1
|
Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, Wu Y, Deng W, Ma J, Li X, Pan B, Zhang B, Zhang H, Luo A, Xu Y, Li M, Pu Y. KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci U S A 2024; 121:e2314128121. [PMID: 38359291 PMCID: PMC10895275 DOI: 10.1073/pnas.2314128121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
Aberrant lysine lactylation (Kla) is associated with various diseases which are caused by excessive glycolysis metabolism. However, the regulatory molecules and downstream protein targets of Kla remain largely unclear. Here, we observed a global Kla abundance profile in colorectal cancer (CRC) that negatively correlates with prognosis. Among lactylated proteins detected in CRC, lactylation of eEF1A2K408 resulted in boosted translation elongation and enhanced protein synthesis which contributed to tumorigenesis. By screening eEF1A2 interacting proteins, we identified that KAT8, a lysine acetyltransferase that acted as a pan-Kla writer, was responsible for installing Kla on many protein substrates involving in diverse biological processes. Deletion of KAT8 inhibited CRC tumor growth, especially in a high-lactic tumor microenvironment. Therefore, the KAT8-eEF1A2 Kla axis is utilized to meet increased translational requirements for oncogenic adaptation. As a lactyltransferase, KAT8 may represent a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Mengdi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Jie Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Jianxin Cui
- Department of General Surgery & Institute of General Surgery, the First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing100583, China
| | - Pengju Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Fangming Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Yuxi Wu
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Weiwei Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Jihong Ma
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Xinyu Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Bingchen Pan
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang110122, China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Yinzhe Xu
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing100583, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Yang Pu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| |
Collapse
|
2
|
Untargeted Metabolomics Reveals a Complex Impact on Different Metabolic Pathways in Scallop Mimachlamys varia (Linnaeus, 1758) after Short-Term Exposure to Copper at Environmental Dose. Metabolites 2021; 11:metabo11120862. [PMID: 34940620 PMCID: PMC8703567 DOI: 10.3390/metabo11120862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Ports are a good example of how coastal environments, gathering a set of diverse ecosystems, are subjected to pollution factors coming from human activities both on land and at sea. Among them, trace element as copper represents a major factor. Abundant in port ecosystem, copper is transported by runoff water and results from diverse port features (corrosion of structures, fuel, anti-fouling products, etc.). The variegated scallop Mimachlamys varia is common in the Atlantic port areas and is likely to be directly influenced by copper pollution, due to its sessile and filtering lifestyle. Thus, the aim of the present study is to investigate the disruption of the variegated scallop metabolism, under a short exposure (48 h) to a copper concentration frequently encountered in the waters of the largest marina in Europe (82 μg/L). For this, we chose a non-targeted metabolomic approach using ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS), offering a high level of sensitivity and allowing the study without a priori of the entire metabolome. We described 28 metabolites clearly modulated by copper. They reflected the action of copper on several biological functions such as osmoregulation, oxidative stress, reproduction and energy metabolism.
Collapse
|
3
|
Álvarez I, Fernández I, Traoré A, Pérez-Pardal L, Menéndez-Arias NA, Goyache F. Ancient Homozygosity Segments in West African Djallonké Sheep Inform on the Genomic Impact of Livestock Adaptation to the Environment. Animals (Basel) 2020; 10:E1178. [PMID: 32664651 PMCID: PMC7401600 DOI: 10.3390/ani10071178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
A sample of Burkina Faso Djallonké (West African Dwarf) sheep was analyzed to identify stretches of homozygous segments (runs of homozygosity; ROH) overlapping with ancient homozygosity-by-descent (HBD) segments. HBD segments were considered ancient if they were likely to be inherited from ancestors living from 1024 to 2048 generations ago, roughly coinciding with the time in which sheep entered into West Africa. It is hypothesized that such homozygous segments can inform on the effect of the sheep genome of human-mediated selection for adaptation to this harsh environment. PLINK analyses allowed to identify a total of 510 ROH segments in 127 different individuals that could be summarized into 124 different ROH. A total of 32,968 HBD segments were identified on 119 individuals using the software ZooRoH. HBD segments inherited from ancestors living 1024 and 2048 generations ago were identified on 61 individuals. The overlap between consensus ROH identified using PLINK and HBD fragments putatively assigned to generations 1024 and 2048 gave 108 genomic areas located on 17 different ovine chromosomes which were considered candidate regions for gene-annotation enrichment analyses. Functional annotation allowed to identify six statistically significant functional clusters involving 50 candidate genes. Cluster 1 was involved in homeostasis and coagulation; functional clusters 2, 3, and 6 were associated to innate immunity, defense against infections, and white blood cells proliferation and migration, respectively; cluster 4 was involved in parasite resistance; and functional cluster 5, formed by 20 genes, was involved in response to stress. The current analysis confirms the importance of genomic areas associated to immunity, disease resistance, and response to stress for adaptation of sheep to the challenging environment of humid Sub-Saharan West Africa.
