced fibrosis in both mice and HK2 cells. CONCLUSION The increase in FGF-23 may be associated with the progression of AKI to CKD and may mediate renal fibrosis via TGF-β and Wnt/β-catenin activation.
Collapse
Affiliation(s)
- Yinghui Lu
- Jinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China
| | - Shutian Xu
- Jinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China
| | - Rong Tang
- Jinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China
| | - Cui Han
- Jinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China
| | - Chunxia Zheng
- Jinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
8
|
Heparin is essential for optimal cell signaling by FGF21 and for regulation of βKlotho cellular stability. Proc Natl Acad Sci U S A 2023; 120:e2219128120. [PMID: 36745784 PMCID: PMC9962926 DOI: 10.1073/pnas.2219128120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
While important insights were gained about how FGF21 and other endocrine fibroblast growth factors (FGFs) bind to Klotho proteins, the exact mechanism of Klotho/FGF receptor assembly that drives receptor dimerization and activation has not been elucidated. The prevailing dogma is that Klotho proteins substitute for the loss of heparan sulfate proteoglycan (HSPG) binding to endocrine FGFs by high-affinity binding of endocrine FGF molecules to Klotho receptors. To explore a potential role of HSPG in FGF21 signaling, we have analyzed the dynamic properties of FGF21-induced FGF21-βKlotho-FGFR1c complexes on the surface of living wild-type (WT) or HSPG-deficient Chinese hamster ovary (CHO) cells by employing quantitative single-molecule fluorescence imaging analyses. Moreover, detailed analyses of FGF21 and FGF1 stimulation of cellular signaling pathways activated in WT or in HSPG-deficient CHO cells are also analyzed and compared. These experiments demonstrate that heparin is required for the formation of FGF21-βKlotho-FGFR1c complexes on the cell membrane and that binding of heparin or HSPG to FGFR1c is essential for optimal FGF21 stimulation of FGFR1c activation, mitogen-activated protein kinase responses, and intracellular Ca2+ release. It is also shown that FGF1 binding stimulates assembly of βKlotho and FGFR1c on cell membranes, resulting in endocytosis and degradation of βKlotho. We conclude that heparin or HSPG is essential for FGF21 signaling and for regulation of βKlotho cellular stability by acting as a coligand of FGFR1c.
Collapse
|
9
|
Nakano T, Kishimoto H, Tokumoto M. Direct and indirect effects of fibroblast growth factor 23 on the heart. Front Endocrinol (Lausanne) 2023; 14:1059179. [PMID: 36909314 PMCID: PMC9999118 DOI: 10.3389/fendo.2023.1059179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Fibroblast growth factor (FGF)23 is a bone-derived phosphotropic hormone that regulates phosphate and mineral homeostasis. Recent studies have provided evidence that a high plasma concentration of FGF23 is associated with cardiac disease, including left ventricular hypertrophy (LVH), heart failure, atrial fibrillation, and cardiac death. Experimental studies have shown that FGF23 activates fibroblast growth factor receptor 4 (FGFR4)/phospholipase Cγ/calcineurin/nuclear factor of activated T-cells signaling in cardiomyocytes and induces cardiac hypertrophy in rodents. Activation of FGFR4 by FGF23 normally requires the co-receptor α-klotho, and klotho-independent signaling occurs only under conditions characterized by extremely high FGF23 concentrations. Recent studies have demonstrated that FGF23 activates the renin-angiotensin-aldosterone system (RAAS) and induces LVH, at least in part as a result of lower vitamin D activation. Moreover, crosstalk between FGF23 and RAAS results in the induction of cardiac hypertrophy and fibrosis. In this review, we summarize the results of studies regarding the relationships between FGF23 and cardiac events, and describe the potential direct and indirect mechanisms whereby FGF23 induces LVH.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- *Correspondence: Toshiaki Nakano,
| | - Hiroshi Kishimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Tokumoto
- Department of Nephrology, Fukuoka Red Cross Hospital, Fukuoka, Japan
| |
Collapse
|
10
|
Yanucil C, Kentrup D, Campos I, Czaya B, Heitman K, Westbrook D, Osis G, Grabner A, Wende AR, Vallejo J, Wacker MJ, Navarro-Garcia JA, Ruiz-Hurtado G, Zhang F, Song Y, Linhardt RJ, White K, Kapiloff M, Faul C. Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney Int 2022; 102:261-279. [PMID: 35513125 PMCID: PMC9329240 DOI: 10.1016/j.kint.2022.03.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023]
Abstract
Fibroblast growth factor (FGF) 23 is a phosphate-regulating hormone that is elevated in patients with chronic kidney disease and associated with cardiovascular mortality. Experimental studies showed that elevated FGF23 levels induce cardiac hypertrophy by targeting cardiac myocytes via FGF receptor isoform 4 (FGFR4). A recent structural analysis revealed that the complex of FGF23 and FGFR1, the physiologic FGF23 receptor in the kidney, includes soluble α-klotho (klotho) and heparin, which both act as co-factors for FGF23/FGFR1 signaling. Here, we investigated whether soluble klotho, a circulating protein with cardio-protective properties, and heparin, a factor that is routinely infused into patients with kidney failure during the hemodialysis procedure, regulate FGF23/FGFR4 signaling and effects in cardiac myocytes. We developed a plate-based binding assay to quantify affinities of specific FGF23/FGFR interactions and found that soluble klotho and heparin mediate FGF23 binding to distinct FGFR isoforms. Heparin specifically mediated FGF23 binding to FGFR4 and increased FGF23 stimulatory effects on hypertrophic growth and contractility in isolated cardiac myocytes. When repetitively injected into two different mouse models with elevated serum FGF23 levels, heparin aggravated cardiac hypertrophy. We also developed a novel procedure for the synthesis and purification of recombinant soluble klotho, which showed anti-hypertrophic effects in FGF23-treated cardiac myocytes. Thus, soluble klotho and heparin act as independent FGF23 co-receptors with opposite effects on the pathologic actions of FGF23, with soluble klotho reducing and heparin increasing FGF23-induced cardiac hypertrophy. Hence, whether heparin injections during hemodialysis in patients with extremely high serum FGF23 levels contribute to their high rates of cardiovascular events and mortality remains to be studied.
Collapse
Affiliation(s)
- Christopher Yanucil
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Isaac Campos
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian Czaya
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kylie Heitman
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Westbrook
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gunars Osis
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Adam R. Wende
- Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julian Vallejo
- Department of Molecular Biosciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Michael J. Wacker
- Department of Molecular Biosciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Jose Alberto Navarro-Garcia
- Cardiorenal Translational Laboratory, Institute of Research, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fuming Zhang
- Departments of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yuefan Song
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J. Linhardt
- Departments of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Kenneth White
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
11
|
Pallone SG, Kunii IS, da Silva REC, Lazaretti-Castro M. Use of Teriparatide in Hyperphosphatemic Familial Tumor Calcinosis: Evaluating the Interaction Between FGF23 and PTH on the Phosphaturic Effect. Calcif Tissue Int 2022; 111:102-106. [PMID: 35338393 DOI: 10.1007/s00223-022-00969-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Hyperphosphatemic familial tumor calcinosis (HFTC) is a rare disease characterized by hyperphosphatemia and calcium and phosphorus crystal deposition. It occurs due to the loss of function of FGF23. Herein, we report a case of a 50-year-old woman diagnosed with HFTC (homozygous variant in the GALNT3 gene, c.803_804 C insertion) with a history of ectopic calcifications in the past 30 years. Laboratory tests on admission were as follows: phosphate (P) 7.1 mg/dL (Normal range (NR) 2.5-4.5 mg/dL), FGF23 c-terminal 2050 RU/mL (NR < 150 RU/mL), and intact FGF23 (iFGF23) 18.93 pg/mL (NR 12.0-69.0 pg/mL). Treatment with acetazolamide, sevelamer, and a phosphorus-restricted diet was started, but phosphatemia remained high and calcifications continued to progress. In an attempt to further decrease P, a 36-day cycle of teriparatide (TPTD) 20 mcg twice daily was added, decreasing P from 6.2 to 5.2 mg/dL and increasing the 1.25(OH)2 vitamin D by 34.2%. As urinalysis was not feasible at the end of the 36-day cycle, a second cycle was performed for another 28 days, producing a similar decrease in P (from 6.4 to 5.5 mg/mL) and an evident decrease in the rate of tubular reabsorption of P (from 97.2 to 85.3%), however, accompanied by a worrying increase in calciuria. The use of TPTD 20 mcg twice daily in a patient with genetic resistance to FGF23 (HFTC) was associated with consistent increase in phosphaturia and reduction in phosphatemia, in addition to an increase in calcitriol. The resulting hypercalciuria precludes the therapeutic use of TPTD in HFTC and suggests an important role of FGF23, not only in phosphate homeostasis but also in avoiding any excess of calcitriol.
