1
|
Burkard M, Piotrowsky A, Leischner C, Detert K, Venturelli S, Marongiu L. The Antiviral Activity of Polyphenols. Mol Nutr Food Res 2025:e70042. [PMID: 40166854 DOI: 10.1002/mnfr.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Polyphenols are secondary metabolites produced by a large variety of plants. These compounds that comprise the class of phenolic acids, stilbenes, lignans, coumarins, flavonoids, and tannins have a wide range of employment, from food production to medical usages. Among the beneficial applications of polyphenols, their antiviral activity is gaining importance due to the increased prevalence of drug-resistant viruses such as herpes and hepatitis B viruses. In the present review, we provide an overview of the most promising or commonly used antiviral polyphenols and their mechanisms of action focusing on their effects on enveloped viruses of clinical importance (double-stranded linear or partially double-stranded circular DNA viruses, negative sense single-stranded RNA viruses with nonsegmented or segmented genomes, and positive sense single-stranded RNA viruses). The present work emphasizes the relevance of polyphenols, in particular epigallocatechin-3-gallate and resveratrol, as alternative or supportive antivirals. Polyphenols could interfere with virtually all steps of viral infection, from the adsorption to the release of viral particles. The activity of polyphenols against viruses is especially relevant given the risk of widespread outbreaks associated with viruses, remarked by the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Katja Detert
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Azarkar S, Abedi M, Lavasani ASO, Ammameh AH, Goharipanah F, Baloochi K, Bakhshi H, Jafari A. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review. Phytother Res 2024; 38:3080-3121. [PMID: 38613154 DOI: 10.1002/ptr.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 04/14/2024]
Abstract
Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.
Collapse
Affiliation(s)
- Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Abedi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Fatemeh Goharipanah
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kimiya Baloochi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Bakhshi
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Kan Z, Zhang S, Liao G, Niu Z, Liu X, Sun Z, Hu X, Zhang Y, Xu S, Zhang J, Zou H, Zhang X, Song Z. Mechanism of Lactiplantibacillus plantarum regulating Ca 2+ affecting the replication of PEDV in small intestinal epithelial cells. Front Microbiol 2023; 14:1251275. [PMID: 37840713 PMCID: PMC10569473 DOI: 10.3389/fmicb.2023.1251275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) mainly invades the small intestine and promotes an inflammatory response, eventually leading to severe diarrhea, vomiting, dehydration, and even death of piglets, which seriously threatens the economic development of pig farming. In recent years, researchers have found that probiotics can improve the intestinal microenvironment and reduce diarrhea. At the same time, certain probiotics have been shown to have antiviral effects; however, their mechanisms are different. Herein, we aimed to investigate the inhibitory effect of Lactiplantibacillus plantarum supernatant (LP-1S) on PEDV and its mechanism. We used IPEC-J2 cells as a model to assess the inhibitory effect of LP-1S on PEDV and to further investigate the relationship between LP-1S, Ca2+, and PEDV. The results showed that a divalent cation chelating agent (EGTA) and calcium channel inhibitors (Bepridil hydrochloride and BAPTA-acetoxymethylate) could inhibit PEDV proliferation while effectively reducing the intracellular Ca2+ concentration. Furthermore, LP-1S could reduce PEDV-induced loss of calcium channel proteins (TRPV6 and PMCA1b), alleviate intracellular Ca2+ accumulation caused by PEDV infection, and promote the balance of intra- and extracellular Ca2+ concentrations, thereby inhibiting PEDV proliferation. In summary, we found that LP-1S has potential therapeutic value against PEDV, which is realized by modulating Ca2+. This provides a potential new drug to treat PEDV infection.
Collapse
Affiliation(s)
- Zifei Kan
- College of Veterinary Medicine, Southwest University, Chongqing, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shujuan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guisong Liao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zheng Niu
- College of Veterinary Medicine, Southwest University, Chongqing, China
- College of Veterinary Medicine, Northwest A and F University, Shanxi, China
| | - Xiangyang Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Zhiwei Sun
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xia Hu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yiling Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- College of Animal Scienceand Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Shasha Xu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jingyi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hong Zou
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xingcui Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenhui Song
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Ghasemi SZ, Beigoli S, Memarzia A, Behrouz S, Gholamnezhad Z, Darroudi M, Amin F, Boskabady MH. Paraquat-induced systemic inflammation and oxidative stress in rats improved by Curcuma longa ethanolic extract, curcumin and a PPAR agonist. Toxicon 2023; 227:107090. [PMID: 36965712 DOI: 10.1016/j.toxicon.2023.107090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The effect of Curcuma longa (Cl) ethanolic extract, nano-curcumin (Cu) and a PPARγ activator, pioglitazone on inhaled paraquat (PQ)-induced systemic inflammation and oxidative stress was examined in the present study. Control rats were exposed to normal saline and PQ groups to 27 and 54 mg/m3 (PQ-L and PQ-H) aerosols. Nine other PQ-H groups were treated with Curcuma longa (Cl, 150 and 600 mg/kg/day), nano-curcumin (Cu, 2 and 8 mg/kg/day), pioglitazone (Pio, 5 and 10 mg/kg), low dose of Pio + Cl and Cu and dexamethasone (0.03 mg/kg/day) for 16 days after PQ exposure period (n = 8). Total and differential WBC counts, malondialdehyde (MDA) and TNF-α levels were increased but thiol, catalase (CAT), superoxide dismutase (SOD), IL-10 and IFN-γ levels were decreased in the blood in the both PQ groups (p < 0.05 to p < 0.001). Treatment with Dexa and both doses of Cl, Cu, and Pio improved all measured variables compared to the PQ-H group (p < 0.05 to p < 0.001). The improvements of most variables in the treated group with low dose of Pio + Cl and Cu were higher than the effects of three agents alone. Systemic inflammation and oxidative stress induced by inhaled PQ were improved by Cl, Cu and Pio. In addition, a synergic effect between Pio with those of Cl and Cu was shown, suggesting PPARγ mediated effects of the plant and its derivative Cu.
Collapse
Affiliation(s)
- Seyedeh Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Arghavan Memarzia
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Amin
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
5
|
Kandeel M, Al-Mubarak AIA. Camel viral diseases: Current diagnostic, therapeutic, and preventive strategies. Front Vet Sci 2022; 9:915475. [PMID: 36032287 PMCID: PMC9403476 DOI: 10.3389/fvets.2022.915475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Many pathogenic viruses infect camels, generally regarded as especially hardy livestock because of their ability to thrive in harsh and arid conditions. Transmission of these viruses has been facilitated by the commercialization of camel milk and meat and their byproducts, and vaccines are needed to prevent viruses from spreading. There is a paucity of information on the effectiveness of viral immunizations in camels, even though numerous studies have looked into the topic. More research is needed to create effective vaccines and treatments for camels. Because Camels are carriers of coronavirus, capable of producing a powerful immune response to recurrent coronavirus infections. As a result, camels may be a suitable model for viral vaccine trials since vaccines are simple to create and can prevent viral infection transfer from animals to humans. In this review, we present available data on the diagnostic, therapeutic, and preventative strategies for the following viral diseases in camels, most of which result in significant economic loss: camelpox, Rift Valley fever, peste des petits ruminants, bovine viral diarrhea, bluetongue, rotavirus, Middle East respiratory syndrome, and COVID-19. Although suitable vaccines have been developed for controlling viral infections and perhaps interrupting the transmission of the virus from the affected animals to blood-feeding vectors, there is a paucity of information on the effectiveness of viral immunizations in camels and more research is needed. Recent therapeutic trials that include specific antivirals or supportive care have helped manage viral infections.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- *Correspondence: Mahmoud Kandeel
| | - Abdullah I. A. Al-Mubarak
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| |
Collapse
|
6
|
Sivani BM, Azzeh M, Patnaik R, Pantea Stoian A, Rizzo M, Banerjee Y. Reconnoitering the Therapeutic Role of Curcumin in Disease Prevention and Treatment: Lessons Learnt and Future Directions. Metabolites 2022; 12:metabo12070639. [PMID: 35888763 PMCID: PMC9320502 DOI: 10.3390/metabo12070639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Turmeric is a plant with a very long history of medicinal use across different cultures. Curcumin is the active part of turmeric, which has exhibited various beneficial physiological and pharmacological effects. This review aims to critically appraise the corpus of literature associated with the above pharmacological properties of curcumin, with a specific focus on antioxidant, anti-inflammatory, anticancer and antimicrobial properties. We have also reviewed the different extraction strategies currently in practice, highlighting the strengths and drawbacks of each technique. Further, our review also summarizes the clinical trials that have been conducted with curcumin, which will allow the reader to get a quick insight into the disease/patient population of interest with the outcome that was investigated. Lastly, we have also highlighted the research areas that need to be further scrutinized to better grasp curcumin’s beneficial physiological and medicinal properties, which can then be translated to facilitate the design of better bioactive therapeutic leads.
