1
|
Balleza D. The Role of Flexibility in the Bioactivity of Short α-Helical Antimicrobial Peptides. Antibiotics (Basel) 2025; 14:422. [PMID: 40426489 DOI: 10.3390/antibiotics14050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/13/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
The formation of aqueous pores through the interaction of amphipathic peptides is a process facilitated by the conformational dynamics typical of these biomolecules. Prior to their insertion with the membrane, these peptides go through several conformational states until they finally reach a stable α-helical structure. The conformational dynamics of these pore-forming peptides, α-PFP, is, thus, encoded in their amino acid sequence, which also predetermines their intrinsic flexibility. However, although the role of flexibility is widely recognized as fundamental in their bioactivity, it is still unclear whether this parameter is indeed decisive, as there are reports favoring the view of highly disruptive flexible peptides and others where relative rigidity also predetermines high rates of permeability across membranes. In this review we discuss in depth all those aspects linked to the conformational dynamics of these small biomolecules and which depend on the composition, sequence and dynamic performance both in aqueous phase and in close interaction with phospholipids. In addition, evidence is provided for the contribution of the known carboxyamidation in some well-studied α-PFPs, which are preferentially associated with sequences intrinsically more rigid than those not amidated and generally more flexible than the former. Taken together, this information is of great relevance for the optimization of new antibiotic peptides.
Collapse
Affiliation(s)
- Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz 91897, Mexico
| |
Collapse
|
2
|
Sunda-Meya A, Phambu N. Proline-Modified (RW) n Peptides: Enhancing the Antimicrobial Efficacy and Selectivity against Multidrug-Resistant Pathogens. ACS OMEGA 2025; 10:10450-10458. [PMID: 40124001 PMCID: PMC11923837 DOI: 10.1021/acsomega.4c10757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 03/25/2025]
Abstract
The growing threat of multidrug-resistant (MDR) bacteria necessitates the development of novel antimicrobial agents. This study investigates the potential of proline-modified (RW)n peptides as a platform for combating MDR pathogens with minimal toxicity. We synthesized and evaluated (RW)n peptides (n = 4, 6, and 8) with and without central proline residues against five clinically relevant bacterial strains, including ESKAPE pathogens. Antimicrobial activity, cytotoxicity, and synergistic effects with conventional antibiotics were assessed. Proline incorporation significantly enhanced the peptide selectivity and broadened the spectrum of activity, particularly against Gram-negative bacteria. RW6P and RW8P demonstrated exceptional efficacy (MICs ≤ 0.25 μg/mL) against methicillin-resistant Staphylococcus aureus and Escherichia coli with minimal toxicity to human cells. Notably, RW8P restored ampicillin susceptibility in Pseudomonas aeruginosa (MIC < 0.25 μg/mL) without dose-dependent toxicity. Exceptionally, RW6-2P demonstrated efficacy against all Gram-positive and Gram-negative bacteria, except Klebsiella pneumoniae (Kp), without toxicity. Furthermore, several Gram-negative isolates were rendered susceptible to vancomycin when combined with these peptides, addressing a key limitation of glycopeptide antibiotics. Gram-negative Klebsiella pneumoniae (Kp) was rendered susceptible to vancomycin when combined with RW4P and RW6-2P. RW4P and RW6-2P, with and without antibiotics, have shown selectivity. This study presents proline-modified (RW)n peptides as promising candidates for developing broad-spectrum antimicrobials with enhanced selectivity and the potential to revitalize existing antibiotics against MDR pathogens.
Collapse
Affiliation(s)
- Anderson Sunda-Meya
- Department
of Physics, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Nsoki Phambu
- Department
of Chemistry, Tennessee State University, Nashville, Tennessee 37209, United States
| |
Collapse
|
3
|
Odunitan TT, Apanisile BT, Afolabi JA, Adeniwura PO, Akinboade MW, Ibrahim NO, Alare KP, Saibu OA, Adeosun OA, Opeyemi HS, Ayiti KS. Beyond Conventional Drug Design: Exploring the Broad-Spectrum Efficacy of Antimicrobial Peptides. Chem Biodivers 2025; 22:e202401349. [PMID: 39480053 DOI: 10.1002/cbdv.202401349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
In the fight against pathogenic infections, antimicrobial peptides (AMPs) constitute a novel and promising class of compounds that defies accepted drug development conventions like Lipinski's rule. AMPs are remarkably effective against a variety of pathogens, including viruses, bacteria, parasites, and fungi. Their effectiveness, despite differing from traditional drug-like properties defies accepted standards. This review investigates the complex world of AMPs with an emphasis on their structural and physicochemical properties, which include size, sequence, structure, charge, and half-life. These distinguishing characteristics set AMPs apart from conventional therapeutics that adhere to Lipinski's rules and greatly contribute to their selective targeting, reduction of resistance, multifunctionality, and broad-spectrum efficacy. In contrast to traditional drugs that follow Lipinski's guidelines, AMPs have special qualities that play a big role in their ability to target specific targets, lower resistance, and work across a wide range of conditions. Our work is unique because of this nuanced investigation, which offers a new viewpoint on the potential of AMPs in tackling the worldwide problem of antibiotic resistance. In the face of the escalating global challenge of antibiotic resistance, antimicrobial peptides (AMPs) are innovative antimicrobial agents with unique mechanisms of action that challenge traditional Lipinski's Rule. They can withstand various microbial threats through membrane disruption, intracellular targeting, and immunomodulation. AMP versatility sets them apart from other antibiotics and their potential to address microbial infections and antibiotic resistance is growing. To fully unlock their potential, traditional drug development approaches need to be reconsidered. AMPs have revolutionary potential, paving the way for innovative solutions to health issues and transforming the antimicrobial therapy landscape.
Collapse
Affiliation(s)
- Tope T Odunitan
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Justinah A Afolabi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Praise O Adeniwura
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Modinat W Akinboade
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Nigeria
| | - Najahtulahi O Ibrahim
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Kehinde P Alare
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Oluwatosin A Saibu
- Department of Chemistry and Biochemistry, New Mexico State University, USA, Ibadan
| | - Oyindamola A Adeosun
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Hammed S Opeyemi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Kolawole S Ayiti
- Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
4
|
Van Wyk R, Serem JC, Oosthuizen CB, Semenya D, Serian M, Lorenz CD, Mason AJ, Bester MJ, Gaspar ARM. Carboxy-Amidated AamAP1-Lys has Superior Conformational Flexibility and Accelerated Killing of Gram-Negative Bacteria. Biochemistry 2025; 64:841-859. [PMID: 39873636 PMCID: PMC11840929 DOI: 10.1021/acs.biochem.4c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
C-terminal amidation of antimicrobial peptides (AMPs) is a frequent minor modification used to improve antibacterial potency, commonly ascribed to increased positive charge, protection from proteases, and a stabilized secondary structure. Although the activity of AMPs is primarily associated with the ability to penetrate bacterial membranes, hitherto the effect of amidation on this interaction has not been understood in detail. Here, we show that amidation of the scorpion-derived membranolytic peptide AamAP1-Lys produces a potent analog with faster bactericidal activity, increased membrane permeabilization, and greater Gram-negative membrane penetration associated with greater conformational flexibility. AamAP1-lys-NH2 has improved antibiofilm activity against Acinetobacter baumannii and Escherichia coli, benefits from a two- to 3-fold selectivity improvement, and provides protection against A. baumannii infection in a Galleria mellonella burn wound model. Circular dichroism spectroscopy shows both peptides adopt α-helix conformations in the steady state. However, molecular dynamics (MD) simulations reveal that, during initial binding, AamAP1-Lys-NH2 has greater conformation heterogeneity, with substantial polyproline-II conformation detected alongside α-helix, and penetrates the bilayer more readily than AamAP1-Lys. AamAP1-Lys-NH2 induced membrane permeabilization of A. baumannii occurs only above a critical concentration with slow and weak permeabilization and slow killing occurring at its lower MIC but causes greater and faster permeabilization than AamAP1-Lys, and kills more rapidly, when applied at equal concentrations. Therefore, while the increased potency of AamAP1-Lys-NH2 is associated with slow bactericidal killing, amidation, and the conformational flexibility it induces, affords an improvement in the AMP pharmacodynamic profile and may need to be considered to achieve improved therapeutic performance.
Collapse
Affiliation(s)
- Rosalind
J. Van Wyk
- Department
of Biochemistry, Genetics and Microbiology, Faculty of Natural and
Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - June C. Serem
- Department
of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Carel B. Oosthuizen
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Cape Town 7701, South Africa
| | - Dorothy Semenya
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Miruna Serian
- Department
of Physics, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, London WC2R 2LS, United Kingdom.
| | - Christian D. Lorenz
- Department
of Engineering, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, London WC2R 2LS, United Kingdom
| | - A. James Mason
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Megan J. Bester
- Department
of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Anabella R. M. Gaspar
- Department
of Biochemistry, Genetics and Microbiology, Faculty of Natural and
Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
5
|
Serian M, Mason AJ, Lorenz CD. Emergent conformational and aggregation properties of synergistic antimicrobial peptide combinations. NANOSCALE 2024; 16:20657-20669. [PMID: 39422704 PMCID: PMC11488577 DOI: 10.1039/d4nr03043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Synergy between antimicrobial peptides (AMPs) may be the key to their evolutionary success and could be exploited to develop more potent antibacterial agents. One of the factors thought to be essential for AMP potency is their conformational flexibility, but characterising the diverse conformational states of AMPs experimentally remains challenging. Here we introduce a method for characterising the conformational flexibility of AMPs and provide new insights into how the interplay between conformation and aggregation in synergistic AMP combinations yields emergent properties. We use unsupervised learning and molecular dynamics simulations to show that mixing two AMPs from the Winter Flounder family (pleurocidin (WF2) & WF1a) constrains their conformational space, reducing the number of distinct conformations adopted by the peptides, most notably for WF2. The aggregation behaviour of the peptides is also altered, favouring the formation of higher-order aggregates upon mixing. Critically, the interaction between WF1a and WF2 influences the distribution of WF2 conformations within aggregates, revealing how WF1a can modulate WF2 behaviour. Our work paves the way for deeper understanding of the synergy between AMPs, a fundamental process in nature.
