1
|
Cohen Z, Petrenko E, Barisaac A, Abu-Zhayia E, Yanovich-Ben-Uriel C, Ayoub N, Aran D. SLAYER: a computational framework for identifying synthetic lethal interactions through integrated analysis of cancer dependencies. NAR Genom Bioinform 2025; 7:lqaf052. [PMID: 40276038 PMCID: PMC12019633 DOI: 10.1093/nargab/lqaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/17/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Synthetic lethality represents a promising therapeutic approach in precision oncology, yet systematic identification of clinically relevant synthetic lethal interactions remains challenging. Here, we present SLAYER (Synthetic Lethality AnalYsis for Enhanced taRgeted therapy), a computational framework that integrates cancer genomic data and genome-wide CRISPR knockout screens to identify potential synthetic lethal interactions. SLAYER employs parallel analytical approaches examining both direct mutation-dependency associations and pathway-mediated relationships across 1080 cancer cell lines. Our integrative method identified 682 putative interactions, which were refined to 148 high-confidence candidates through stringent filtering for effect size, druggability, and clinical prevalence. Systematic validation against protein interaction databases revealed an ∼14-fold enrichment of known associations among SLAYER predictions compared with random gene pairs. Through pathway-level analysis, we identified inhibition of the aryl hydrocarbon receptor (AhR) as potentially synthetically lethal with RB1 mutations in bladder cancer. Experimental studies demonstrated selective sensitivity to AhR inhibition in RB1-mutant versus wild-type bladder cancer cells, which probably operates through indirect pathway-mediated mechanisms rather than direct genetic interaction. In summary, by integrating mutation profiles, gene dependencies, and pathway relationships, our approach provides a resource for investigating genetic vulnerabilities across cancer types.
Collapse
Affiliation(s)
- Ziv Cohen
- The Taub Faculty of Computer Science, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Ekaterina Petrenko
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Alma Sophia Barisaac
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Enas R Abu-Zhayia
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Nabieh Ayoub
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Dvir Aran
- The Taub Faculty of Computer Science, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
2
|
Murray MA, Noronha KJ, Wang Y, Friedman AP, Paradkar S, Suh HW, Sundaram RK, Brenner C, Saltzman W, Bindra RS. Exploiting Metabolic Defects in Glioma with Nanoparticle-Encapsulated NAMPT Inhibitors. Mol Cancer Ther 2024; 23:1176-1187. [PMID: 38691846 PMCID: PMC11292319 DOI: 10.1158/1535-7163.mct-24-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The treatment of primary central nervous system tumors is challenging due to the blood-brain barrier and complex mutational profiles, which is associated with low survival rates. However, recent studies have identified common mutations in gliomas [isocitrate dehydrogenase (IDH)-wild-type and mutant, WHO grades II-IV; with grade IV tumors referred to as glioblastomas (GBM)]. These mutations drive epigenetic changes, leading to promoter methylation at the nicotinic acid phosphoribosyl transferase (NAPRT) gene locus, which encodes an enzyme involved in generating NAD+. Importantly, NAPRT silencing introduces a therapeutic vulnerability to inhibitors targeting another NAD+ biogenesis enzyme, nicotinamide phosphoribosyl transferase (NAMPT), rationalizing a treatment for these malignancies. Multiple systemically administered NAMPT inhibitors (NAMPTi) have been developed and tested in clinical trials, but dose-limiting toxicities-including bone marrow suppression and retinal toxicity-have limited their efficacy. Here, we report a novel approach for the treatment of NAPRT-silenced GBMs using nanoparticle (NP)-encapsulated NAMPTis administered by convection-enhanced delivery (CED). We demonstrate that GMX1778 (a NAMPTi) can be formulated in degradable polymer NPs with retention of potency for NAMPT inhibition and anticancer activity in vitro, plus sustained drug release in vitro and in vivo. Direct injection of these drugs via CED into the brain is associated with reduced retinal toxicity compared with systemic administration. Finally, we show that CED of NP-encapsulated GMX1778 to NAPRT-silenced intracranial GBM xenografts in mice exhibit significant tumor growth delay and extends survival. These data support an approach to treat gliomas harboring defects in NAD+ metabolism using CED of NP-encapsulated NAMPTis to greatly improve the therapeutic index and treatment efficacy for this class of drugs.
Collapse
Affiliation(s)
- Matthew A. Murray
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Katelyn J. Noronha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | - Yazhe Wang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| | - Anna P. Friedman
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Sateja Paradkar
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Hee-Won Suh
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire.
| | - Ranjini K. Sundaram
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, City of Hope, Duarte, California.
| | - W.M. Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| |
Collapse
|
3
|
Perryman R, Chau TW, De-Felice J, O’Neill K, Syed N. Distinct Capabilities in NAD Metabolism Mediate Resistance to NAMPT Inhibition in Glioblastoma. Cancers (Basel) 2024; 16:2054. [PMID: 38893173 PMCID: PMC11171005 DOI: 10.3390/cancers16112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) cells require high levels of nicotinamide adenine dinucleotide (NAD) to fuel metabolic reactions, regulate their cell cycle and support DNA repair in response to chemotherapy and radiation. Inhibition of a key enzyme in NAD biosynthesis, NAMPT, has demonstrated significant anti-neoplastic activity. Here, we sought to characterise NAD biosynthetic pathways in GBM to determine resistance mechanisms to NAD inhibitors. GBM cells were treated with the NAMPT inhibitor FK866 with and without NAD precursors, and were analysed by qPCR, Western blot and proliferation assays (monolayer and spheroid). We also measured changes in the cell cycle, apoptosis, NAD/NADH levels and energy production. We performed orthoptic xenograft experiments in athymic nude mice to test the efficacy of FK866 in combination with temozolomide (TMZ). We show that the expression of key genes involved in NAD biosynthesis is highly variable across GBM tumours. FK866 inhibits proliferation, reduces NAD levels and limits oxidative metabolism, leading to G2/M cell cycle arrest; however, this can be reversed by supplementation with specific NAD precursors. Furthermore, FK866 potentiates the effects of radiation and TMZ in vitro and in vivo. NAMPT inhibitors should be considered for the treatment of GBM, with patients stratified based on their expression of key enzymes in other NAD biosynthetic pathways.
Collapse
Affiliation(s)
- Richard Perryman
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London W12 0NN, UK (K.O.)
| | | | | | | | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London W12 0NN, UK (K.O.)
| |
Collapse
|
4
|
Yan Y, Lv Q, Zhou F, Jian Y, Xinhua L, Chen X, Hu Y. Discovery of an effective anti-inflammatory agent for inhibiting the activation of NF-κB. J Enzyme Inhib Med Chem 2023; 38:2225135. [PMID: 37325874 PMCID: PMC10281321 DOI: 10.1080/14756366.2023.2225135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
In this study, based on the effect of compounds on the activation of NF-κB and NO release, compound 51 was discovered as the best one with NO release inhibition IC50 value was 3.1 ± 1.1 μM and NF-κB activity inhibition IC50 value was 172.2 ± 11.4 nM. Compound 51 could inhibit the activation of NF-κB through suppressing phosphorylation and nuclear translocation of NF-κB, and suppress LPS-induced inflammatory response in RAW264.7 cells, such as the over-expression of TNF-α and IL-6, which were target genes of NF-κB. This compound also showed preferable anti-inflammatory activity in vivo, including alleviating significantly gastric distention and splenomegaly caused by LPS stimulation, reducing the level of oxidative stress induced by LPS, and inhibiting the expression of IL-6 and TNF-α in serum. Thus, it's reasonable to consider that this compound is a promising small molecule with anti-inflammatory effect for inhibiting the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Qi Lv
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Feilong Zhou
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Yujie Jian
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Liu Xinhua
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Xing Chen
- School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, PR China
| | - Yong Hu
- Anhui Academy of Agricultural Sciences, Agricultural Products Processing Institute, Hefei, P. R. China
| |
Collapse
|
5
|
Gelmi MC, Gezgin G, van der Velden PA, Luyten GPM, Luk SJ, Heemskerk MHM, Jager MJ. PRAME Expression: A Target for Cancer Immunotherapy and a Prognostic Factor in Uveal Melanoma. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 38149971 PMCID: PMC10755595 DOI: 10.1167/iovs.64.15.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023] Open
Abstract
Purpose Uveal melanoma (UM) is a rare disease with a high mortality, and new therapeutic options are being investigated. Preferentially Expressed Antigen in Melanoma (PRAME) is a cancer testis antigen, expressed in the testis, but also in cancers, including uveal melanoma. PRAME is considered a target for immune therapy in several cancers, and PRAME-specific T cell clones have been shown to kill UM cells. Methods We studied the literature on PRAME expression in hematological and solid malignancies, including UM, and its role as a target for immunotherapy. The distribution of tumor features was compared between PRAME-high and PRAME-low UM in a 64-patient cohort from the Leiden University Medical Center (LUMC) and in the Cancer Genome Atlas (TCGA) cohort of 80 cases and differential gene expression analysis was performed in the LUMC cohort. Results PRAME is expressed in many malignancies, it is frequently associated with a negative prognosis, and can be the target of T cell receptor (TCR)-transduced T cells, a promising treatment option with high avidity and safety. In UM, PRAME is expressed in 26% to 45% of cases and is correlated with a worse prognosis. In the LUMC and the TCGA cohorts, high PRAME expression was associated with larger diameter, higher Tumor-Node-Metastasis (TNM) stage, more frequent gain of chromosome 8q, and an inflammatory phenotype. Conclusions We confirm that PRAME is associated with poor prognosis in UM and has a strong connection with extra copies of 8q. We show that PRAME-specific immunotherapy in an adjuvant setting is promising in treatment of malignancies, including UM.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gulçin Gezgin
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Sietse J. Luk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Pal C. Small-molecule redox modulators with anticancer activity: A comprehensive mechanistic update. Free Radic Biol Med 2023; 209:211-227. [PMID: 37898387 DOI: 10.1016/j.freeradbiomed.2023.10.406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pursuit of effective anticancer therapies has led to a burgeoning interest in the realm of redox modulation. This review provides a comprehensive exploration of the intricate mechanisms by which diverse anticancer molecules leverage redox pathways for therapeutic intervention. Redox modulation, encompassing the fine balance of oxidation-reduction processes within cells, has emerged as a pivotal player in cancer treatment. This review delves into the multifaceted mechanisms of action employed by various anticancer compounds, including small molecules and natural products, to disrupt cancer cell proliferation and survival. Beginning with an examination of the role of redox signaling in cancer development and resistance, the review highlights how aberrant redox dynamics can fuel tumorigenesis. It then meticulously dissects the strategies employed by anticancer agents to induce oxidative stress, perturb redox equilibrium, and trigger apoptosis within cancer cells. Furthermore, the review explores the challenges and potential side effects associated with redox-based treatments, along with the development of novel redox-targeted agents. In summary, this review offers a profound understanding of the dynamic interplay between redox modulation and anticancer molecules, presenting promising avenues to revolutionize cancer therapy and enhance patient outcomes.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
7
|
Dcona MM, Chougoni KK, Dcona DT, West JL, Singh SJ, Ellis KC, Grossman SR. Combined Targeting of NAD Biosynthesis and the NAD-dependent Transcription Factor C-terminal Binding Protein as a Promising Novel Therapy for Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:2003-2013. [PMID: 37707363 PMCID: PMC10549224 DOI: 10.1158/2767-9764.crc-22-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/07/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Cancer therapies targeting metabolic derangements unique to cancer cells are emerging as a key strategy to address refractory solid tumors such as pancreatic ductal adenocarcinomas (PDAC) that exhibit resistance to extreme nutrient deprivation in the tumor microenvironment. Nicotinamide adenine dinucleotide (NAD) participates in multiple metabolic pathways and nicotinamide phosphoribosyl transferase (NAMPT) is one of the key intracellular enzymes that facilitate the synthesis of NAD. C-terminal binding proteins 1 and 2 (CtBP) are paralogous NAD-dependent oncogenic transcription factors and dehydrogenases that nucleate an epigenetic complex regulating a cohort of genes responsible for cancer proliferation and metastasis. As adequate intracellular NAD is required for CtBP to oligomerize and execute its oncogenic transcriptional coregulatory activities, we hypothesized that NAD depletion would synergize with CtBP inhibition, improving cell inhibitory efficacy. Indeed, depletion of cellular NAD via the NAMPT inhibitor GMX1778 enhanced growth inhibition induced by either RNAi-mediated CtBP1/2 knockdown or the CtBP dehydrogenase inhibitor 4-chlorophenyl-2-hydroxyimino propanoic acid as much as 10-fold in PDAC cells, while untransformed pancreatic ductal cells were unaffected. The growth inhibitory effects of the NAMPT/CtBP inhibitor combination correlated pharmacodynamically with on-target disruption of CtBP1/2 dimerization, CtBP2 interaction with the CoREST epigenetic regulator, and transcriptional activation of the oncogenic target gene TIAM1. Moreover, this same therapeutic combination strongly attenuated growth of PDAC cell line xenografts in immunodeficient mice, with no observable toxicity. Collectively, our data demonstrate that targeting CtBP in combination with NAD depletion represents a promising therapeutic strategy for PDAC. SIGNIFICANCE Effective precision therapies are lacking in PDAC. We demonstrate that simultaneous inhibition of NAD metabolism and the oncoprotein CtBP is potently effective at blocking growth of both PDAC cells in culture and human PDAC-derived tumors in mice and should be explored further as a potential therapy for patients with PDAC.