Collapse
Affiliation(s)
- Sthefanie Giovanna Pallone
- Endocrinology Unit, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Ilda Sizue Kunii
- Endocrinology Unit, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Renata Elen Costa da Silva
- Endocrinology Unit, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Marise Lazaretti-Castro
- Endocrinology Unit, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
12
|
Guthrie G, Vonderohe C, Burrin D. Fibroblast growth factor 15/19 expression, regulation, and function: An overview. Mol Cell Endocrinol 2022; 548:111617. [PMID: 35301051 PMCID: PMC9038700 DOI: 10.1016/j.mce.2022.111617] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Since the discovery of fibroblast growth factor (FGF)-19 over 20 years ago, our understanding of the peptide and its role in human biology has moved forward significantly. A member of a superfamily of paracrine growth factors regulating embryonic development, FGF19 is unique in that it is a dietary-responsive endocrine hormone linked with bile acid homeostasis, glucose and lipid metabolism, energy expenditure, and protein synthesis during the fed to fasted state. FGF19 achieves this through targeting multiple tissues and signaling pathways within those tissues. The diverse functional capabilities of FGF19 is due to the unique structural characteristics of the protein and its receptor binding in various cell types. This review will cover the current literature on the protein FGF19, its target receptors, and the biological pathways they target through unique signaling cascades.
Collapse
Affiliation(s)
- Greg Guthrie
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Caitlin Vonderohe
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States.
| |
Collapse
|
13
|
Abstract
Apart from its phosphaturic action, the bone-derived hormone fibroblast growth factor-23 (FGF23) is also an essential regulator of vitamin D metabolism. The main target organ of FGF23 is the kidney, where FGF23 suppresses transcription of the key enzyme in vitamin D hormone (1,25(OH)2D) activation, 1α-hydroxylase, and activates transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase, in proximal renal tubules. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in bone, forming a feedback loop between kidney and bone. The importance of FGF23 as regulator of vitamin D metabolism is underscored by the fact that in the absence of FGF23 signaling, the tight control of renal 1α-hydroxylase fails, resulting in overproduction of 1,25(OH)2D in mice and men. During recent years, big strides have been made toward a more complete understanding of the mechanisms underlying the FGF23-mediated regulation of vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. Importantly, the intracellular signaling cascades downstream of FGF receptors regulating transcription of 1α-hydroxylase and 24-hydroxylase in proximal renal tubules still remain unresolved. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the regulation of vitamin D metabolism by FGF23, and to discuss the role of these mechanisms in physiology and pathophysiology. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nejla Latic
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| |
Collapse
|
14
|
Abstract
Fibroblast growth factors (FGFs) are cell-signaling proteins with diverse functions in cell development, repair, and metabolism. The human FGF family consists of 22 structurally related members, which can be classified into three separate groups based on their action of mechanisms, namely: intracrine, paracrine/autocrine, and endocrine FGF subfamilies. FGF19, FGF21, and FGF23 belong to the hormone-like/endocrine FGF subfamily. These endocrine FGFs are mainly associated with the regulation of cell metabolic activities such as homeostasis of lipids, glucose, energy, bile acids, and minerals (phosphate/active vitamin D). Endocrine FGFs function through a unique protein family called klotho. Two members of this family, α-klotho, or β-klotho, act as main cofactors which can scaffold to tether FGF19/21/23 to their receptor(s) (FGFRs) to form an active complex. There are ongoing studies pertaining to the structure and mechanism of these individual ternary complexes. These studies aim to provide potential insights into the physiological and pathophysiological roles and therapeutic strategies for metabolic diseases. Herein, we provide a comprehensive review of the history, structure–function relationship(s), downstream signaling, physiological roles, and future perspectives on endocrine FGFs.
Collapse
|
15
|
Liu Y, Deng J, Liu Y, Li W, Nie X. FGF, Mechanism of Action, Role in Parkinson's Disease, and Therapeutics. Front Pharmacol 2021; 12:675725. [PMID: 34234672 PMCID: PMC8255968 DOI: 10.3389/fphar.2021.675725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with severe disability and adverse effects on life quality. In PD, motor dysfunction can occur, such as quiescence, muscle stiffness, and postural instability. PD is also associated with autonomic nervous dysfunction, sleep disorders, psychiatric symptoms, and other non-motor symptoms. Degeneration of dopaminergic neurons in the substantia nigra compact (SNPC), Lewy body, and neuroinflammation are the main pathological features of PD. The death or dysfunction of dopaminergic neurons in the dense part of the substantia nigra leads to dopamine deficiency in the basal ganglia and motor dysfunction. The formation of the Lewy body is associated with the misfolding of α-synuclein, which becomes insoluble and abnormally aggregated. Astrocytes and microglia mainly cause neuroinflammation, and the activation of a variety of pro-inflammatory transcription factors and regulatory proteins leads to the degeneration of dopaminergic neurons. At present, PD is mainly treated with drugs that increase dopamine concentration or directly stimulate dopamine receptors. Fibroblast growth factor (FGF) is a family of cellular signaling proteins strongly associated with neurodegenerative diseases such as PD. FGF and its receptor (FGFR) play an essential role in the development and maintenance of the nervous system as well as in neuroinflammation and have been shown to improve the survival rate of dopaminergic neurons. This paper summarized the mechanism of FGF and its receptors in the pathological process of PD and related signaling pathways, involving the development and protection of dopaminergic neurons in SNPC, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. It provides a reference for developing drugs to slow down or prevent the potential of PD.
Collapse
Affiliation(s)
- Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Lab of the Basic Pharmacology of the Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
16
|
Bayer J, Vaghela R, Drechsler S, Osuchowski MF, Erben RG, Andrukhova O. The bone is the major source of high circulating intact fibroblast growth factor-23 in acute murine polymicrobial sepsis induced by cecum ligation puncture. PLoS One 2021; 16:e0251317. [PMID: 33989306 PMCID: PMC8121358 DOI: 10.1371/journal.pone.0251317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factor-23 (FGF23), a bone-produced hormone, plays a critical role in mineral homeostasis. Human diseases associated with excessive intact circulating FGF23 (iFGF23) result in hypophosphatemia and low vitamin D hormone in patients with normal kidney function. In addition, there is accumulating evidence linking FGF23 with inflammation. Based on these studies and the frequent observation of hypophosphatemia among septic patients, we sought to elucidate further the relationship between FGF23 and mineral homeostasis in a clinically relevant murine polymicrobial sepsis model. Medium-severity sepsis was induced by cecum ligation puncture (CLP) in adult CD-1 mice of both sexes. Healthy CD-1 mice (without CLP) were used as controls. Forty-eight hours post-CLP, spontaneous urine was collected, and serum, organs and bones were sampled at necropsy. Serum iFGF23 increased ~20-fold in CLP compared to control mice. FGF23 protein concentration was increased in the bones, but not in spleen or liver of CLP mice. Despite the ~20-fold iFGF23 increase, we did not observe any significant changes in mineral homeostasis or parathyroid hormone levels in the blood of CLP animals. Urinary excretion of phosphate, calcium, and sodium remained unchanged in male CLP mice, whereas female CLP mice exhibited lower urinary calcium excretion, relative to healthy controls. In line with renal FGF23 resistance, expression of phosphate-, calcium- and sodium-transporting proteins did not show consistent changes in the kidneys of male and female CLP mice. Renal expression of the co-receptor αKlotho was downregulated in female, but not in male CLP mice. In conclusion, our data demonstrate that the dramatic, sex-independent rise in serum iFGF23 post-CLP was mainly caused by an upregulation of FGF23 secretion in the bone. Surprisingly, the upsurge in circulating iFGF23 did not alter humoral mineral homeostasis in the acutely septic mice. Hence, the biological function of elevated FGF23 in sepsis remains unclear and warrants further studies.
Collapse
Affiliation(s)
- Jessica Bayer
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ravikumar Vaghela
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Marcin F. Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Reinhold G. Erben
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
17
|
Kalantar‐Zadeh K, Ganz T, Trumbo H, Seid MH, Goodnough LT, Levine MA. Parenteral iron therapy and phosphorus homeostasis: A review. Am J Hematol 2021; 96:606-616. [PMID: 33471363 PMCID: PMC8248123 DOI: 10.1002/ajh.26100] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022]
Abstract
Phosphorus has an essential role in cellular and extracellular metabolism; maintenance of normal phosphorus homeostasis is critical. Phosphorus homeostasis can be affected by diet and certain medications; some intravenous iron formulations can induce renal phosphate excretion and hypophosphatemia, likely through increasing serum concentrations of intact fibroblast growth factor 23. Case studies provide insights into two types of hypophosphatemia: acute symptomatic and chronic hypophosphatemia, while considering the role of pre‐existing conditions and comorbidities, medications, and intravenous iron. This review examines phosphorus homeostasis and hypophosphatemia, with emphasis on effects of iron deficiency and iron replacement using intravenous iron formulations.