Collapse
Affiliation(s)
- Miruna Serian
- Biological Physics & Soft Matter Group, Department of Physics, King's College London, London, WC2R 2LS, UK
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London SE1 9NH, UK
| | - Christian D Lorenz
- Biological Physics & Soft Matter Group, Department of Physics, King's College London, London, WC2R 2LS, UK
- Department of Engineering, King's College London, London, WC2R 2LS, UK.
| |
Collapse
|
6
|
Yadav N, Chauhan VS. Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections. Adv Colloid Interface Sci 2024; 333:103282. [PMID: 39276418 DOI: 10.1016/j.cis.2024.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
In recent years, multidrug-resistant pathogenic microorganisms (MDROs) have emerged as a severe threat to human health, exhibiting robust resistance to traditional antibiotics. This has created a formidable challenge in modern medicine as we grapple with limited options to combat these resilient bacteria. Despite extensive efforts by scientists to develop new antibiotics targeting these pathogens, the quest for novel antibacterial molecules has become increasingly arduous. Fortunately, nature offers a potential solution in the form of cationic antimicrobial peptides (AMPs) and their synthetic counterparts. AMPs, naturally occurring peptides, have displayed promising efficacy in fighting bacterial infections by disrupting bacterial cell membranes, hindering their survival and reproduction. These peptides, along with their synthetic mimics, present an exciting alternative in combating antibiotic resistance. They hold the potential to emerge as a formidable tool against MDROs, offering hope for improved strategies to protect communities. Extensive research has explored the diversity, history, and structure-properties relationship of AMPs, investigating their amphiphilic nature for membrane disruption and mechanisms of action. However, despite their therapeutic promise, AMPs face several documented limitations. Among these challenges, poor pharmacokinetic properties stand out, impeding the attainment of therapeutic levels in the body. Additionally, some AMPs exhibit toxicity and susceptibility to protease cleavage, leading to a short half-life and reduced efficacy in animal models. These limitations pose obstacles in developing effective treatments based on AMPs. Furthermore, the high manufacturing costs associated with AMPs could significantly hinder their widespread use. In this review, we aim to present experimental and theoretical insights into different AMPs, focusing specifically on antibacterial peptides (ABPs). Our goal is to offer a concise overview of peptide-based drug candidates, drawing from a wide array of literature and peer-reviewed studies. We also explore recent advancements in AMP development and discuss the challenges researchers face in moving these molecules towards clinical trials. Our main objective is to offer a comprehensive overview of current AMP and ABP research to guide the development of more precise and effective therapies for bacterial infections.
Collapse
Affiliation(s)
- Nitin Yadav
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| | - Virander S Chauhan
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| |
Collapse
|
7
|
Shao Z, Tam KKG, Achalla VPK, Woon ECY, Mason AJ, Chow SF, Yam WC, Lam JKW. Synergistic combination of antimicrobial peptide and isoniazid as inhalable dry powder formulation against multi-drug resistant tuberculosis. Int J Pharm 2024; 654:123960. [PMID: 38447778 DOI: 10.1016/j.ijpharm.2024.123960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) has posed a serious threat to global public health, and antimicrobial peptides (AMPs) have emerged to be promising candidates to tackle this deadly infectious disease. Previous study has suggested that two AMPs, namely D-LAK120-A and D-LAK120-HP13, can potentiate the effect of isoniazid (INH) against mycobacteria. In this study, the strategy of combining INH and D-LAK peptide as a dry powder formulation for inhalation was explored. The antibacterial effect of INH and D-LAK combination was first evaluated on three MDR clinical isolates of Mycobacteria tuberculosis (Mtb). The minimum inhibitory concentrations (MICs) and fractional inhibitory concentration indexes (FICIs) were determined. The combination was synergistic against Mtb with FICIs ranged from 0.25 to 0.38. The INH and D-LAK peptide at 2:1 mole ratio (equivalent to 1: 10 mass ratio) was identified to be optimal. This ratio was adopted for the preparation of dry powder formulation for pulmonary delivery, with mannitol used as bulking excipient. Spherical particles with mass median aerodynamic diameter (MMAD) of around 5 µm were produced by spray drying. The aerosol performance of the spray dried powder was moderate, as evaluated by the Next Generation Impactor (NGI), with emitted fraction and fine particle fraction of above 70 % and 45 %, respectively. The circular dichroism spectra revealed that both D-LAK peptides retained their secondary structure after spray drying, and the antibacterial effect of the combination against the MDR Mtb clinical isolates was successfully preserved. The combination was found to be effective against MDR Mtb isolates with KatG or InhA mutations. Overall, the synergistic combination of INH with D-LAK peptide formulated as inhaled dry powder offers a new therapeutic approach against MDR-TB.
Collapse
Affiliation(s)
- Zitong Shao
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; UCL School of Pharmacy, University College London, United Kingdom
| | - Kingsley King-Gee Tam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - V P K Achalla
- UCL School of Pharmacy, University College London, United Kingdom
| | - Esther C Y Woon
- UCL School of Pharmacy, University College London, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Wing Cheong Yam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; UCL School of Pharmacy, University College London, United Kingdom; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Zhong C, Zou J, Mao W, Yang P, Zhang J, Gou S, Zhang Y, Liu H, Ni J. Structure modification of anoplin for fighting resistant bacteria. Eur J Med Chem 2024; 268:116276. [PMID: 38452726 DOI: 10.1016/j.ejmech.2024.116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
The emergence of bacterial resistance has posed a significant challenge to clinical antimicrobial treatment, rendering commonly used antibiotics ineffective. The development of novel antimicrobial agents and strategies is imperative for the treatment of resistant bacterial infections. Antimicrobial peptides (AMPs) are considered a promising class of antimicrobial agents due to their low propensity for resistance and broad-spectrum activity. Anoplin is a small linear α-helical natural antimicrobial peptide that was isolated from the venom of the solitary wasp Anplius samariensis. It exhibits rich biological activity, particularly broad-spectrum antimicrobial activity and low hemolytic activity. Over the past three decades, more than 40 research publications on anoplin have been made available online. This review focuses on the advancements of anoplin in antimicrobial research, encompassing its sources, characterization, antimicrobial activity, influencing factors and structural modifications. The aim is to provide assistances for the development of new antimicrobial agents that can combat bacterial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China.
| | - Jing Zou
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Wenbo Mao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Sanhu Gou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Yun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Hui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Jingman Ni
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
9
|
Liu H, Shen W, Liu W, Yang Z, Yin D, Xiao C. From oncolytic peptides to oncolytic polymers: A new paradigm for oncotherapy. Bioact Mater 2024; 31:206-230. [PMID: 37637082 PMCID: PMC10450358 DOI: 10.1016/j.bioactmat.2023.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Traditional cancer therapy methods, especially those directed against specific intracellular targets or signaling pathways, are not powerful enough to overcome tumor heterogeneity and therapeutic resistance. Oncolytic peptides that can induce membrane lysis-mediated cancer cell death and subsequent anticancer immune responses, has provided a new paradigm for cancer therapy. However, the clinical application of oncolytic peptides is always limited by some factors such as unsatisfactory bio-distribution, poor stability, and off-target toxicity. To overcome these limitations, oncolytic polymers stand out as prospective therapeutic materials owing to their high stability, chemical versatility, and scalable production capacity, which has the potential to drive a revolution in cancer treatment. This review provides an overview of the mechanism and structure-activity relationship of oncolytic peptides. Then the oncolytic peptides-mediated combination therapy and the nano-delivery strategies for oncolytic peptides are summarized. Emphatically, the current research progress of oncolytic polymers has been highlighted. Lastly, the challenges and prospects in the development of oncolytic polymers are discussed.
Collapse
Affiliation(s)
- Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
10
|
R PA, Anbarasu A. Antimicrobial Peptides as Immunomodulators and Antimycobacterial Agents to Combat Mycobacterium tuberculosis: a Critical Review. Probiotics Antimicrob Proteins 2023; 15:1539-1566. [PMID: 36576687 DOI: 10.1007/s12602-022-10018-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) is a devastating disease foisting a significantly high morbidity, prepotent in low- and middle-income developing countries. Evolution of drug resistance among Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has made the TB treatment more complicated. The protracted nature of present TB treatment, persistent and tolerant Mtb populations, interaction with antiretroviral therapy and existing toxicity concerned with conventional anti-TB drugs are the four major challenges inflicted with emergence of drug-resistant mycobacterial strains, and the standard medications are unable to combat these strains. These factors emphasize an exigency to develop new drugs to overcome these barriers in current TB therapy. With this regard, antimycobacterial peptides derived from various sources such as human cells, bacterial sources, mycobacteriophages, fungal, plant and animal sources could be considered as antituberculosis leads as most of these peptides are associated with dual advantages of having both bactericidal activity towards Mtb as well as immuno-regulatory property. Some of the peptides possess the additional advantage of interacting synergistically with antituberculosis medications too, thereby increasing their efficiency, underscoring the vigour of antimicrobial peptides (AMPs) as best possible alternative therapeutic candidates or adjuvants in TB treatment. Albeit the beneficiary features of these peptides, few obstacles allied with them like cytotoxicity and proteolytic degradation are matter of concerns too. In this review, we have focused on structural hallmarks, targeting mechanisms and specific structural aspects contributing to antimycobacterial activity and discovered natural and synthetic antimycobacterial peptides along with their sources, anti-TB, immuno-regulatory properties, merits and demerits and possible delivery methods of AMPs.
Collapse
Affiliation(s)
- Preethi A R
- Medical & Biological Computing Laboratory, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore-632014, India
- Department of Biotechnology, SBST, VIT, Vellore-632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore-632014, India.