Collapse
Affiliation(s)
- M. Michael Dcona
- USC Norris Comprehensive Cancer Center and Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kranthi Kumar Chougoni
- USC Norris Comprehensive Cancer Center and Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Diana T. Dcona
- USC Norris Comprehensive Cancer Center and Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jacqueline L. West
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia
| | - Sahib J. Singh
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Keith C. Ellis
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Steven R. Grossman
- USC Norris Comprehensive Cancer Center and Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
8
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
9
|
Jiang C, Zhou Y, Yan L, Zheng J, Wang X, Li J, Jiang X. A prognostic NAD+ metabolism-related gene signature for predicting response to immune checkpoint inhibitor in glioma. Front Oncol 2023; 13:1051641. [PMID: 36845744 PMCID: PMC9945104 DOI: 10.3389/fonc.2023.1051641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD+) metabolism is involved in a series of cancer pathogenesis processes, and is considered a promising therapeutic target for cancer treatment. However, a comprehensive analysis of NAD+ metabolism events on immune regulation and cancer survival has not yet been conducted. Here, we constructed a prognostic NAD+ metabolism-related gene signature (NMRGS) associated with immune checkpoint inhibitor (ICI) efficacy in glioma. Methods 40 NAD+ metabolism-related genes (NMRGs) were obtained from the Reactome database and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Glioma cases with transcriptome data and clinical information were obtained from Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA). NMRGS was constructed based on the calculated risk score using univariate analysis, Kaplan-Meier analysis, multivariate Cox regression, and nomogram. This NMRGS was verified in training (CGGA693) and validation (TCGA and CGGA325) cohorts. The immune characteristics, mutation profile, and response to ICI therapy were subsequently analyzed for different NMRGS subgroups. Results Six NAD+ metabolism-related genes, including CD38, nicotinamide adenine dinucleotide kinase (NADK), nicotinate phosphoribosyltransferase (NAPRT), nicotinamide/nicotinic acid mononucleotide adenylyltransferase 3 (NMNAT3), poly(ADP-Ribose) polymerase family member 6 (PARP6), and poly(ADP-Ribose) polymerase family member 9 (PARP9), were ultimately used to construct a comprehensive risk model for glioma patients. Patients in the NMRGS-high group showed a poorer survival outcome than those in the NMRGS-low group. The area under curve (AUC) indicated that NMRGS has good potential in glioma prognostic prediction. A nomogram with improved accuracy was established based on independent prognostic factors (NMRGS score, 1p19q codeletion status, and WHO grade). Furthermore, patients in the NMRGS-high group showed a more immunosuppressive microenvironment, higher tumor mutation burden (TMB), higher human leucocyte antigen (HLA) expression and a more therapeutic response to ICI therapy. Conclusions This study constructed a prognostic NAD+ metabolism-related signature associated with the immune landscape in glioma, which can be used for guiding individualized ICI therapy.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujie Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhao Yan
- Department of Hand Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Junjun Li, ; Xiaobing Jiang,
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Junjun Li, ; Xiaobing Jiang,
| |
Collapse
|
10
|
A Versatile Continuous Fluorometric Enzymatic Assay for Targeting Nicotinate Phosphoribosyltransferase. Molecules 2023; 28:molecules28030961. [PMID: 36770640 PMCID: PMC9919730 DOI: 10.3390/molecules28030961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The maintenance of a proper NAD+ pool is essential for cell survival, and tumor cells are particularly sensitive to changes in coenzyme levels. In this view, the inhibition of NAD+ biosynthesis is considered a promising therapeutic approach. Current research is mostly focused on targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD+ biosynthesis from nicotinamide and nicotinic acid, respectively. In several types of cancer cells, both enzymes are relevant for NAD+ biosynthesis, with NAPRT being responsible for cell resistance to NAMPT inhibition. While potent NAMPT inhibitors have been developed, only a few weak NAPRT inhibitors have been identified so far, essentially due to the lack of an easy and fast screening assay. Here we present a continuous coupled fluorometric assay whereby the product of the NAPRT-catalyzed reaction is enzymatically converted to NADH, and NADH formation is measured fluorometrically. The assay can be adapted to screen compounds that interfere with NADH excitation and emission wavelengths by coupling NADH formation to the cycling reduction of resazurin to resorufin, which is monitored at longer wavelengths. The assay system was validated by confirming the inhibitory effect of some NA-related compounds on purified human recombinant NAPRT. In particular, 2-hydroxynicotinic acid, 2-amminonicotinic acid, 2-fluoronicotinic acid, pyrazine-2-carboxylic acid, and salicylic acid were confirmed as NAPRT inhibitors, with Ki ranging from 149 to 348 µM. Both 2-hydroxynicotinic acid and pyrazine-2-carboxylic acid were found to sensitize OVCAR-5 cells to the NAMPT inhibitor FK866 by decreasing viability and intracellular NAD+ levels.
Collapse
|
11
|
Wang K, Ye K, Zhang X, Wang T, Qi Z, Wang Y, Jiang S, Zhang K. Dual Nicotinamide Phosphoribosyltransferase (NAMPT) and Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors for the Treatment of Drug-Resistant Nonsmall-Cell Lung Cancer. J Med Chem 2023; 66:1027-1047. [PMID: 36595482 DOI: 10.1021/acs.jmedchem.2c01954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Depleting NAD+ by blocking its biosynthesis has emerged as an attractive anticancer strategy. Simultaneous blockade of NAD+ production from the salvage and de novo synthesis pathways by targeting NAMPT and IDO1 could achieve more effective NAD+ reduction and, subsequently, more robust antitumor efficacy. Herein, we report the discovery of the first series of dual NAMPT and IDO1 inhibitors according to multitarget drug rationales. Compound 10e has good and balanced inhibitory potencies against NAMPT and IDO1, and significantly inhibits both proliferation and migration of a NSCLC cell line resistant to taxol and FK866 (A549/R cells). Compound 10e also displays potent antitumor efficacy in A549/R xenograft mouse models with no significant toxicity. Moreover, this compound enhances the susceptibility of A549/R cells to taxol in vitro and in vivo. This work provides an efficient approach to targeting NAD+ metabolism in the area of cancer therapy, especially in the context of drug resistance.
Collapse
Affiliation(s)
- Kaizhen Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Ye
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Qi
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youjun Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
12
|
Navas LE, Carnero A. Nicotinamide Adenine Dinucleotide (NAD) Metabolism as a Relevant Target in Cancer. Cells 2022; 11:cells11172627. [PMID: 36078035 PMCID: PMC9454445 DOI: 10.3390/cells11172627] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
NAD+ is an important metabolite in cell homeostasis that acts as an essential cofactor in oxidation–reduction (redox) reactions in various energy production processes, such as the Krebs cycle, fatty acid oxidation, glycolysis and serine biosynthesis. Furthermore, high NAD+ levels are required since they also participate in many other nonredox molecular processes, such as DNA repair, posttranslational modifications, cell signalling, senescence, inflammatory responses and apoptosis. In these nonredox reactions, NAD+ is an ADP-ribose donor for enzymes such as sirtuins (SIRTs), poly-(ADP-ribose) polymerases (PARPs) and cyclic ADP-ribose (cADPRs). Therefore, to meet both redox and nonredox NAD+ demands, tumour cells must maintain high NAD+ levels, enhancing their synthesis mainly through the salvage pathway. NAMPT, the rate-limiting enzyme of this pathway, has been identified as an oncogene in some cancer types. Thus, NAMPT has been proposed as a suitable target for cancer therapy. NAMPT inhibition causes the depletion of NAD+ content in the cell, leading to the inhibition of ATP synthesis. This effect can cause a decrease in tumour cell proliferation and cell death, mainly by apoptosis. Therefore, in recent years, many specific inhibitors of NAMPT have been developed, and some of them are currently in clinical trials. Here we review the NAD metabolism as a cancer therapy target.