Collapse
Affiliation(s)
- Kamyar Kalantar‐Zadeh
- Division of Nephrology and Hypertension and Kidney Transplantation University of California Irvine Orange California USA
| | - Tomas Ganz
- David Geffen School of Medicine University of California, Los Angeles Los Angeles California USA
| | - Henry Trumbo
- St. Mary Medical Center Langhorne Pennsylvania USA
| | - Melvin H. Seid
- Department of Obstetrics and Gynecology University of Southern California Verdugo Hills Hospital Glendale California USA
| | | | - Michael A. Levine
- Center for Bone Health and Division of Endocrinology and Diabetes Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine Philadelphia Pennsylvania USA
| |
Collapse
|
18
|
Sun J, Wu J, Jin H, Ying T, Jin W, Fan M, Zhou J, Chen H, Jin L, Zhou J. Structure-guided design, generation, and biofunction of PEGylated fibroblast growth factor 2 variants for wound healing. NANOSCALE 2020; 12:18200-18213. [PMID: 32856665 DOI: 10.1039/d0nr05999d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fibroblast growth factor 2 (FGF2) plays an important role in multiple physiological functions such as tissue repair. However, FGF2 has a short half-life in vivo due to protease degradation, thus limiting its clinical application. Traditional PEGylation has typically focused on the N-terminal α-amino group of FGF2. These modifications do not consider potential effects on protein function or structure, and sometimes lead to decreased bioactivity. In this study, we generated three PEGylated FGF2 variants based on the structure of the FGF2-FGFR-heparin ternary complex via gene mutation and PEGylation, and investigated the effects of these PEGylated sites on protein stability and bioactivity. Compared with native FGF2, all PEG-FGF2 conjugates exhibited significantly improved stability. Conjugates PEGylated at a site separated from both binding regions more effectively promoted proliferation, migration and angiogenesis than FGF2 in vitro, and exhibited excellent wound healing activity in vivo, making these conjugates potential therapeutic candidates for wound healing. Computer-assisted modification based on structure reveals the detailed structural characteristics of proteins, allowing efficient protein modification for improved stability and activity. This structure-guided PEGylation offers a more reliable modification strategy and should be applied for the rational design of protein-based therapeutics.
Collapse
Affiliation(s)
- Jian Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jiamin Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hui Jin
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Te Ying
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wei Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Miaojuan Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jianhui Zhou
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Hui Chen
- Department of neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jie Zhou
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
19
|
Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat Rev Rheumatol 2020; 16:547-564. [PMID: 32807927 DOI: 10.1038/s41584-020-0469-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Regulated fibroblast growth factor (FGF) signalling is a prerequisite for the correct development and homeostasis of articular cartilage, as evidenced by the fact that aberrant FGF signalling contributes to the maldevelopment of joints and to the onset and progression of osteoarthritis. Of the four FGF receptors (FGFRs 1-4), FGFR1 and FGFR3 are strongly implicated in osteoarthritis, and FGFR1 antagonists, as well as agonists of FGFR3, have shown therapeutic efficacy in mouse models of spontaneous and surgically induced osteoarthritis. FGF18, a high affinity ligand for FGFR3, is the only FGF-based drug currently in clinical trials for osteoarthritis. This Review covers the latest advances in our understanding of the molecular mechanisms that regulate FGF signalling during normal joint development and in the pathogenesis of osteoarthritis. Strategies for FGF signalling-based treatment of osteoarthritis and for cartilage repair in animal models and clinical trials are also introduced. An improved understanding of FGF signalling from a structural biology perspective, and of its roles in skeletal development and diseases, could unlock new avenues for discovery of modulators of FGF signalling that can slow or stop the progression of osteoarthritis.
Collapse
|
20
|
Liu H, Zheng S, Hou X, Liu X, Du K, Lv X, Li Y, Yang F, Li W, Sui J. Novel Abs targeting the N-terminus of fibroblast growth factor 19 inhibit hepatocellular carcinoma growth without bile-acid-related side-effects. Cancer Sci 2020; 111:1750-1760. [PMID: 32061104 PMCID: PMC7226213 DOI: 10.1111/cas.14353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and particularly fatal form of cancer for which very few drugs are effective. The fibroblast growth factor 19 (FGF19) has been viewed as a driver of HCC development and a potential Ab target for developing novel HCC therapy. However, a previously developed anti‐FGF19 Ab disrupted FGF19’s normal regulatory function and caused severe bile‐acid‐related side‐effects despite of having potent antitumor effects in preclinical models. Here, we developed novel human Abs (G1A8 and HS29) that specifically target the N‐terminus of FGF19. Both Abs inhibited FGF19‐induced HCC cell proliferation in vitro and significantly suppressed HCC tumor growth in mouse models. Importantly, no bile‐acid‐related side effects were observed in preclinical cynomolgus monkeys. Fundamentally, our study demonstrates that it is possible to target FGF19 for anti‐HCC therapies without adversely affecting its normal bile acid regulatory function, and highlights the exciting promise of G1A8 or HS29 as potential therapy for HCC.
Collapse
Affiliation(s)
- Huisi Liu
- National Institute of Biological Sciences (NIBS), Beijing, China.,Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Sanduo Zheng
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Xinfeng Hou
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Ximing Liu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Kaixin Du
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Xueyuan Lv
- National Institute of Biological Sciences (NIBS), Beijing, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yulu Li
- National Institute of Biological Sciences (NIBS), Beijing, China.,Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Fang Yang
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences (NIBS), Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences (NIBS), Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Menon LP, Weinstein RS. Iron replacement ameliorates hypophosphatemia in autosomal dominant hypophosphatemic rickets: A review of the role of iron. Bone 2020; 131:115137. [PMID: 31756522 DOI: 10.1016/j.bone.2019.115137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/14/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023]
Abstract
Autosomal dominant hypophosphatemic rickets (ADHR) is remarkable among the hypophosphatemic rickets syndromes for its variable age of presentation and periods of quiescence during which serum phosphate and fibroblast growth factor 23 (FGF 23) levels are normal without therapy. In contrast, hypophosphatemia in X-linked hypophosphatemic rickets (XLH) manifests soon after birth and requires lifelong therapy. This suggests that there are environmental factors which can alter FGF 23 activity in ADHR but not in XLH. We present an adult with ADHR in whom resolution of hypophosphatemia was achieved by correcting iron deficiency without the need for phosphate supplementation. Serial iron and FGF 23 levels revealed an inverse relationship (r=-0.79, p<0.04). All patients with ADHR who present with hypophosphatemia and worsening symptoms should be screened for iron deficiency. If iron deficiency is detected, therapy with a combination of calcitriol and iron supplementation should be considered without phosphate supplementation.
Collapse
Affiliation(s)
- Lakshmi P Menon
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Robert S Weinstein
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America.
| |
Collapse
|
22
|
Smith ER, Holt SG, Hewitson TD. αKlotho-FGF23 interactions and their role in kidney disease: a molecular insight. Cell Mol Life Sci 2019; 76:4705-4724. [PMID: 31350618 PMCID: PMC11105488 DOI: 10.1007/s00018-019-03241-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
Following the serendipitous discovery of the ageing suppressor, αKlotho (αKl), several decades ago, a growing body of evidence has defined a pivotal role for its various forms in multiple aspects of vertebrate physiology and pathology. The transmembrane form of αKl serves as a co-receptor for the osteocyte-derived mineral regulator, fibroblast growth factor (FGF)23, principally in the renal tubules. However, compelling data also suggest that circulating soluble forms of αKl, derived from the same source, may have independent homeostatic functions either as a hormone, glycan-cleaving enzyme or lectin. Chronic kidney disease (CKD) is of particular interest as disruption of the FGF23-αKl axis is an early and common feature of disease manifesting in markedly deficient αKl expression, but FGF23 excess. Here we critically discuss recent findings in αKl biology that conflict with the view that soluble αKl has substantive functions independent of FGF23 signalling. Although the issue of whether soluble αKl can act without FGF23 has yet to be resolved, we explore the potential significance of these contrary findings in the context of CKD and highlight how this endocrine pathway represents a promising target for novel anti-ageing therapeutics.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia.
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| |
Collapse
|
23
|
Zhao J, Li Q, Wu J, Zhou C, Cao Y, Li X, Niu J. Structure‐Based Site‐Specific PEGylation of Fibroblast Growth Factor 2 Facilitates Rational Selection of Conjugate Sites. Biotechnol J 2019; 15:e1900203. [DOI: 10.1002/biot.201900203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/26/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Zhao
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Qi Li
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Jiamin Wu
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Chuanren Zhou
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Yu Cao
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Xiaokun Li
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Jianlou Niu
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| |
Collapse
|
24
|
Czaya B, Faul C. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. Int J Mol Sci 2019; 20:E4195. [PMID: 31461904 PMCID: PMC6747522 DOI: 10.3390/ijms20174195] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
In patients with chronic kidney disease (CKD), adverse outcomes such as systemic inflammation and anemia are contributing pathologies which increase the risks for cardiovascular mortality. Amongst these complications, abnormalities in mineral metabolism and the metabolic milieu are associated with chronic inflammation and iron dysregulation, and fibroblast growth factor 23 (FGF23) is a risk factor in this context. FGF23 is a bone-derived hormone that is essential for regulating vitamin D and phosphate homeostasis. In the early stages of CKD, serum FGF23 levels rise 1000-fold above normal values in an attempt to maintain normal phosphate levels. Despite this compensatory action, clinical CKD studies have demonstrated powerful and dose-dependent associations between FGF23 levels and higher risks for mortality. A prospective pathomechanism coupling elevated serum FGF23 levels with CKD-associated anemia and cardiovascular injury is its strong association with chronic inflammation. In this review, we will examine the current experimental and clinical evidence regarding the role of FGF23 in renal physiology as well as in the pathophysiology of CKD with an emphasis on chronic inflammation and anemia.