- Department of Biotechnology, SBST, VIT, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
11
|
Saha D, Jana B. Decoupling of Interactions between Model-Charged Peptides Reveals Key Factors Responsible for Liquid-Liquid Phase Separation. J Phys Chem B 2023; 127:6656-6667. [PMID: 37480340 DOI: 10.1021/acs.jpcb.3c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Liquid-liquid phase separation (LLPS) by disordered proteins has been shown to govern biological processes and cause numerous diseases. Therefore, a deeper understanding of the interactions and their variation with external factors is key to modulating the LLPS behavior of different systems and protecting proteins from pathological aggregation. In this context, we have looked at interactions between similarly charged peptides to understand the molecular features that may drive or prevent condensate formation under various conditions. We have studied dimer formation for model peptides where charged and noncharged amino acids have been placed alternatively. Using arginine and glutamic acid as the charged residues and varying the other residues with glycine, alanine, and proline to alter hydrophobicity, we have obtained the free-energy surface (FES) for the dimer formation for these systems under high salt concentration at two different temperatures using all-atom molecular dynamics simulations and the well-tempered metadynamics method. Our results indicate that a combination of effects such as hydrophobicity, arginine-arginine interactions, or water release from the solvation shell makes dimerization free energy more favorable for the positively charged peptides with lower flexibility. For the negatively charged peptides, the crucial role of water has been found in governing the FES. Systems having charged residues and phenylalanine in the peptide sequence also have been studied at high salt concentrations using unbiased simulations. In this case, only the positively charged peptides were found to aggregate through temperature-dependent hydrophobic and cation-π interactions. Overall, our study indicates that the negatively charged peptides are more likely to remain in the dilute phase under various conditions compared to the positively charged systems. The findings from our study would be helpful in designing and controlling systems to obtain LLPS behavior for therapeutic usage.
Collapse
Affiliation(s)
- Debasis Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Lyu Y, Tan M, Xue M, Hou W, Yang C, Shan A, Xiang W, Cheng B. Broad-spectrum hybrid antimicrobial peptides derived from PMAP-23 with potential LPS binding ability. Biochem Pharmacol 2023; 210:115500. [PMID: 36921633 DOI: 10.1016/j.bcp.2023.115500] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Antimicrobial peptides, as an integral part of the innate immune system, kill bacteria through a special mechanism of action, making them less susceptible to drug resistance. However, Lipopolysaccharide (LPS) as the permeation barrier on the bacterial membrane, inhibits the antibacterial activity of antimicrobial peptides and triggers the inflammatory response. GWKRKRFG is an LPS binding sequence with a β-boomerang motif that can be linked to antimicrobial peptides to enhance their LPS affinity and reduce the possibility of LPS-induced inflammatory responses. In this study, a series of hybrid peptides were designed by conjugating the reported LPS binding sequence to the C-/N-terminal sequences of the natural porcine antimicrobial peptide PMAP-23 to increase the LPS affinity of peptides. Among all the designed hybrid peptides, 4R-PP-G8 showed the best antibacterial activity, nonhemolytic activity, and excellent cell selectivity. The presence of LPS not only induced the secondary structure transformation of 4R-PP-G8 from a random structure to an α-helical structure but also reduced the antibacterial activity of 4R-PP-G8 in a dose-dependent manner, indicating the excellent binding ability of 4R-PP-G8 to LPS. The LPS/LTA binding assay further verified the interaction between the peptide and LPS. The membrane permeability test verified that 4R-PP-G8 possessed a strong capability to penetrate the bacterial membrane after interacting with LPS. More direct membrane disruption was observed under FE-SEM and TEM. In conclusion, we provided a simple and efficient method to improve the LPS binding ability of antimicrobial peptides and enhance their antimicrobial activity, resulting in the peptide 4R-PP-G8 with clinical application potential.
Collapse
Affiliation(s)
- Yinfeng Lyu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Meishu Tan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Meng Xue
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Wenjing Hou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Chengyi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China.
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Baojing Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| |
Collapse
|
13
|
Lata M, Telang V, Gupta P, Pant G, Kalyan M, Arockiaraj J, Pasupuleti M. Evolutionary and in silico guided development of novel peptide analogues for antibacterial activity against ESKAPE pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100183. [PMID: 37032813 PMCID: PMC10073642 DOI: 10.1016/j.crmicr.2023.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
According to WHO, to combat the resistant strains, new effective anti-microbial agents are needed on an urgent basis and global researchers should focus their efforts and discovery programs on developing them against antibiotic-resistant pathogens or priority pathogens like ESKAPE. In this context, Cationic antimicrobial peptides (AMPs) are being explored extensively as promising next-generation antimicrobials due to their broad range, fast kinetics and multifunctional role. Despite recent advances, it is still a daunting challenge to identify and design a potent AMP with no cytotoxicity, but with broad specific antimicrobial activity, stability and efficacy under in vivo conditions in a cost-effective and robust manner. In this work, as a proof of concept, we designed novel potent AMPs using artificial intelligence based in silico programs. Shortlisted peptide sequences were synthesized using the fmoc chemistry approach, assessed their antimicrobial activity, cell selectivity, mode of action and in vivo efficacy using a series of experiments. The synthesized peptide analogues demonstrated their antimicrobial activity (MIC in the range of 2.5-80 μM) against bacteria. The identified potential lead molecules showed antibacterial activity in physiological conditions with no signs of cytotoxicity. We further tested the antimicrobial activity of peptide analogues for treating wounds infected with Pseudomonas aeruginosa in the mice burn wound model. In drug-development programs, the identification of lead antimicrobial agents is always challenging and involves screening a large number of molecules which is time-consuming and expensive. This work demonstrates the utility of artificial intelligence based in silico analysis programs in discovering novel antimicrobial agents in an economical, robust way.
Collapse
Affiliation(s)
- Manjul Lata
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vrushti Telang
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Pooja Gupta
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Garima Pant
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Mitra Kalyan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Mukesh Pasupuleti
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
Shao Z, Chow MYT, Chow SF, Lam JKW. Co-Delivery of D-LAK Antimicrobial Peptide and Capreomycin as Inhaled Powder Formulation to Combat Drug-Resistant Tuberculosis. Pharm Res 2023; 40:1073-1086. [PMID: 36869245 PMCID: PMC9984245 DOI: 10.1007/s11095-023-03488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
INTRODUCTION The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) posed a severe challenge to tuberculosis (TB) management. The treatment of MDR-TB involves second-line anti-TB agents, most of which are injectable and highly toxic. Previous metabolomics study of the Mtb membrane revealed that two antimicrobial peptides, D-LAK120-A and D-LAK120-HP13, can potentiate the efficacy of capreomycin against mycobacteria. AIMS As both capreomycin and peptides are not orally available, this study aimed to formulate combined formulations of capreomycin and D-LAK peptides as inhalable dry powder by spray drying. METHODS AND RESULTS A total of 16 formulations were prepared with different levels of drug content and capreomycin to peptide ratios. A good production yield of over 60% (w/w) was achieved in most formulations. The co-spray dried particles exhibited spherical shape with a smooth surface and contained low residual moisture of below 2%. Both capreomycin and D-LAK peptides were enriched at the surface of the particles. The aerosol performance of the formulations was evaluated with Next Generation Impactor (NGI) coupled with Breezhaler®. While no significant difference was observed in terms of emitted fraction (EF) and fine particle fraction (FPF) among the different formulations, lowering the flow rate from 90 L/min to 60 L/min could reduce the impaction at the throat and improve the FPF to over 50%. CONCLUSIONS Overall, this study showed the feasibility of producing co-spray dried formulation of capreomycin and antimicrobial peptides for pulmonary delivery. Future study on their antibacterial effect is warranted.
Collapse
Affiliation(s)
- Zitong Shao
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Michael Y T Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR.
| |
Collapse
|
15
|
Viruly L, Suhartono MT, Nurilmala M, Saraswati S, Andarwulan N. Identification and characterization of antimicrobial peptide (AMP) candidate from Gonggong Sea Snail ( Leavistrombus turturella) extract. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:44-52. [PMID: 36618044 PMCID: PMC9813290 DOI: 10.1007/s13197-022-05585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to explore the potency of Gonggong sea snail's (GSS) extract as an antimicrobial peptide (AMP) source. The results showed that the GSS meat extracts exhibited potential antimicrobial activity against Staphylococcus aureus and Escherichia coli. A peptide band with a molecular weight < 5 kDa was obtained for the characterization of AMP candidates after separating the selected extract using SDS-PAGE, and the sequences were acquired by LC-ESI-MS analysis. The results of the bioinformatics analysis showed that the AMP candidate had a molecular weight of 1.4 kDa, which consisted of 12 amino acid residues (RHPDYSVALLLR), with an α-helix structure, isoelectric point pH (pI) of 9.53, net charge + 1, a total hydrophobic ratio at 49.9%, protein-binding potential (Boman index) of 2.17 kcal/mol, and hydrophobicity of + 13.67 kcal/mol. Furthermore, MIC and MBC values of the extract and the < 10 kDa fraction on both bacteria ranged from 0.50-1.03 mg/ml. The GSS meat extract could reach the intracellular site of E. coli, while in S. aureus, it was localized in the cell membrane. These results can be baseline information for developing AMPs in natural bio-preservative exploration as food additives and pharmaceuticals.
Collapse
Affiliation(s)
- Lily Viruly
- Department of Fishery Product Technology, Faculty of Marine Science and Fisheries, Raja Ali Haji Maritime University, Tanjungpinang, 29100 Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Bogor Agricultural University, Bogor, 16680 Indonesia
| | - Maggy T. Suhartono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, IPB Dramaga, Bogor, 16680 Indonesia
| | - Mala Nurilmala
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Bogor, 16680 Indonesia
| | - Saraswati Saraswati
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, IPB Dramaga, Bogor, 16680 Indonesia
| | - Nuri Andarwulan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, IPB Dramaga, Bogor, 16680 Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Bogor Agricultural University, Bogor, 16680 Indonesia
| |
Collapse
|
16
|
Anticancer activity of D-LAK-120A, an antimicrobial peptide, in non-small cell lung cancer (NSCLC). Biochimie 2022; 201:7-17. [PMID: 35764196 DOI: 10.1016/j.biochi.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 12/29/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a major cause of global cancer mortalities and accounts for approximately 80-85% of reported lung cancer cases. Conventional chemotherapeutics show limited application because of poor tumor selectivity and acquired drug resistance. Antimicrobial peptides (AMPs) have gained much attention as potential anticancer therapeutics owing to their high potency and high target selectivity and specificity with limited scope for drug resistance. In this study, D-LAK (D-LAK-120A), a cationic AMP, was evaluated for its anticancer efficacy in various NSCLC cell lines. D-LAK peptide demonstrated enhanced cytotoxicity in A549, H358, H1975, and HCC827 cell lines with inhibitory concentrations between 4.0 and 5.5 μM. An increase in the lactate dehydrogenase (LDH) levels and propidium iodide (PI) uptake across compromised membrane suggested membranolytic activity as an inhibition pathway. In addition, we found D-LAK induced lung cancer cell apoptosis and arrested cells in the S phase (DNA synthesis) of cell cycle. Moreover, a decreased mitochondrial membrane potential and elevated ROS levels were observed after D-LAK treatment, suggesting induction of mitochondria-mediated apoptosis. Additionally, D-LAK inhibited single cell proliferation and cancer cell migration in vitro. The tumor reduction observed in the 3D spheroid assay further suggests the potential use of D-LAK as an anticancer agent for NSCLC treatment. Our results postulate innovative insights on the anticancer mechanism of D-LAK, which may contribute to its further development into preclinical studies and a potential therapeutic.