Collapse
Affiliation(s)
- Lola E. Navas
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
13
|
Song Y, Dong X, Hu G. Transcriptome analysis of turbot (Scophthalmus maximus) head kidney and liver reveals immune mechanism in response to Vibrio anguillarum infection. JOURNAL OF FISH DISEASES 2022; 45:1045-1057. [PMID: 35543437 DOI: 10.1111/jfd.13628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The diseases triggered by Vibrio anguillarum infection have created huge economic losses to the turbot (Scophthalmus maximus) farming industry. However, the immune mechanism of turbot to V. anguillarum infection has not been deeply investigated. To better understand the immune response of turbot to V. anguillarum infection, transcriptome analysis of the head kidney and liver of turbot was performed. A total of 15,948 and 11,494 differentially expressed genes (DEGs) were obtained from the turbot head kidney and liver, respectively. Transcriptome analysis revealed that the head kidney and liver of turbot have some differences in the gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the DEGs for the different functions of these two organs. Although there are many uncertain factors in this immune process, such as the occurrence of alternative splicing (AS) events and the differences in the protein structure of the DEGs, the NFκB signalling pathway, MKK-dependent AP-1 activation, JAK-STAT signalling pathway, the signal transmission of MHC Ⅰ and a series of DEGs including HSP90 driving NLRP3 to produce inflammatory factors (IL-1β, IL-8, TNFα, etc.) were possible important immune response pathways for turbot to V. anguillarum infection. Overall, our research has conducted a preliminary exploration of the immune mechanism of turbot in response to V. anguillarum infection.
Collapse
Affiliation(s)
- Yuting Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xianzhi Dong
- Institute of Biophysis, Chinese Academy of Sciences, Beijing, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
14
|
Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS, Nagrath D. Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer 2022; 8:855-869. [PMID: 35750630 DOI: 10.1016/j.trecan.2022.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Radiation is frequently administered for cancer treatment, but resistance or remission remains common. Cancer cells alter their metabolism after radiotherapy to reduce its cytotoxic effects. The influence of altered cancer metabolism extends to the tumor microenvironment (TME), where components of the TME exchange metabolites to support tumor growth. Combining radiotherapy with metabolic targets in the TME can improve therapy response. We review the metabolic rewiring of cancer cells following radiotherapy and put these observations in the context of the TME to describe the metabolic hallmarks of radiotherapy in the TME.
Collapse
Affiliation(s)
- Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minal Nenwani
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Itisam Sarangi
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
15
|
Different Effects of RNAi-Mediated Downregulation or Chemical Inhibition of NAMPT in an Isogenic IDH Mutant and Wild-Type Glioma Cell Model. Int J Mol Sci 2022; 23:ijms23105787. [PMID: 35628596 PMCID: PMC9143996 DOI: 10.3390/ijms23105787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
The IDH1R132H mutation in glioma results in the neoenzymatic function of IDH1, leading to the production of the oncometabolite 2-hydroxyglutarate (2-HG), alterations in energy metabolism and changes in the cellular redox household. Although shifts in the redox ratio NADPH/NADP+ were described, the consequences for the NAD+ synthesis pathways and potential therapeutic interventions were largely unexplored. Here, we describe the effects of heterozygous IDH1R132H on the redox system in a CRISPR/Cas edited glioblastoma model and compare them with IDH1 wild-type (IDH1wt) cells. Besides an increase in 2-HG and decrease in NADPH, we observed an increase in NAD+ in IDH1R132H glioblastoma cells. RT-qPCR analysis revealed the upregulation of the expression of the NAD+ synthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Knockdown of NAMPT resulted in significantly reduced viability in IDH1R132H glioblastoma cells. Given this dependence of IDH1R132H cells on NAMPT expression, we explored the effects of the NAMPT inhibitors FK866, GMX1778 and GNE-617. Surprisingly, these agents were equally cytotoxic to IDH1R132H and IDH1wt cells. Altogether, our results indicate that targeting the NAD+ synthesis pathway is a promising therapeutic strategy in IDH mutant gliomas; however, the agent should be carefully considered since three small-molecule inhibitors of NAMPT tested in this study were not suitable for this purpose.
Collapse
|
16
|
Xiang B, Wang XY, Liu KJ. Dual Roles of Nicotinamide Phosphoribosyltransferase as a Promising Target for Cancer Radiotherapy. Radiat Res 2021; 196:429-435. [PMID: 34399423 DOI: 10.1667/rade-20-00273.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/31/2021] [Indexed: 11/03/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the key rate-limiting enzyme in the regulation of nicotinamide adenine dinucleotide (NAD) biosynthesis, and its activity is critical for the replenishment of NAD level as well as cell survival or death. As one of the most important components in the electron transport chain of complex I in mitochondrion, sustained supply of NAD is essential to the maintenance of energy metabolism both in normal and cancer cells. Recent research showed that X-ray radiation sharply downregulated the expression of NAMPT, which may be the main cause of radiation damage in salivary gland. Consistently, upregulation of NAMPT by phenylephrine restored the function and tissue structure of salivary gland, indicating the cytoprotective role of NAMPT in preventing radiation damage in normal tissues of patients with head and neck cancer during radiotherapy. On the other hand, NAMPT downregulation and NAD depletion could induce cell death in oral squamous cell cancer, suggesting that a combination of NAMPT inhibitor and radiotherapy presents a promising therapeutic strategy for cancer treatment. Based on our and other's studies, NAMPT may have dual roles in cancer radiotherapy: the upregulation of NAMPT could serve to suppress radiotherapy complications such as radiation sialadenitis, and combination regimens that involve NAMPT inhibitors may enhance efficacy of radiotherapy for cancer treatment.
Collapse
Affiliation(s)
- Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xin Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
17
|
Ji CL, Dai S, Liu H, Dong JY, Liu CS, Zuo J. Polyphenols from Securidaca inappendiculata alleviated acute lung injury in rats by inhibiting oxidative stress sensitive pathways. CHINESE HERBAL MEDICINES 2021; 13:381-388. [PMID: 36118931 PMCID: PMC9476762 DOI: 10.1016/j.chmed.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Securidaca inappendiculata is a medicinal plant frequently used in the treatment of inflammatory diseases in south China. In this study, we aimed to explore its bioactive constituent which contributes to the anti-inflammatory activity. Methods Polyphenol-enriched and polyphenol-deprived fractions (PRF and PDF, respectively) were separated from the ethanolic extract by HPD300 macroporous resin-based method, and their anti-inflammatory activities were investigated on a lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in rats. The possible mechanism of action in alleviating acute inflammation was studied using RAW264.7 cells. Results Both Folin-Ciocalteu and 1H nuclear magnetic resonance (NMR) analyses showed that polyphenolic content in PRF was approximately 10 times higher than that of PDF, and this observation reflected in their antioxidative capacities. PRF but not PDF significantly decreased the level of malondialdehyde, suppressed the expression of nicotinamide phosphoribosyltransferase (NAMPT) protein, and improved the severity of ALI in rats. PRF at 10 μg/mL effectively downregulated the expression of proteins NAMPT, HMGB1, TLR4, and p-p65, and scavenged the intracellular reactive oxygen species (ROS) in LPS-primed RAW264.7 cells. N-acetyl-L-cysteine exhibited similar inhibitory effects on ROS production and NAMPT-mediated TLR4/NF-κB activation in vitro, whereas nicotinamide mononucleotide antagonized all the changes induced by PRF during cotreatments. Conclusion As an antioxidant, PRF exhibited potent anti-inflammatory activity under both in vivo and in vitro conditions by downregulating NAMPT and TLR4/NF-κB. Accordingly, polyphenols were identified as important bioactive constituents in S. inappendiculata targeting oxidative stress-sensitive pro-inflammatory pathways.
Collapse
|
18
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
19
|
Han WM, Chen XC, Li GR, Wang Y. Acacetin Protects Against High Glucose-Induced Endothelial Cells Injury by Preserving Mitochondrial Function via Activating Sirt1/Sirt3/AMPK Signals. Front Pharmacol 2020; 11:607796. [PMID: 33519472 PMCID: PMC7844858 DOI: 10.3389/fphar.2020.607796] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
The strategy of decreasing atherosclerotic cardiovascular disorder is imperative for reducing premature death and improving quality of life in patients with diabetes mellitus. The aim of this study was to investigate whether the natural flavone acacetin could protect against endothelial injury induced by high glucose and attenuate diabetes-accelerated atherosclerosis in streptozotocin-(STZ) induced diabetic ApoE−/− mice model. It was found that in human umbilical vein endothelial cells (HUVECs) cultured with normal 5.5 mM or high 33 mM glucose, acacetin (0.3–3 μM) exerted strong cytoprotective effects by reversing high glucose-induced viability reduction and reducing apoptosis and excess production of intracellular reactive oxygen species (ROS) and malondialdehyde in a concentration-dependent manner. Acacetin countered high glucose-induced depolarization of mitochondrial membrane potential and reduction of ATP product and mitoBcl-2/mitoBax ratio. Silencing Sirt3 abolished the beneficial effects of acacetin. Further analysis revealed that these effects of acacetin rely on Sirt1 activation by increasing NAD+ followed by increasing Sirt3, pAMPK and PGC-1α. In STZ-diabetic mice, acacetin significantly upregulated the decreased signaling molecules (i.e. SOD, Bcl-2, PGC-1α, pAMPK, Sirt3 and Sirt1) in aorta tissue and attenuated atherosclerosis. These results indicate that vascular endothelial protection of acacetin by activating Sirt1/Sirt3/AMPK signals is likely involved in alleviating diabetes-accelerated atherosclerosis by preserving mitochondrial function, which suggests that acacetin may be a drug candidate for treating cardiovascular disorder in patients with diabetes.
Collapse
Affiliation(s)
- Wei-Min Han
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xu-Chang Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China.,Nanjing Amazigh Pharma Limited, Nanjing, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Dual nicotinamide phosphoribosyltransferase and epidermal growth factor receptor inhibitors for the treatment of cancer. Eur J Med Chem 2020; 211:113022. [PMID: 33239261 DOI: 10.1016/j.ejmech.2020.113022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/17/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
Multitarget drugs have emerged as a promising treatment modality in modern anticancer therapy. Taking advantage of the synergy of NAMPT and EGFR inhibition, we have developed the first compounds that serve as dual inhibitors of NAMPT and EGFR. On the basis of CHS828 and erlotinib, a series of hybrid molecules were successfully designed and synthesized by merging of the pharmacophores. Among the compounds that were synthesized, compound 28 showed good NAMPT and EGFR inhibition, and excellent in vitro anti-proliferative activity. Compound 28, which is a new chemotype devoid of a Michael receptor, strongly inhibited the proliferation of several cancer cell lines, including H1975 non-small cell lung cancer cells harboring the EGFRL858R/T790M mutation. More importantly, it imparted significant in vivo antitumor efficacy in a human NSCLC (H1975) xenograft nude mouse model. This study provides promising leads for the development of novel antitumor agents and valuable pharmacological probes for the assessment of dual inhibition in NAMPT and EGFR pathway with a single inhibitor.