Collapse
Affiliation(s)
- Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Liu J, Zhu L, Zhang X, Wu B, Zhu P, Zhao H, Wang J. Peptide-based NTA(Ni)-nanodiscs for studying membrane enhanced FGFR1 kinase activities. PeerJ 2019; 7:e7234. [PMID: 31372315 PMCID: PMC6659669 DOI: 10.7717/peerj.7234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/02/2019] [Indexed: 11/20/2022] Open
Abstract
Tyrosine autophosphorylation plays a crucial regulatory role in the kinase activities of fibroblast growth factor receptors (FGFRs), and in the recruitment and activation of downstream intracellular signaling pathways. Biophysical and biochemical investigations of FGFR kinase domains in membrane environments offer key insights into phosphorylation mechanisms. Hence, we constructed nickel chelating nanodiscs based on a 22-residue peptide. The spontaneous anchoring of N-terminal His6-tagged FGFR1c kinase domain (FGFR1K) onto peptide nanodiscs grants FGFR1K orientations occurring on native plasma membranes. Following membrane incorporation, the autophosphorylation of FGFR1K, as exemplified by Y653 and Y654 in the A-loop and the total tyrosine phosphorylation, increase significantly. This in vitro reconstitution system may be applicable to studies of other membrane associated phenomena.
Collapse
Affiliation(s)
- Juanjuan Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Zhu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xueli Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| |
Collapse
|
26
|
Bär L, Stournaras C, Lang F, Föller M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 2019; 593:1879-1900. [PMID: 31199502 DOI: 10.1002/1873-3468.13494] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is mainly produced in the bone and, upon secretion, forms a complex with a FGF receptor and coreceptor αKlotho. FGF23 can exert several endocrine functions, such as inhibiting renal phosphate reabsorption and 1,25-dihydroxyvitamin D3 production. Moreover, it has paracrine activities on several cell types, including neutrophils and hepatocytes. Klotho and Fgf23 deficiencies result in pathologies otherwise encountered in age-associated diseases, mainly as a result of hyperphosphataemia-dependent calcification. FGF23 levels are also perturbed in the plasma of patients with several disorders, including kidney or cardiovascular diseases. Here, we review mechanisms controlling FGF23 production and discuss how FGF23 regulation is perturbed in disease.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christos Stournaras
- Institute of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Institute of Physiology, University of Tübingen, Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
27
|
DePaoli AM, Zhou M, Kaplan DD, Hunt SC, Adams TD, Learned RM, Tian H, Ling L. FGF19 Analog as a Surgical Factor Mimetic That Contributes to Metabolic Effects Beyond Glucose Homeostasis. Diabetes 2019; 68:1315-1328. [PMID: 30862680 DOI: 10.2337/db18-1305] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/02/2019] [Indexed: 01/08/2023]
Abstract
Bariatric surgery has proven to be the most effective treatment for controlling hyperglycemia in severely obese patients with diabetes. We show that fibroblast growth factor 19 (FGF19), a gut hormone, is rapidly induced by bariatric surgery in rodents and humans. Administration of FGF19 achieves diabetes remission independent of weight loss in animal models of diabetes, supporting a role for FGF19 in the hormonal remodeling that restores metabolic function after the surgery. Through an unbiased, systematic screen in diabetic mice, we identified selective, safe, and effective FGF19 analogs. Unexpectedly, a lead FGF19 analog, NGM282, did not correct hyperglycemia in patients with type 2 diabetes. In contrast, administration of NGM282 resulted in a rapid, robust, and sustained reduction in liver fat content and an improvement in liver histology in patients with nonalcoholic steatohepatitis, faithfully replicating another key benefit of bariatric surgery. Our work identifies a strategy for replacing the surgery with an equally effective, but less invasive, treatment for nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
| | - Mei Zhou
- NGM Biopharmaceuticals, South San Francisco, CA
| | | | - Steven C Hunt
- Division of Cardiovascular Genetics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Ted D Adams
- Division of Cardiovascular Genetics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
- Intermountain LiveWell Center, Intermountain Healthcare, Salt Lake City, UT
| | | | - Hui Tian
- NGM Biopharmaceuticals, South San Francisco, CA
| | - Lei Ling
- NGM Biopharmaceuticals, South San Francisco, CA
| |
Collapse
|
28
|
Dolegowska K, Marchelek-Mysliwiec M, Nowosiad-Magda M, Slawinski M, Dolegowska B. FGF19 subfamily members: FGF19 and FGF21. J Physiol Biochem 2019; 75:229-240. [PMID: 30927227 PMCID: PMC6611749 DOI: 10.1007/s13105-019-00675-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Fibroblast growth factors (FGF) constitute a large family of proteins with pleiotropic effects on development, organogenesis, and metabolism. The FGF19 subclass includes growth factors circulating with the blood referred to as endocrine FGF. Representatives of the FGF19 subclass, including FGF19, FGF21, and FGF23, act via FGFR receptors. The proteins of FGF19 subfamily influence the enterohepatic circulation of bile, participate in glucose and lipid metabolism regulation, and maintenance of phosphorus and vitamin D3 homeostasis. FGF19 and FGF21 are activated under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Katarzyna Dolegowska
- Clinical Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Malgorzata Marchelek-Mysliwiec
- Clinical Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Monika Nowosiad-Magda
- Department of Immunology Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Michal Slawinski
- Department of Laboratory Diagnostics, Independent Public Clinical Hospital No. 2, Pomeranian Medical University, Szczecin, Poland
| | - Barbara Dolegowska
- Department of Laboratory Diagnostics, Independent Public Clinical Hospital No. 2, Pomeranian Medical University, Szczecin, Poland.
- Department of Laboratory Medicine, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
29
|
Tuzon CT, Rigueur D, Merrill AE. Nuclear Fibroblast Growth Factor Receptor Signaling in Skeletal Development and Disease. Curr Osteoporos Rep 2019; 17:138-146. [PMID: 30982184 PMCID: PMC8221190 DOI: 10.1007/s11914-019-00512-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Fibroblast growth factor receptor (FGFR) signaling regulates proliferation and differentiation during development and homeostasis. While membrane-bound FGFRs play a central role in these processes, the function of nuclear FGFRs is also critical. Here, we highlight mechanisms for nuclear FGFR translocation and the effects of nuclear FGFRs on skeletal development and disease. RECENT FINDINGS Full-length FGFRs, internalized by endocytosis, enter the nucleus through β-importin-dependent mechanisms that recognize the nuclear localization signal within FGFs. Alternatively, soluble FGFR intracellular fragments undergo nuclear translocation following their proteolytic release from the membrane. FGFRs enter the nucleus during the cellular transition between proliferation and differentiation. Once nuclear, FGFRs interact with chromatin remodelers to alter the epigenetic state and transcription of their target genes. Dysregulation of nuclear FGFR is linked to the etiology of congenital skeletal disorders and neoplastic transformation. Revealing the activities of nuclear FGFR will advance our understanding of 20 congenital skeletal disorders caused by FGFR mutations, as well as FGFR-related cancers.
Collapse
Affiliation(s)
- Creighton T Tuzon
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA
| | - Diana Rigueur
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
30
|
Cross-Talk between Fibroblast Growth Factor Receptors and Other Cell Surface Proteins. Cells 2019; 8:cells8050455. [PMID: 31091809 PMCID: PMC6562592 DOI: 10.3390/cells8050455] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute signaling circuits that transmit signals across the plasma membrane, regulating pivotal cellular processes like differentiation, migration, proliferation, and apoptosis. The malfunction of FGFs/FGFRs signaling axis is observed in numerous developmental and metabolic disorders, and in various tumors. The large diversity of FGFs/FGFRs functions is attributed to a great complexity in the regulation of FGFs/FGFRs-dependent signaling cascades. The function of FGFRs is modulated at several levels, including gene expression, alternative splicing, posttranslational modifications, and protein trafficking. One of the emerging ways to adjust FGFRs activity is through formation of complexes with other integral proteins of the cell membrane. These proteins may act as coreceptors, modulating binding of FGFs to FGFRs and defining specificity of elicited cellular response. FGFRs may interact with other cell surface receptors, like G-protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). The cross-talk between various receptors modulates the strength and specificity of intracellular signaling and cell fate. At the cell surface FGFRs can assemble into large complexes involving various cell adhesion molecules (CAMs). The interplay between FGFRs and CAMs affects cell–cell interaction and motility and is especially important for development of the central nervous system. This review summarizes current stage of knowledge about the regulation of FGFRs by the plasma membrane-embedded partner proteins and highlights the importance of FGFRs-containing membrane complexes in pathological conditions, including cancer.