Collapse
|
17
|
Saini J, Kaur P, Malik N, Lakhawat SS, Sharma PK. Antimicrobial peptides: A promising tool to combat multidrug resistance in SARS CoV2 era. Microbiol Res 2022; 265:127206. [PMID: 36162150 PMCID: PMC9491010 DOI: 10.1016/j.micres.2022.127206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/26/2022] [Accepted: 09/16/2022] [Indexed: 10/25/2022]
Abstract
COVID-19 (Coronavirus Disease 2019), a life-threatening viral infection, is caused by a highly pathogenic virus named SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Currently, no treatment is available for COVID-19; hence there is an urgent need to find effective therapeutic drugs to combat COVID-19 pandemic. Considering the fact that the world is facing a major issue of antimicrobial drug resistance, naturally occurring compounds have the potential to achieve this goal. Antimicrobial peptides (AMPs) are naturally occurring antimicrobial agents which are effective against a wide variety of microbial infections. Therefore, the use of AMPs is an attractive therapeutic strategy for the treatment of SARS-CoV-2 infection. This review sheds light on the potential of antimicrobial peptides as antiviral agents followed by a comprehensive description of effective antiviral peptides derived from various natural sources found to be effective against SARS-CoV and other respiratory viruses. It also highlights the mechanisms of action of antiviral peptides with special emphasis on their effectiveness against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jasleen Saini
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Pritpal Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | | |
Collapse
|
18
|
Koo DJ, Sut TN, Tan SW, Yoon BK, Jackman JA. Biophysical Characterization of LTX-315 Anticancer Peptide Interactions with Model Membrane Platforms: Effect of Membrane Surface Charge. Int J Mol Sci 2022; 23:10558. [PMID: 36142470 PMCID: PMC9501188 DOI: 10.3390/ijms231810558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
LTX-315 is a clinical-stage, anticancer peptide therapeutic that disrupts cancer cell membranes. Existing mechanistic knowledge about LTX-315 has been obtained from cell-based biological assays, and there is an outstanding need to directly characterize the corresponding membrane-peptide interactions from a biophysical perspective. Herein, we investigated the membrane-disruptive properties of the LTX-315 peptide using three cell-membrane-mimicking membrane platforms on solid supports, namely the supported lipid bilayer, intact vesicle adlayer, and tethered lipid bilayer, in combination with quartz crystal microbalance-dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS) measurements. The results showed that the cationic LTX-315 peptide selectively disrupted negatively charged phospholipid membranes to a greater extent than zwitterionic or positively charged phospholipid membranes, whereby electrostatic interactions were the main factor to influence peptide attachment and membrane curvature was a secondary factor. Of note, the EIS measurements showed that the LTX-315 peptide extensively and irreversibly permeabilized negatively charged, tethered lipid bilayers that contained high phosphatidylserine lipid levels representative of the outer leaflet of cancer cell membranes, while circular dichroism (CD) spectroscopy experiments indicated that the LTX-315 peptide was structureless and the corresponding membrane-disruptive interactions did not involve peptide conformational changes. Dynamic light scattering (DLS) measurements further verified that the LTX-315 peptide selectively caused irreversible disruption of negatively charged lipid vesicles. Together, our findings demonstrate that the LTX-315 peptide preferentially disrupts negatively charged phospholipid membranes in an irreversible manner, which reinforces its potential as an emerging cancer immunotherapy and offers a biophysical framework to guide future peptide engineering efforts.
Collapse
Affiliation(s)
- Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
19
|
Stapling of Peptides Potentiates: The Antibiotic Treatment of Acinetobacter baumannii In Vivo. Antibiotics (Basel) 2022; 11:antibiotics11020273. [PMID: 35203875 PMCID: PMC8868297 DOI: 10.3390/antibiotics11020273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
The rising incidence of multidrug resistance in Gram-negative bacteria underlines the urgency for novel treatment options. One promising new approach is the synergistic combination of antibiotics with antimicrobial peptides. However, the use of such peptides is not straightforward; they are often sensitive to proteolytic degradation, which greatly limits their clinical potential. One approach to increase stability is to apply a hydrocarbon staple to the antimicrobial peptide, thereby fixing them in an α-helical conformation, which renders them less exposed to proteolytic activity. In this work we applied several different hydrocarbon staples to two previously described peptides shown to act on the outer membrane, L6 and L8, and tested their activity in a zebrafish embryo infection model using a clinical isolate of Acinetobacter baumannii as a pathogen. We show that the introduction of such a hydrocarbon staple to the peptide L8 improves its in vivo potentiating activity on antibiotic treatment, without increasing its in vivo antimicrobial activity, toxicity or hemolytic activity.
Collapse
|
20
|
Luong HX, Bui HTP, Tung TT. Application of the All-Hydrocarbon Stapling Technique in the Design of Membrane-Active Peptides. J Med Chem 2022; 65:3026-3045. [PMID: 35112864 DOI: 10.1021/acs.jmedchem.1c01744] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The threats of drug resistance and new emerging pathogens have led to an urgent need to develop alternative treatment therapies. Recently, considerable research efforts have focused on membrane-active peptides (MAPs), a category of peptides in drug discovery with antimicrobial, anticancer, and cell penetration activities that have demonstrated their potential to be multifunctional agents. Nonetheless, natural MAPs have encountered various disadvantages, which mainly include poor bioavailability, the lack of a secondary structure in short peptides, and high production costs for long peptide sequences. Hence, an "all-hydrocarbon stapling system" has been applied to these peptides and proven to effectively stabilize the helical conformations, improving proteolytic resistance and increasing both the potency and the cell permeability. In this review, we summarized and categorized the advances made using this powerful technique in the development of stapled MAPs. Furthermore, outstanding issues and suggestions for future design within each subcategory were thoroughly discussed.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam.,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| | | | - Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam.,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| |
Collapse
|
21
|
Booth V. Deuterium Solid State NMR Studies of Intact Bacteria Treated With Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 2:621572. [PMID: 35047897 PMCID: PMC8757836 DOI: 10.3389/fmedt.2020.621572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Solid state NMR has been tremendously useful in characterizing the structure and dynamics of model membranes composed of simple lipid mixtures. Model lipid studies employing solid state NMR have included important work revealing how membrane bilayer structure and dynamics are affected by molecules such as antimicrobial peptides (AMPs). However, solid state NMR need not be applied only to model membranes, but can also be used with living, intact cells. NMR of whole cells holds promise for helping resolve some unsolved mysteries about how bacteria interact with AMPs. This mini-review will focus on recent studies using 2H NMR to study how treatment with AMPs affect membranes in intact bacteria.
Collapse
Affiliation(s)
- Valerie Booth
- Department of Biochemistry and Department of Physics and Physical Oceanograpy, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
22
|
Kanwal I, Mushtaq F, Ali H, Tufail P, Jahan H, Shaheen F. First report on the synthesis and structural studies of trans-Phakellistatin 18: a rotamer of marine natural product phakellistatin 18. Nat Prod Res 2022; 37:1470-1479. [PMID: 34986732 DOI: 10.1080/14786419.2021.2023141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phakellistatin peptides from marine organisms are the sources of proline-rich cyclic peptides with reported significant antitumor activities. Phakellistatin 18 (1), reported from marine sponge Phakellia fusca, contains three proline-peptide linkages in cis form. We attempted the total synthesis of natural product 1 through solution-phase macrocyclization approach, as a result, the synthetic cyclic peptide 2 was obtained as a rotamer of natural product having all three proline residues in trans-conformation. Here, we describe the synthesis, structural, and cytotoxicity studies of trans-Phakellistatin 18 (2), and its analog [Ala1,3,6]-Phakellistatin 18 (3). Detailed NMR studies were carried out to characterize the synthesized peptides, and anti-cancer screening was performed by using MTT assay. The synthetic trans-Phakellistatin 18 (2) (IC50=67.5 ± 2.938 µM) showed comparable cytotoxicity against HepG2 cancer cell line with standard drug doxorubicin (IC50=63.88 ± 6.48 µM). Here, the first synthetic and structural studies on trans-Phakellistatin 18 (2), and its anticancer screening against HepG2 cell line was reported.
Collapse
Affiliation(s)
- Iqra Kanwal
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Farkhanda Mushtaq
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hunain Ali
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Priya Tufail
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Farzana Shaheen
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
23
|
Kumar R, Ali SA, Singh SK, Bhushan V, Kaushik JK, Mohanty AK, Kumar S. Peptide profiling in cow urine reveals molecular signature of physiology-driven pathways and in-silico predicted bioactive properties. Sci Rep 2021; 11:12427. [PMID: 34127704 PMCID: PMC8203733 DOI: 10.1038/s41598-021-91684-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 12/05/2022] Open
Abstract
Peptidomics allows the identification of peptides that are derived from proteins. Urinary peptidomics has revolutionized the field of diagnostics as the samples represent complete systemic changes happening in the body. Moreover, it can be collected in a non-invasive manner. We profiled the peptides in urine collected from different physiological states (heifer, pregnancy, and lactation) of Sahiwal cows. Endogenous peptides were extracted from 30 individual cows belonging to three groups, each group comprising of ten animals (biological replicates n = 10). Nano Liquid chromatography Mass spectrometry (nLC-MS/MS) experiments revealed 5239, 4774, and 5466 peptides in the heifer, pregnant and lactating animals respectively. Urinary peptides of <10 kDa size were considered for the study. Peptides were extracted by 10 kDa MWCO filter. Sequences were identified by scanning the MS spectra ranging from 200 to 2200 m/z. The peptides exhibited diversity in sequences across different physiological states and in-silico experiments were conducted to classify the bioactive peptides into anti-microbial, anti-inflammatory, anti-hypertensive, and anti-cancerous groups. We have validated the antimicrobial effect of urinary peptides on Staphylococcus aureus and Escherichia coli under an in-vitro experimental set up. The origin of these peptides was traced back to certain proteases viz. MMPs, KLKs, CASPs, ADAMs etc. which were found responsible for the physiology-specific peptide signature of urine. Proteins involved in extracellular matrix structural constituent (GO:0005201) were found significant during pregnancy and lactation in which tissue remodeling is extensive. Collagen trimers were prominent molecules under cellular component category during lactation. Homophilic cell adhesion was found to be an important biological process involved in embryo attachment during pregnancy. The in-silico study also highlighted the enrichment of progenitor proteins on specific chromosomes and their relative expression in context to specific physiology. The urinary peptides, precursor proteins, and proteases identified in the study offers a base line information in healthy cows which can be utilized in biomarker discovery research for several pathophysiological studies.