Collapse
Affiliation(s)
- Bala Mohan Sivani
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Mahmoud Azzeh
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Rajashree Patnaik
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90128 Palermo, Italy;
| | - Yajnavalka Banerjee
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
- Correspondence: or ; Tel.: +971-527-873-636
| |
Collapse
|
7
|
Badia R, Garcia-Vidal E, Ballana E. Viral-Host Dependency Factors as Therapeutic Targets to Overcome Antiviral Drug-Resistance: A Focus on Innate Immune Modulation. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.935933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The development of antiviral drugs, has provided enormous achievements in our recent history in the fight against viral infections. To date, most of the approved antiviral drugs target virus-encoded proteins to achieve direct antiviral activity. Nonetheless, the inherent idiosyncrasy of viral mutations during their replication cycle, enable many viruses to adapt to the new barriers, becoming resistant to therapies, therefore, representing an ever-present menace and prompting the scientific community towards the development of novel therapeutic strategies. Taking advantage of the increasing knowledge of virus-host cell interactions, the targeting of cellular factors or pathways essential for virus survival turns into an alternative strategy to intervene in almost every step of viral replication cycle. Since host factors are evolutionary conserved, viral evasion to host-directed therapies (HDT) would impose a higher genetic barrier to the emergence of resistant strains. Thus, targeting host factors has long been considered an alternative strategy to overcome viral resistance. Nevertheless, targeting host factors or pathways potentially hints undesired off targets effects, and therefore, a critical risk-benefit evaluation is required. The present review discusses the current state-of-the-art on the identification of viral host dependency factors (HDF) and the workflow required for the development of HDT as antivirals. Then, we focus on the feasibility of using a specific class of host factors, those involved in innate immune modulation, as broad-spectrum antiviral therapeutic strategies. Finally, a brief summary of major roadblocks derived from targeting host cellular proteins and putative future strategies to overcome its major limitations is proposed.
Collapse
|
8
|
A Review on the Potential Species of the Zingiberaceae Family with Anti-viral Efficacy Towards Enveloped Viruses. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural products are a great wellspring of biodiversity for finding novel antivirals, exposing new interactions between structure and operation and creating successful defensive or remedial methodologies against viral diseases. The members of Zingiberaceae traditional plant and herbal products have robust anti-viral action, and their findings will further lead to the production of derivatives and therapeutic. Additionally, it highlights the insight of utilizing these phytoextracts or their constituent compounds as an emergency prophylactic medicine during the pandemic or endemic situations for novel viruses. In this connection, this review investigates the potential candidates of the Zingiberaceae family, consisting of bioactive phytocompounds with proven antiviral efficacy against enveloped viruses. The present study was based on published antiviral efficacy of Curcuma longa, Zingiber officinale, Kaempferia parviflora, Aframomum melegueta Elettaria cardamomum, Alpina Sps (belongs to the Zingiberaceae family) towards the enveloped viruses. The relevant data was searched in Scopus”, “Scifinder”, “Springer”, “Pubmed”, “Google scholar” “Wiley”, “Web of Science”, “Cochrane “Library”, “Embase”, Dissertations, theses, books, and technical reports. Meticulously articles were screened with the subject relevancy and categorized for their ethnopharmacological significance with in-depth analysis. We have comprehensively elucidated the antiviral potency of phytoextracts, major composition, key compounds, mode of action, molecular evidence, immunological relevance, and potential bioactive phytocompounds of these five species belonging to the Zingiberaceae family. Conveniently, these phytoextracts exhibited multimode activity in combating the dreadful enveloped viruses.
Collapse
|
9
|
Islam K, Carlsson M, Enquist PA, Qian W, Marttila M, Strand M, Ahlm C, Evander M. Structural Modifications and Biological Evaluations of Rift Valley Fever Virus Inhibitors Identified from Chemical Library Screening. ACS OMEGA 2022; 7:6854-6868. [PMID: 35252679 PMCID: PMC8892858 DOI: 10.1021/acsomega.1c06513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The Rift Valley fever virus (RVFV) is an emerging high-priority pathogen endemic in Africa with pandemic potential. There is no specific treatment or approved antiviral drugs for the RVFV. We previously developed a cell-based high-throughput assay to screen small molecules targeting the RVFV and identified a potential effective antiviral compound (1-N-(2-(biphenyl-4-yloxy)ethyl)propane-1,3-diamine) as a lead compound. Here, we investigated how structural modifications of the lead compound affected the biological properties and the antiviral effect against the RVFV. We found that the length of the 2-(3-aminopropylamino)ethyl chain of the compound was important for the compound to retain its antiviral activity. The antiviral activity was similar when the 2-(3-aminopropylamino)ethyl chain was replaced with a butyl piperazine chain. However, we could improve the cytotoxicity profile of the lead compound by changing the phenyl piperazine linker from the para-position (compound 9a) to the meta-position (compound 13a). Results from time-of-addition studies suggested that compound 13a might be active during virus post-entry and/or the replication phase of the virus life cycle and seemed to affect the K+ channel. The modifications improved the properties of our lead compound, and our data suggest that 13a is a promising candidate to evaluate further as a therapeutic agent for RVFV infection.
Collapse
Affiliation(s)
- Koushikul Islam
- Department
of Clinical Microbiology, Umeå University, Umeå 901 85, Sweden
| | - Marcus Carlsson
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
| | | | - Weixing Qian
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
| | - Marko Marttila
- Department
of Clinical Microbiology, Umeå University, Umeå 901 85, Sweden
| | - Mårten Strand
- Department
of Clinical Microbiology, Umeå University, Umeå 901 85, Sweden
| | - Clas Ahlm
- Department
of Clinical Microbiology, Umeå University, Umeå 901 85, Sweden
| | - Magnus Evander
- Department
of Clinical Microbiology, Umeå University, Umeå 901 85, Sweden
| |
Collapse
|
10
|
Antiviral Therapeutic Potential of Curcumin: An Update. Molecules 2021; 26:molecules26226994. [PMID: 34834089 PMCID: PMC8617637 DOI: 10.3390/molecules26226994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
The treatment of viral disease has become a medical challenge because of the increasing incidence and prevalence of human viral pathogens, as well as the lack of viable treatment alternatives, including plant-derived strategies. This review attempts to investigate the trends of research on in vitro antiviral effects of curcumin against different classes of human viral pathogens worldwide. Various electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar were searched for published English articles evaluating the anti-viral activity of curcumin. Data were then extracted and analyzed. The forty-three studies (published from 1993 to 2020) that were identified contain data for 24 different viruses. The 50% cytotoxic concentration (CC50), 50% effective/inhibitory concentration (EC50/IC50), and stimulation index (SI) parameters showed that curcumin had antiviral activity against viruses causing diseases in humans. Data presented in this review highlight the potential antiviral applications of curcumin and open new avenues for further experiments on the clinical applications of curcumin and its derivatives.
Collapse
|
11
|
Sarowska J, Wojnicz D, Jama-Kmiecik A, Frej-Mądrzak M, Choroszy-Król I. Antiviral Potential of Plants against Noroviruses. Molecules 2021; 26:molecules26154669. [PMID: 34361822 PMCID: PMC8347075 DOI: 10.3390/molecules26154669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023] Open
Abstract
Human noroviruses, which belong to the enterovirus family, are one of the most common etiological agents of food-borne diseases. In recent years, intensive research has been carried out regarding the antiviral activity of plant metabolites that could be used for the preservation of fresh food, because they are safer for consumption when compared to synthetic chemicals. Plant preparations with proven antimicrobial activity differ in their chemical compositions, which significantly affects their biological activity. Our review aimed to present the results of research related to the characteristics, applicability, and mechanisms of the action of various plant-based preparations and metabolites against norovirus. New strategies to combat intestinal viruses are necessary, not only to ensure food safety and reduce infections in humans but also to lower the direct health costs associated with them.
Collapse
Affiliation(s)
- Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Dorota Wojnicz
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland
- Correspondence: ; Tel.: +48-717-841-512
| | - Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| |
Collapse
|
12
|
|
13
|
A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins. Viruses 2021; 13:v13020314. [PMID: 33670641 PMCID: PMC7922539 DOI: 10.3390/v13020314] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Bunyavirales order was established by the International Committee on Taxonomy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcriptional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral pathogenesis, and developing strategies for interventions and treatments.