Collapse
|
31
|
Gao R, Kanasaki K, Li J, Kitada M, Okazaki T, Koya D. βklotho is essential for the anti-endothelial mesenchymal transition effects of N-acetyl-seryl-aspartyl-lysyl-proline. FEBS Open Bio 2019; 9:1029-1038. [PMID: 30972974 PMCID: PMC6487725 DOI: 10.1002/2211-5463.12638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Endothelial–mesenchymal transition (EndMT) has emerged as an essential bioprocess responsible for the development of organ fibrosis. We have previously reported that fibroblast growth factor receptor 1 (FGFR1) is involved in the anti‐EndMT effect of N‐acetyl‐seryl‐aspartyl‐lysyl‐proline (AcSDKP). FGFR1 is expressed on the cell membrane and performs its biological function through interaction with co‐receptors, including βklotho (KLB). However, it remains unknown whether KLB is involved in the anti‐EndMT effects of AcSDKP. Here, we demonstrated that AcSDKP increased KLB expression in an FGFR1‐dependent manner and that KLB deficiency induced AcSDKP‐resistant EndMT via the induction of the mitogen‐activated protein kinase (MAPK) pathway. In cultured endothelial cells, AcSDKP increased KLB protein level in an FGFR1‐dependent manner through induction of the FGFR1–KLB complex. KLB suppression by small interfering RNA transfection did not affect FGFR1 levels and resulted in the induction of EndMT. In contrast to the EndMT observed under FGFR1 deficiency, the EndMT induced by KLB suppression was not accompanied by the induction of Smad3 phosphorylation; instead, KLB‐deficient cells exhibited induced activation of the MAPK/extracellular signal‐regulated kinase (ERK) kinase (MEK) and ERK pathways. Treatment with the specific MEK inhibitor U0126 diminished KLB deficiency‐induced EndMT. Consistent with this finding, AcSDKP did not suppress either EndMT or MEK/ERK activation induced by KLB deficiency. Application of either FGF19 or FGF21 synergistically augmented the anti‐EndMT effects of AcSDKP. Taken together, these results indicate that endogenous peptide AcSDKP exerts its activity through induction of the FGFR1–KLB complex in vascular endothelial cells.
Collapse
Affiliation(s)
- Rongfen Gao
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Department of Hematology & Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Keizo Kanasaki
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Jinpeng Li
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Munehiro Kitada
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Toshiro Okazaki
- Department of Hematology & Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
32
|
Rodelo-Haad C, Santamaria R, Muñoz-Castañeda JR, Pendón-Ruiz de Mier MV, Martin-Malo A, Rodriguez M. FGF23, Biomarker or Target? Toxins (Basel) 2019; 11:E175. [PMID: 30909513 PMCID: PMC6468608 DOI: 10.3390/toxins11030175] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) plays a key role in the complex network between the bones and other organs. Initially, it was thought that FGF23 exclusively regulated phosphate and vitamin D metabolism; however, recent research has demonstrated that an excess of FGF23 has other effects that may be detrimental in some cases. The understanding of the signaling pathways through which FGF23 acts in different organs is crucial to develop strategies aiming to prevent the negative effects associated with high FGF23 levels. FGF23 has been described to have effects on the heart, promoting left ventricular hypertrophy (LVH); the liver, leading to production of inflammatory cytokines; the bones, inhibiting mineralization; and the bone marrow, by reducing the production of erythropoietin (EPO). The identification of FGF23 receptors will play a remarkable role in future research since its selective blockade might reduce the adverse effects of FGF23. Patients with chronic kidney disease (CKD) have very high levels of FGF23 and may be the population suffering from the most adverse FGF23-related effects. The general population, as well as kidney transplant recipients, may also be affected by high FGF23. Whether the association between FGF23 and clinical events is causal or casual remains controversial. The hypothesis that FGF23 could be considered a therapeutic target is gaining relevance and may become a promising field of investigation in the future.
Collapse
Affiliation(s)
- Cristian Rodelo-Haad
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Rafael Santamaria
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Juan R Muñoz-Castañeda
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - M Victoria Pendón-Ruiz de Mier
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Alejandro Martin-Malo
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Mariano Rodriguez
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| |
Collapse
|
33
|
Abstract
Purpose of review α-Klotho (Klotho) occurs in three isoforms, a membrane-bound form acting as a coreceptor for fibroblast growth factor-23 (FGF23) signalling, a shed soluble form consisting of Klotho's large ectodomain thought to act as an enzyme or a hormone, and a secreted truncated form generated by alternative splicing of the Klotho mRNA with unknown function. The purpose of this review is to highlight the recent advances in our understanding of Klotho's function in mineral homeostasis. Recent findings A number of seminal discoveries have recently been made in this area, shifting existing paradigms. The crystal structure of the ternary FGF receptor (FGFR)-1c/Klotho/FGF23 complex has been uncovered, revealing how the ligand FGF23 interacts with FGFR1c and the coreceptor Klotho at atomic resolution. Furthermore, it was shown that soluble Klotho lacks any glycosidase activity and serves as a bona fide coreceptor for FGF23 signalling. Experiments with a combination of Klotho and Fgf23-deficient mouse models demonstrated that all isoforms of Klotho lack any physiologically relevant, FGF23-independent functions in mineral homeostasis or ageing. Finally, it was demonstrated that the alternatively spliced Klotho mRNA is degraded and is not translated into a secreted Klotho protein isoform in humans. Summary Taken together, there is now overwhelming evidence that the main physiological function of transmembrane and soluble Klotho for mineral homeostasis is their role as coreceptors mediating FGF23 actions. In light of these findings, the main pathophysiological consequence of the downregulation of Klotho observed in acute and chronic renal failure may be the induction of renal FGF23 resistance.
Collapse
|
34
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
35
|
Min X, Weiszmann J, Johnstone S, Wang W, Yu X, Romanow W, Thibault S, Li Y, Wang Z. Agonistic β-Klotho antibody mimics fibroblast growth factor 21 (FGF21) functions. J Biol Chem 2018; 293:14678-14688. [PMID: 30068552 PMCID: PMC6153294 DOI: 10.1074/jbc.ra118.004343] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/27/2018] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21), an endocrine hormone in the FGF family, plays a critical role in regulating metabolic homeostasis and has emerged as a therapeutic target for metabolic diseases, including Type 2 diabetes mellitus. FGF21 functions through a receptor complex that consists of an FGF receptor (FGFR) and a co-receptor β-Klotho. Here, we identify and biochemically and structurally characterize 39F7, a high-affinity agonistic monoclonal antibody (mAb) against β-Klotho that mimics FGF21 function. The co-crystal structure of β-Klotho KL1 domain in complex with 39F7 Fab revealed that the recognition of 39F7 is centered on Trp-295 of β-Klotho in a FGF21 noncompetitive manner. KL1 adopts a (β/α)8 TIM barrel fold which resembles that of β-glycosylceramidase, but lacks molecular features for enzymatic activity, suggesting that KL1 functions as a scaffold protein instead. In vitro characterization demonstrated that, although 39F7 does not compete with FGF21, it is specific for β-Klotho/FGFR1c activation. Furthermore, the agonistic activity of 39F7 required the full IgG molecule to be bivalent, suggesting that 39F7 functions by promoting receptor/co-receptor dimerization. Supported by negative stain EM analysis of full-length β-Klotho, we propose a molecular model wherein the agonistic antibody 39F7 acts in a β-Klotho- and FGFR1c-dependent manner, mimicking FGF21 activity. More importantly, 39F7 offers promising therapeutic potential in the axis of FGF21 signaling as an antibody therapy alternative to FGF21 analogs for treatment of metabolic diseases.
Collapse
Affiliation(s)
- Xiaoshan Min
- From the Department of Therapeutic Discovery and
| | - Jennifer Weiszmann
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., South San Francisco, California 94080
| | | | - Wei Wang
- From the Department of Therapeutic Discovery and
| | - Xinchao Yu
- From the Department of Therapeutic Discovery and
| | | | | | - Yang Li
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., South San Francisco, California 94080
| | - Zhulun Wang
- From the Department of Therapeutic Discovery and
| |
Collapse
|
36
|
Monoclonal antibody targeting of fibroblast growth factor receptor 1c causes cardiac valvulopathy in rats. Toxicol Appl Pharmacol 2018; 355:147-155. [PMID: 30008375 DOI: 10.1016/j.taap.2018.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/21/2018] [Accepted: 06/30/2018] [Indexed: 11/23/2022]
Abstract
Fibroblast Growth Factors (FGFs) and their receptors (FGFRs) have been proposed as potential drug targets for the treatment of obesity. The aim of this study was to assess the potential toxicity in rats of three anti-FGFR1c mAbs with differential binding activity prior to clinical development. Groups of male rats received weekly injections of either one of two FGFR1c-specific mAbs or an FGFR1c/FGFR4-specific mAb at 10 mg/kg for up to 4 weeks. All three mAbs caused significant reductions in food intake and weight loss leading to some animals being euthanized early for welfare reasons. In all three groups given these mAbs, microscopic changes were seen in the bones and heart valves. In the bones of the femoro-tibial joint, thickening of the diaphyseal cortex of long bones, due to deposition of well organized new lamellar bone, indicated that an osteogenic effect was observed. In the heart, valvulopathy described as an endocardial myxomatous change affecting the mitral, pulmonary, tricuspid and aortic valves was observed in all mAb-treated animals. The presence of FGFR1 mRNA expression in the heart valves was confirmed using in situ hybridization. Targeting the FGF-FGFR1c pathway with anti-FGFR1c mAbs leads to drug induced valvulopathy in rats. In effect, this precluded the development of these mAbs as potential anti-obesity drugs. The valvulopathy observed was similar to that described for fenfluramine and dexafenfluramine. The pathogenesis of the drug-induced valvulopathy is considered FGFR1c-mediated, based on the specificity of the mAbs and FGFR1 mRNA expression in the heart valves.