Collapse
Affiliation(s)
- Rohit Kumar
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Syed Azmal Ali
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Sumit Kumar Singh
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Vanya Bhushan
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Jai Kumar Kaushik
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Ashok Kumar Mohanty
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Sudarshan Kumar
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India.
| |
Collapse
|
24
|
Pirtskhalava M, Vishnepolsky B, Grigolava M, Managadze G. Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals (Basel) 2021; 14:471. [PMID: 34067510 PMCID: PMC8156082 DOI: 10.3390/ph14050471] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are anti-infectives that have the potential to be used as a novel and untapped class of biotherapeutics. Modes of action of antimicrobial peptides include interaction with the cell envelope (cell wall, outer- and inner-membrane). A comprehensive understanding of the peculiarities of interaction of antimicrobial peptides with the cell envelope is necessary to perform a rational design of new biotherapeutics, against which working out resistance is hard for microbes. In order to enable de novo design with low cost and high throughput, in silico predictive models have to be invoked. To develop an efficient predictive model, a comprehensive understanding of the sequence-to-function relationship is required. This knowledge will allow us to encode amino acid sequences expressively and to adequately choose the accurate AMP classifier. A shared protective layer of microbial cells is the inner, plasmatic membrane. The interaction of AMP with a biological membrane (native and/or artificial) has been comprehensively studied. We provide a review of mechanisms and results of interactions of AMP with the cell membrane, relying on the survey of physicochemical, aggregative, and structural features of AMPs. The potency and mechanism of AMP action are presented in terms of amino acid compositions and distributions of the polar and apolar residues along the chain, that is, in terms of the physicochemical features of peptides such as hydrophobicity, hydrophilicity, and amphiphilicity. The survey of current data highlights topics that should be taken into account to come up with a comprehensive explanation of the mechanisms of action of AMP and to uncover the physicochemical faces of peptides, essential to perform their function. Many different approaches have been used to classify AMPs, including machine learning. The survey of knowledge on sequences, structures, and modes of actions of AMP allows concluding that only possessing comprehensive information on physicochemical features of AMPs enables us to develop accurate classifiers and create effective methods of prediction. Consequently, this knowledge is necessary for the development of design tools for peptide-based antibiotics.
Collapse
Affiliation(s)
- Malak Pirtskhalava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia; (B.V.); (M.G.); (G.M.)
| | | | | | | |
Collapse
|
25
|
Xuan HL, Duc TD, Thuy AM, Chau PM, Tung TT. Chemical approaches in the development of natural nontoxic peptide Polybia-MP1 as a potential dual antimicrobial and antitumor agent. Amino Acids 2021; 53:843-852. [PMID: 33948731 DOI: 10.1007/s00726-021-02995-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022]
Abstract
Polybia-MP1 is a well-known natural antimicrobial peptide that has been intensively studied recently due to its therapeutic potential. MP1 exhibited not only potent antibacterial activity but also antifungal and anticancer properties. More importantly, MP1 shows relatively low hemolytic activity compared to other antimicrobial peptides having a similar origin. Thus, besides investigating possible mechanisms of action, great efforts have been invested to develop this peptide to become more "druggable". In this review, we summarized all the chemical approaches, both success and failure, that using MP1 as a lead compound to create modified analogs with better pharmacological properties. As there have been thousands of natural AMPs found and deposited in numerous databases, such useful information in both the success and failure will provide insight into the research and development of antimicrobial peptides and guiding for the next steps.
Collapse
Affiliation(s)
- Huy L Xuan
- Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Vietnam.,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi, 12116, Vietnam
| | - Tam D Duc
- Lam Son School for the Gifted, Thanh Hoa, Vietnam
| | - Anh M Thuy
- Lam Son School for the Gifted, Thanh Hoa, Vietnam
| | | | - Truong T Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Vietnam. .,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi, 12116, Vietnam.
| |
Collapse
|
26
|
Antimicrobial Peptides as Potential Anti-Tubercular Leads: A Concise Review. Pharmaceuticals (Basel) 2021; 14:ph14040323. [PMID: 33918182 PMCID: PMC8065624 DOI: 10.3390/ph14040323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Despite being considered a public health emergency for the last 25 years, tuberculosis (TB) is still one of the deadliest infectious diseases, responsible for over a million deaths every year. The length and toxicity of available treatments and the increasing emergence of multidrug-resistant strains of Mycobacterium tuberculosis renders standard regimens increasingly inefficient and emphasizes the urgency to develop new approaches that are not only cost- and time-effective but also less toxic. Antimicrobial peptides (AMP) are small cationic and amphipathic molecules that play a vital role in the host immune system by acting as a first barrier against invading pathogens. The broad spectrum of properties that peptides possess make them one of the best possible alternatives for a new “post-antibiotic” era. In this context, research into AMP as potential anti-tubercular agents has been driven by the increasing danger revolving around the emergence of extremely-resistant strains, the innate resistance that mycobacteria possess and the low compliance of patients towards the toxic anti-TB treatments. In this review, we will focus on AMP from various sources, such as animal, non-animal and synthetic, with reported inhibitory activity towards Mycobacterium tuberculosis.
Collapse
|
27
|
Lee SY, Lee DY, Hur SJ. Changes in the stability and antioxidant activities of different molecular weight bioactive peptide extracts obtained from beef during in vitro human digestion by gut microbiota. Food Res Int 2021; 141:110116. [PMID: 33641983 DOI: 10.1016/j.foodres.2021.110116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 01/12/2023]
Abstract
This study was conducted to determine changes in the stability and antioxidant activity of extracts of bioactive peptides with different molecular weights (<3 and <10 kDa) obtained from beef myofibrillar protein using commercial enzymes (alkaline-AK and papain) during in vitro human digestion by gut microbiota. After the digestion in the large intestine, the stability of the bioactive peptide extracts decreased regardless of their molecular weight. However, the peptides obtained following alkaline-AK treatment were less stable than those obtained following papain digestion. The radical scavenging activities of the peptide extracts also decreased during in vitro human digestion, regardless of the molecular weights of the peptides and the commercial enzymes used. These results indicate that the stability and antioxidative activity of the bioactive peptides were affected by the digestion process by the gut microbiota. This study provides data supporting the changes in the stability and bioavailability of functional materials within the human body.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daeduk-myeon, Anseong-si, Gyeonggi-do 456-756, Republic of Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daeduk-myeon, Anseong-si, Gyeonggi-do 456-756, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daeduk-myeon, Anseong-si, Gyeonggi-do 456-756, Republic of Korea.
| |
Collapse
|
28
|
Muller JAI, Lawrence N, Chan LY, Harvey PJ, Elliott AG, Blaskovich MAT, Gonçalves JC, Galante P, Mortari MR, Toffoli-Kadri MC, Koehbach J, Craik DJ. Antimicrobial and Anticancer Properties of Synthetic Peptides Derived from the Wasp Parachartergus fraternus. Chembiochem 2021; 22:1415-1423. [PMID: 33244888 DOI: 10.1002/cbic.202000716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Agelaia-MPI and protonectin are antimicrobial peptides isolated from the wasp Parachartergus fraternus that show antimicrobial and neuroactive activities. Previously, two analogues of these peptides, neuroVAL and protonectin-F, were designed to reduce nonspecific toxicity and improve potency. Here, the three-dimensional structures of neuroVAL, protonectin and protonectin-F were determined by using circular dichroism and NMR spectroscopy. Antibacterial, antifungal, cytotoxic and hemolytic activities were tested for the parent peptides and analogues. All peptides showed moderate antimicrobial activity against Gram-positive bacteria, with agelaia-MPI being the most active. Protonectin and protonectin-F were found to be toxic to cancerous and noncancerous cell lines. Internalization experiments revealed that these peptides accumulate inside both cell types. By contrast, neuroVAL was nontoxic to all tested cells and was able to enter cells without accumulating. In summary, neuroVAL has potential as a nontoxic cell-penetrating peptide, while protonectin-F needs further modification to realize its potential as an antitumor peptide.
Collapse
Affiliation(s)
- Jessica A I Muller
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, Centre for Superbug Solutions, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, Centre for Superbug Solutions, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jacqueline C Gonçalves
- Laboratory of Neuropharmacology, IB/University of Brasilia, Federal District, Brasilia, 70910-900, Brazil
| | - Priscilla Galante
- Laboratory of Neuropharmacology, IB/University of Brasilia, Federal District, Brasilia, 70910-900, Brazil
| | - Marcia R Mortari
- Laboratory of Neuropharmacology, IB/University of Brasilia, Federal District, Brasilia, 70910-900, Brazil
| | - Mônica C Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
29
|
Silva JV, Santos SDS, Machini MT, Giarolla J. Neglected tropical diseases and infectious illnesses: potential targeted peptides employed as hits compounds in drug design. J Drug Target 2020; 29:269-283. [PMID: 33059502 DOI: 10.1080/1061186x.2020.1837843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neglected Tropical Diseases (NTDs) and infectious illnesses, such as malaria, tuberculosis and Zika fever, represent a major public health concern in many countries and regions worldwide, especially in developing ones. They cause thousands of deaths per year, and certainly compromise the life of affected patients. The drugs available for therapy are toxic, have considerable adverse effects, and are obsolete, especially with respect to resistance. In this context, targeted peptides are considered promising in the design of new drugs, since they have specific action and reduced toxicity. Indeed, there is a rising interest in these targeted compounds within the pharmaceutical industry, proving their importance to the Pharmaceutical Sciences field. Many have been approved by the Food and Drug Administration (FDA) to be used as medicines, plus there are more than 300 peptides currently in clinical trials. The main purpose of this review is to show the most promising potential targeted peptides acting as hits molecules in NTDs and other infectious illnesses. We hope to contribute to the discovery of medicines in this relatively neglected area, which will be extremely useful in improving the health of many suffering people.