Collapse
|
21
|
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) with OT-82 induces DNA damage, cell death, and suppression of tumor growth in preclinical models of Ewing sarcoma. Oncogenesis 2020; 9:80. [PMID: 32908120 PMCID: PMC7481307 DOI: 10.1038/s41389-020-00264-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
NAMPT mediates the rate-limiting step of the NAD salvage pathway, which maintains cellular bioenergetics and provides a necessary substrate for functions essential to rapidly proliferating cancer cells. In this study, we evaluated the efficacy and mechanisms of action of OT-82, a novel, high-potency NAMPT inhibitor with a favorable toxicity profile, in preclinical models of Ewing sarcoma (EWS), an aggressive pediatric malignancy with previously reported selective sensitivity to NAMPT inhibition. We show that OT-82 decreased NAD concentration and impaired proliferation of EWS cells in a dose-dependent manner, with IC50 values in the single-digit nanomolar range. Notably, genetic depletion of NAMPT phenocopied pharmacological inhibition. On-target activity of OT-82 was confirmed with the addition of NMN, the product of NAMPT, which rescued NAD concentration and EWS cellular viability. Mechanistically, OT-82 treatment resulted in impaired DNA damage repair through loss of PARP activity, G2 cell-cycle arrest, and apoptosis in EWS cells. Additional consequences of OT-82 treatment included reduction of glycolytic and mitochondrial activity. In vivo, OT-82 impaired tumor growth and prolonged survival in mice bearing EWS xenografts. Importantly, antitumor effect correlated with pharmacodynamic markers of target engagement. Furthermore, combining low-dose OT-82 with low doses of agents augmenting DNA damage demonstrated enhanced antitumor activity in vitro and in vivo. Thus, OT-82 treatment represents a potential novel targeted approach for the clinical treatment of EWS.
Collapse
|
22
|
Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020; 12:cancers12082051. [PMID: 32722390 PMCID: PMC7463900 DOI: 10.3390/cancers12082051] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.
Collapse
|
23
|
Therapeutic Strategies and Biomarkers to Modulate PARP Activity for Targeted Cancer Therapy. Cancers (Basel) 2020; 12:cancers12040972. [PMID: 32295316 PMCID: PMC7226473 DOI: 10.3390/cancers12040972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Poly-(ADP-ribose) polymerase 1 (PARP1) is commonly known for its vital role in DNA damage response and repair. However, its enzymatic activity has been linked to a plethora of physiological and pathophysiological transactions ranging from cellular proliferation, survival and death. For instance, malignancies with BRCA1/2 mutations heavily rely on PARP activity for survival. Thus, the use of PARP inhibitors is a well-established intervention in these types of tumors. However, recent studies indicate that the therapeutic potential of attenuating PARP1 activity in recalcitrant tumors, especially where PARP1 is aberrantly overexpressed and hyperactivated, may extend its therapeutic utility in wider cancer types beyond BRCA-deficiency. Here, we discuss treatment strategies to expand the tumor-selective therapeutic application of PARP inhibitors and novel approaches with predictive biomarkers to perturb NAD+ levels and hyperPARylation that inactivate PARP in recalcitrant tumors. We also provide an overview of genetic alterations that transform non-BRCA mutant cancers to a state of "BRCAness" as potential biomarkers for synthetic lethality with PARP inhibitors. Finally, we discuss a paradigm shift for the use of novel PARP inhibitors outside of cancer treatment, where it has the potential to rescue normal cells from severe oxidative damage during ischemia-reperfusion injury induced by surgery and radiotherapy.
Collapse
|
24
|
Guia RM, Hassing AS, Skov LJ, Ratner C, Plucińska K, Madsen S, Diep TA, Dela Cruz GV, Trammell SA, Sustarsic EG, Emanuelli B, Gillum MP, Gerhart‐Hines Z, Holst B, Treebak JT. Fasting- and ghrelin-induced food intake is regulated by NAMPT in the hypothalamus. Acta Physiol (Oxf) 2020; 228:e13437. [PMID: 31900990 DOI: 10.1111/apha.13437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/18/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022]
Abstract
AIM Neurons in the arcuate nucleus of the hypothalamus are involved in regulation of food intake and energy expenditure, and dysregulation of signalling in these neurons promotes development of obesity. The role of the rate-limiting enzyme in the NAD+ salvage pathway, nicotinamide phosphoribosyltransferase (NAMPT), for regulation energy homeostasis by the hypothalamus has not been extensively studied. METHODS We determined whether Nampt mRNA or protein levels in the hypothalamus of mice were affected by diet-induced obesity, by fasting and re-feeding, and by leptin and ghrelin treatment. Primary hypothalamic neurons were treated with FK866, a selective inhibitor of NAMPT, or rAAV carrying shRNA directed against Nampt, and levels of reactive oxygen species (ROS) and mitochondrial respiration were assessed. Fasting and ghrelin-induced food intake was measured in mice in metabolic cages after intracerebroventricular (ICV)-mediated FK866 administration. RESULTS NAMPT levels in the hypothalamus were elevated by administration of ghrelin and leptin. In diet-induced obese mice, both protein and mRNA levels of NAMPT decreased in the hypothalamus. NAMPT inhibition in primary hypothalamic neurons significantly reduced levels of NAD+ , increased levels of ROS, and affected the expression of Agrp, Pomc and genes related to mitochondrial function. Finally, ICV-induced NAMPT inhibition by FK866 did not cause malaise or anhedonia, but completely ablated fasting- and ghrelin-induced increases in food intake. CONCLUSION Our findings indicate that regulation of NAMPT levels in hypothalamic neurons is important for the control of fasting- and ghrelin-induced food intake.
Collapse
Affiliation(s)
- Roldan M. Guia
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Anna S. Hassing
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Louise J. Skov
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Cecilia Ratner
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Kaja Plucińska
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Søren Madsen
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Thi A. Diep
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Gelo V. Dela Cruz
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Stem Cell Biology University of Copenhagen Copenhagen Denmark
| | - Samuel A.J. Trammell
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Elahu G. Sustarsic
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Brice Emanuelli
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Matthew P. Gillum
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Zach Gerhart‐Hines
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Birgitte Holst
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Jonas T. Treebak
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| |
Collapse
|
25
|
Audrito V, Messana VG, Deaglio S. NAMPT and NAPRT: Two Metabolic Enzymes With Key Roles in Inflammation. Front Oncol 2020; 10:358. [PMID: 32266141 PMCID: PMC7096376 DOI: 10.3389/fonc.2020.00358] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT) are two intracellular enzymes that catalyze the first step in the biosynthesis of NAD from nicotinamide and nicotinic acid, respectively. By fine tuning intracellular NAD levels, they are involved in the regulation/reprogramming of cellular metabolism and in the control of the activity of NAD-dependent enzymes, including sirtuins, PARPs, and NADases. However, during evolution they both acquired novel functions as extracellular endogenous mediators of inflammation. It is well-known that cellular stress and/or damage induce release in the extracellular milieu of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), which modulate immune functions through binding pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), and activate inflammatory responses. Increasing evidence suggests that extracellular (e)NAMPT and eNAPRT are novel soluble factors with cytokine/adipokine/DAMP-like actions. Elevated eNAMPT were reported in several metabolic and inflammatory disorders, including obesity, diabetes, and cancer, while eNAPRT is emerging as a biomarker of sepsis and septic shock. This review will discuss available data concerning the dual role of this unique family of enzymes.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Murphy JP, Giacomantonio MA, Paulo JA, Everley RA, Kennedy BE, Pathak GP, Clements DR, Kim Y, Dai C, Sharif T, Gygi SP, Gujar S. The NAD + Salvage Pathway Supports PHGDH-Driven Serine Biosynthesis. Cell Rep 2020; 24:2381-2391.e5. [PMID: 30157431 DOI: 10.1016/j.celrep.2018.07.086] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 01/13/2023] Open
Abstract
NAD+ is a key metabolic redox cofactor that is regenerated from nicotinamide through the NAD+ salvage pathway. Here, we find that inhibiting the NAD+ salvage pathway depletes serine biosynthesis from glucose by impeding the NAD+-dependent protein, 3-phosphoglycerate dehydrogenase (PHGDH). Importantly, we find that PHGDHhigh breast cancer cell lines are exquisitely sensitive to inhibition of the NAD+ salvage pathway. Further, we find that PHGDH protein levels and those of the rate-limiting enzyme of NAD+ salvage, NAMPT, correlate in ER-negative, basal-like breast cancers. Although NAD+ salvage pathway inhibitors are actively being pursued in cancer treatment, their efficacy has been poor, and our findings suggest that they may be effective for PHGDH-dependent cancers.
Collapse
Affiliation(s)
- J Patrick Murphy
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Robert A Everley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Barry E Kennedy
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Gopal P Pathak
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Derek R Clements
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Cathleen Dai
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Tanveer Sharif
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Centre for Innovative and Collaborative Health Services Research, IWK Health Centre, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
27
|
Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front Oncol 2020; 9:1514. [PMID: 32010616 PMCID: PMC6978772 DOI: 10.3389/fonc.2019.01514] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells have increased requirements for NAD+. Thus, many cancers exhibit an increased reliance on NAD+ production pathways. This dependence may be exploited therapeutically through pharmacological targeting of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Despite promising preclinical data using NAMPT inhibitors in cancer models, early NAMPT inhibitors showed limited efficacy in several early phase clinical trials, necessitating the identification of strategies, such as drug combinations, to enhance their efficacy. While the effect of NAMPT inhibitors on impairment of energy metabolism in cancer cells has been well-described, more recent insights have uncovered a number of additional targetable cellular processes that are impacted by inhibition of NAMPT. These include sirtuin function, DNA repair machinery, redox homeostasis, molecular signaling, cellular stemness, and immune processes. This review highlights the recent findings describing the effects of NAMPT inhibitors on the non-metabolic functions of malignant cells, with a focus on how this information can be leveraged clinically. Combining NAMPT inhibitors with other therapies that target NAD+-dependent processes or selecting tumors with specific vulnerabilities that can be co-targeted with NAMPT inhibitors may represent opportunities to exploit the multiple functions of this enzyme for greater therapeutic benefit.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Ding YY, Luan JJ, Fan Y, Olatunji OJ, Song J, Zuo J. α-Mangostin reduced the viability of A594 cells in vitro by provoking ROS production through downregulation of NAMPT/NAD. Cell Stress Chaperones 2020; 25:163-172. [PMID: 31898286 PMCID: PMC6985413 DOI: 10.1007/s12192-019-01063-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
α-Mangostin (MAN) is a bioactive compound isolated from the inedible pericarp of a tropical fruit mangosteen (Garcinia mangostana Linn). It exhibits notable therapeutic potentials on lung cancers, but the underlying mechanisms are still largely unknown. This study was designed to further explore the mechanisms involved in cytotoxicity of MAN on A549 cells. Apoptosis and cell cycle distribution were analyzed by flow cytometry methods. The fluorescent probes DCFH-DA and JC-1 were used to assess the intracellular reactive oxidative species (ROS) and mitochondrial membrane potential statuses, respectively. The regulation of MAN on relevant pathways was investigated by immunoblotting assays. The results obtained indicated that MAN caused significant apoptosis and cell cycle arrest in A549 cells, which eventually resulted in inhibition on cell proliferation in vitro. All these phenomena were synchronized with escalated oxidative stress and downregulation of nicotinamide phosphoribosyltransferase/nicotinamide adenine dinucleotide (NAMPT/NAD). Supplementation with nicotinamide mononucleotide (NMN) and N-acetylcysteine (NAC) efficiently eased MAN-induced ROS accumulation, and potently antagonized MAN-elicited apoptosis and cell cycle arrest. The pro-apoptotic effect of MAN was further confirmed by increased expressions of cleaved caspase 3, 6, 7, and 9, and its effect on cell cycle progression was validated by the altered expressions of p-p38, p-p53, CDK4, and cyclin D1. The immunoblotting assays also demonstrated that NAC/NMN effectively restored these molecular changes elicited by MAN treatment. Collectively, this study revealed a unique anti-tumor mechanism of MAN by provoking ROS production through downregulation of NAMPT/NAD signaling and further validated MAN as a potential therapeutic reagent for lung cancer treatment.