Collapse
|
14
|
Noor H, Ikram A, Rathinavel T, Kumarasamy S, Nasir Iqbal M, Bashir Z. Immunomodulatory and anti-cytokine therapeutic potential of curcumin and its derivatives for treating COVID-19 - a computational modeling. J Biomol Struct Dyn 2021; 40:5769-5784. [PMID: 33491580 DOI: 10.1080/07391102.2021.1873190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The unavailability of vaccine and medicines raised serious issues during COVID-19 pandemic and peoples from different parts of world relied on traditional medicine for their immediate recovery from COVID-19 and it found effective also. The current research aims to target COVID-19 immunological human host receptors i.e. angiotensin-converting enzyme (ACE)-2, interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α) and protease-activated receptor (PAR)-1 using curcumin derivatives to prevent viral infection and control overproduction of early clinical responses of COVID-19. Targeting these host proteins will mitigate the infection and will filter out many complications caused by these proteins in COVID-19 patients. It is proven through computer-aided computational modeling approaches, total 30 compounds of curcumin and its derivatives were chosen. Drug-likeness parameters were calculated for curcumin and its derivatives and 20 curcumin analogs were selected for docking analysis. From docking analysis of 20 curcumin analogs against five chosen human host receptor targets reveals 11 curcumin analogs possess least binding affinity and best interaction at active sites subjected to absorption, distribution, metabolism, excretion (ADME) analysis. Density functional theory (DFT) analysis of five final shortlisted curcumin derivatives was done to show least binding affinity toward chosen host target protein. Molecular dynamics simulation (MDS) was performed to observe behavior and interaction of potential drug hydrazinocurcumin against target proteins ACE-2 and PAR-1. It was performed at 100 nanoseconds and showed satisfactory results. Finally, our investigation reveals that hydrazinocurcumin possesses immunomodulatory and anti-cytokine therapeutic potential against COVID-19 and it can act as COVID-19 warrior drug molecule and promising choice of drug for COVID-19 treatment, however, it needs further in vivo clinical evaluation to commercialize as COVID-19 drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hasnat Noor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | | | - Muhammad Nasir Iqbal
- Department of Biosciences, COMSATS University, Islamabad Campus, Islamabad, Pakistan
| | - Zohaib Bashir
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| |
Collapse
|
15
|
Minakshi P, Ghosh M, Kumar R, Brar B, Lambe UP, Banerjee S, Ranjan K, Kumar B, Goel P, Malik YS, Prasad G. An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses. Curr Top Med Chem 2021; 20:915-962. [PMID: 32209041 DOI: 10.2174/1568026620666200325114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Somesh Banerjee
- Department of Veterinary Microbiology, Immunology Section, LUVAS, Hisar-125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
| | | | - Parveen Goel
- Department of Veterinary Medicine, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yashpal S Malik
- Division of Standardisation, Indian Veterinary Research Institute Izatnagar - Bareilly (UP) - 243122, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, UP, 250110, India
| |
Collapse
|
16
|
C. T. S, M. D, P. R. R, K. M, E. M. A, Balachandran I. Chemical profiling of selected Ayurveda formulations recommended for COVID-19. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:2. [PMID: 33457430 PMCID: PMC7799399 DOI: 10.1186/s43088-020-00089-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/26/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is the global health concern since December 2019. It has become a big challenge for the researchers to find a solution for this newly evolved pandemic. In Ayurveda point of view, COVID-19 is a Janapadodhwamsa vikara (epidemic disease), a situation where the environment-air, water, land, and seasons-is vitiated, causing a simultaneous manifestation of a disease among large populations. The aim of this study is to identify the active compounds of selected Ayurveda medicines recommended for COVID-19. RESULTS The selected preparations are traditionally recommended for the management of various kinds of fever including the infectious ones and to enhance the immunity. HPTLC analysis of the same showed presence of many active molecules like umbelliferone, scopoletin, caffeic acid, ferulic acid, gallic acid, piperine, curcumin, berberine, and palmatine. CONCLUSION The study provided valuable scientific data regarding the active ingredients of the selected medicines with proven therapeutic potentials like anti-viral, immunomodulatory, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Sulaiman C. T.
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| | - Deepak M.
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| | - Ramesh P. R.
- Clinical Research Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Mahesh K.
- Clinical Research Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Anandan E. M.
- Product Development Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Indira Balachandran
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| |
Collapse
|
17
|
Significance of conventional Indian foods acting as immune boosters to overcome COVID-19. ENVIRONMENTAL RESILIENCE AND TRANSFORMATION IN TIMES OF COVID-19 2021. [PMCID: PMC8137553 DOI: 10.1016/b978-0-323-85512-9.00034-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The COVID-19 virus vaccination is under process for adaptive immunity. Besides, the virus transmission rate is rapid, being symptomatic and asymptomatic. The curative rate and fatality rate depends on the age groups and individual’s previous health history. To overcome this pandemic spread, development of immune system for every individual is more essential. The antimicrobial enzyme lysozyme is a key component in the immune system which can fight against any infections. It is present naturally and can be generated in the human body from saliva, human milk, tears, and mucus. In general foods have more nutrient values and improve immunity. The outcome of this paper is to understand the importance of immunity and how to build up immune system to fight against any viral infections especially COVID-19. Indian conventional foods containing the main constituents, such as lysozyme, antioxidants, vitamins, minerals, and herbs for boosting the immunity were focused in this study.
Collapse
|
18
|
Emirik M. Potential therapeutic effect of turmeric contents against SARS-CoV-2 compared with experimental COVID-19 therapies: in silico study. J Biomol Struct Dyn 2020; 40:2024-2037. [PMID: 33078675 DOI: 10.1080/07391102.2020.1835719] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Inspired by the 'There is no scientific evidence that turmeric prevents COVID-19' statement made by WHO, the protective or therapeutic potential of the compounds in turmeric contents was investigated against COVID-19 with in silico methodology. The drugs used for experimental COVID-19 therapies were included in this study using the same method for comparison with turmeric components. The 30 turmeric compounds and nine drugs were performed in the docking procedure for vital proteins of COVID-19. With evaluations based on docking scores, the Prime MMGBSA binding free energy and protein-ligand interactions were identified in detail. The 100 ns MD simulations were also performed to assess the stability of the ligands at the binding site of the target proteins. The Root Mean Square Deviation (RMSD) is used to obtain the average displacement for a particular frame concerning a reference frame. The results of this study are suggesting that turmeric spice have a potential to inhibit the SARS-CoV-2 vital proteins and can be use a therapeutic or protective agent against SARS-CoV-2 via inhibiting key protein of the SARS-CoV-2 virus. The compound 4, 23 and 6 are the most prominent inhibitor for the main protease, the spike glycoprotein and RNA polymerase of virus, respectively. The MD simulation validated the stability of ligand-protein interactions. The compactness of the complexes was shown using a radius of gyration. ADME properties of featured compounds are in range of 95% drug molecules. It is hoped that the outputs of this study will contribute to the struggle of humanity with COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Emirik
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
19
|
Venezuelan Equine Encephalitis Virus nsP3 Phosphorylation Can Be Mediated by IKKβ Kinase Activity and Abrogation of Phosphorylation Inhibits Negative-Strand Synthesis. Viruses 2020; 12:v12091021. [PMID: 32933112 PMCID: PMC7551587 DOI: 10.3390/v12091021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV), a mosquito transmitted alphavirus of the Togaviridae family, can cause a highly inflammatory and encephalitic disease upon infection. Although a category B select agent, no FDA-approved vaccines or therapeutics against VEEV currently exist. We previously demonstrated NF-κB activation and macromolecular reorganization of the IKK complex upon VEEV infection in vitro, with IKKβ inhibition reducing viral replication. Mass spectrometry and confocal microscopy revealed an interaction between IKKβ and VEEV non-structural protein 3 (nsP3). Here, using western blotting, a cell-free kinase activity assay, and mass spectrometry, we demonstrate that IKKβ kinase activity can directly phosphorylate VEEV nsP3 at sites 204/5, 142, and 134/5. Alanine substitution mutations at sites 204/5, 142, or 134/5 reduced VEEV replication by >30-100,000-fold corresponding to a severe decrease in negative-strand synthesis. Serial passaging rescued viral replication and negative-strand synthesis, and sequencing of revertant viruses revealed reversion to the wild-type TC-83 phosphorylation capable amino acid sequences at nsP3 sites 204/5, 142, and 135. Generation of phosphomimetic mutants using aspartic acid substitutions at site 204/5 resulted in rescue of both viral replication and negative-strand RNA production, whereas phosphomimetic mutant 134/5 rescued viral replication but failed to restore negative-strand RNA levels, and phosphomimetic mutant 142 did not rescue VEEV replication. Together, these data demonstrate that IKKβ can phosphorylate VEEV nsP3 at sites 204/5, 142, and 134/5, and suggest that phosphorylation is essential for negative-strand RNA synthesis at site 204/5, but may be important for infectious particle production at site 134/5.
Collapse
|
20
|
In Vitro Evaluation of Curcumin-Encapsulated Chitosan Nanoparticles against Feline Infectious Peritonitis Virus and Pharmacokinetics Study in Cats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3012198. [PMID: 32596292 PMCID: PMC7262662 DOI: 10.1155/2020/3012198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 01/23/2023]
Abstract
Feline infectious peritonitis (FIP) is an important feline viral disease, causing an overridden inflammatory response that results in a high mortality rate, primarily in young cats. Curcumin is notable for its biological activities against various viral diseases; however, its poor bioavailability has hindered its potential in therapeutic application. In this study, curcumin was encapsulated in chitosan nanoparticles to improve its bioavailability. Curcumin-encapsulated chitosan (Cur-CS) nanoparticles were synthesised based on the ionic gelation technique and were spherical and cuboidal in shape, with an average particle size of 330 nm and +42 mV in zeta potential. The nanoparticles exerted lower toxicity in Crandell-Rees feline kidney (CrFK) cells and enhanced antiviral activities with a selective index (SI) value three times higher than that of curcumin. Feline-specific bead-based multiplex immunoassay and qPCR were used to examine their modulatory effects on proinflammatory cytokines, including tumour necrosis factor (TNF)α, interleukin- (IL-) 6, and IL-1β. There were significant decrements in IL-1β, IL-6, and TNFα expression in both curcumin and Cur-CS nanoparticles. Based on the multiplex immunoassay, curcumin and the Cur-CS nanoparticles could lower the immune-related proteins in FIP virus (FIPV) infection. The single- and multiple-dose pharmacokinetics profiles of curcumin and the Cur-CS nanoparticles were determined by high-performance liquid chromatography (HPLC). Oral delivery of the Cur-CS nanoparticles to cats showed enhanced bioavailability with a maximum plasma concentration (C max) value of 621.5 ng/mL. Incorporating chitosan nanoparticles to deliver curcumin improved the oral bioavailability and antiviral effects of curcumin against FIPV infection. This study provides evidence for the potential of Cur-CS nanoparticles as a supplementary treatment of FIP.