Collapse
Affiliation(s)
- João Vitor Silva
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Soraya da Silva Santos
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Nam HY, Choi J, Kumar SD, Nielsen JE, Kyeong M, Wang S, Kang D, Lee Y, Lee J, Yoon MH, Hong S, Lund R, Jenssen H, Shin SY, Seo J. Helicity Modulation Improves the Selectivity of Antimicrobial Peptoids. ACS Infect Dis 2020; 6:2732-2744. [PMID: 32865961 DOI: 10.1021/acsinfecdis.0c00356] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modulation of conformational flexibility in antimicrobial peptides (AMPs) has been investigated as a strategy to improve their efficacy against bacterial pathogens while reducing their toxicity. Here, we synthesized a library of helicity-modulated antimicrobial peptoids by the position-specific incorporation of helix-inducing monomers. The peptoids displayed minimal variations in hydrophobicity, which permitted the specific assessment of the effect of conformational differences on antimicrobial activity and selectivity. Among the moderately helical peptoids, the most dramatic increase in selectivity was observed in peptoid 17, providing more than a 20-fold increase compared to fully helical peptoid 1. Peptoid 17 had potent broad-spectrum antimicrobial activity that included clinically isolated multi-drug-resistant pathogens. Compared to pexiganan AMP, 17 showed superior metabolic stability, which could potentially reduce the dosage needed, alleviating toxicity. Dye-uptake assays and high-resolution imaging revealed that the antimicrobial activity of 17 was, as with many AMPs, mainly due to membrane disruption. However, the high selectivity of 17 reflected its unique conformational characteristics, with differential interactions between bacterial and erythrocyte membranes. Our results suggest a way to distinguish different membrane compositions solely by helicity modulation, thereby improving the selectivity toward bacterial cells with the maintenance of potent and broad-spectrum activity.
Collapse
Affiliation(s)
| | | | - S. Dinesh Kumar
- Department of Biomedical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | | | | | | | | | | | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea
| | | | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde DK-4000, Denmark
| | - Song Yub Shin
- Department of Biomedical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | | |
Collapse
|
31
|
Novel Topical Application of a Postbiotic, LactoSporin®, in Mild to Moderate Acne: A Randomized, Comparative Clinical Study to Evaluate its Efficacy, Tolerability and Safety. COSMETICS 2020. [DOI: 10.3390/cosmetics7030070] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris is a common skin disorder of pilosebaceous units. The therapy for mild-to-moderate acne includes topical antibiotics, benzoyl peroxide and retinoids. In this open-label, randomized monocentric study, we compared the efficacy of LactoSporin® 2% w/w cream with benzoyl peroxide in 64 male and female subjects with mild-to-moderate acne for three weeks. The efficacy parameters were evaluated based on the dermatologist visual assessment and instrumental measurements using Sebumeter® MPA580, Antera 3DTM and VISIA CR 2.2 and subject self-assessment questionnaires. Adverse events were recorded throughout the study period. In order to understand the mechanism of action and properties of LactoSporin, the pH stability, thermostability, antimicrobial activity and 5-alpha reductase activity were evaluated in vitro. A significant improvement was observed in the dermatological assessment of closed comedones (p < 0.0001), open comedones (p = 0.0069) and papules count (p < 0.0001) in comparison to the baseline in both LactoSporin and benzoyl peroxide groups. The antera analysis showed significant improvement in redness (p < 0.0001) and elevation (p < 0.0001) (small and medium) in both the treatment groups. The sebumeter analysis showed a significant decrease in sebaceous secretion (p < 0.0001) for LactoSporin, which resulted in reduced oiliness, pimples, acne spots and redness around the acne spot. The product was found to be safe without any irritancy. LactoSporin was stable at an acidic pH and temperature range of 70 to 90 °C, with antimicrobial activity against various pathogenic bacteria, including Cutibacterium acnes. It was also a potent inhibitor of 5-alpha reductase activity. Thus, it can be concluded that the efficacy of LactoSporin is equivalent to benzoyl peroxide in the treatment of mild-to-moderate acne lesions and better than benzoyl peroxide for reducing the sebaceous secretion and oily, greasy nature of the skin, implying its efficacy in other sebohorriec conditions.
Collapse
|
32
|
Gao J, Zhang M, Zhang F, Wang Y, Ouyang J, Luo X, Yang H, Zhang D, Chen Y, Yu H, Wang Y. Design of a Sea Snake Antimicrobial Peptide Derivative with Therapeutic Potential against Drug-Resistant Bacterial Infection. ACS Infect Dis 2020; 6:2451-2467. [PMID: 32786271 DOI: 10.1021/acsinfecdis.0c00255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infections caused by drug-resistant pathogens are a worldwide challenge for public health. Antimicrobial peptides (AMPs) are regarded as promising antibiotic alternatives for the treatment of drug-resistant infections. In the present study, a series of small peptides were designed based on our previously reported sea snake AMP Hc-CATH. From them, the lead peptide HC1-D2, a truncated peptide entirely substituted by d-amino acids, was selected. HC1-D2 exhibited significantly improved stability and antibiofilm and anti-inflammatory activities. Meanwhile, HC1-D2 retained potent, broad-spectrum, and rapid antimicrobial properties against bacteria and fungi, especially drug-resistant bacteria. Moreover, HC1-D2 showed low propensity to induce bacterial resistance and low cytotoxicity and hemolytic activity. Notably, HC1-D2 showed potent in vivo anti-infective ability in mouse peritonitis models infected by both standard and drug-resistant bacteria. It significantly decreased the bacterial counts in the abdominal cavity and spleen of mice and apparently increased the survival rates of the mice. Acting through the MAPKs inflammatory pathway, HC1-D2 selectively induced the production of chemokine and the subsequent immune cell recruitment to the infection site, while inhibiting the production of pro-inflammatory cytokines with undesirable toxicities. These much improved properties make HC1-D2 a promising candidate for the development of novel peptide anti-infective agents against drug-resistant infections.
Collapse
Affiliation(s)
- Jiuxiang Gao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Minghui Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fen Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yan Wang
- Biology Department, Guizhou Normal University, Guiyang, Guizhou 550000, China
| | - Jianhong Ouyang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuanjin Luo
- Biology Department, Guizhou Normal University, Guiyang, Guizhou 550000, China
| | - Huaixin Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dengdeng Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yan Chen
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Haining Yu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yipeng Wang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
33
|
Azuma E, Choda N, Odaki M, Yano Y, Matsuzaki K. Improvement of Therapeutic Index by the Combination of Enhanced Peptide Cationicity and Proline Introduction. ACS Infect Dis 2020; 6:2271-2278. [PMID: 32786298 DOI: 10.1021/acsinfecdis.0c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) are promising candidates for new therapeutics to combat the emergence of an increasing number of multidrug-resistant pathogens. However, a major obstacle to the systemic application of AMPs is their possible toxicity. In this study, we improved the therapeutic index of the typical AMP F5W-magainin 2 by simultaneously introducing positive charges (+9-+10) and Pro residues. The former and latter contributed to enhanced antimicrobial activity and reduced cytotoxicity, respectively. The results were sensitive to the positions of Pro substitution. The antimicrobial mechanism was considered to involve both membrane permeabilization and DNA binding. The latter was affected by the peptide charge but not the presence of Pro. The neutralization of lipopolysaccharides, another important role of AMPs, was not very sensitive to either the peptide charge or Pro introduction. This strategy using intrinsic amino acids is also promising from the viewpoints of the economic mass production of AMPs and safety of metabolized peptides.
Collapse
Affiliation(s)
- Erika Azuma
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Naoki Choda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Mayu Odaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
34
|
Molecular Characterization of a Novel Lytic Enzyme LysC from Clostridium intestinale URNW and Its Antibacterial Activity Mediated by Positively Charged N-Terminal Extension. Int J Mol Sci 2020; 21:ijms21144894. [PMID: 32664473 PMCID: PMC7404271 DOI: 10.3390/ijms21144894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Peptidoglycan hydrolytic enzymes are considered to be a promising alternative to conventional antibiotics in combating bacterial infections. To identify novel hydrolytic enzymes, we performed a database search with the sequences of two thermostable endolysins with high bactericidal activity, studied earlier in our laboratory. Both these enzymes originate from Thermus scotoductus bacteriophages MAT2119 and vB_Tsc2631. A lytic enzyme LysC from Clostridium intestinale URNW was found to have the highest amino acid sequence similarity to the bacteriophage proteins and was chosen for further analysis. The recombinant enzyme showed strong activity against its host bacteria C. intestinale, as well as against C. sporogenes, Bacillus cereus, Micrococcus luteus, and Staphylococcus aureus, on average causing a 5.12 ± 0.14 log reduction of viable S. aureus ATCC 25923 cells in a bactericidal assay. Crystallographic studies of the protein showed that the catalytic site of LysC contained a zinc atom coordinated by amino acid residues His50, His147, and Cys155, a feature characteristic for type 2 amidases. Surprisingly, neither of these residues, nor any other of the four conserved residues in the vicinity of the active site, His51, Thr52, Tyr76, and Thr153, were essential to maintain the antibacterial activity of LysC. Therefore, our attention was attracted to the intrinsically disordered and highly positively charged N-terminal region of the enzyme. Potential antibacterial activity of this part of the sequence, predicted by the Antimicrobial Sequence Scanning System, AMPA, was confirmed in our experimental studies; the truncated version of LysC (LysCΔ2–23) completely lacked antibacterial activity. Moreover, a synthetic peptide, which we termed Intestinalin, with a sequence identical to the first thirty amino acids of LysC, displayed substantial anti-staphylococcal activity with IC50 of 6 μg/mL (1.5 μM). This peptide was shown to have α-helical conformation in solution in the presence of detergents which is a common feature of amphipathic α-helical antimicrobial peptides.