Collapse
Affiliation(s)
- Isabel Álvarez
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| | - Iván Fernández
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| | - Amadou Traoré
- Institut de l’Environnement et des RecherchesAgricoles (INERA), 8645 Ouagadougou BP, Burkina Faso;
| | | | - Nuria A. Menéndez-Arias
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| | - Félix Goyache
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| |
Collapse
|
4
|
Eich ML, Chandrashekar DS, Rodriguez Pen A MDC, Robinson AD, Siddiqui J, Daignault-Newton S, Chakravarthi BVSK, Kunju LP, Netto GJ, Varambally S. Characterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer. Prostate 2019; 79:1629-1639. [PMID: 31376196 DOI: 10.1002/pros.23887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent microarray and sequencing studies of prostate cancer showed multiple molecular alterations during cancer progression. It is critical to evaluate these molecular changes to identify new biomarkers and targets. We performed analysis of glycine-N-acyltransferase like 1 (GLYATL1) expression in various stages of prostate cancer in this study and evaluated the regulation of GLYATL1 by androgen. METHOD We performed in silico analysis of cancer gene expression profiling and transcriptome sequencing to evaluate GLYATL1 expression in prostate cancer. Furthermore, we performed immunohistochemistry using specific GLYATL1 antibody using high-density prostate cancer tissue microarray containing primary and metastatic prostate cancer. We also tested the regulation of GLYATL1 expression by androgen and ETS transcription factor ETV1. In addition, we performed RNA-sequencing of GLYATL1 modulated prostate cancer cells to evaluate the gene expression and changes in molecular pathways. RESULTS Our in silico analysis of cancer gene expression profiling and transcriptome sequencing we revealed an overexpression of GLYATL1 in primary prostate cancer. Confirming these findings by immunohistochemistry, we show that GLYATL1 is overexpressed in primary prostate cancer compared with metastatic prostate cancer and benign prostatic tissue. Low-grade cancers had higher GLYATL1 expression compared to high-grade prostate tumors. Our studies showed that GLYATL1 is upregulated upon androgen treatment in LNCaP prostate cancer cells which harbors ETV1 gene rearrangement. Furthermore, ETV1 knockdown in LNCaP cells showed downregulation of GLYATL1 suggesting potential regulation of GLYATL1 by ETS transcription factor ETV1. Transcriptome sequencing using the GLYATL1 knockdown prostate cancer cell lines LNCaP showed regulation of multiple metabolic pathways. CONCLUSIONS In summary, our study characterizes the expression of GLYATL1 in prostate cancer and explores the regulation of its regulation in prostate cancer showing role for androgen and ETS transcription factor ETV1. Future studies are needed to decipher the biological significance of these findings.
Collapse
Affiliation(s)
- Marie-Lisa Eich
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Alyncia D Robinson
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Javed Siddiqui
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
| | | | | | | | - George J Netto
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sooryanarayana Varambally
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
5
|
Canfield CA, Bradshaw PC. Amino acids in the regulation of aging and aging-related diseases. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
6
|
Adeva-Andany M, Souto-Adeva G, Ameneiros-Rodríguez E, Fernández-Fernández C, Donapetry-García C, Domínguez-Montero A. Insulin resistance and glycine metabolism in humans. Amino Acids 2017; 50:11-27. [PMID: 29094215 DOI: 10.1007/s00726-017-2508-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022]
Abstract
Plasma glycine level is low in patients with obesity or diabetes and the improvement of insulin resistance increases plasma glycine concentration. In prospective studies, hypoglycinemia at baseline predicts the risk of developing type 2 diabetes and higher serum glycine level is associated with decreased risk of incident type 2 diabetes. Consistently, plasma glycine concentration is lower in the lean offspring of parents with type 2 diabetes compared to healthy subjects. Among patients with type 2 diabetes, hypoglycinemia occurs before clinical manifestations of the disease, but the pathophysiological mechanisms underlying glycine deficit and its potential clinical repercussions are unclear. Glycine participates in several metabolic pathways, being required for relevant human physiological processes. Humans synthesize glycine from glyoxylate, glucose (via serine), betaine and likely from threonine and during the endogenous synthesis of L-carnitine. Glycine conjugates bile acids and other acyl moieties producing acyl-glycine derivatives. The glycine cleavage system catalyzes glycine degradation to carbon dioxide and ammonium while tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. Glycine is utilized to synthesize serine, sarcosine, purines, creatine, heme group, glutathione, and collagen. Glycine is a major quantitative component of collagen. In addition, the role of glycine maintaining collagen structure is critical, as glycine residues are required to stabilize the triple helix of the collagen molecule. This quality of glycine likely contributes to explain the occurrence of medial arterial calcification and the elevated cardiovascular risk associated with diabetes and chronic kidney disease, as emerging evidence links normal collagen content with the initiation and progression of vascular calcification in humans.