Collapse
Affiliation(s)
- Yan-Yun Ding
- Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China
| | - Jia-Jie Luan
- Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China
| | - Yan Fan
- Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China
| | - Opeyemi Joshua Olatunji
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Jing Song
- Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China
| | - Jian Zuo
- Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
- Department of Pharmacy, Wannan Medical College, No 2nd West Zheshan Road, Wuhu, 241000, China.
| |
Collapse
|
29
|
Effective targeting of NAMPT in patient-derived xenograft models of high-risk pediatric acute lymphoblastic leukemia. Leukemia 2019; 34:1524-1539. [PMID: 31848452 DOI: 10.1038/s41375-019-0683-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
The prognosis for children diagnosed with high-risk acute lymphoblastic leukemia (ALL) remains suboptimal, and more potent and less toxic treatments are urgently needed. We investigated the efficacy of a novel nicotinamide phosphoribosyltransferase inhibitor, OT-82, against a panel of patient-derived xenografts (PDXs) established from high-risk and poor outcome pediatric ALL cases. OT-82 was well-tolerated and demonstrated impressive single agent in vivo efficacy, achieving significant leukemia growth delay in 95% (20/21) and disease regression in 86% (18/21) of PDXs. In addition, OT-82 enhanced the efficacy of the established drugs cytarabine and dasatinib and, as a single agent, showed similar efficacy as an induction-type regimen combining three drugs used to treat pediatric ALL. OT-82 exerted its antileukemic action by depleting NAD+ and ATP, inhibiting the NAD+-requiring DNA damage repair enzyme PARP-1, increasing mitochondrial ROS levels and inducing DNA damage, culminating in apoptosis induction. OT-82 sensitivity was associated with the occurrence of mutations in major DNA damage response genes, while OT-82 resistance was characterized by high expression levels of CD38. In conclusion, our study provides evidence that OT-82, as a single agent, and in combination with established drugs, is a promising new therapeutic strategy for a broad spectrum of high-risk pediatric ALL for which improved therapies are urgently needed.
Collapse
|
30
|
Gaudino F, Manfredonia I, Managò A, Audrito V, Raffaelli N, Vaisitti T, Deaglio S. Subcellular Characterization of Nicotinamide Adenine Dinucleotide Biosynthesis in Metastatic Melanoma by Using Organelle-Specific Biosensors. Antioxid Redox Signal 2019; 31:1150-1165. [PMID: 31456414 DOI: 10.1089/ars.2019.7799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aim: Nicotinamide adenine dinucleotide (NAD+) plays central roles in a wide array of normal and pathological conditions. Inhibition of NAD+ biosynthesis can be exploited therapeutically in cancer, including melanoma. To obtain quantitation of NAD+ levels in live cells and to address the issue of the compartmentalization of NAD+ biosynthesis, we exploited a recently described genetically encoded NAD+ biosensor (LigA-circularly permutated Venus), which was targeted to the cytosol, mitochondria, and nuclei of BRAF-V600E A375 melanoma cells, a model of metastatic melanoma (MM). Results: FK866, a specific inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), the main NAD+-producing enzyme in MM cells, was used to monitor NAD+ depletion kinetics at the subcellular level in biosensor-transduced A375 cells. In addition, we treated FK866-blocked A375 cells with NAD+ precursors, including nicotinamide, nicotinic acid, nicotinamide riboside, and quinolinic acid, highlighting an organelle-specific capacity of each substrate to rescue from NAMPT block. Expression of NAD+ biosynthetic enzymes was then biochemically studied in isolated organelles, revealing the presence of NAMPT in all three cellular compartments, whereas nicotinate phosphoribosyltransferase was predominantly cytosolic and mitochondrial, and nicotinamide riboside kinase mitochondrial and nuclear. In keeping with biosensor data, quinolinate phosphoribosyltransferase was expressed at extremely low levels. Innovation and Conclusions: Throughout this work, we validated the use of genetically encoded NAD+ biosensors to characterize subcellular distribution of NAD+ production routes in MM. The chance of real-time monitoring of NAD+ fluctuations after chemical perturbations, together with a deeper comprehension of the cofactor biosynthesis compartmentalization, strengthens the foundation for a targeted strategy of NAD+ pool manipulation in cancer and metabolic diseases.
Collapse
Affiliation(s)
- Federica Gaudino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Antonella Managò
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Nadia Raffaelli
- Department of Clinical Sciences, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
31
|
Cloux AJ, Aubry D, Heulot M, Widmann C, ElMokh O, Piacente F, Cea M, Nencioni A, Bellotti A, Bouzourène K, Pellegrin M, Mazzolai L, Duchosal MA, Nahimana A. Reactive oxygen/nitrogen species contribute substantially to the antileukemia effect of APO866, a NAD lowering agent. Oncotarget 2019; 10:6723-6738. [PMID: 31803365 PMCID: PMC6877101 DOI: 10.18632/oncotarget.27336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/07/2019] [Indexed: 02/03/2023] Open
Abstract
APO866 is a small molecule drug that specifically inhibits nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Although, the antitumor activity of APO866 on various types of cancer models has been reported, information regarding mechanisms by which APO866 exerts its cytotoxic effects is not well defined. Here we show that APO866 induces a strong, time-dependent increase in highly reactive ROS, nitric oxide, cytosolic/mitochondrial superoxide anions and hydrogen peroxide. We provide evidence that APO866-mediated ROS production is modulated by PARP1 and triggers cell death through mitochondria depolarization and ATP loss. Genetic or pharmacologic inhibition of PARP1 prevented hydrogen peroxide accumulation, caspase activation, mitochondria depolarization, ATP loss and abrogates APO866-induced cell death, suggesting that the integrity of PARP1 status is required for cell death. Conversely, PARP1 activating drugs enhanced the anti-leukemia activity of APO866 Collectively, our studies show that APO866 induces ROS/RNS productions, which mediate its anti-leukemia effect. These results support testing new combinatorial strategies to enhance the antitumor activities of APO866.
Collapse
Affiliation(s)
- Anne-Julie Cloux
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Dominique Aubry
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Mathieu Heulot
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Christian Widmann
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Oussama ElMokh
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Michele Cea
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Axel Bellotti
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Karima Bouzourène
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Maxime Pellegrin
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucia Mazzolai
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel A Duchosal
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Oakey LA, Fletcher RS, Elhassan YS, Cartwright DM, Doig CL, Garten A, Thakker A, Maddocks ODK, Zhang T, Tennant DA, Ludwig C, Lavery GG. Metabolic tracing reveals novel adaptations to skeletal muscle cell energy production pathways in response to NAD + depletion. Wellcome Open Res 2019; 3:147. [PMID: 30607371 PMCID: PMC6305244 DOI: 10.12688/wellcomeopenres.14898.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Skeletal muscle is central to whole body metabolic homeostasis, with age and disease impairing its ability to function appropriately to maintain health. Inadequate NAD + availability is proposed to contribute to pathophysiology by impairing metabolic energy pathway use. Despite the importance of NAD + as a vital redox cofactor in energy production pathways being well-established, the wider impact of disrupted NAD + homeostasis on these pathways is unknown. Methods: We utilised skeletal muscle myotube models to induce NAD + depletion, repletion and excess and conducted metabolic tracing to provide comprehensive and detailed analysis of the consequences of altered NAD + metabolism on central carbon metabolic pathways. We used stable isotope tracers, [1,2-13C] D-glucose and [U- 13C] glutamine, and conducted combined 2D-1H,13C-heteronuclear single quantum coherence (HSQC) NMR spectroscopy and GC-MS analysis. Results: NAD + excess driven by nicotinamide riboside (NR) supplementation within skeletal muscle cells resulted in enhanced nicotinamide clearance, but had no effect on energy homeostasis or central carbon metabolism. Nicotinamide phosphoribosyltransferase (NAMPT) inhibition induced NAD + depletion and resulted in equilibration of metabolites upstream of glyceraldehyde phosphate dehydrogenase (GAPDH). Aspartate production through glycolysis and TCA cycle activity was increased in response to low NAD +, which was rapidly reversed with repletion of the NAD + pool using NR. NAD + depletion reversibly inhibits cytosolic GAPDH activity, but retains mitochondrial oxidative metabolism, suggesting differential effects of this treatment on sub-cellular pyridine pools. When supplemented, NR efficiently reversed these metabolic consequences. However, the functional relevance of increased aspartate levels after NAD + depletion remains unclear, and requires further investigation. Conclusions: These data highlight the need to consider carbon metabolism and clearance pathways when investigating NAD + precursor usage in models of skeletal muscle physiology.
Collapse
Affiliation(s)
- Lucy A. Oakey
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Rachel S. Fletcher
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Yasir S. Elhassan
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - David M. Cartwright
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Craig L. Doig
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Antje Garten
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | | | - Tong Zhang
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Daniel A. Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Gareth G. Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| |
Collapse
|
33
|
Role of coenzymes in cancer metabolism. Semin Cell Dev Biol 2019; 98:44-53. [PMID: 31176736 DOI: 10.1016/j.semcdb.2019.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Cancer is a heterogeneous set of diseases characterized by the rewiring of cellular signaling and the reprogramming of metabolic pathways to sustain growth and proliferation. In past decades, studies were focused primarily on the genetic complexity of cancer. Recently, increasing number of studies have discovered several mutations among metabolic enzymes in different tumor cells. Most of the enzymes are regulated by coenzymes, organic cofactors, that function as intermediate carrier of electrons or functional groups that are transferred during the reaction. However, the precise role of cofactors is not well elucidated. In this review, we discuss several metabolic enzymes associated to cancer metabolism rewiring, whose inhibition may represent a therapeutic target. Such enzymes, upon expression or inhibition, may impact also the coenzymes levels, but only in few cases, it was possible to direct correlate coenzymes changes with a specific enzyme. In addition, we also summarize an up-to-date information on biological role of some coenzymes, preclinical and clinical studies, that have been carried out in various cancers and their outputs.