Collapse
|
35
|
Brožek R, Kabelka I, Vácha R. Effect of Helical Kink on Peptide Translocation across Phospholipid Membranes. J Phys Chem B 2020; 124:5940-5947. [PMID: 32603116 DOI: 10.1021/acs.jpcb.0c03291] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biological membranes present a major obstacle for the delivery of therapeutic agents into cells. Some peptides have been shown to translocate across the membrane spontaneously, and they could be thus used as drug-carriers. However, the advantageous peptide properties for the translocation remain unclear. Of particular interest is the effect of a proline-induced kink in α-helical peptides, because the kink was previously reported to both increase and decrease the antimicrobial activity. The antimicrobial activity of peptides could be related to their translocation across the membrane as is the case of the buforin 2 peptide investigated here. Using computer simulations with two independent models, we consistently showed that the presence of the kink has (1) no effect on the translocation barrier, (2) reduces the peptide affinity to the membrane, and (3) disfavors the transmembrane state. Moreover, we were able to determine that these effects are mainly caused by the peptide increased polarity, not the increased flexibility of the kink. The provided molecular understanding can be utilized for the design of cell-penetrating and drug-carrying peptides.
Collapse
Affiliation(s)
- Radim Brožek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Ivo Kabelka
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| |
Collapse
|
36
|
Kopiasz RJ, Tomaszewski W, Kuźmińska A, Chreptowicz K, Mierzejewska J, Ciach T, Jańczewski D. Hydrophilic Quaternary Ammonium Ionenes—Is There an Influence of Backbone Flexibility and Topology on Antibacterial Properties? Macromol Biosci 2020; 20:e2000063. [DOI: 10.1002/mabi.202000063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Rafał Jerzy Kopiasz
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 Warsaw 00‐664 Poland
| | - Waldemar Tomaszewski
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 Warsaw 00‐664 Poland
| | - Aleksandra Kuźmińska
- Faculty of Chemical and Process EngineeringWarsaw University of Technology Waryńskiego 1 Warsaw 00‐645 Poland
| | - Karolina Chreptowicz
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 Warsaw 00‐664 Poland
| | - Jolanta Mierzejewska
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 Warsaw 00‐664 Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process EngineeringWarsaw University of Technology Waryńskiego 1 Warsaw 00‐645 Poland
| | - Dominik Jańczewski
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 Warsaw 00‐664 Poland
| |
Collapse
|
37
|
Tuerkova A, Kabelka I, Králová T, Sukeník L, Pokorná Š, Hof M, Vácha R. Effect of helical kink in antimicrobial peptides on membrane pore formation. eLife 2020; 9:47946. [PMID: 32167466 PMCID: PMC7069690 DOI: 10.7554/elife.47946] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Every cell is protected by a semipermeable membrane. Peptides with the right properties, for example Antimicrobial peptides (AMPs), can disrupt this protective barrier by formation of leaky pores. Unfortunately, matching peptide properties with their ability to selectively form pores in bacterial membranes remains elusive. In particular, the proline/glycine kink in helical peptides was reported to both increase and decrease antimicrobial activity. We used computer simulations and fluorescence experiments to show that a kink in helices affects the formation of membrane pores by stabilizing toroidal pores but disrupting barrel-stave pores. The position of the proline/glycine kink in the sequence further controls the specific structure of toroidal pore. Moreover, we demonstrate that two helical peptides can form a kink-like connection with similar behavior as one long helical peptide with a kink. The provided molecular-level insight can be utilized for design and modification of pore-forming antibacterial peptides or toxins.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Ivo Kabelka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Tereza Králová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic
| | - Lukáš Sukeník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská, Czech Republic
| | - Šárka Pokorná
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hof
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská, Czech Republic
| |
Collapse
|
38
|
Arcangeli C, Lico C, Baschieri S, Mancuso M. Characterization Of Blood-Brain Barrier Crossing And Tumor Homing Peptides By Molecular Dynamics Simulations. Int J Nanomedicine 2020; 14:10123-10136. [PMID: 31920308 PMCID: PMC6941700 DOI: 10.2147/ijn.s225793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/17/2019] [Indexed: 01/25/2023] Open
Abstract
Introduction The new frontier of tumor diagnosis and treatment relies on the development of delivery strategies capable of allowing the specific targeting of the diagnostic agents/chemotherapeutics, avoiding side effects. In the case of brain tumors, achieving this goal is made more difficult by the presence of the blood–brain barrier (BBB). Peptides have been revealed as excellent candidates for both BBB crossing and specific cancer homing. Nanoparticles (NPs), functionalized with BBB crossing and tumor homing (TH) peptides, are emerging as smart theranostic systems. However, there is still poor knowledge concerning the molecular structure and dynamical properties of these peptides, essential requirements for a suitable functionalization of the delivery systems themselves. Methods In this work, by means of molecular dynamics (MD) simulations, we have extensively characterized the structural and dynamical behavior of several peptides, known to be endowed of BBB crossing and TH properties. Results The simulations point out that, on the basis of their conformational dynamics, the peptides can be classified in two main groups: 1) peptides assuming a specific structural conformation, a feature that could be important for interacting with the molecular target but that may limit their use as functionalizing molecules and 2) highly flexible peptides whose interaction with the target may be independent of a particular structural conformation and that may represent good candidates for the functionalization of theranostic NP-based platforms. Discussion Such findings may be useful for the de novo designing of NP-based delivery systems. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/wp8npbWb754
Collapse
Affiliation(s)
- Caterina Arcangeli
- Laboratory of Health and Environment, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Rome, Italy
| | - Chiara Lico
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Rome, Italy
| | - Selene Baschieri
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Rome, Italy
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Rome, Italy
| |
Collapse
|
39
|
Barreto-Santamaría A, Patarroyo ME, Curtidor H. Designing and optimizing new antimicrobial peptides: all targets are not the same. Crit Rev Clin Lab Sci 2019; 56:351-373. [DOI: 10.1080/10408363.2019.1631249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adriana Barreto-Santamaría
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad Nacional de Colombia - Bogotá, Faculty of Medicine, Bogotá D.C., Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| |
Collapse
|
40
|
Cebrián R, Rodríguez-Cabezas ME, Martín-Escolano R, Rubiño S, Garrido-Barros M, Montalbán-López M, Rosales MJ, Sánchez-Moreno M, Valdivia E, Martínez-Bueno M, Marín C, Gálvez J, Maqueda M. Preclinical studies of toxicity and safety of the AS-48 bacteriocin. J Adv Res 2019; 20:129-139. [PMID: 31360546 PMCID: PMC6637140 DOI: 10.1016/j.jare.2019.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
The in vitro antimicrobial potency of the bacteriocin AS-48 is well documented, but its clinical application requires investigation, as its toxicity could be different in in vitro (haemolytic and antibacterial activity in blood and cytotoxicity towards normal human cell lines) and in vivo (e.g. mice and zebrafish embryos) models. Overall, the results obtained are promising. They reveal the negligible propensity of AS-48 to cause cell death or impede cell growth at therapeutic concentrations (up to 27 μM) and support the suitability of this peptide as a potential therapeutic agent against several microbial infections, due to its selectivity and potency at low concentrations (in the range of 0.3-8.9 μM). In addition, AS-48 exhibits low haemolytic activity in whole blood and does not induce nitrite accumulation in non-stimulated RAW macrophages, indicating a lack of pro-inflammatory effects. The unexpected heightened sensitivity of zebrafish embryos to AS-48 could be due to the low differentiation state of these cells. The low cytotoxicity of AS-48, the absence of lymphocyte proliferation in vivo after skin sensitization in mice, and the lack of toxicity in a murine model support the consideration of the broad spectrum antimicrobial peptide AS-48 as a promising therapeutic agent for the control of a vast array of microbial infections, in particular, those involved in skin and soft tissue diseases.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Molecular Genetics, Faculty of Science and Engineering, Nijenborgh 7, 9747 AG, University of Groningen, Groningen, the Netherlands
| | - M Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology. Centre for Biomedical Research (CIBM), Avda del Conocimiento s/n, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Susana Rubiño
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - María Garrido-Barros
- CIBER-EHD, Department of Pharmacology. Centre for Biomedical Research (CIBM), Avda del Conocimiento s/n, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - María José Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Eva Valdivia
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - Manuel Martínez-Bueno
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology. Centre for Biomedical Research (CIBM), Avda del Conocimiento s/n, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Mercedes Maqueda
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| |
Collapse
|
41
|
Silva S, Santos-Silva A, da Costa JMC, Vale N. Potent cationic antimicrobial peptides against Mycobacterium tuberculosis in vitro. J Glob Antimicrob Resist 2019; 19:132-135. [PMID: 31154008 DOI: 10.1016/j.jgar.2019.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/12/2019] [Accepted: 04/27/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is known to be one of the 10 causes of global death by infectious agents. The increasing numbers of multiple antibiotic resistance (MDR-TB) and cases of extensive resistance to antibiotics (XDR-TB) have led to the development of new and effective TB therapy. Cationic antimicrobial peptides (CAMPs) have emerged in the research as a safe and effective treatment against a variable range of bacterial and fungi pathogens, including Mycobacterium tuberculosis (M. tuberculosis). METHOD This study developed a new CAMP coupled with cinnamic acid derivatives, and studied the antimicrobial activity against clinical isolates of M. tuberculosis (H37Rv) and MDR-TB. RESULTS All modified CAMPs showed enhanced activity against both M. tuberculosis strains and were capable of disrupting heavy clumping of mycobacteria in culture. In addition, all modified CAMPs were able to substantially inhibit the intracellular growth of both strains at low concentrations. CONCLUSIONS The characteristic proprieties of cinnamic acid+CAMP(n) successfully inhibited the growth of both clinical isolates M. tuberculosis and MDR-TB in vitro and have, for now, promising use as a drug adjuvant due to their effect on mycobacteria growth.