Collapse
|
21
|
Ting D, Dong N, Fang L, Lu J, Bi J, Xiao S, Han H. Correction to Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin. ACS APPLIED NANO MATERIALS 2020; 3:4913. [PMID: 35286056 DOI: 10.1021/acsanm.8b00779] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
[This corrects the article DOI: 10.1021/acsanm.8b00779.].
Collapse
|
22
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
23
|
Hallam HJ, Lokugamage N, Ikegami T. Rescue of infectious Arumowot virus from cloned cDNA: Posttranslational degradation of Arumowot virus NSs protein in human cells. PLoS Negl Trop Dis 2019; 13:e0007904. [PMID: 31751340 PMCID: PMC6894884 DOI: 10.1371/journal.pntd.0007904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/05/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Middle East, affecting both humans and ruminants. There are no licensed vaccines or antivirals available for humans, whereas research using RVF virus (RVFV) is strictly regulated in many countries with safety concerns. Nonpathogenic Arumowot virus (AMTV), a mosquito-borne phlebovirus in Africa, is likely useful for the screening of broad-acting antiviral candidates for phleboviruses including RVFV, as well as a potential vaccine vector for RVF. In this study, we aimed to generate T7 RNA polymerase-driven reverse genetics system for AMTV. We hypothesized that recombinant AMTV (rAMTV) is viable, and AMTV NSs protein is dispensable for efficient replication of rAMTV in type-I interferon (IFN)-incompetent cells, whereas AMTV NSs proteins support robust viral replication in type-I IFN-competent cells. The study demonstrated the rescue of rAMTV and that lacking the NSs gene (rAMTVΔNSs), that expressing green fluorescent protein (GFP) (rAMTV-GFP) or that expressing Renilla luciferase (rAMTV-rLuc) from cloned cDNA. The rAMTV-rLuc and the RVFV rMP12-rLuc showed a similar susceptibility to favipiravir or ribavirin. Interestingly, neither of rAMTV nor rAMTVΔNSs replicated efficiently in human MRC-5 or A549 cells, regardless of the presence of NSs gene. Little accumulation of AMTV NSs protein occurred in those cells, which was restored via treatment with proteasomal inhibitor MG132. In murine MEF or Hepa1-6 cells, rAMTV, but not rAMTVΔNSs, replicated efficiently, with an inhibition of IFN-β gene upregulation. This study showed an establishment of the first reverse genetics for AMTV, a lack of stability of AMTV NSs proteins in human cells, and an IFN-β gene antagonist function of AMTV NSs proteins in murine cells. The AMTV can be a nonpathogenic surrogate model for studying phleboviruses including RVFV.
Collapse
Affiliation(s)
- Hoai J. Hallam
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Nandadeva Lokugamage
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ren Y, Yang Z, Sun Z, Zhang W, Chen X, Nie S. Curcumin relieves paraquat‑induced lung injury through inhibiting the thioredoxin interacting protein/NLR pyrin domain containing 3‑mediated inflammatory pathway. Mol Med Rep 2019; 20:5032-5040. [PMID: 31485636 PMCID: PMC6854544 DOI: 10.3892/mmr.2019.10612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
When paraquat (PQ) enters the human body, it increases oxidative stress and inflammation, ultimately resulting in acute lung injury (ALI). Curcumin, a naturally occurring compound, has been reported to ameliorate PQ-induced ALI; however, the underlying molecular mechanisms remain unclear. In the present study, normal lung fibroblasts (WI-38VA13) were treated with 10 µmol/l PQ for 48 h, followed by a further 48 h incubation with 300 µmol/l curcumin. Cells were then harvested to determine their viability. Flow cytometry was performed to analyze the levels of reactive oxygen species (ROS) and the rate of apoptosis. The levels of apoptotic proteins and activation of the thioredoxin interacting protein/NLR pyrin domain containing 3 (TXNIP/NLRP3) axis were measured via reverse transcription-quantitative polymerase chain reaction and western blot analyses. Proinflammatory cytokine levels were examined using enzyme-linked immunosorbent assays. Finally, the expression levels of Notch1, extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylated-ERK1/2 were evaluated via western blotting. Following treatment with curcumin, PQ-induced increases in ROS levels and apoptosis were significantly attenuated, and Bcl-2 expression levels were upregulated, whereas those of Bax were downregulated. It was also observed that curcumin treatment downregulated the expression levels of TXNIP, NLRP3, interleukin (IL)-1β and IL-18, and downstream caspase-1 compared with PQ treatment alone. Curcumin significantly attenuated the upregulation of Notch1 without affecting ERK1/2 phosphorylation. The present findings suggested that the inhibitory effects of curcumin on TXINP1 may inhibit activation of the NLRP3 inflammasome, subsequently suppressing the upregulation of proinflammatory cytokines and ultimately improving PQ-induced ALI.
Collapse
Affiliation(s)
- Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xin Chen
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
25
|
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol 2019; 10:912. [PMID: 31130924 PMCID: PMC6509173 DOI: 10.3389/fmicb.2019.00912] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin’s antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
Collapse
Affiliation(s)
- Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.,Institute of Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and The Helmholtz Centre for Infection Research, Hanover, Germany.,Research Center for Biotechnology, Indonesian Institute of Science, Cibinong, Indonesia
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Brüning
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Shakeri A, Panahi Y, Johnston TP, Sahebkar A. Biological properties of metal complexes of curcumin. Biofactors 2019; 45:304-317. [PMID: 31018024 DOI: 10.1002/biof.1504] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Curcumin, a naturally occurring phenolic compound isolated from Curcuma longa, has different pharmacological effects, including antiinflammatory, antimicrobial, antioxidant, and anticancer properties. However, curcumin has been found to have a limited bioavailability because of its hydrophobic nature, low-intestinal absorption, and rapid metabolism. Therefore, there is a need for enhancing the bioavailability and its solubility in water in order to increase the pharmacological effects of this bioactive compound. One strategy is curcumin complexation with transition metals to circumvent the abovementioned problems. Curcumin can undergo chelation with various metal ions to form metallo-complexes of curcumin, which may show greater effects as compared with curcumin alone. Promising results with metal curcumin complexes have been observed with regard to antioxidant, anticancer, and antimicrobial activity, as well as in treatment of Alzheimer's disease. The present review provides a concise summary of the characterization and biological properties of curcumin-metal complexes. © 2019 BioFactors, 45(3):304-317, 2019.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Pinkham C, Ahmed A, Bracci N, Narayanan A, Kehn-Hall K. Host-based processes as therapeutic targets for Rift Valley fever virus. Antiviral Res 2018; 160:64-78. [PMID: 30316916 DOI: 10.1016/j.antiviral.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/27/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022]
Abstract
Rift Valley fever virus (RVFV) is an enveloped, segmented, negative sense RNA virus that replicates within the host's cytoplasm. To facilitate its replication, RVFV must utilize host cell processes and as such, these processes may serve as potential therapeutic targets. This review summarizes key host cell processes impacted by RVFV infection. Specifically the influence of RVFV on host transcriptional regulation, post-transcriptional regulation, protein half-life and availability, host signal transduction, trafficking and secretory pathways, cytoskeletal modulation, and mitochondrial processes and oxidative stress are discussed. Therapeutics targeted towards host processes that are essential for RVFV to thrive as well as their efficacy and importance to viral pathogenesis are highlighted.