Collapse
Affiliation(s)
- M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain.
| | - G Souto-Adeva
- National Institutes of Health, National Institute of Arthritis and Metabolic Diseases, Bethesda, USA
| | - E Ameneiros-Rodríguez
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - C Fernández-Fernández
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - C Donapetry-García
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - A Domínguez-Montero
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| |
Collapse
|
7
|
Abstract
Cell death is a fundamental progress that regulates cell number, tissue homeostasis and organ size in development. The c-Jun N-terminal kinase (JNK) pathway has been evolutionarily conserved from fly to human, and plays essential roles in regulating cell death. To characterize additional genes that regulate JNK signaling, we performed a genetic screen in Drosophila and identified dGLYAT, a novel gene whose function was previously unknown, as a modulator of JNK-mediated cell death. We found that loss of dGLYAT suppressed JNK activation and cell death triggered by over-expression of Egr or Hep, or depletion of puc or lgl in development, suggesting dGLYAT regulates both ectopic and physiological functions of JNK pathway. Furthermore, we showed that loss of dGLYAT inhibits JNK-mediated ROS production, suggesting dGLYAT regulates multiple functions of JNK signaling in vivo.
Collapse
|
8
|
Esposito EA, Jones MJ, Doom JR, MacIsaac JL, Gunnar MR, Kobor MS. Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. Dev Psychopathol 2016; 28:1385-1399. [PMID: 26847422 PMCID: PMC5903568 DOI: 10.1017/s0954579416000055] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Internationally adopted adolescents who are adopted as young children from conditions of poverty and deprivation have poorer physical and mental health outcomes than do adolescents conceived, born, and raised in the United States by families similar to those who adopt internationally. Using a sample of Russian and Eastern European adoptees to control for Caucasian race and US birth, and nonadopted offspring of well-educated and well-resourced parents to control for postadoption conditions, we hypothesized that the important differences in environments, conception to adoption, might be reflected in epigenetic patterns between groups, specifically in DNA methylation. Thus, we conducted an epigenome-wide association study to compare DNA methylation profiles at approximately 416,000 individual CpG loci from peripheral blood mononuclear cells of 50 adopted youth and 33 nonadopted youth. Adopted youth averaged 22 months at adoption, and both groups averaged 15 years at testing; thus, roughly 80% of their lives were lived in similar circumstances. Although concurrent physical health did not differ, cell-type composition predicted using the DNA methylation data revealed a striking difference in the white blood cell-type composition of the adopted and nonadopted youth. After correcting for cell type and removing invariant probes, 30 CpG sites in 19 genes were more methylated in the adopted group. We also used an exploratory functional analysis that revealed that 223 gene ontology terms, clustered in neural and developmental categories, were significantly enriched between groups.