Collapse
Affiliation(s)
- Sara Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | | | - José Manuel Correia da Costa
- National Health Institute Dr. Ricardo Jorge (INSA), Porto, Portugal; Center for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Department of Molecular Pathology and Immunology, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
42
|
Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides. Molecules 2019; 24:E1973. [PMID: 31121946 PMCID: PMC6571645 DOI: 10.3390/molecules24101973] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Anticancer peptides (ACPs) have emerged as a new class of therapeutic agent for cancer treatment due to their lower toxicity as well as greater efficacy, selectivity and specificity when compared to conventional small molecule drugs. However, the experimental identification of ACPs still remains a time-consuming and expensive endeavor. Therefore, it is desirable to develop and improve upon existing computational models for predicting and characterizing ACPs. In this study, we present a bioinformatics tool called the ACPred, which is an interpretable tool for the prediction and characterization of the anticancer activities of peptides. ACPred was developed by utilizing powerful machine learning models (support vector machine and random forest) and various classes of peptide features. It was observed by a jackknife cross-validation test that ACPred can achieve an overall accuracy of 95.61% in identifying ACPs. In addition, analysis revealed the following distinguishing characteristics that ACPs possess: (i) hydrophobic residue enhances the cationic properties of α-helical ACPs resulting in better cell penetration; (ii) the amphipathic nature of the α-helical structure plays a crucial role in its mechanism of cytotoxicity; and (iii) the formation of disulfide bridges on β-sheets is vital for structural maintenance which correlates with its ability to kill cancer cells. Finally, for the convenience of experimental scientists, the ACPred web server was established and made freely available online.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
43
|
Boutin JA, Tartar AL, van Dorsselaer A, Vaudry H. General lack of structural characterization of chemically synthesized long peptides. Protein Sci 2019; 28:857-867. [PMID: 30851143 PMCID: PMC6459998 DOI: 10.1002/pro.3601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023]
Abstract
Many peptide chemistry scientists have been reporting extremely interesting work on the basis of chemical peptides for which the only characterization was their purity, mass, and biological activity. It seems slightly overenthusiastic, as many of these structures should be thoroughly characterized first to demonstrate the uniqueness of the structure, as opposed to the uniqueness of the sequence. Among the peptides of identical sequences in the final chemical preparation, what amount of well-folded peptide supports the measured activity? The activity of a peptide preparation cannot prove the purity of the desired peptide. Therefore, greater care should be taken in characterizing peptides, particularly those coming from chemical synthesis. At a time when the pharmaceutical industry is changing its paradigm by moving substantially from small molecules to biologics to better serve patients' needs, it is important to understand the limitations of the descriptions of these products and to start to apply the same "good laboratory practices" to our peptide research. Here, we attempt to delineate how synthetic peptides are described and characterized and what will be needed to describe them in regards to how they are well-folded and homogeneous in their tertiary structure. Older studies were done when the tools were not yet discovered, but more recent publications are still lacking proper descriptions of these peptides. Modern tools of analysis are capable of segregating folded and unfolded peptides, even if the preparation is biologically active.
Collapse
Affiliation(s)
- Jean A. Boutin
- Institut de Recherches Internationales Servier50 rue Carnot, 92284, Suresnes‐CedexFrance
| | - André L. Tartar
- Faculté de Pharmacie 3rue du Professeur Laguesse, BP83 ‐ 59006, Lille‐CedexFrance
| | - Alain van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio‐Organique, Département des Sciences AnalytiquesInstitut Pluridisciplinaire Hubert CurienUMR 7178 (CNRS‐UdS), ECPM, 25 rue Becquerel, F67087, Strasbourg‐Cedex 2France
| | - Hubert Vaudry
- Plate‐Forme de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN)Institut de Recherche et d'Innovation Biomédicales (IRIB), Université de Rouen76821, Mont‐Saint‐Aignan CedexFrance
| |
Collapse
|
44
|
Moretti A, Weeks RM, Chikindas M, Uhrich KE. Cationic Amphiphiles with Specificity against Gram-Positive and Gram-Negative Bacteria: Chemical Composition and Architecture Combat Bacterial Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5557-5567. [PMID: 30888181 PMCID: PMC6832706 DOI: 10.1021/acs.langmuir.9b00110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Small-molecule cationic amphiphiles (CAms) were designed to combat the rapid rise in drug-resistant bacteria. CAms were designed to target and compromise the structural integrity of bacteria membranes, leading to cell rupture and death. Discrete structural features of CAms were varied, and structure-activity relationship studies were performed to guide the rational design of potent antimicrobials with desirable selectivity and cytocompatibility profiles. In particular, the effects of cationic conformational flexibility, hydrophobic domain flexibility, and hydrophobic domain architecture were evaluated. Their influence on antimicrobial efficacy in Gram-positive and Gram-negative bacteria was determined, and their safety profiles were established by assessing their impact on mammalian cells. All CAms have a potent activity against bacteria, and hydrophobic domain rigidity and branched architecture contribute to specificity. The insights gained from this project will aid in the optimization of CAm structures.
Collapse
Affiliation(s)
- Alysha Moretti
- Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Richard M. Weeks
- Department of Microbiology and Biochemistry and School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Michael Chikindas
- Department of Microbiology and Biochemistry and School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Kathryn E. Uhrich
- Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry, University of California, 501 Big Springs Rd., Riverside, California 92521, United States
- Corresponding Author:
| |
Collapse
|
45
|
Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:175-214. [DOI: 10.1007/978-981-13-3588-4_11] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Man DKW, Kanno T, Manzo G, Robertson BD, Lam JKW, Mason AJ. Rifampin- or Capreomycin-Induced Remodeling of the Mycobacterium smegmatis Mycolic Acid Layer Is Mitigated in Synergistic Combinations with Cationic Antimicrobial Peptides. mSphere 2018; 3:e00218-18. [PMID: 30021876 PMCID: PMC6052339 DOI: 10.1128/msphere.00218-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/24/2018] [Indexed: 01/15/2023] Open
Abstract
The mycobacterial cell wall affords natural resistance to antibiotics. Antimicrobial peptides (AMPs) modify the surface properties of mycobacteria and can act synergistically with antibiotics from differing classes. Here, we investigate the response of Mycobacterium smegmatis to the presence of rifampin or capreomycin, either alone or in combination with two synthetic, cationic, α-helical AMPs that are distinguished by the presence (D-LAK120-HP13) or absence (D-LAK120-A) of a kink-inducing proline. Using a combination of high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) metabolomics, diphenylhexatriene (DPH) fluorescence anisotropy measurements, and laurdan emission spectroscopy, we show that M. smegmatis responds to challenge with rifampin or capreomycin by substantially altering its metabolism and, in particular, by remodeling the cell envelope. Overall, the changes are consistent with a reduction of trehalose dimycolate and an increase of trehalose monomycolate and are associated with increased rigidity of the mycolic acid layer observed following challenge by capreomycin but not rifampin. Challenge with D-LAK120-A or D-LAK120-HP13 induced no or modest changes, respectively, in mycomembrane metabolites and did not induce a significant increase in the rigidity of the mycolic acid layer. Furthermore, the response to rifampin or capreomycin was significantly reduced when these were combined with D-LAK120-HP13 and D-LAK120-A, respectively, suggesting a possible mechanism for the synergy of these combinations. The remodeling of the mycomembrane in M. smegmatis is therefore identified as an important countermeasure deployed against rifampin or capreomycin, but this can be mitigated and the efficacy of rifampin or capreomycin potentiated by combining the drug with AMPs.IMPORTANCE We have used a combined NMR metabolomics/biophysical approach to better understand differences in the mechanisms of two closely related antimicrobial peptides, as well as the response of the model organism Mycobacterium smegmatis to challenge with first- or second-line antibiotics used against mycobacterial pathogens. We show that, in addition to membrane damage, the triggering of oxidative stress may be an important part of the mechanism of action of one AMP. The metabolic shift that accompanied rifampin and, particularly, capreomycin challenge was associated with modest and more dramatic changes, respectively, in the mycomembrane, providing a rationale for how the response to one antibiotic may affect bacterial penetration and, hence, the action of another. This study presents the first insights into how antimicrobial peptides may operate synergistically with existing antibiotics whose efficacy is waning or sensitize MDR mycobacteria and/or latent mycobacterial infections to them, prolonging the useful life of these drugs.
Collapse
Affiliation(s)
- DeDe Kwun-Wai Man
- Institute of Pharmaceutical Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tokuwa Kanno
- Institute of Pharmaceutical Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Giorgia Manzo
- Institute of Pharmaceutical Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jenny K W Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - A James Mason
- Institute of Pharmaceutical Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
47
|
Kai M, Zhang W, Xie H, Liu L, Huang S, Li X, Zhang Z, Liu Y, Zhang B, Song J, Wang R. Effects of linker amino acids on the potency and selectivity of dimeric antimicrobial peptides. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Dissection of the antimicrobial and hemolytic activity of Cap18: Generation of Cap18 derivatives with enhanced specificity. PLoS One 2018; 13:e0197742. [PMID: 29852015 PMCID: PMC5978884 DOI: 10.1371/journal.pone.0197742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
Due to the rapid emergence of resistance to classical antibiotics, novel antimicrobial compounds are needed. It is desirable to selectively kill pathogenic bacteria without targeting other beneficial bacteria in order to prevent the negative clinical consequences caused by many broad-spectrum antibiotics as well as reducing the development of antibiotic resistance. Antimicrobial peptides (AMPs) represent an alternative to classical antibiotics and it has been previously demonstrated that Cap18 has high antimicrobial activity against a broad range of bacterial species. In this study we report the design of a positional scanning library consisting of 696 Cap18 derivatives and the subsequent screening for antimicrobial activity against Y. ruckeri, A. salmonicida, S. Typhimurium and L. lactis as well as for hemolytic activity measuring the hemoglobin release of horse erythrocytes. We show that the hydrophobic face of Cap18, in particular I13, L17 and I24, is essential for its antimicrobial activity against S. Typhimurium, Y. ruckeri, A. salmonicida, E. coli, P. aeruginosa, L. lactis, L. monocytogenes and E. faecalis. In particular, Cap18 derivatives harboring a I13D, L17D, L17P, I24D or I24N substitution lost their antimicrobial activity against any of the tested bacterial strains. In addition, we were able to generate species-specific Cap18 derivatives by particular amino acid substitutions either in the hydrophobic face at positions L6, L17, I20, and I27, or in the hydrophilic face at positions K16 and K18. Finally, our data showed the proline residue at position 29 to be essential for the inherent low hemolytic activity of Cap18 and that substitution of the residues K16, K23, or G21 by any hydrophobic residues enhances the hemolytic activity. This study demonstrates the potential of generating species-specific AMPs for the selective elimination of bacterial pathogens.
Collapse
|
49
|
Rajasekaran G, Shin SY. Fowlicidin-3 Analog with Improved Cell Selectivity Synthesized by Shifting a PXXP Motif from the N-Terminus to a Central Position. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ganesan Rajasekaran
- Department of Cellular & Molecular Medicine; School of Medicine, Chosun University; Gwangju 501-759 Republic of Korea
| | - Song Yub Shin
- Department of Cellular & Molecular Medicine; School of Medicine, Chosun University; Gwangju 501-759 Republic of Korea
| |
Collapse
|
50
|
Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther 2018; 183:160-176. [DOI: 10.1016/j.pharmthera.2017.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|