Collapse
|
34
|
Lewis JE, Singh N, Holmila RJ, Sumer BD, Williams NS, Furdui CM, Kemp ML, Boothman DA. Targeting NAD + Metabolism to Enhance Radiation Therapy Responses. Semin Radiat Oncol 2019; 29:6-15. [PMID: 30573185 DOI: 10.1016/j.semradonc.2018.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) metabolism is integrally connected with the mechanisms of action of radiation therapy and is altered in many radiation-resistant tumors. This makes NAD+ metabolism an ideal target for therapies that increase radiation sensitivity and improve patient outcomes. This review provides an overview of NAD+ metabolism in the context of the cellular response to ionizing radiation, as well as current therapies that target NAD+ metabolism to enhance radiation therapy responses. Additionally, we summarize state-of-the-art methods for measuring, modeling, and manipulating NAD+ metabolism, which are being used to identify novel targets in the NAD+ metabolic network for therapeutic interventions in combination with radiation therapy.
Collapse
Affiliation(s)
- Joshua E Lewis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA.
| | - Naveen Singh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Reetta J Holmila
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Baran D Sumer
- Departments of Surgery, UT Southwestern Medical Center, Dallas, TX
| | - Noelle S Williams
- Departments of Biochemistry, UT Southwestern Medical Center, Dallas, TX
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - David A Boothman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
35
|
Oakey LA, Fletcher RS, Elhassan YS, Cartwright DM, Doig CL, Garten A, Thakker A, Maddocks ODK, Zhang T, Tennant DA, Ludwig C, Lavery GG. Metabolic tracing reveals novel adaptations to skeletal muscle cell energy production pathways in response to NAD + depletion. Wellcome Open Res 2018; 3:147. [PMID: 30607371 PMCID: PMC6305244 DOI: 10.12688/wellcomeopenres.14898.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2018] [Indexed: 11/15/2023] Open
Abstract
Background: Skeletal muscle is central to whole body metabolic homeostasis, with age and disease impairing its ability to function appropriately to maintain health. Inadequate NAD + availability is proposed to contribute to pathophysiology by impairing metabolic energy pathway use. Despite the importance of NAD + as a vital redox cofactor in energy production pathways being well-established, the wider impact of disrupted NAD + homeostasis on these pathways is unknown. Methods: We utilised skeletal muscle myotube models to induce NAD + depletion, repletion and excess and conducted metabolic tracing to provide comprehensive and detailed analysis of the consequences of altered NAD + metabolism on central carbon metabolic pathways. We used stable isotope tracers, [1,2-13C] D-glucose and [U- 13C] glutamine, and conducted combined 2D-1H,13C-heteronuclear single quantum coherence (HSQC) NMR spectroscopy and GC-MS analysis. Results: NAD + excess driven by nicotinamide riboside (NR) supplementation within skeletal muscle cells results in enhanced nicotinamide clearance, but had no effect on energy homeostasis or central carbon metabolism. Nicotinamide phosphoribosyltransferase (NAMPT) inhibition induced NAD + depletion and resulted in equilibration of metabolites upstream of glyceraldehyde phosphate dehydrogenase (GAPDH). Aspartate production through glycolysis and TCA cycle activity is increased in response to low NAD +, which is rapidly reversed with repletion of the NAD + pool using NR. NAD + depletion reversibly inhibits cytosolic GAPDH activity, but retains mitochondrial oxidative metabolism, suggesting differential effects of this treatment on sub-cellular pyridine pools. When supplemented, NR efficiently reverses these metabolic consequences. However, the functional relevance of increased aspartate levels after NAD + depletion remains unclear, and requires further investigation. Conclusions: These data highlight the need to consider carbon metabolism and clearance pathways when investigating NAD + precursor usage in models of skeletal muscle physiology.
Collapse
Affiliation(s)
- Lucy A. Oakey
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Rachel S. Fletcher
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Yasir S. Elhassan
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - David M. Cartwright
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Craig L. Doig
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Antje Garten
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | | | - Tong Zhang
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Daniel A. Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Gareth G. Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, UK, Birmingham, B15 2TT, UK
| |
Collapse
|
36
|
Levings DC, Wang X, Kohlhase D, Bell DA, Slattery M. A distinct class of antioxidant response elements is consistently activated in tumors with NRF2 mutations. Redox Biol 2018; 19:235-249. [PMID: 30195190 PMCID: PMC6128101 DOI: 10.1016/j.redox.2018.07.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022] Open
Abstract
NRF2 is a redox-responsive transcription factor that regulates expression of cytoprotective genes via its interaction with DNA sequences known as antioxidant response elements (AREs). NRF2 activity is induced by oxidative stress, but oxidative stress is not the only context in which NRF2 can be activated. Mutations that disrupt the interaction between NRF2 and KEAP1, an inhibitor of NRF2, lead to NRF2 hyperactivation and promote oncogenesis. The mechanisms underlying NRF2's oncogenic properties remain unclear, but likely involve aberrant expression of select NRF2 target genes. We tested this possibility using an integrative genomics approach to get a precise view of the direct NRF2 target genes dysregulated in tumors with NRF2 hyperactivating mutations. This approach revealed a core set of 32 direct NRF2 targets that are consistently upregulated in NRF2 hyperactivated tumors. This set of NRF2 "cancer target genes" includes canonical redox-related NRF2 targets, as well as target genes that have not been previously linked to NRF2 activation. Importantly, NRF2-driven upregulation of this gene set is largely independent of the organ system where the tumor developed. One key distinguishing feature of these NRF2 cancer target genes is that they are regulated by high affinity AREs that fall within genomic regions possessing a ubiquitously permissive chromatin signature. This implies that these NRF2 cancer target genes are responsive to oncogenic NRF2 in most tissues because they lack the regulatory constraints that restrict expression of most other NRF2 target genes. This NRF2 cancer target gene set also serves as a reliable proxy for NRF2 activity, and high NRF2 activity is associated with significant decreases in survival in multiple cancer types. Overall, the pervasive upregulation of these NRF2 cancer targets across multiple cancers, and their association with negative outcomes, suggests that these will be central to dissecting the functional implications of NRF2 hyperactivation in several cancer contexts.
Collapse
Affiliation(s)
- Daniel C Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Derek Kohlhase
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Douglas A Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|
37
|
Misner DL, Kauss MA, Singh J, Uppal H, Bruening-Wright A, Liederer BM, Lin T, McCray B, La N, Nguyen T, Sampath D, Dragovich PS, O'Brien T, Zabka TS. Cardiotoxicity Associated with Nicotinamide Phosphoribosyltransferase Inhibitors in Rodents and in Rat and Human-Derived Cells Lines. Cardiovasc Toxicol 2018; 17:307-318. [PMID: 27783203 DOI: 10.1007/s12012-016-9387-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a pleiotropic protein that functions as an enzyme, cytokine, growth factor and hormone. As a target for oncology, NAMPT is particularly attractive, because it catalyzes the rate-limiting step in the salvage pathway to generate nicotinamide adenine dinucleotide (NAD), a universal energy- and signal-carrying molecule involved in cellular energy metabolism and many homeostatic functions. Inhibition of NAMPT generally results in NAD depletion, followed by ATP reduction and loss of cell viability. Herein, we describe NAMPT inhibitor (NAMPTi)-induced cardiac toxicity in rodents following short-term administration (2-7 days) of NAMPTi's. The cardiac toxicity was interpreted as a functional effect leading to congestive heart failure, characterized by sudden death, thoracic and abdominal effusion, and myocardial degeneration. Based on exposures in the initial in vivo safety rodent studies and cardiotoxicity observed, we conducted studies in rat and human in vitro cardiomyocyte cell systems. Based on those results, combined with human cell line potency data, we demonstrated the toxicity is both on-target and likely human relevant. This toxicity was mitigated in vitro by co-administration of nicotinic acid (NA), which can enable NAD production through the NAMPT-independent pathway; however, this resulted in only partial mitigation in in vivo studies. This work also highlights the usefulness and predictivity of in vitro cardiomyocyte assays using human cells to rank-order compounds against potency in cell-based pharmacology assays. Lastly, this work strengthens the correlation between cardiomyocyte cell viability and functionality, suggesting that these assays together may enable early assessment of cardiotoxicity in vitro prior to conduct of in vivo studies and potentially reduce subsequent attrition due to cardiotoxicity.
Collapse
Affiliation(s)
- D L Misner
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA.
| | - M A Kauss
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - J Singh
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - H Uppal
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | | | - B M Liederer
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T Lin
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - B McCray
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - N La
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T Nguyen
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - D Sampath
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - P S Dragovich
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T O'Brien
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T S Zabka
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| |
Collapse
|
38
|
Thongon N, Zucal C, D'Agostino VG, Tebaldi T, Ravera S, Zamporlini F, Piacente F, Moschoi R, Raffaelli N, Quattrone A, Nencioni A, Peyron JF, Provenzani A. Cancer cell metabolic plasticity allows resistance to NAMPT inhibition but invariably induces dependence on LDHA. Cancer Metab 2018. [PMID: 29541451 PMCID: PMC5844108 DOI: 10.1186/s40170-018-0174-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Inhibitors of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD+ biosynthesis from nicotinamide, exhibit anticancer effects in preclinical models. However, continuous exposure to NAMPT inhibitors, such as FK866, can induce acquired resistance. Methods We developed FK866-resistant CCRF-CEM (T cell acute lymphoblastic leukemia) and MDA MB231 (breast cancer) models, and by exploiting an integrated approach based on genetic, biochemical, and genome wide analyses, we annotated the drug resistance mechanisms. Results Acquired resistance to FK866 was independent of NAMPT mutations but rather was based on a shift towards a glycolytic metabolism and on lactate dehydrogenase A (LDHA) activity. In addition, resistant CCRF-CEM cells, which exhibit high quinolinate phosphoribosyltransferase (QPRT) activity, also exploited amino acid catabolism as an alternative source for NAD+ production, becoming addicted to tryptophan and glutamine and sensitive to treatment with the amino acid transport inhibitor JPH203 and with l-asparaginase, which affects glutamine exploitation. Vice versa, in line with their low QPRT expression, FK866-resistant MDA MB231 did not rely on amino acids for their resistance phenotype. Conclusions Our study identifies novel mechanisms of resistance to NAMPT inhibition, which may be useful to design more rational strategies for targeting cancer metabolism.
Collapse
Affiliation(s)
- Natthakan Thongon
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | - Chiara Zucal
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | | | - Toma Tebaldi
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | - Silvia Ravera
- 2Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Federica Zamporlini
- 3Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Ruxanda Moschoi
- 5Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Nadia Raffaelli
- 3Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Quattrone
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | - Alessio Nencioni
- 4Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Jean-Francois Peyron
- 5Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Alessandro Provenzani
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| |
Collapse
|
39
|
Wei J, Renfrew AK. Photolabile ruthenium complexes to cage and release a highly cytotoxic anticancer agent. J Inorg Biochem 2017; 179:146-153. [PMID: 29180165 DOI: 10.1016/j.jinorgbio.2017.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 11/19/2022]
Abstract
CHS-828 (N-(6-(4-chlorophenoxy)hexyl)-N'-cyano-N″-4-pyridyl guanidine) is an anticancer agent with low bioavailability and high systemic toxicity. Here we present an approach to improve the therapeutic profile of the drug using photolabile ruthenium complexes to generate light-activated prodrugs of CHS-828. Both prodrug complexes are stable in the dark but release CHS-828 when irradiated with visible light. The complexes are water-soluble and accumulate in tumour cells in very high concentrations, predominantly in the mitochondria. Both prodrug complexes are significantly less cyototoxic than free CHS-828 in the dark but their toxicity increases up to 10-fold in combination with visible light. The cellular responses to light treatment are consistent with release of the cytotoxic CHS-828 ligand.