Collapse
Affiliation(s)
- Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Aslaa Ahmed
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Nicole Bracci
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
28
|
Anti-Rift Valley fever virus activity in vitro, pre-clinical pharmacokinetics and oral bioavailability of benzavir-2, a broad-acting antiviral compound. Sci Rep 2018; 8:1925. [PMID: 29386590 PMCID: PMC5792431 DOI: 10.1038/s41598-018-20362-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne hemorrhagic fever virus affecting both humans and animals with severe morbidity and mortality and is classified as a potential bioterror agent due to the possible aerosol transmission. At present there is no human vaccine or antiviral therapy available. Thus, there is a great need to develop new antivirals for treatment of RVFV infections. Benzavir-2 was previously identified as potent inhibitor of human adenovirus, herpes simplex virus type 1, and type 2. Here we assess the anti-RVFV activity of benzavir-2 together with four structural analogs and determine pre-clinical pharmacokinetic parameters of benzavir-2. In vitro, benzavir-2 efficiently inhibited RVFV infection, viral RNA production and production of progeny viruses. In vitro, benzavir-2 displayed satisfactory solubility, good permeability and metabolic stability. In mice, benzavir-2 displayed oral bioavailability with adequate maximum serum concentration. Oral administration of benzavir-2 formulated in peanut butter pellets gave high systemic exposure without any observed toxicity in mice. To summarize, our data demonstrated potent anti-RVFV activity of benzavir-2 in vitro together with a promising pre-clinical pharmacokinetic profile. This data support further exploration of the antiviral activity of benzavir-2 in in vivo efficacy models that may lead to further drug development for human use.
Collapse
|
29
|
|
30
|
Atkins C, Freiberg AN. Recent advances in the development of antiviral therapeutics for Rift Valley fever virus infection. Future Virol 2017; 12:651-665. [PMID: 29181086 DOI: 10.2217/fvl-2017-0060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/26/2017] [Indexed: 12/25/2022]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus endemic to sub-Saharan Africa and the Arabian Peninsula and the etiological agent of Rift Valley fever. Rift Valley fever is a disease of major public health and economic concern, affecting livestock and humans. In ruminants, RVFV infection is characterized by high mortality rates in newborns and near 100% abortion rates in pregnant animals. Infection in humans is typically manifested as a self-limiting febrile illness, but can lead to severe and fatal hepatitis, encephalitis, hemorrhagic fever or retinitis with partial or complete blindness. Currently, there are no specific treatment options available for RVFV infection. This review presents a summary of the therapeutic approaches that have been explored on the treatment of RVFV infection.
Collapse
Affiliation(s)
- Colm Atkins
- Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Sealy Center for Vaccine Development, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Center for Biodefense & Emerging Infectious Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Sealy Center for Vaccine Development, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Center for Biodefense & Emerging Infectious Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
31
|
Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142:148-157. [DOI: 10.1016/j.antiviral.2017.03.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/18/2017] [Indexed: 01/24/2023]
|
32
|
Jaroonwitchawan T, Chaicharoenaudomrung N, Namkaew J, Noisa P. Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy. Neurosci Lett 2016; 636:40-47. [PMID: 27793699 DOI: 10.1016/j.neulet.2016.10.050] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/27/2022]
Abstract
Paraquat is a neurotoxic agent, and oxidative stress plays an important role in neuronal cell death after paraquat exposure. In this study, we assessed the neuroprotective effect of curcumin against paraquat and explored the underlying mechanisms of curcumin in vitro. Curcumin treatment prevented paraquat-induced reactive oxygen species (ROS) and apoptotic cell death. Curcumin also exerted a neuroprotective effect by increasing the expression of anti-apoptotic and antioxidant genes. The pretreatment of curcumin significantly decreased gene expression and protein production of amyloid precursor protein. The activation of autophagy process was found defective in paraquat-induced cells, indicated by the accumulation and reduction of LC3I/II. Noteworthy, curcumin restored LC3I/II expression after the pretreatment. Collectively, curcumin demonstrated as a prominent suppressor of ROS, and could reverse autophagy induction in SH-SY5Y cells. The consequences of this were the reduction of APP production and prevention of SH-SY5Y cells from apoptosis. Altogether, curcumin potentially serves as a therapeutic agent of neurodegenerative diseases, associated with ROS overproduction and autophagy dysfunction.
Collapse
Affiliation(s)
- Thiranut Jaroonwitchawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Jirapat Namkaew
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
33
|
Venezuelan equine encephalitis virus non-structural protein 3 (nsP3) interacts with RNA helicases DDX1 and DDX3 in infected cells. Antiviral Res 2016; 131:49-60. [PMID: 27105836 PMCID: PMC7113772 DOI: 10.1016/j.antiviral.2016.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/17/2022]
Abstract
The mosquito-borne New World alphavirus, Venezuelan equine encephalitis virus (VEEV) is a Category B select agent with no approved vaccines or therapies to treat infected humans. Therefore it is imperative to identify novel targets that can be targeted for effective therapeutic intervention. We aimed to identify and validate interactions of VEEV nonstructural protein 3 (nsP3) with host proteins and determine the consequences of these interactions to viral multiplication. We used a HA tagged nsP3 infectious clone (rTC-83-nsP3-HA) to identify and validate two RNA helicases: DDX1 and DDX3 that interacted with VEEV-nsP3. In addition, DDX1 and DDX3 knockdown resulted in a decrease in infectious viral titers. Furthermore, we propose a functional model where the nsP3:DDX3 complex interacts with the host translational machinery and is essential in the viral life cycle. This study will lead to future investigations in understanding the importance of VEEV-nsP3 to viral multiplication and apply the information for the discovery of novel host targets as therapeutic options. VEEV nsP3 interacted with the host helicases DDX1 and DDX3 in infected cells. Depletion of DDX1 or DDX3 negatively impacted viral multiplication and decreased infectious viral titers. nsP3 may interact with the host translational machinery through DDX3. The small molecule DDX3 inhibitor RK33 negatively impacted VEEV multiplication.
Collapse
|
34
|
Liang H, Friedman JM, Nacharaju P. Fabrication of biodegradable PEG-PLA nanospheres for solubility, stabilization, and delivery of curcumin. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:297-304. [PMID: 26924283 DOI: 10.3109/21691401.2016.1146736] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Curcumin is an effective and safe anticancer agent, and also known to induce vasodilation, but its hydrophobicity limits its clinical application. In this study, a simple emulsion method was developed to prepare biodegradable poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) nanospheres to encapsulate curcumin to improve its solubility and stability. The nanoparticle size was around 150 nm with a narrow size distribution. Fluorescence microscopy showed that curcumin encapsulated PEG-PLA nanospheres were taken up rapidly by Hela and MDA-MB-231 cancer cells. This novel nanoparticulate carrier may improve the bioavailability of curcumin without affecting its anticancer properties.
Collapse
Affiliation(s)
- Hongying Liang
- a Department of Physiology & Biophysics , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Joel M Friedman
- a Department of Physiology & Biophysics , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Parimala Nacharaju
- a Department of Physiology & Biophysics , Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
35
|
Jansen van Vuren P, Shalekoff S, Grobbelaar AA, Archer BN, Thomas J, Tiemessen CT, Paweska JT. Serum levels of inflammatory cytokines in Rift Valley fever patients are indicative of severe disease. Virol J 2015; 12:159. [PMID: 26437779 PMCID: PMC4595326 DOI: 10.1186/s12985-015-0392-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Rift Valley fever (RVF) is a mosquito-borne viral zoonosis affecting domestic and wild ruminants, camels and humans. Outbreaks of RVF are characterized by a sudden onset of abortions and high mortality amongst domestic ruminants. Humans develop disease ranging from a mild flu-like illness to more severe complications including hemorrhagic syndrome, ocular and neurological lesions and death. During the RVF outbreak in South Africa in 2010/11, a total of 278 human cases were laboratory confirmed, including 25 deaths. The role of the host inflammatory response to RVF pathogenesis is not completely understood. METHODS Virus load in serum from human fatal and non-fatal cases was determined by standard tissue culture infective dose 50 (TCID50) titration on Vero cells. Patient serum concentration of chemokines and cytokines involved in inflammatory responses (IL-8, RANTES, CXCL9, MCP-1, IP-10, IL-1β, IL-6, IL-10, TNF and IL-12p70) was determined using cytometric bead assays and flow cytometry. RESULTS Fatal cases had a 1-log10 higher TCID50/ml serum concentration of RVF virus (RVFV) than survivors (p < 0.05). There were no significant sequence differences between isolates recovered from fatal and non-fatal cases. Chemokines and pro- and anti-inflammatory cytokines were detected at significantly increased (IL-8, CXCL9, MCP-1, IP-10, IL-10) or decreased (RANTES) levels when comparing fatal cases to infected survivors and uninfected controls, or when comparing combined infected patients to uninfected controls. CONCLUSIONS The results suggest that regulation of the host inflammatory responses plays an important role in the outcome of RVFV infection in humans. Dysregulation of the inflammatory response contributes to a fatal outcome. The cytokines and chemokines identified in this study that correlate with fatal outcomes warrant further investigation as markers for disease severity.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.
| | - Sharon Shalekoff
- Centre for HIV and STIs, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - Antoinette A Grobbelaar
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa.
| | - Brett N Archer
- Outbreak Response Unit, Division of Public Health, Surveillance and Response, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa.
| | - Juno Thomas
- Outbreak Response Unit, Division of Public Health, Surveillance and Response, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa.