Collapse
|
37
|
Brown RB, Razzaque MS. Phosphate toxicity and tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1869:303-309. [PMID: 29684520 DOI: 10.1016/j.bbcan.2018.04.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
In this article, we briefly summarized evidence that cellular phosphate burden from phosphate toxicity is a pathophysiological determinant of cancer cell growth. Tumor cells express more phosphate cotransporters and store more inorganic phosphate than normal cells, and dysregulated phosphate homeostasis is associated with the genesis of various human tumors. High dietary phosphate consumption causes the growth of lung and skin tumors in experimental animal models. Additional studies show that excessive phosphate burden induces growth-promoting cell signaling, stimulates neovascularization, and is associated with chromosome instability and metastasis. Studies have also shown phosphate is a mitogenic factor that affects various tumor cell growth. Among epidemiological evidence linking phosphate and tumor formation, the Health Professionals Follow-Up Study found that high dietary phosphate levels were independently associated with lethal and high-grade prostate cancer. Further research is needed to determine how excessive dietary phosphate consumption influences initiation and promotion of tumorigenesis, and to elucidate prognostic benefits of reducing phosphate burden to decrease tumor cell growth and delay metastatic progression. The results of such studies could provide the basis for therapeutic modulation of phosphate metabolism for improved patient outcome.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health & Health Systems, University of Waterloo, Waterloo, Ontario, Canada
| | - Mohammed S Razzaque
- Department of Oral Health Policy & Epidemiology, Harvard School of Dental Medicine, Boston, MA, USA; Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda; Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA.
| |
Collapse
|
38
|
The role of fibroblast growth factor 23 and Klotho in uremic cardiomyopathy. Curr Opin Nephrol Hypertens 2018; 25:314-24. [PMID: 27219043 DOI: 10.1097/mnh.0000000000000231] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW In chronic kidney disease (CKD), multiple factors contribute to the development of cardiac hypertrophy by directly targeting the heart or indirectly by inducing systemic changes such as hypertension, anemia, and inflammation. Furthermore, disturbances in phosphate metabolism have been identified as nonclassical risk factors for cardiovascular mortality in these patients. With declining kidney function, the physiologic regulators of phosphate homeostasis undergo changes in their activity as well as their circulating levels, thus potentially contributing to cardiac hypertrophy once they are out of balance. Recently, two of these phosphate regulators, fibroblast growth factor 23 (FGF23) and Klotho, have been shown to affect cardiac remodeling, thereby unveiling a novel pathomechanism of cardiac hypertrophy in CKD. Here we discuss the potential direct versus indirect effects of FGF23 and the soluble form of Klotho on the heart, and their crosstalk in the regulation of cardiac hypertrophy. RECENT FINDINGS In models of CKD, FGF23 can directly target cardiac myocytes via FGF receptor 4 and induce cardiac hypertrophy in a blood pressure-independent manner. Soluble Klotho may directly target the heart via an unknown receptor thereby protecting the myocardium from pathologic stress stimuli that are associated with CKD, such as uremic toxins or FGF23. SUMMARY Elevated serum levels of FGF23 and reduced serum levels of soluble Klotho contribute to uremic cardiomyopathy in a synergistic manner.
Collapse
|
39
|
Andrukhova O, Schüler C, Bergow C, Petric A, Erben RG. Augmented Fibroblast Growth Factor-23 Secretion in Bone Locally Contributes to Impaired Bone Mineralization in Chronic Kidney Disease in Mice. Front Endocrinol (Lausanne) 2018; 9:311. [PMID: 29942284 PMCID: PMC6004378 DOI: 10.3389/fendo.2018.00311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/24/2018] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a systemic disorder of mineral and bone metabolism caused by CKD. Impaired bone mineralization together with increased bony secretion of fibroblast growth factor-23 (FGF23) are hallmarks of CKD-MBD. We recently showed that FGF23 suppresses the expression of tissue nonspecific alkaline phosphatase (TNAP) in bone cells by a Klotho-independent, FGF receptor-3-mediated signaling axis, leading to the accumulation of the mineralization inhibitor pyrophosphate. Therefore, we hypothesized that excessive FGF23 secretion may locally impair bone mineralization in CKD-MBD. To test this hypothesis, we induced CKD by 5/6 nephrectomy in 3-month-old wild-type (WT) mice and Fgf23-/-/VDRΔ/Δ (Fgf23/VDR) compound mutant mice maintained on a diet enriched with calcium, phosphate, and lactose. Eight weeks postsurgery, WT CKD mice were characterized by reduced bone mineral density at the axial and appendicular skeleton, hyperphosphatemia, secondary hyperparathyroidism, increased serum intact Fgf23, and impaired bone mineralization as evidenced by bone histomorphometry. Laser capture microdissection in bone cryosections showed that both osteoblasts and osteocytes contributed to the CKD-induced increase in Fgf23 mRNA abundance. In line with our hypothesis, osteoblastic and osteocytic activity of alkaline phosphatase was reduced, and bone pyrophosphate concentration was ~2.5-fold higher in CKD mice, relative to Sham controls. In Fgf23/VDR compound mice lacking Fgf23, 5/6-Nx induced secondary hyperparathyroidism and bone loss. However, 5/6-Nx failed to suppress TNAP activity, and bone pyrophosphate concentrations remained unchanged in Fgf23/VDR CKD mice. Collectively, our data suggest that elevated Fgf23 production in bone contributes to the mineralization defect in CKD-MBD by auto-/paracrine suppression of TNAP and subsequent accumulation of pyrophosphate in bone. Hence, our study has identified a novel mechanism involved in the pathogenesis of CKD-MBD.
Collapse
Affiliation(s)
- Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christiane Schüler
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Bergow
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandra Petric
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
40
|
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone suppressing phosphate reabsorption and vitamin D hormone synthesis in the kidney. At physiological concentrations of the hormone, the endocrine actions of FGF23 in the kidney are αKlotho-dependent, because high-affinity binding of FGF23 to FGF receptors requires the presence of the co-receptor αKlotho on target cells. It is well established that excessive concentrations of intact FGF23 in the blood lead to phosphate wasting in patients with normal kidney function. Based on the importance of diseases associated with gain of FGF23 function such as phosphate-wasting diseases and chronic kidney disease, a large body of literature has focused on the pathophysiological consequences of FGF23 excess. Less emphasis has been put on the role of FGF23 in normal physiology. Nevertheless, during recent years, lessons we have learned from loss-of-function models have shown that besides the paramount physiological roles of FGF23 in the control of 1α-hydroxylase expression and of apical membrane expression of sodium-phosphate co-transporters in proximal renal tubules, FGF23 also is an important stimulator of calcium and sodium reabsorption in distal renal tubules. In addition, there is an emerging role of FGF23 as an auto-/paracrine regulator of alkaline phosphatase expression and mineralization in bone. In contrast to the renal actions of FGF23, the FGF23-mediated suppression of alkaline phosphatase in bone is αKlotho-independent. Moreover, FGF23 may be a physiological suppressor of differentiation of hematopoietic stem cells into the erythroid lineage in the bone microenvironment. At present, there is little evidence for a physiological role of FGF23 in organs other than kidney and bone. The purpose of this mini-review is to highlight the current knowledge about the complex physiological functions of FGF23.
Collapse
|
41
|
Richter B, Faul C. FGF23 Actions on Target Tissues-With and Without Klotho. Front Endocrinol (Lausanne) 2018; 9:189. [PMID: 29770125 PMCID: PMC5940753 DOI: 10.3389/fendo.2018.00189] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor (FGF) 23 is a phosphaturic hormone whose physiologic actions on target tissues are mediated by FGF receptors (FGFR) and klotho, which functions as a co-receptor that increases the binding affinity of FGF23 for FGFRs. By stimulating FGFR/klotho complexes in the kidney and parathyroid gland, FGF23 reduces renal phosphate uptake and secretion of parathyroid hormone, respectively, thereby acting as a key regulator of phosphate metabolism. Recently, it has been shown that FGF23 can also target cell types that lack klotho. This unconventional signaling event occurs in an FGFR-dependent manner, but involves other downstream signaling pathways than in "classic" klotho-expressing target organs. It appears that klotho-independent signaling mechanisms are only activated in the presence of high FGF23 concentrations and result in pathologic cellular changes. Therefore, it has been postulated that massive elevations in circulating levels of FGF23, as found in patients with chronic kidney disease, contribute to associated pathologies by targeting cells and tissues that lack klotho. This includes the induction of cardiac hypertrophy and fibrosis, the elevation of inflammatory cytokine expression in the liver, and the inhibition of neutrophil recruitment. Here, we describe the signaling and cellular events that are caused by FGF23 in tissues lacking klotho, and we discuss FGF23's potential role as a hormone with widespread pathologic actions. Since the soluble form of klotho can function as a circulating co-receptor for FGF23, we also discuss the potential inhibitory effects of soluble klotho on FGF23-mediated signaling which might-at least partially-underlie the pleiotropic tissue-protective functions of klotho.