Collapse
Affiliation(s)
- Elisa A. Esposito
- Institute of Child Development, University of Minnesota, 51 East River Parkway, Minneapolis, MN 55455
- Widener University, One University Place, Chester, PA 19013
| | - Meaghan J. Jones
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, V5Z 4H4, Canada
| | - Jenalee R. Doom
- Institute of Child Development, University of Minnesota, 51 East River Parkway, Minneapolis, MN 55455
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, V5Z 4H4, Canada
| | - Megan R. Gunnar
- Institute of Child Development, University of Minnesota, 51 East River Parkway, Minneapolis, MN 55455
- Child and Brain Development Program, Canadian Institute for Advanced Research, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, V5Z 4H4, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research, Canada
- Human Early Learning Partnership, School of Population and Public Health, University of British Columbia
| |
Collapse
|
9
|
Gizak A, Grenda M, Mamczur P, Wisniewski J, Sucharski F, Silberring J, McCubrey JA, Wisniewski JR, Rakus D. Insulin/IGF1-PI3K-dependent nucleolar localization of a glycolytic enzyme--phosphoglycerate mutase 2, is necessary for proper structure of nucleolus and RNA synthesis. Oncotarget 2016; 6:17237-50. [PMID: 26033454 PMCID: PMC4627304 DOI: 10.18632/oncotarget.4044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
Phosphoglycerate mutase (PGAM), a conserved, glycolytic enzyme has been found in nucleoli of cancer cells. Here, we present evidence that accumulation of PGAM in the nucleolus is a universal phenomenon concerning not only neoplastically transformed but also non-malignant cells. Nucleolar localization of the enzyme is dependent on the presence of the PGAM2 (muscle) subunit and is regulated by insulin/IGF-1–PI3K signaling pathway as well as drugs influencing ribosomal biogenesis. We document that PGAM interacts with several 40S and 60S ribosomal proteins and that silencing of PGAM2 expression results in disturbance of nucleolar structure, inhibition of RNA synthesis and decrease of the mitotic index of squamous cell carcinoma cells. We conclude that presence of PGAM in the nucleolus is a prerequisite for synthesis and initial assembly of new pre-ribosome subunits.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego, Wroclaw, Poland
| | - Marcin Grenda
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego, Wroclaw, Poland
| | - Piotr Mamczur
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego, Wroclaw, Poland
| | - Janusz Wisniewski
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego, Wroclaw, Poland
| | - Filip Sucharski
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Jacek R Wisniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego, Wroclaw, Poland
| |
Collapse
|
10
|
Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo. Sci Rep 2016; 6:22685. [PMID: 26940749 PMCID: PMC4778021 DOI: 10.1038/srep22685] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 11/08/2022] Open
Abstract
Dysfunction and accumulation of the microtubule-associated human Tau (hTau) protein into intraneuronal aggregates is observed in many neurodegenerative disorders including Alzheimer’s disease (AD). Reversible lysine acetylation has recently emerged as a post-translational modification that may play an important role in the modulation of hTau pathology. Acetylated hTau species have been observed within hTau aggregates in human AD brains and multi-acetylation of hTau in vitro regulates its propensity to aggregate. However, whether lysine acetylation at position 280 (K280) modulates hTau-induced toxicity in vivo is unknown. We generated new Drosophila transgenic models of hTau pathology to evaluate the contribution of K280 acetylation to hTau toxicity, by analysing the respective toxicity of pseudo-acetylated (K280Q) and pseudo-de-acetylated (K280R) mutant forms of hTau. We observed that mis-expression of pseudo-acetylated K280Q-hTau in the adult fly nervous system potently exacerbated fly locomotion defects and photoreceptor neurodegeneration. In addition, modulation of K280 influenced total hTau levels and phosphorylation without changing hTau solubility. Altogether, our results indicate that pseudo-acetylation of the single K280 residue is sufficient to exacerbate hTau neurotoxicity in vivo, suggesting that acetylated K280-hTau species contribute to the pathological events leading to neurodegeneration in AD.
Collapse
|
11
|
Milioli HH, Vimieiro R, Riveros C, Tishchenko I, Berretta R, Moscato P. The Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and Reconciles the Labels in the METABRIC Data Set. PLoS One 2015; 10:e0129711. [PMID: 26132585 PMCID: PMC4488510 DOI: 10.1371/journal.pone.0129711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prediction of breast cancer intrinsic subtypes has been introduced as a valuable strategy to determine patient diagnosis and prognosis, and therapy response. The PAM50 method, based on the expression levels of 50 genes, uses a single sample predictor model to assign subtype labels to samples. Intrinsic errors reported within this assay demonstrate the challenge of identifying and understanding the breast cancer groups. In this study, we aim to: a) identify novel biomarkers for subtype individuation by exploring the competence of a newly proposed method named CM1 score, and b) apply an ensemble learning, as opposed to the use of a single classifier, for sample subtype assignment. The overarching objective is to improve class prediction. METHODS AND FINDINGS The microarray transcriptome data sets used in this study are: the METABRIC breast cancer data recorded for over 2000 patients, and the public integrated source from ROCK database with 1570 samples. We first computed the CM1 score to identify the probes with highly discriminative patterns of expression across samples of each intrinsic subtype. We further assessed the ability of 42 selected probes on assigning correct subtype labels using 24 different classifiers from the Weka software suite. For comparison, the same method was applied on the list of 50 genes from the PAM50 method. CONCLUSIONS The CM1 score portrayed 30 novel biomarkers for predicting breast cancer subtypes, with the confirmation of the role of 12 well-established genes. Intrinsic subtypes assigned using the CM1 list and the ensemble of classifiers are more consistent and homogeneous than the original PAM50 labels. The new subtypes show accurate distributions of current clinical markers ER, PR and HER2, and survival curves in the METABRIC and ROCK data sets. Remarkably, the paradoxical attribution of the original labels reinforces the limitations of employing a single sample classifiers to predict breast cancer intrinsic subtypes.