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - Janusz T Paweska
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa. .,Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
36
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
37
|
Benedict A, Bansal N, Senina S, Hooper I, Lundberg L, de la Fuente C, Narayanan A, Gutting B, Kehn-Hall K. Repurposing FDA-approved drugs as therapeutics to treat Rift Valley fever virus infection. Front Microbiol 2015. [PMID: 26217313 PMCID: PMC4495339 DOI: 10.3389/fmicb.2015.00676] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There are currently no FDA-approved therapeutics available to treat Rift Valley fever virus (RVFV) infection. In an effort to repurpose drugs for RVFV treatment, a library of FDA-approved drugs was screened to determine their ability to inhibit RVFV. Several drugs from varying compound classes, including inhibitors of growth factor receptors, microtubule assembly/disassembly, and DNA synthesis, were found to reduce RVFV replication. The hepatocellular and renal cell carcinoma drug, sorafenib, was the most effective inhibitor, being non-toxic and demonstrating inhibition of RVFV in a cell-type and virus strain independent manner. Mechanism of action studies indicated that sorafenib targets at least two stages in the virus infectious cycle, RNA synthesis and viral egress. Computational modeling studies also support this conclusion. siRNA knockdown of Raf proteins indicated that non-classical targets of sorafenib are likely important for the replication of RVFV.
Collapse
Affiliation(s)
- Ashwini Benedict
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Neha Bansal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Svetlana Senina
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Idris Hooper
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Cynthia de la Fuente
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Bradford Gutting
- Chemical, Biological, Radiological Defense Division, Naval Surface Warfare Center Dahlgren, VA, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| |
Collapse
|
38
|
Jeong EH, Vaidya B, Cho SY, Park MA, Kaewintajuk K, Kim SR, Oh MJ, Choi JS, Kwon J, Kim D. Identification of regulators of the early stage of viral hemorrhagic septicemia virus infection during curcumin treatment. FISH & SHELLFISH IMMUNOLOGY 2015; 45:184-193. [PMID: 25862970 DOI: 10.1016/j.fsi.2015.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
The effect of curcumin pretreatment (15-240 μM) in fathead minnow cells infected with viral hemorrhagic septicemia virus (VHSV) was evaluated. Cell viability, apoptosis and viral copy number were analyzed using Cell Counting Kit-8 assay, Annexin V staining, and reverse transcription-PCR, respectively. Pretreatment with 120 μM curcumin showed an increase in viability (>90% of mock) of VHSV-infected cells and reduction in the copy number (0.2-log reduction in VHSV N gene expression), reactive oxygen species and apoptosis in the cells without cytotoxic effects. To understand the mechanisms underlaying the antiviral effects of curcumin pretreatment, a comparative proteomic analysis was performed in four samples (M, mock; C, curcumin-treated; V, VHSV-infected; and CV, curcumin-treated VHSV-infected) in triplicate. In total, 185 proteins were detected. The analysis showed that three proteins, including heat shock cognate 71 (HSC71), actin, alpha cardiac muscle (ACTC1) and elongation factor 1 (EEF1) were differentially expressed between V and CV samples. Network analysis performed by Ingenuity Pathways Analysis (IPA) showed that HSC71 was the primary protein interacting with fibronectin (FN) 1, actins (ACTB, ACTG, F-actin) and gelsolin (GSN) in both V and CV samples and thus is a strong target candidate for the protection from VHSV infection at the viral entry stage. Our proteomics data suggest that curcumin pretreatment inhibits entry of VHSV in cells by downregulating FN1 or upregulating F-actin. For both proteins, HSC71 acts as a binding protein that modulates their functions. Furthermore, consistent with the effect of a heat shock protein inhibitor (KNK437), curcumin downregulated HSC71 expression with increasing viability of VHSV-infected cells and inhibited VHSV replication, suggesting that the downregulation of HSC71 could be responsible for the antiviral activity of curcumin. In conclusion, this study indicates that the suppression of viral entry by rearrangement of the F-actin/G-actin ratio via downregulating HSC71 is a plausible mechanism by which curcumin pretreatment controls the early stages of VHSV infection.
Collapse
Affiliation(s)
- Eun-Hye Jeong
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, South Korea
| | - Bipin Vaidya
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, South Korea; Bioenergy Research Center, Chonnam National University, Gwangju 500-757, South Korea
| | - Se-Young Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, South Korea
| | - Myoung-Ae Park
- Aquatic Life Disease Control Division, National Fisheries Research and Development Institute, Busan 619-705, South Korea
| | - Kusuma Kaewintajuk
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, South Korea
| | - Seok Ryel Kim
- West Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Incheon 400-420, South Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, South Korea
| | - Jong-Soon Choi
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 305-806, South Korea
| | - Joseph Kwon
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 305-806, South Korea.
| | - Duwoon Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, South Korea; Bioenergy Research Center, Chonnam National University, Gwangju 500-757, South Korea; Agribio Disaster Research Center, Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 500-757, South Korea.
| |
Collapse
|
39
|
Keck F, Amaya M, Kehn-Hall K, Roberts B, Bailey C, Narayanan A. Characterizing the effect of Bortezomib on Rift Valley Fever Virus multiplication. Antiviral Res 2015; 120:48-56. [PMID: 26001632 DOI: 10.1016/j.antiviral.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/02/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
Rift Valley Fever Virus (RVFV) belongs to the family Bunyaviridae and is a known cause of epizootics and epidemics in Africa and the Middle East. With no FDA approved therapeutics available to treat RVFV infection, understanding the interactions between the virus and the infected host is crucial to developing novel therapeutic strategies. Here, we investigated the requirement of the ubiquitin-proteasome system (UPS) for the establishment of a productive RVFV infection. It was previously shown that the UPS plays a central role in RVFV multiplication involving degradation of PKR and p62 subunit of TFIIH. Using the FDA-approved proteasome inhibitor Bortezomib, we observed robust inhibition of intracellular and extracellular viral loads. Bortezomib treatment did not affect the nuclear/cytoplasmic distribution of the non-structural S-segment protein (NSs); however, the ability of NSs to form nuclear filaments was abolished as a result of Bortezomib treatment. In silico ubiquitination prediction analysis predicted that known NSs interactors (SAP30, YY1, and mSin3A) have multiple putative ubiquitination sites, while NSs itself was not predicted to be ubiquitinated. Immunoprecipitation studies indicated a decrease in interaction between SAP30 - NSs, and mSin3A - NSs in the context of Bortezomib treatment. This decrease in association between SAP30 - NSs also correlated with a decrease in the ubiquitination status of SAP30 with Bortezomib treatment. Bortezomib treatment, however, resulted in increased ubiquitination of mSin3A, suggesting that Bortezomib dynamically affects the ubiquitination status of host proteins that interact with NSs. Finally, we observed that expression of interferon beta (IFN-β) was increased in Bortezomib treated cells which indicated that the cellular antiviral mechanism was revived as a result of treatment and may contribute to control of viral multiplication.
Collapse
Affiliation(s)
- Forrest Keck
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA 20110, United States
| | - Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA 20110, United States
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA 20110, United States
| | - Brian Roberts
- Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD 21703, United States
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA 20110, United States
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA 20110, United States.
| |
Collapse
|
40
|
The ubiquitin proteasome system plays a role in venezuelan equine encephalitis virus infection. PLoS One 2015; 10:e0124792. [PMID: 25927990 PMCID: PMC4415917 DOI: 10.1371/journal.pone.0124792] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/11/2015] [Indexed: 01/20/2023] Open
Abstract
Many viruses have been implicated in utilizing or modulating the Ubiquitin Proteasome System (UPS) to enhance viral multiplication and/or to sustain a persistent infection. The mosquito-borne Venezuelan equine encephalitis virus (VEEV) belongs to the Togaviridae family and is an important biodefense pathogen and select agent. There are currently no approved vaccines or therapies for VEEV infections; therefore, it is imperative to identify novel targets for therapeutic development. We hypothesized that a functional UPS is required for efficient VEEV multiplication. We have shown that at non-toxic concentrations Bortezomib, a FDA-approved inhibitor of the proteasome, proved to be a potent inhibitor of VEEV multiplication in the human astrocytoma cell line U87MG. Bortezomib inhibited the virulent Trinidad donkey (TrD) strain and the attenuated TC-83 strain of VEEV. Additional studies with virulent strains of Eastern equine encephalitis virus (EEEV) and Western equine encephalitis virus (WEEV) demonstrated that Bortezomib is a broad spectrum inhibitor of the New World alphaviruses. Time-of-addition assays showed that Bortezomib was an effective inhibitor of viral multiplication even when the drug was introduced many hours post exposure to the virus. Mass spectrometry analyses indicated that the VEEV capsid protein is ubiquitinated in infected cells, which was validated by confocal microscopy and immunoprecipitation assays. Subsequent studies revealed that capsid is ubiquitinated on K48 during early stages of infection which was affected by Bortezomib treatment. This study will aid future investigations in identifying host proteins as potential broad spectrum therapeutic targets for treating alphavirus infections.