Collapse
|
42
|
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone, mainly produced by osteoblasts and osteocytes in response to increased extracellular phosphate and circulating vitamin D hormone. Endocrine FGF23 signaling requires co-expression of the ubiquitously expressed FGF receptor 1 (FGFR1) and the co-receptor α-Klotho (Klotho). In proximal renal tubules, FGF23 suppresses the membrane expression of the sodium-phosphate cotransporters Npt2a and Npt2c which mediate urinary reabsorption of filtered phosphate. In addition, FGF23 suppresses proximal tubular expression of 1α-hydroxylase, the key enzyme responsible for vitamin D hormone production. In distal renal tubules, FGF23 signaling activates with-no-lysine kinase 4, leading to increased renal tubular reabsorption of calcium and sodium. Therefore, FGF23 is not only a phosphaturic but also a calcium- and sodium-conserving hormone, a finding that may have important implications for the pathophysiology of chronic kidney disease. Besides these endocrine, Klotho-dependent functions of FGF23, FGF23 is also an auto-/paracrine suppressor of tissue-nonspecific alkaline phosphatase transcription via Klotho-independent FGFR3 signaling, leading to local inhibition of mineralization through accumulation of pyrophosphate. In addition, FGF23 may target the heart via an FGFR4-mediated Klotho-independent signaling cascade. Taken together, there is emerging evidence that FGF23 is a pleiotropic hormone, linking bone with several other organ systems.
Collapse
MESH Headings
- Autocrine Communication
- Bone and Bones/physiology
- Calcification, Physiologic
- Cardiovascular System
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/physiology
- Glucuronidase/physiology
- Humans
- Immunomodulation
- Kidney Tubules, Proximal/physiology
- Klotho Proteins
- Paracrine Communication
- Phosphates/physiology
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 3/physiology
- Receptor, Fibroblast Growth Factor, Type 4/physiology
- Sodium-Phosphate Cotransporter Proteins, Type IIa/physiology
- Sodium-Phosphate Cotransporter Proteins, Type IIc/physiology
Collapse
Affiliation(s)
- Reinhold G Erben
- 1 Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
43
|
Andrukhova O, Bayer J, Schüler C, Zeitz U, Murali SK, Ada S, Alvarez-Pez JM, Smorodchenko A, Erben RG. Klotho Lacks an FGF23-Independent Role in Mineral Homeostasis. J Bone Miner Res 2017; 32:2049-2061. [PMID: 28600880 DOI: 10.1002/jbmr.3195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 12/30/2022]
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone regulating vitamin D hormone production and renal handling of minerals by signaling through an FGF receptor/αKlotho (Klotho) receptor complex. Whether Klotho has FGF23-independent effects on mineral homeostasis is a controversial issue. Here, we aimed to shed more light on this controversy by comparing male and female triple knockout mice with simultaneous deficiency in Fgf23 and Klotho and a nonfunctioning vitamin D receptor (VDR) (Fgf23/Klotho/VDR) with double (Fgf23/VDR, Klotho/VDR, and Fgf23/Klotho) and single Fgf23, Klotho, and VDR mutants. As expected, 4-week-old Fgf23, Klotho, and Fgf23/Klotho knockout mice were hypercalcemic and hyperphosphatemic, whereas VDR, Fgf23/VDR, and Klotho/VDR mice on rescue diet were normocalcemic and normophosphatemic. Serum levels of calcium, phosphate, and sodium did not differ between 4-week-old triple Fgf23/Klotho/VDR and double Fgf23/VDR or Klotho/VDR knockout mice. Notably, 3-month-old Fgf23/Klotho/VDR triple knockout mice were indistinguishable from double Fgf23/VDR and Klotho/VDR compound mutants in terms of serum calcium, serum phosphate, serum sodium, and serum PTH, as well as urinary calcium and sodium excretion. Protein expression analysis revealed increased membrane abundance of sodium-phosphate co-transporter 2a (NaPi-2a), and decreased expression of sodium-chloride co-transporter (NCC) and transient receptor potential cation channel subfamily V member 5 (TRPV5) in Fgf23/Klotho/VDR, Fgf23/VDR, and Klotho/VDR mice, relative to wild-type and VDR mice, but no differences between triple and double knockouts. Further, ex vivo treatment of live kidney slices isolated from wild-type and Klotho/VDR mice with soluble Klotho did not induce changes in intracellular phosphate, calcium or sodium accumulation assessed by two-photon microscopy. In conclusion, our data suggest that the main physiological function of Klotho for mineral homeostasis in vivo is its role as co-receptor mediating Fgf23 action. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jessica Bayer
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christiane Schüler
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ute Zeitz
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sathish K Murali
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sibel Ada
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Alina Smorodchenko
- Institute for Vegetative Anatomy, Charité University of Berlin, Berlin, Germany
| | - Reinhold G Erben
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
44
|
Johnson K, Levine K, Sergi J, Chamoun J, Roach R, Vekich J, Favis M, Horn M, Cao X, Miller B, Snyder W, Aivazian D, Reagan W, Berryman E, Colangelo J, Markiewicz V, Bagi CM, Brown TP, Coyle A, Mohammadi M, Magram J. Therapeutic Effects of FGF23 c-tail Fc in a Murine Preclinical Model of X-Linked Hypophosphatemia Via the Selective Modulation of Phosphate Reabsorption. J Bone Miner Res 2017; 32:2062-2073. [PMID: 28600887 PMCID: PMC5816679 DOI: 10.1002/jbmr.3197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 01/13/2023]
Abstract
Fibroblast growth factor 23 (FGF23) is the causative factor of X-linked hypophosphatemia (XLH), a genetic disorder effecting 1:20,000 that is characterized by excessive phosphate excretion, elevated FGF23 levels and a rickets/osteomalacia phenotype. FGF23 inhibits phosphate reabsorption and suppresses 1α,25-dihydroxyvitamin D (1,25D) biosynthesis, analytes that differentially contribute to bone integrity and deleterious soft-tissue mineralization. As inhibition of ligand broadly modulates downstream targets, balancing efficacy and unwanted toxicity is difficult when targeting the FGF23 pathway. We demonstrate that a FGF23 c-tail-Fc fusion molecule selectively modulates the phosphate pathway in vivo by competitive antagonism of FGF23 binding to the FGFR/α klotho receptor complex. Repeated injection of FGF23 c-tail Fc in Hyp mice, a preclinical model of XLH, increases cell surface abundance of kidney NaPi transporters, normalizes phosphate excretion, and significantly improves bone architecture in the absence of soft-tissue mineralization. Repeated injection does not modulate either 1,25D or calcium in a physiologically relevant manner in either a wild-type or disease setting. These data suggest that bone integrity can be improved in models of XLH via the exclusive modulation of phosphate. We posit that the selective modulation of the phosphate pathway will increase the window between efficacy and safety risks, allowing increased efficacy to be achieved in the treatment of this chronic disease. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kristen Johnson
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Kymberly Levine
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Joseph Sergi
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Jean Chamoun
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Rachel Roach
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | | | - Mike Favis
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Mark Horn
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Xianjun Cao
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Brian Miller
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - William Snyder
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Dikran Aivazian
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - William Reagan
- Drug Safety Research and Development, Pfizer, Groton, CT, USA
| | | | | | | | - Cedo M Bagi
- Comparative Medicine, Pfizer, Groton, CT, USA
| | - Thomas P Brown
- Drug Safety Research and Development, Pfizer, Groton, CT, USA
| | - Anthony Coyle
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Jeanne Magram
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| |
Collapse
|
45
|
Measurement of Serum Klotho in Systemic Sclerosis. DISEASE MARKERS 2017; 2017:9545930. [PMID: 28912623 PMCID: PMC5585626 DOI: 10.1155/2017/9545930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Background The aim of our study was to evaluate the serum concentration of klotho in a cohort of systemic sclerosis (SSc) patients compared to that of healthy controls and to correlate its levels with the degree and the kind of organ involvement. Methods Blood samples obtained from both patients and controls were collected and analysed by an ELISA test for the determination of human soluble klotho. Scleroderma patients were evaluated for disease activity through clinical, laboratory, and instrumental assessment. Results Our cohort consisted of 81 SSc patients (74 females, mean age 63.9 ± 13.1 years) and 136 healthy controls (78 females, mean age 50.5 ± 10.7 years). When matched for age, serum klotho concentration significantly differed between controls and patients (p < 0.001). However, in SSc patients, we did not find any significant association between serum klotho and clinical, laboratory, and instrumental findings. Lower serum levels of klotho were detected in 4 patients who were anticitrullinated peptide antibody (ACPA) positive (p = 0.005). Conclusions Our data show a lower concentration of klotho in the serum of SSc patients compared to that of healthy controls, without any significant association with clinical manifestations and laboratory and instrumental findings. The association between serum klotho and ACPA positivity requires further investigation.