Collapse
Affiliation(s)
- Jianhua Wei
- School of Chemistry, University of Sydney, Sydney, NSW, Australia
| | - Anna K Renfrew
- School of Chemistry, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
40
|
Kim DH, Park JE, Chae IG, Park G, Lee S, Chun KS. Isoliquiritigenin inhibits the proliferation of human renal carcinoma Caki cells through the ROS-mediated regulation of the Jak2/STAT3 pathway. Oncol Rep 2017; 38:575-583. [PMID: 28560439 DOI: 10.3892/or.2017.5677] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
Isoliquiritigenin (ISL) is a flavonoid with chalcone structure that has been noted in licorice and shallot, which are generally used in traditional Chinese medicine. ISL has demonstrated various pharmacological effects including antioxidant, anti-inflammatory and antitumor activity. However, the molecular mechanisms underlying the anticancer effects of ISL remain poorly understood. The present study revealed that ISL significantly decreased viability and induced apoptosis in human renal carcinoma Caki cells. The ISL-induced apoptosis was associated with the cleavage of caspase-9, -7 and -3, and that of PARP. Moreover, ISL increased the expression of pro-apoptotic protein Bax and diminished the expression of anti-apoptotic protein Bcl-2, and Bcl-xl, thereby increasing cytochrome c release. Treatment of cells with ISL also induced the expression of p53 through downregulation of murine double minute 2 (Mdm2). Furthermore, ISL generated reactive oxygen species (ROS), and pretreatment with ROS scavenger N-acetyl cysteine (NAC) and NADPH oxidase inhibitor diphenyleneiodonium abrogated the ISL-induced apoptosis. One of the key oncogenic signaling pathways is mediated through signal transducer and activator of transcription 3 (STAT3), which promotes abnormal cell proliferation. Incubation of cells with ISL markedly diminished phosphorylation and DNA binding activity of STAT3, and reduced expression of STAT3 responsive gene products, such as cyclin D1 and D2. ISL also attenuated constitutive phosphorylation of upstream kinase, Janus-activated kinase 2 (Jak2). Pretreatment with NAC abrogated the inhibitory effect of ISL on activation of STAT3 and blocked the cleavage of caspase-9, -7 and -3, and that of PARP in Caki cells. Taken together, the present study provides the first report that ISL induces apoptosis in Caki cells via generation of ROS, which causes induction of p53 and inhibition of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Do-Hee Kim
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji Eun Park
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea
| | - In Gyeong Chae
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea
| | - Geumi Park
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea
| |
Collapse
|
41
|
Piacente F, Caffa I, Ravera S, Sociali G, Passalacqua M, Vellone VG, Becherini P, Reverberi D, Monacelli F, Ballestrero A, Odetti P, Cagnetta A, Cea M, Nahimana A, Duchosal M, Bruzzone S, Nencioni A. Nicotinic Acid Phosphoribosyltransferase Regulates Cancer Cell Metabolism, Susceptibility to NAMPT Inhibitors, and DNA Repair. Cancer Res 2017; 77:3857-3869. [PMID: 28507103 DOI: 10.1158/0008-5472.can-16-3079] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/06/2017] [Accepted: 05/12/2017] [Indexed: 11/16/2022]
Abstract
In the last decade, substantial efforts have been made to identify NAD+ biosynthesis inhibitors, specifically against nicotinamide phosphoribosyltransferase (NAMPT), as preclinical studies indicate their potential efficacy as cancer drugs. However, the clinical activity of NAMPT inhibitors has proven limited, suggesting that alternative NAD+ production routes exploited by tumors confer resistance. Here, we show the gene encoding nicotinic acid phosphoribosyltransferase (NAPRT), a second NAD+-producing enzyme, is amplified and overexpressed in a subset of common types of cancer, including ovarian cancer, where NAPRT expression correlates with a BRCAness gene expression signature. Both NAPRT and NAMPT increased intracellular NAD+ levels. NAPRT silencing reduced energy status, protein synthesis, and cell size in ovarian and pancreatic cancer cells. NAPRT silencing sensitized cells to NAMPT inhibitors both in vitro and in vivo; similar results were obtained with the NAPRT inhibitor 2-hydroxynicotinic acid. Reducing NAPRT levels in a BRCA2-deficient cancer cell line exacerbated DNA damage in response to chemotherapeutics. In conclusion, NAPRT-dependent NAD+ biosynthesis contributes to cell metabolism and to the DNA repair process in a subset of tumors. This knowledge could be used to increase the efficacy of NAMPT inhibitors and chemotherapy. Cancer Res; 77(14); 3857-69. ©2017 AACR.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Pharmacy, Biochemistry Lab, Genoa, Italy
| | - Giovanna Sociali
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Valerio G Vellone
- Department of Integrated, Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Pamela Becherini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Daniele Reverberi
- Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Antonia Cagnetta
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michel Duchosal
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy. .,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| |
Collapse
|
42
|
Zapata-Pérez R, García-Saura AG, Jebbar M, Golyshin PN, Sánchez-Ferrer Á. Combined Whole-Cell High-Throughput Functional Screening for Identification of New Nicotinamidases/Pyrazinamidases in Metagenomic/Polygenomic Libraries. Front Microbiol 2016; 7:1915. [PMID: 28018295 PMCID: PMC5147024 DOI: 10.3389/fmicb.2016.01915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
Nicotinamidases catalyze the hydrolysis of the amide bond in nicotinamide (NAM) to produce ammonia and nicotinic acid (NA). These enzymes are an essential component of the NAD+ salvage pathway and are implicated in the viability of several pathogenic organisms. Its absence in humans makes them a promising drug target. In addition, although they are key analytical biocatalysts for screening modulators in relevant biomedical enzymes, such as sirtuins and poly-ADP-ribosyltransferases, no commercial sources are available. Surprisingly, the finding of an affordable source of nicotinamidase from metagenomic libraries is hindered by the absence of a suitable and fast screening method. In this manuscript, we describe the development of two new whole-cell methods using the chemical property of one of the products formed in the enzymatic reaction (pyrazinoic or NA) to form colored complexes with stable iron salts, such as ammonium ferrous sulfate or sodium nitroprusside (SNP). After optimization of the assay conditions, a fosmid polygenomic expression library obtained from deep-sea mesophilic bacteria was screened, discovering several positive clones with the ammonium ferrous sulfate method. Their quantitative rescreening with the SNP method allowed the finding of the first nicotinamidase with balanced catalytic efficiency toward NAM (nicotinamidase activity) and pyrazinamide (pyrazinamidase activity). Its biochemical characterization has also made possible the development of the first high-throughput whole-cell method for prescreening of new nicotinamidase inhibitors by the naked eye, saving time and costs in the design of future antimicrobial and antiparasitic agents.
Collapse
Affiliation(s)
- Rubén Zapata-Pérez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia Murcia, Spain
| | - Antonio G García-Saura
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia Murcia, Spain
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM) Plouzané, France
| | - Peter N Golyshin
- School of Biological Sciences, Bangor UniversityBangor, UK; Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of MurciaMurcia, Spain; Murcia Biomedical Research InstituteMurcia, Spain
| |
Collapse
|
43
|
Kennedy BE, Sharif T, Martell E, Dai C, Kim Y, Lee PWK, Gujar SA. NAD + salvage pathway in cancer metabolism and therapy. Pharmacol Res 2016; 114:274-283. [PMID: 27816507 DOI: 10.1016/j.phrs.2016.10.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for various physiological processes including energy metabolism, DNA repair, cell growth, and cell death. Many of these pathways are typically dysregulated in cancer cells, making NAD+ an intriguing target for cancer therapeutics. NAD+ is mainly synthesized by the NAD+ salvage pathway in cancer cells, and not surprisingly, the pharmacological targeting of the NAD+ salvage pathway causes cancer cell cytotoxicity in vitro and in vivo. Several studies have described the precise consequences of NAD+ depletion on cancer biology, and have demonstrated that NAD+ depletion results in depletion of energy levels through lowered rates of glycolysis, reduced citric acid cycle activity, and decreased oxidative phosphorylation. Additionally, depletion of NAD+ causes sensitization of cancer cells to oxidative damage by disruption of the anti-oxidant defense system, decreased cell proliferation, and initiation of cell death through manipulation of cell signaling pathways (e.g., SIRT1 and p53). Recently, studies have explored the effect of well-known cancer therapeutics in combination with pharmacological depletion of NAD+ levels, and found in many cases a synergistic effect on cancer cell cytotoxicity. In this context, we will discuss the effects of NAD+ salvage pathway inhibition on cancer cell biology and provide insight on this pathway as a novel anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Tanveer Sharif
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Emma Martell
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Cathleen Dai
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick W K Lee
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Shashi A Gujar
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, NS, Canada.
| |
Collapse
|
44
|
Zak M, Yuen PW, Liu X, Patel S, Sampath D, Oeh J, Liederer BM, Wang W, O’Brien T, Xiao Y, Skelton N, Hua R, Sodhi J, Wang Y, Zhang L, Zhao G, Zheng X, Ho YC, Bair KW, Dragovich PS. Minimizing CYP2C9 Inhibition of Exposed-Pyridine NAMPT (Nicotinamide Phosphoribosyltransferase) Inhibitors. J Med Chem 2016; 59:8345-68. [DOI: 10.1021/acs.jmedchem.6b00697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mark Zak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Po-wai Yuen
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Xiongcai Liu
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Snahel Patel
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Deepak Sampath
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason Oeh
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Bianca M. Liederer
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Weiru Wang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas O’Brien
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yang Xiao
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas Skelton
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rongbao Hua
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Jasleen Sodhi
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yunli Wang
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Lei Zhang
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Guiling Zhao
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaozhang Zheng
- FORMA Therapeutics Inc., 500 Arsenal Street, Watertown, Massachusetts 02472, United States
| | - Yen-Ching Ho
- FORMA Therapeutics Inc., 500 Arsenal Street, Watertown, Massachusetts 02472, United States
| | - Kenneth W. Bair
- FORMA Therapeutics Inc., 500 Arsenal Street, Watertown, Massachusetts 02472, United States
| | - Peter S. Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
45
|
Chen H, Wang S, Zhang H, Nice EC, Huang C. Nicotinamide phosphoribosyltransferase (Nampt) in carcinogenesis: new clinical opportunities. Expert Rev Anticancer Ther 2016; 16:827-38. [PMID: 27186719 DOI: 10.1080/14737140.2016.1190649] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme that catalyzes the first step in the mammalian nicotinamide adenine dinucleotide (NAD) salvage pathway. Aberrant NAD metabolism was associated with oncogenic signal transduction, suggesting the critical roles of Nampt in tumorigenesis and metastasis. Additionally, Nampt can be secreted out of the cell, and this extracellular form of Nampt (eNampt) was shown to induce inflammation and angiogenesis due to its cytokine activity, which may also be involved in carcinogenesis. AREAS COVERED This article reviews recent advances in the studies of Nampt in carcinogenesis, with a special highlight on Nampt inhibitors and future clinical application, including cancer diagnosis, prognosis and therapy. Expert commentary: Nampt not only maintains the balance of cellular metabolism, but also has a profound influence on multiple aspects of carcinogenesis. Therefore, elucidation of these mechanisms opens the door for future clinical applications targeting this protein. Additional studies are needed to address important questions including the relationship between extracellular Nampt and carcinogenesis.