Collapse
|
41
|
Baltazar LM, Krausz AE, Souza ACO, Adler BL, Landriscina A, Musaev T, Nosanchuk JD, Friedman AJ. Trichophyton rubrum is inhibited by free and nanoparticle encapsulated curcumin by induction of nitrosative stress after photodynamic activation. PLoS One 2015; 10:e0120179. [PMID: 25803281 PMCID: PMC4372525 DOI: 10.1371/journal.pone.0120179] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial photodynamic inhibition (aPI) utilizes radical stress generated from the excitation of a photosensitizer (PS) with light to destroy pathogens. Its use against Trichophyton rubrum, a dermatophytic fungus with increasing incidence and resistance, has not been well characterized. Our aim was to evaluate the mechanism of action of aPI against T. rubrum using curcumin as the PS in both free and nanoparticle (curc-np) form. Nanocarriers stabilize curcumin and allow for enhanced solubility and PS delivery. Curcumin aPI, at optimal conditions of 10 μg/mL of PS with 10 J/cm2 of blue light (417 ± 5 nm), completely inhibited fungal growth (p<0.0001) via induction of reactive oxygen (ROS) and nitrogen species (RNS), which was associated with fungal death by apoptosis. Interestingly, only scavengers of RNS impeded aPI efficacy, suggesting that curcumin acts potently via a nitrosative pathway. The curc-np induced greater NO• expression and enhanced apoptosis of fungal cells, highlighting curc-np aPI as a potential treatment for T. rubrum skin infections.
Collapse
Affiliation(s)
- Ludmila Matos Baltazar
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Aimee E. Krausz
- Division of Dermatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ana Camila Oliveira Souza
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Brandon L. Adler
- Division of Dermatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Angelo Landriscina
- Division of Dermatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tagai Musaev
- Division of Dermatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Joshua D. Nosanchuk
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Adam J. Friedman
- Division of Dermatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Guendel I, Meltzer BW, Baer A, Dever SM, Valerie K, Guo J, Wu Y, Kehn-Hall K. BRCA1 functions as a novel transcriptional cofactor in HIV-1 infection. Virol J 2015; 12:40. [PMID: 25879655 PMCID: PMC4359766 DOI: 10.1186/s12985-015-0266-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/14/2015] [Indexed: 01/20/2023] Open
Abstract
Background Viruses have naturally evolved elegant strategies to manipulate the host’s cellular machinery, including ways to hijack cellular DNA repair proteins to aid in their own replication. Retroviruses induce DNA damage through integration of their genome into host DNA. DNA damage signaling proteins including ATR, ATM and BRCA1 contribute to multiple steps in the HIV-1 life cycle, including integration and Vpr-induced G2/M arrest. However, there have been no studies to date regarding the role of BRCA1 in HIV-1 transcription. Methods Here we performed various transcriptional analyses to assess the role of BRCA1 in HIV-1 transcription by overexpression, selective depletion, and treatment with small molecule inhibitors. We examined association of Tat and BRCA1 through in vitro binding assays, as well as BRCA1-LTR association by chromatin immunoprecipitation. Results BRCA1 was found to be important for viral transcription as cells that lack BRCA1 displayed severely reduced HIV-1 Tat-dependent transcription, and gain or loss-of-function studies resulted in enhanced or decreased transcription. Moreover, Tat was detected in complex with BRCA1 aa504-802. Small molecule inhibition of BRCA1 phosphorylation effector kinases, ATR and ATM, decreased Tat-dependent transcription, whereas a Chk2 inhibitor showed no effect. Furthermore, BRCA1 was found at the viral promoter and treatment with curcumin and ATM inhibitors decreased BRCA1 LTR occupancy. Importantly, these findings were validated in a highly relevant model of HIV infection and are indicative of BRCA1 phosphorylation affecting Tat-dependent transcription. Conclusions BRCA1 presence at the HIV-1 promoter highlights a novel function of the multifaceted protein in HIV-1 infection. The BRCA1 pathway or enzymes that phosphorylate BRCA1 could potentially be used as complementary host-based treatment for combined antiretroviral therapy, as there are multiple potent ATM inhibitors in development as chemotherapeutics.
Collapse
Affiliation(s)
- Irene Guendel
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| | - Beatrix W Meltzer
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| | - Alan Baer
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| | - Seth M Dever
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA. .,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Jia Guo
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| | - Yuntao Wu
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| | - Kylene Kehn-Hall
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| |
Collapse
|
43
|
Small molecule inhibitors of Ago2 decrease Venezuelan equine encephalitis virus replication. Antiviral Res 2014; 112:26-37. [PMID: 25448087 DOI: 10.1016/j.antiviral.2014.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 12/24/2022]
Abstract
Venezuelan equine encephalitis virus (VEEV) is classified as a Category B Select Agent and potential bioterror weapon for its severe disease course in humans and equines and its potential for aerosol transmission. There are no current FDA licensed vaccines or specific therapies against VEEV, making identification of potential therapeutic targets a priority. With this aim, our research focuses on the interactions of VEEV with host microRNA (miRNA) machinery. miRNAs are small non-coding RNAs that act as master regulators of gene expression by downregulating or degrading messenger RNA, thus suppressing production of the resultant proteins. Recent publications implicate miRNA interactions in the pathogenesis of various viral diseases. To test the importance of miRNA processing for VEEV replication, cells deficient in Ago2, an important component of the RNA-induced silencing complex (RISC), and cells treated with known Ago2 inhibitors, notably acriflavine (ACF), were utilized. Both conditions caused decreased viral replication and capsid expression. ACF treatment promoted increased survival of neuronal cells over a non-treated, infected control and reduced viral titers of fully virulent VEEV as well as Eastern and Western Equine Encephalitis Viruses and West Nile Virus, but not Vesicular Stomatitis Virus. ACF treatment of VEEV TC-83 infected mice resulted in increased in vivo survival, but did not affect survival or viral loads when mice were challenged with fully virulent VEEV TrD. These results suggest that inhibition of Ago2 results in decreased replication of encephalitic alphaviruses in vitro and this pathway may be an avenue to explore for future therapeutic development.
Collapse
|
44
|
Voss K, Amaya M, Mueller C, Roberts B, Kehn-Hall K, Bailey C, Petricoin E, Narayanan A. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells. Virology 2014; 468-470:490-503. [PMID: 25261871 PMCID: PMC7127730 DOI: 10.1016/j.virol.2014.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/31/2014] [Accepted: 09/06/2014] [Indexed: 01/13/2023]
Abstract
New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. VEEV infection activated multiple components of the ERK signaling cascade. Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. Activation of ERK by Ceramide C6 increased infectious titers of TC-83. Ag-126 inhibited virulent strains of all New World alphaviruses. Ag-126 treatment increased percent survival of infected cells.
Collapse
Affiliation(s)
- Kelsey Voss
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, USA
| | - Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, USA
| | - Claudius Mueller
- Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA, USA
| | - Brian Roberts
- Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, USA
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, USA.
| |
Collapse
|
45
|
Zhang J, Wei H, Lin M, Chen C, Wang C, Liu M. Curcumin protects against ischemic spinal cord injury: The pathway effect. Neural Regen Res 2014; 8:3391-400. [PMID: 25206661 PMCID: PMC4146004 DOI: 10.3969/j.issn.1673-5374.2013.36.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 11/10/2013] [Indexed: 01/04/2023] Open
Abstract
Inducible nitric oxide synthase and N-methyl-D-aspartate receptors have been shown to participate in nerve cell injury during spinal cord ischemia. This study observed a protective effect of curcumin on ischemic spinal cord injury. Models of spinal cord ischemia were established by ligating the lumbar artery from the left renal artery to the bifurcation of the abdominal aorta. At 24 hours after model establishment, the rats were intraperitoneally injected with curcumin. Reverse transcription-polymerase chain reaction and immunohistochemical results demonstrated that after spinal cord ischemia, inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression significantly increased. However, curcumin significantly decreased inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression in the ischemic spinal cord. Tarlov scale results showed that curcumin significantly improved motor function of the rat hind limb after spinal cord ischemia. The results demonstrate that curcumin exerts a neuroprotective fect against ischemic spinal cord injury by decreasing inducible nitric oxide synthase and N-methyl-D-aspartate receptor expression.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Pharmacy, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Hao Wei
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Meimei Lin
- Department of Pharmacy, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Chunmei Chen
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Chunhua Wang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Maobai Liu
- Department of Pharmacy, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
46
|
Amaya M, Keck F, Bailey C, Narayanan A. The role of the IKK complex in viral infections. Pathog Dis 2014; 72:32-44. [PMID: 25082354 PMCID: PMC7108545 DOI: 10.1111/2049-632x.12210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 01/21/2023] Open
Abstract
The NF‐κB signal transduction pathway is a critical regulator of multiple cellular functions that ultimately shift the balance between cell survival and death. The cascade is activated by many intrinsic and extrinsic stimuli, which is transduced via adaptor proteins to phosphorylate the IκB kinase (IKK) complex, which in turn phosphorylates the inhibitory IκBα protein to undergo proteasomal degradation and sets in motion nuclear events in response to the initial stimulus. Viruses are important modulators of the NF‐κB cascade and have evolved multiple mechanisms to activate or inhibit this pathway in a manner conducive to viral multiplication and establishment of a productive infectious cycle. This is a subject of extensive research by multiple laboratories whereby unraveling the interactions between specific viral components and members of the NF‐κB signal transduction cascade can shed unique perspectives on infection associated pathogenesis and novel therapeutic targets. In this review, we highlight the interactions between components of the IKK complex and multiple RNA and DNA viruses with the emphasis on mechanisms by which the interaction feeds the infection. Understanding these interactions will shed light on the exploitative capabilities of viruses to maintain an environment favorable for a productive infection.