Collapse
|
46
|
Watanabe R, Fujita N, Sato Y, Kobayashi T, Morita M, Oike T, Miyamoto K, Kuro-O M, Michigami T, Fukumoto S, Tsuji T, Toyama Y, Nakamura M, Matsumoto M, Miyamoto T. Enpp1 is an anti-aging factor that regulates Klotho under phosphate overload conditions. Sci Rep 2017; 7:7786. [PMID: 28798354 PMCID: PMC5552841 DOI: 10.1038/s41598-017-07341-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 12/24/2022] Open
Abstract
Control of phosphate metabolism is crucial to regulate aging in mammals. Klotho is a well-known anti-aging factor that regulates phosphate metabolism: mice mutant or deficient in Klotho exhibit phenotypes resembling human aging. Here we show that ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) is required for Klotho expression under phosphate overload conditions. Loss-of-function Enpp1ttw/ttw mice under phosphate overload conditions exhibited phenotypes resembling human aging and Klotho mutants, such as short life span, arteriosclerosis and osteoporosis, with elevated serum 1,25(OH)2D3 levels. Enpp1ttw/ttw mice also exhibited significantly reduced renal Klotho expression under phosphate overload conditions, and aging phenotypes in these mice were rescued by Klotho overexpression, a low vitamin D diet or vitamin D receptor knockout. These findings indicate that Enpp1 plays a crucial role in regulating aging via Klotho expression under phosphate overload conditions.
Collapse
Affiliation(s)
- Ryuichi Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nobuyuki Fujita
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mayu Morita
- Division of Oral and Maxillofacial Surgery, Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takatsugu Oike
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, 594-1101, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Tokushima, 770-8503, Japan
| | - Takashi Tsuji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
47
|
Abstract
Fibroblast growth factors (FGF) are mitogenic signal mediators that induce cell proliferation and survival. Although cardiac myocytes are post-mitotic, they have been shown to be able to respond to local and circulating FGFs. While precise molecular mechanisms are not well characterized, some FGF family members have been shown to induce cardiac remodeling under physiologic conditions by mediating hypertrophic growth in cardiac myocytes and by promoting angiogenesis, both events leading to increased cardiac function and output. This FGF-mediated physiologic scenario might transition into a pathologic situation involving cardiac cell death, fibrosis and inflammation, and eventually cardiac dysfunction and heart failure. As discussed here, cardiac actions of FGFs - with the majority of studies focusing on FGF2, FGF21 and FGF23 - and their specific FGF receptors (FGFR) and precise target cell types within the heart, are currently under experimental investigation. Especially cardiac effects of endocrine FGFs entered center stage over the past five years, as they might provide communication routes that couple metabolic mechanisms, such as bone-regulated phosphate homeostasis, or metabolic stress, such as hyperphosphatemia associated with kidney injury, with changes in cardiac structure and function. In this context, it has been shown that elevated serum FGF23 can directly tackle cardiac myocytes via FGFR4 thereby contributing to cardiac hypertrophy in models of chronic kidney disease, also called uremic cardiomyopathy. Precise characterization of FGFs and their origin and regulation of expression, and even more importantly, the identification of the FGFR isoforms that mediate their cardiac actions should help to develop novel pharmacological interventions for heart failure, such as FGFR4 inhibition to tackle uremic cardiomyopathy.
Collapse
Affiliation(s)
- Christian Faul
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA; Department of Cell Biology and Anatomy, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
48
|
Erben RG, Andrukhova O. FGF23-Klotho signaling axis in the kidney. Bone 2017; 100:62-68. [PMID: 27622885 DOI: 10.1016/j.bone.2016.09.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone protecting against the potentially deleterious effects of hyperphosphatemia by suppression of phosphate reabsorption and of active vitamin D hormone synthesis in the kidney. The kidney is one of the main target organs of FGF23 signaling. The purpose of this review is to highlight the recent advances in the area of FGF23-Klotho signaling in the kidney. During recent years, it has become clear that FGF23 acts independently on proximal and distal tubular epithelium. In proximal renal tubules, FGF23 suppresses phosphate reabsorption by a Klotho dependent activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and of serum/glucocorticoid-regulated kinase-1 (SGK1), leading to phosphorylation of the scaffolding protein Na+/H+ exchange regulatory cofactor (NHERF)-1 and subsequent internalization and degradation of sodium-phosphate cotransporters. In distal renal tubules, FGF23 augments calcium and sodium reabsorption by increasing the apical membrane expression of the epithelial calcium channel TRPV5 and of the sodium-chloride cotransporter NCC through a Klotho dependent activation of with-no-lysine kinase-4 (WNK4). In proximal and distal renal tubules, FGF receptor-1 is probably the dominant FGF receptor mediating the effects of FGF23 by forming a complex with membrane-bound Klotho in the basolateral membrane. The newly described sodium- and calcium-conserving functions of FGF23 may have major implications for the pathophysiology of diseases characterized by chronically increased circulating FGF23 concentrations such as chronic kidney disease.
Collapse
|
49
|
Xiao Z, Riccardi D, Velazquez HA, Chin AL, Yates CR, Carrick JD, Smith JC, Baudry J, Quarles LD. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia. Sci Signal 2016; 9:ra113. [PMID: 27879395 PMCID: PMC6544179 DOI: 10.1126/scisignal.aaf5034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor-23 (FGF-23) interacts with a binary receptor complex composed of α-Klotho (α-KL) and FGF receptors (FGFRs) to regulate phosphate and vitamin D metabolism in the kidney. Excess FGF-23 production, which causes hypophosphatemia, is genetically inherited or occurs with chronic kidney disease. Among other symptoms, hypophosphatemia causes vitamin D deficiency and the bone-softening disorder rickets. Current therapeutics that target the receptor complex have limited utility clinically. Using a computationally driven, structure-based, ensemble docking and virtual high-throughput screening approach, we identified four novel compounds predicted to selectively inhibit FGF-23-induced activation of the FGFR/α-KL complex. Additional modeling and functional analysis found that Zinc13407541 bound to FGF-23 and disrupted its interaction with the FGFR1/α-KL complex; experiments in a heterologous cell expression system showed that Zinc13407541 selectivity inhibited α-KL-dependent FGF-23 signaling. Zinc13407541 also inhibited FGF-23 signaling in isolated renal tubules ex vivo and partially reversed the hypophosphatemic effects of excess FGF-23 in a mouse model. These chemical probes provide a platform to develop lead compounds to treat disorders caused by excess FGF-23.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
| | - Demian Riccardi
- Department of Chemistry, Earlham College, 801 National Road West, Richmond, IN 47374, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hector A Velazquez
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Chemistry, Tennessee Technological University, 55 University Drive, Cookeville, TN 38501, USA
| | - Ai L Chin
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Charles R Yates
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jesse D Carrick
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Chemistry, Tennessee Technological University, 55 University Drive, Cookeville, TN 38501, USA
| | - Jerome Baudry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Chemistry, Tennessee Technological University, 55 University Drive, Cookeville, TN 38501, USA
| | - L Darryl Quarles
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA.
| |
Collapse
|
50
|
Courbebaisse M, Mehel H, Petit-Hoang C, Ribeil JA, Sabbah L, Tuloup-Minguez V, Bergerat D, Arlet JB, Stanislas A, Souberbielle JC, Le Clésiau H, Fischmeister R, Friedlander G, Prié D. Carboxy-terminal fragment of fibroblast growth factor 23 induces heart hypertrophy in sickle cell disease. Haematologica 2016; 102:e33-e35. [PMID: 27789679 DOI: 10.3324/haematol.2016.150987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Marie Courbebaisse
- Université Paris Descartes, Sorbonne-Paris-Cité, Faculté de Médecine, Paris.,INSERM U1151-CNRS UMR8253, Paris.,Service de Physiologie Explorations Fonctionnelles Hôpital Necker-Enfants Malades Assistance Publique-Hôpitaux de Paris.,Service de Physiologie Explorations Fonctionnelles Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris
| | | | | | - Jean-Antoine Ribeil
- Département de Biothérapie, Hôpital Necker-Enfants Malades Assistance Publique-Hôpitaux de Paris
| | - Laurent Sabbah
- Unité Fonctionnelle de Cardiologie Adultes, Hôpital Necker-Enfants Malades Assistance Publique-Hôpitaux de Paris
| | | | | | - Jean-Benoit Arlet
- Service de Médecine Interne, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris.,INSERM U1163, CNRS 8254, Institut IMAGINE, Paris
| | - Aurélie Stanislas
- Département de Biothérapie, Hôpital Necker-Enfants Malades Assistance Publique-Hôpitaux de Paris
| | - Jean-Claude Souberbielle
- INSERM U1151-CNRS UMR8253, Paris.,Service de Physiologie Explorations Fonctionnelles Hôpital Necker-Enfants Malades Assistance Publique-Hôpitaux de Paris
| | - Hervé Le Clésiau
- Centre de Santé et d'Assurance Maladie Agence de Seine-Saint-Denis, Bobigny, France
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180 Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Gérard Friedlander
- Université Paris Descartes, Sorbonne-Paris-Cité, Faculté de Médecine, Paris.,INSERM U1151-CNRS UMR8253, Paris.,Service de Physiologie Explorations Fonctionnelles Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris
| | - Dominique Prié
- Université Paris Descartes, Sorbonne-Paris-Cité, Faculté de Médecine, Paris .,INSERM U1151-CNRS UMR8253, Paris.,Service de Physiologie Explorations Fonctionnelles Hôpital Necker-Enfants Malades Assistance Publique-Hôpitaux de Paris
| |
Collapse
|