Collapse
Affiliation(s)
- Hang Chen
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Shiyu Wang
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Haiyuan Zhang
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Edouard C Nice
- b Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Canhua Huang
- c State Key Laboratory for Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center of Biotherapy , Chengdu , China
| |
Collapse
|
46
|
Duarte-Pereira S, Pereira-Castro I, Silva SS, Correia MG, Neto C, da Costa LT, Amorim A, Silva RM. Extensive regulation of nicotinate phosphoribosyltransferase (NAPRT) expression in human tissues and tumors. Oncotarget 2016; 7:1973-83. [PMID: 26675378 PMCID: PMC4811510 DOI: 10.18632/oncotarget.6538] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/21/2015] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a cofactor in redox reactions and a substrate for NAD-consuming enzymes, such as PARPs and sirtuins. As cancer cells have increased NAD requirements, the main NAD salvage enzymes in humans, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), are involved in the development of novel anti-cancer therapies. Knowledge of the expression patterns of both genes in tissues and tumors is critical for the use of nicotinic acid (NA) as cytoprotective in therapies using NAMPT inhibitors. Herein, we provide a comprehensive study of NAPRT and NAMPT expression across human tissues and tumor cell lines. We show that both genes are widely expressed under normal conditions and describe the occurrence of novel NAPRT transcripts. Also, we explore some of the NAPRT gene expression mechanisms. Our findings underline that the efficiency of NA in treatments with NAMPT inhibitors is dependent on the knowledge of the expression profiles and regulation of both NAMPT and NAPRT.
Collapse
Affiliation(s)
- Sara Duarte-Pereira
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Isabel Pereira-Castro
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Gene Regulation Group, i3S/IBMC - Instituto de Investigação e Inovação em Saúde/Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sarah S. Silva
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Mariana Gonçalves Correia
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Célia Neto
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Luís Teixeira da Costa
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, University of Évora, Évora, Portugal
| | - António Amorim
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Raquel M. Silva
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Institute for Biomedicine - iBiMED & IEETA, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
47
|
Tateishi K, Wakimoto H, Iafrate AJ, Tanaka S, Loebel F, Lelic N, Wiederschain D, Bedel O, Deng G, Zhang B, He T, Shi X, Gerszten RE, Zhang Y, Yeh JRJ, Curry WT, Zhao D, Sundaram S, Nigim F, Koerner MVA, Ho Q, Fisher DE, Roider EM, Kemeny LV, Samuels Y, Flaherty KT, Batchelor TT, Chi AS, Cahill DP. Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. Cancer Cell 2015; 28:773-784. [PMID: 26678339 PMCID: PMC4684594 DOI: 10.1016/j.ccell.2015.11.006] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/09/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023]
Abstract
Heterozygous mutation of IDH1 in cancers modifies IDH1 enzymatic activity, reprogramming metabolite flux and markedly elevating 2-hydroxyglutarate (2-HG). Here, we found that 2-HG depletion did not inhibit growth of several IDH1 mutant solid cancer types. To identify other metabolic therapeutic targets, we systematically profiled metabolites in endogenous IDH1 mutant cancer cells after mutant IDH1 inhibition and discovered a profound vulnerability to depletion of the coenzyme NAD+. Mutant IDH1 lowered NAD+ levels by downregulating the NAD+ salvage pathway enzyme nicotinate phosphoribosyltransferase (Naprt1), sensitizing to NAD+ depletion via concomitant nicotinamide phosphoribosyltransferase (NAMPT) inhibition. NAD+ depletion activated the intracellular energy sensor AMPK, triggered autophagy, and resulted in cytotoxicity. Thus, we identify NAD+ depletion as a metabolic susceptibility of IDH1 mutant cancers.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - A John Iafrate
- Department of Pathology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shota Tanaka
- Divisions of Neuro-Oncology and Hematology/Oncology, Department of Neurology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Franziska Loebel
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nina Lelic
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | - Timothy He
- Sanofi Oncology, Cambridge, MA 02139, USA
| | - Xu Shi
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert E Gerszten
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yiyun Zhang
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jing-Ruey J Yeh
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - William T Curry
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dan Zhao
- Divisions of Neuro-Oncology and Hematology/Oncology, Department of Neurology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sudhandra Sundaram
- Divisions of Neuro-Oncology and Hematology/Oncology, Department of Neurology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Fares Nigim
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mara V A Koerner
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Quan Ho
- Department of Pathology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Elisabeth M Roider
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lajos V Kemeny
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Keith T Flaherty
- Division of Hematology/Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tracy T Batchelor
- Divisions of Neuro-Oncology and Hematology/Oncology, Department of Neurology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew S Chi
- Divisions of Neuro-Oncology and Hematology/Oncology, Department of Neurology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel P Cahill
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
48
|
Hong SM, Park CW, Kim SW, Nam YJ, Yu JH, Shin JH, Yun CH, Im SH, Kim KT, Sung YC, Choi KY. NAMPT suppresses glucose deprivation-induced oxidative stress by increasing NADPH levels in breast cancer. Oncogene 2015; 35:3544-54. [PMID: 26568303 DOI: 10.1038/onc.2015.415] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme involved in NAD+ biosynthesis. Although NAMPT has emerged as a critical regulator of metabolic stress, the underlying mechanisms by which it regulates metabolic stress in cancer cells have not been completely elucidated. In this study, we determined that breast cancer cells expressing a high level of NAMPT were resistant to cell death induced by glucose depletion. Furthermore, NAMPT inhibition suppressed tumor growth in vivo in a xenograft model. Under glucose deprivation conditions, NAMPT inhibition was found to increase the mitochondrial reactive oxygen species (ROS) level, leading to cell death. This cell death was rescued by treatment with antioxidants or NAD+. Finally, we showed that NAMPT increased the pool of NAD+ that could be converted to NADPH through the pentose phosphate pathway and inhibited the depletion of reduced glutathione under glucose deprivation. Collectively, our results suggest a novel mechanism by which tumor cells protect themselves against glucose deprivation-induced oxidative stress by utilizing NAMPT to maintain NADPH levels.
Collapse
Affiliation(s)
- S M Hong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - C W Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Biokogen Inc. POSTECH Biotech Center #226, Pohang, Korea
| | - S W Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Y J Nam
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - J H Yu
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - J H Shin
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - C H Yun
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Korea
| | - S-H Im
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Korea
| | - K-T Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Y C Sung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - K Y Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
49
|
EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition. BMC Cancer 2015; 15:855. [PMID: 26542945 PMCID: PMC4636066 DOI: 10.1186/s12885-015-1845-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/23/2015] [Indexed: 01/04/2023] Open
Abstract
Background Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD+ biosynthesis from nicotinamide, is one of the major factors regulating cancer cells metabolism and is considered a promising target for treating cancer. The prototypical NAMPT inhibitor FK866 effectively lowers NAD+ levels in cancer cells, reducing the activity of NAD+-dependent enzymes, lowering intracellular ATP, and promoting cell death. Results We show that FK866 induces a translational arrest in leukemia cells through inhibition of MTOR/4EBP1 signaling and of the initiation factors EIF4E and EIF2A. Specifically, treatment with FK866 is shown to induce 5′AMP-activated protein kinase (AMPK) activation, which, together with EIF2A phosphorylation, is responsible for the inhibition of protein synthesis. Notably, such an effect was also observed in patients’ derived primary leukemia cells including T-cell Acute Lymphoblastic Leukemia. Jurkat cells in which AMPK or LKB1 expression was silenced or in which a non-phosphorylatable EIF2A mutant was ectopically expressed showed enhanced sensitivity to the NAMPT inhibitor, confirming a key role for the LKB1-AMPK-EIF2A axis in cell fate determination in response to energetic stress via NAD+ depletion. Conclusions We identified EIF2A phosphorylation as a novel early molecular event occurring in response to NAMPT inhibition and mediating protein synthesis arrest. In addition, our data suggest that tumors exhibiting an impaired LBK1- AMPK- EIF2A response may be especially susceptible to NAMPT inhibitors and thus become an elective indication for this type of agents. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1845-1) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Zhang C, Liu K, Yao K, Reddy K, Zhang Y, Fu Y, Yang G, Zykova TA, Shin SH, Li H, Ryu J, Jiang YN, Yin X, Ma W, Bode AM, Dong Z, Dong Z. HOI-02 induces apoptosis and G2-M arrest in esophageal cancer mediated by ROS. Cell Death Dis 2015; 6:e1912. [PMID: 26469961 PMCID: PMC4632281 DOI: 10.1038/cddis.2015.227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/28/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are chemically reactive molecules that perform essential functions in living organisms. Accumulating evidence suggests that many types of cancer cells exhibit elevated levels of ROS. Conversely, generation of ROS has become an effective method to kill cancer cells. (E)-3-hydroxy-3-(4-(4-nitrophenyl)-2-oxobut-3-en-1-yl) indolin-2-one, which is an NO2 group-containing compound designated herein as HOI-02, generated ROS and, in a dose-dependent manner, decreased esophageal cancer cell viability and inhibited anchorage-independent growth, followed by apoptosis and G2-M arrest. Moreover, results of an in vivo study using a patient-derived xenograft mouse model showed that HOI-02 treatment suppressed the growth of esophageal tumors, without affecting the body weight of mice. The expression of Ki-67 was significantly decreased with HOI-02 treatment. In addition, the phosphorylation of c-Jun, and expression of p21, cleaved caspase 3, and DCFH-DA were increased in the HOI-02-treated group compared with the untreated control group. In contrast, treatment of cells with (E)-3-(4-(4-aminophenyl)-2-oxobut-3-en-1-yl)-3-hydroxyindolin-2-one, which is an NH2 group-containing compound designated herein as HOI-11, had no effect. Overall, we identified HOI-02 as an effective NO2 group-containing compound that was an effective therapeutic or preventive agent against esophageal cancer cell growth.
Collapse
Affiliation(s)
- C Zhang
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - K Liu
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - K Yao
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - K Reddy
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Y Zhang
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Y Fu
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - G Yang
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - T A Zykova
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - S H Shin
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - H Li
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - J Ryu
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Y-n Jiang
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - X Yin
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - W Ma
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - A M Bode
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Z Dong
- Department of Pathology and Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Z Dong
- Department of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, MN, USA
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|