Collapse
Affiliation(s)
- Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | | | | | | |
Collapse
|
47
|
Lv Y, An Z, Chen H, Wang Z, Liu L. Mechanism of curcumin resistance to human cytomegalovirus in HELF cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:284. [PMID: 25088288 PMCID: PMC4132927 DOI: 10.1186/1472-6882-14-284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 07/30/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND We have previously shown that curcumin exhibited an outstanding anti-HCMV effect in vitro and in vivo. However, the underlying mechanism for the anti-HCMV effect remains unclear. METHODS Levels of IL-6 and TNF-α cytokine secretions in HELF cells were determined by enzyme-linked immunosorbent assay (ELISA); cell cycles were assessed by flow cytometry; ie and ul83 gene expressions were evaluated using reverse transcriptase real-time quantitative PCR; HCMV IE and UL83 antigen expressions were studied using immunofluorescence staining assay and western blot. RESULTS Curcumin reduced HCMV immediate early antigen (IEA) and UL83A expressions and IL-6, and TNF-α secretions and recovered cell proliferation to normal level in HCMV infected HELF cells. CONCLUSIONS Curcumin anti-HCMV effect may possibly be that curcumin concurrently alters host cell microenviroment and inhibits the HCMV antigen expressions. These findings may provide a basic understanding of the curcumin anti-HCMV effect and a novel strategy for further development of curcumin anti-HCMV treatment.
Collapse
Affiliation(s)
- Yali Lv
- Department of pharmaceutical affairs, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 GongrenTiyuchangNanlu, Chaoyang District, 100020 Beijing, P. R. China
| | - Zhuoling An
- Department of pharmaceutical affairs, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 GongrenTiyuchangNanlu, Chaoyang District, 100020 Beijing, P. R. China
| | - Hui Chen
- Department of pharmaceutical affairs, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 GongrenTiyuchangNanlu, Chaoyang District, 100020 Beijing, P. R. China
| | - Zihui Wang
- Department of pharmaceutical affairs, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 GongrenTiyuchangNanlu, Chaoyang District, 100020 Beijing, P. R. China
| | - Lihong Liu
- Department of pharmaceutical affairs, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 GongrenTiyuchangNanlu, Chaoyang District, 100020 Beijing, P. R. China
| |
Collapse
|
48
|
Qin Y, Lin L, Chen Y, Wu S, Si X, Wu H, Zhai X, Wang Y, Tong L, Pan B, Zhong X, Wang T, Zhao W, Zhong Z. Curcumin inhibits the replication of enterovirus 71 in vitro. Acta Pharm Sin B 2014; 4:284-94. [PMID: 26579397 PMCID: PMC4629085 DOI: 10.1016/j.apsb.2014.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/06/2014] [Accepted: 06/20/2014] [Indexed: 11/16/2022] Open
Abstract
Human enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD) in children. The epidemic of HFMD has been a public health problem in Asia-Pacific region for decades, and no vaccine and effective antiviral medicine are available. Curcumin has been used as a traditional medicine for centuries to treat a diversity of disorders including viral infections. In this study, we demonstrated that curcumin showed potent antiviral effect again EV71. In Vero cells infected with EV71, the addition of curcumin significantly suppressed the synthesis of viral RNA, the expression of viral protein, and the overall production of viral progeny. Similar with the previous reports, curcumin reduced the production of ROS induced by viral infection. However, the antioxidant property of curcumin did not contribute to its antiviral activity, since N-acetyl-l-cysteine, the potent antioxidant failed to suppress viral replication. This study also showed that extracellular signal-regulated kinase (ERK) was activated by either viral infection or curcumin treatment, but the activated ERK did not interfere with the antiviral effect of curcumin, indicating ERK is not involved in the antiviral mechanism of curcumin. Unlike the previous reports that curcumin inhibited protein degradation through ubiquitin–proteasome system (UPS), we found that curcumin had no impact on UPS in control cells. However, curcumin did reduce the activity of proteasomes which was increased by viral infection. In addition, the accumulation of the short-lived proteins, p53 and p21, was increased by the treatment of curcumin in EV71-infected cells. We further probed the antiviral mechanism of curcumin by examining the expression of GBF1 and PI4KB, both of which are required for the formation of viral replication complex. We found that curcumin significantly reduced the level of both proteins. Moreover, the decreased expression of either GBF1 or PI4KB by the application of siRNAs was sufficient to suppress viral replication. We also demonstrated that curcumin showed anti-apoptotic activity at the early stage of viral infection. The results of this study provide solid evidence that curcumin has potent anti-EV71 activity. Whether or not the down-regulated GBF1 and PI4KB by curcumin contribute to its antiviral effect needs further studies.
Collapse
Key Words
- Apoptosis
- CVB, coxsackieviurs B
- Curcumin
- DCFH-DA, dichloro-dihydro-fluorescein diacetate
- ERK, extracellular signal-regulated kinase
- EV71, enterovirus 71
- Enterovirus 71
- GBF1
- GBF1, Golgi brefeldin A resistant guanine nucleotide exchange factor 1
- GEF, guanine nucleotide exchange factor
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- HFMD, hand, foot, and mouth disease
- HIV, human immunodeficiency virus
- HPV, human papillomavirus
- NAC, N-acetyl-l-cysteine
- PARP-1, poly(ADP-ribose) polymerase
- PGC-1α, peroxisome proliferator-activated receptor-gamma co-activator 1 alpha
- PI4KB
- PI4KB, phosphatidylinositol 4-kinase class III catalytic subunit β
- PI4P, phosphatidylinositol 4-phosphate
- ROS, reactive oxygen species
- SLLVY-AMC, succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin
- UPS, ubiquitin–proteasome system
- Ubiquitin–proteasome system
- Viral replication
- p.i., post-infection
- siRNA, small interfering RNA
Collapse
|
49
|
Lv Y, Lei N, Wang D, An Z, Li G, Han F, Liu H, Liu L. Protective effect of curcumin against cytomegalovirus infection in Balb/c mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1140-1147. [PMID: 24802527 DOI: 10.1016/j.etap.2014.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
Curcumin has been found to suppress the activity of human cytomegalovirus (HCMV) in vitro, whereas its protective effects against HCMV infection in vivo remain unclear. In this study, we aimed to investigate the protective effects of curcumin against HCMV infection in Balb/c mice. Mice were randomly divided into the control, model, model+ganciclovir (positive control), and model+high-dose, model+middle-dose, and model+low-dose curcumin groups. In the model groups, each mouse was given HCMV by tail injection intravenously. Positive control animals were given ganciclovir. Animals in the curcumin treatment groups were given different concentrations of curcumin. The anti-HCMV activities of ganciclovir and curcumin were assessed by serological examination and pathology. Ganciclovir and curcumin treatment reduced the HCMV IgM level and HCMV DNA load; decreased the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK), and lactate dehydrogenase (LDH) as well as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) generation in infected mice. These treatments also suppressed malondialdehyde (MDA) content and upregulated superoxide dismutase (SOD) and glutathione (GSH) levels. In addition, both treatments prevented pathological changes of the lung, kidney, liver, and heart tissues in infected mice. Our findings indicate that curcumin protected Balb/c mice against HCMV infection possibly by its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Yali Lv
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Ning Lei
- General Hospital of the Second Artillery, Beijing 100088, PR China
| | - Dan Wang
- General Hospital of the Second Artillery, Beijing 100088, PR China
| | - Zhuoling An
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Guangrun Li
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
50
|
Amaya M, Baer A, Voss K, Campbell C, Mueller C, Bailey C, Kehn-Hall K, Petricoin E, Narayanan A. Proteomic strategies for the discovery of novel diagnostic and therapeutic targets for infectious diseases. Pathog Dis 2014; 71:177-89. [PMID: 24488789 PMCID: PMC7108530 DOI: 10.1111/2049-632x.12150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 12/14/2022] Open
Abstract
Viruses have developed numerous and elegant strategies to manipulate the host cell machinery to establish a productive infectious cycle. The interaction of viral proteins with host proteins plays an important role in infection and pathogenesis, often bypassing traditional host defenses such as the interferon response and apoptosis. Host–viral protein interactions can be studied using a variety of proteomic approaches ranging from genetic and biochemical to large‐scale high‐throughput technologies. Protein interactions between host and viral proteins are greatly influenced by host signal transduction pathways. In this review, we will focus on comparing proteomic information obtained through differing technologies and how their integration can be used to determine the functional aspect of the host response to infection. We will briefly review and evaluate techniques employed to elucidate viral–host interactions with a primary focus on Protein Microarrays (PMA) and Mass Spectrometry (MS) as potential tools in the discovery of novel therapeutic targets. As many potential molecular markers and targets are proteins, proteomic profiling is expected to yield both clearer and more direct answers to functional and pharmacologic questions.
Collapse
Affiliation(s)
- Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|