Collapse
Affiliation(s)
- Heloisa Helena Milioli
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Renato Vimieiro
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Carlos Riveros
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Inna Tishchenko
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Regina Berretta
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Pablo Moscato
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
12
|
Hanuš L, Shohami E, Bab I, Mechoulam R. N-Acyl amino acids and their impact on biological processes. Biofactors 2014; 40:381-8. [PMID: 24753374 DOI: 10.1002/biof.1166] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/06/2014] [Indexed: 01/10/2023]
Abstract
Over the last two decades a large number of N-long-chain acyl amino acids have been identified in the mammalian body. The pharmacological activities of only a few of them have been investigated and some have been found to be of considerable interest. Thus arachidonoyl serine is vasodilatory and neuroprotective, arachidonoyl glycine is antinociceptive, and oleoyl serine rescues bone loss. However, the pathophysiological/biochemical roles of these amides are mostly unknown.
Collapse
Affiliation(s)
- Lumír Hanuš
- Institute for Drug Research, Hebrew University Medical Faculty, Jerusalem, 91120, Israel
| | | | | | | |
Collapse
|
13
|
Badenhorst CPS, van der Sluis R, Erasmus E, van Dijk AA. Glycine conjugation: importance in metabolism, the role of glycine N-acyltransferase, and factors that influence interindividual variation. Expert Opin Drug Metab Toxicol 2013; 9:1139-53. [PMID: 23650932 DOI: 10.1517/17425255.2013.796929] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Glycine conjugation of mitochondrial acyl-CoAs, catalyzed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterized in detail. Here, we review the causes and possible consequences of interindividual variation in the glycine conjugation pathway. AREAS COVERED The authors review the importance of CoASH in metabolism, formation and toxicity of xenobiotic acyl-CoAs, and mechanisms for restoring levels of CoASH. They focus on GLYAT, glycine conjugation, how genetic variation in the GLYAT gene could influence glycine conjugation, and the emerging roles of glycine metabolism in cancer and musculoskeletal development. EXPERT OPINION The substrate selectivity of GLYAT and its variants needs to be further characterized, as organic acids can be toxic if the corresponding acyl-CoA is not a substrate for glycine conjugation. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability, and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development, and mitochondrial energy metabolism.
Collapse
|
14
|
van der Sluis R, Badenhorst CPS, van der Westhuizen FH, van Dijk AA. Characterisation of the influence of genetic variations on the enzyme activity of a recombinant human glycine N-acyltransferase. Gene 2012; 515:447-53. [PMID: 23237781 DOI: 10.1016/j.gene.2012.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/31/2012] [Accepted: 12/02/2012] [Indexed: 12/14/2022]
Abstract
Human glycine N-acyltransferase (human GLYAT) detoxifies a wide range of endogenous and xenobiotic metabolites, including benzoate and salicylate. Significant inter-individual variation exists in glycine conjugation capacity. The molecular basis for this variability is not known. To investigate the influence of single nucleotide polymorphisms (SNPs) in the GLYAT coding sequence on enzyme activity, we expressed and characterised a recombinant human GLYAT. Site-directed mutagenesis was used to generate six non-synonymous SNP variants of the enzyme (K16N; S17T; R131H; N156S; F168L; R199C). The variants were expressed, purified, and enzymatically characterised. The enzyme activities of the K16N, S17T and R131H variants were similar to that of the wild-type, whereas the N156S variant was more active, the F168L variant less active, and the R199C variant was inactive. We also generated an E227Q mutant, which lacks the catalytic residue proposed by Badenhorst et al. (2012). This mutant was inactive compared to the wild-type recombinant human GLYAT. A molecular model of human GLYAT containing coenzyme A (CoA) was generated which revealed that the inactivity of the R199C variant could be due to the substitution of the highly conserved Arg(199) and destabilisation of an α-loop-α motif which is important for substrate binding in the GNAT superfamily. The finding that SNP variations in the human GLYAT gene influence the kinetic properties of the enzyme may explain some of the inter-individual variation in glycine conjugation capacity, which is relevant to the metabolism of xenobiotics such as aspirin and the industrial solvent xylene, and to the treatment of some metabolic disorders.
Collapse
Affiliation(s)
- Rencia van der Sluis
- Centre for Human Metabonomics, Biochemistry Division, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | | | | | | |
Collapse
|