1
|
Zhang J, Chen M, Yang Y, Liu Z, Guo W, Xiang P, Zeng Z, Wang D, Xiong W. Amino acid metabolic reprogramming in the tumor microenvironment and its implication for cancer therapy. J Cell Physiol 2024; 239:e31349. [PMID: 38946173 DOI: 10.1002/jcp.31349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.
Collapse
Affiliation(s)
- Jiarong Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuxin Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ziqi Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wanni Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pingjuan Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
2
|
Hernández-Bazán S, Mata-Espinosa D, Ramos-Espinosa O, Lozano-Ordaz V, Barrios-Payán J, López-Casillas F, Hernández-Pando R. Adenoviral Vector Codifying for TNF as a Co-Adjuvant Therapy against Multi-Drug-Resistant Tuberculosis. Microorganisms 2023; 11:2934. [PMID: 38138078 PMCID: PMC10745769 DOI: 10.3390/microorganisms11122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Mycobacterium tuberculosis is the main causal agent of pulmonary tuberculosis (TB); the treatment of this disease is long and involves a mix of at least four different antibiotics that frequently lead to abandonment, favoring the surge of drug-resistant mycobacteria (MDR-TB), whose treatment becomes more aggressive, being longer and more toxic. Thus, the search for novel strategies for treatment that improves time or efficiency is of relevance. In this work, we used a murine model of pulmonary TB produced by the MDR-TB strain to test the efficiency of gene therapy with adenoviral vectors codifying TNF (AdTNF), a pro-inflammatory cytokine that has protective functions in TB by inducing apoptosis, granuloma formation and expression of other Th1-like cytokines. When compared to the control group that received an adenoviral vector that codifies for the green fluorescent protein (AdGFP), a single dose of AdTNF at the chronic active stage of the disease produced total survival, decreasing bacterial load and tissue damage (pneumonia), which correlated with an increase in cells expressing IFN-γ, iNOS and TNF in pneumonic areas and larger granulomas that efficiently contain and eliminate mycobacteria. Second-line antibiotic treatment against MDR-TB plus AdTNF gene therapy reduced bacterial load faster within a week of treatment compared to empty vector plus antibiotics or antibiotics alone, suggesting that AdTNF is a new potential type of treatment against MDR-TB that can shorten second-line chemotherapy but which requires further experimentation in other animal models (non-human primates) that develop a more similar disease to human pulmonary TB.
Collapse
Affiliation(s)
- Sujhey Hernández-Bazán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| | - Octavio Ramos-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| | - Vasti Lozano-Ordaz
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| | - Fernando López-Casillas
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico;
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| |
Collapse
|
3
|
da Silva MC, dos Santos VM, da Silva MVB, Prazeres TCMM, Cartágenes MDSS, Calzerra NTM, de Queiroz TM. Involvement of shedding induced by ADAM17 on the nitric oxide pathway in hypertension. Front Mol Biosci 2022; 9:1032177. [PMID: 36310604 PMCID: PMC9614329 DOI: 10.3389/fmolb.2022.1032177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022] Open
Abstract
A Disintegrin and Metalloprotease 17 (ADAM17), also called tumor necrosis factor-ɑ (TNF-ɑ) convertase (TACE), is a well-known protease involved in the sheddase of growth factors, chemokines and cytokines. ADAM17 is also enrolled in hypertension, especially by shedding of angiotensin converting enzyme type 2 (ACE2) leading to impairment of angiotensin 1–7 [Ang-(1–7)] production and injury in vasodilation, induction of renal damage and cardiac hypertrophy. Activation of Mas receptor (MasR) by binding of Ang-(1–7) induces an increase in the nitric oxide (NO) gaseous molecule, which is an essential factor of vascular homeostasis and blood pressure control. On the other hand, TNF-ɑ has demonstrated to stimulate a decrease in nitric oxide bioavailability, triggering a disrupt in endothelium-dependent vasorelaxation. In spite of the previous studies, little knowledge is available about the involvement of the metalloprotease 17 and the NO pathways. Here we will provide an overview of the role of ADAM17 and Its mechanisms implicated with the NO formation.
Collapse
Affiliation(s)
- Mirelly Cunha da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Vanessa Maria dos Santos
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Matheus Vinícius B. da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | | | | | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
- *Correspondence: Thyago Moreira de Queiroz,
| |
Collapse
|
4
|
Pesce B, Ribeiro CH, Larrondo M, Ramos V, Soto L, Catalán D, Aguillón JC. TNF-α Affects Signature Cytokines of Th1 and Th17 T Cell Subsets through Differential Actions on TNFR1 and TNFR2. Int J Mol Sci 2022; 23:ijms23169306. [PMID: 36012570 PMCID: PMC9408897 DOI: 10.3390/ijms23169306] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor (TNF)-α is a pleiotropic cytokine implicated in the etiology of several autoimmune diseases, including rheumatoid arthritis (RA). TNF-α regulates diverse effector functions through the activation of TNF-α receptor (TNFR)1 and TNFR2. Although the detrimental role of this cytokine has been addressed in distinct disease settings, the effects of TNF-α on cytokine production by isolated CD4+ T helper type 1 (Th1) and Th17 cells, two T cell subpopulations that contribute to the pathogenesis of RA, have not been completely elucidated. Here, we show that TNF-α promotes a reduction and expansion in the frequency of both T cell subsets producing IFN-γ and IL-17, respectively. Selective blockade of TNFR1 or TNFR2 on Th1 and Th17 cells revealed that TNFR2 mediates the decrease in IFN-γ production, while signaling through both receptors augments IL-17 production. We also demonstrate that Th1, but not Th17 cells from RA patients present lower levels of TNFR1 compared to healthy controls, whereas TNFR2 expression on both T cell types is similar between patients and controls. Since TNF-α receptors levels in RA patients are not significantly changed by the therapeutic blockade of TNF-α, we propose that targeting TNFR2 may represent an alternative strategy to normalize the levels of key cytokines that contribute to RA pathogenesis.
Collapse
Affiliation(s)
- Bárbara Pesce
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Laboratorio MED.UCHILE-FACS, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Carolina H. Ribeiro
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Milton Larrondo
- Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
| | - Verónica Ramos
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
| | - Lilian Soto
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
| | - Diego Catalán
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (D.C.); (J.C.A.)
| | - Juan Carlos Aguillón
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (D.C.); (J.C.A.)
| |
Collapse
|
5
|
He H, Qiao B, Guo S, Cui H, Zhang Z, Qin J. Interleukin-7 regulates CD127 expression and promotes CD8 + T cell activity in patients with primary cutaneous melanoma. BMC Immunol 2022; 23:35. [PMID: 35850640 PMCID: PMC9295418 DOI: 10.1186/s12865-022-00509-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
Abstract
Background Interleukin (IL)-7 signaling through CD127 is impaired in lymphocytes in cancers and chronic infections, resulting in CD8+ T cell exhaustion. The mechanisms underlying CD8+ T cell responses to IL-7 in melanoma remain not completely elucidated. We previously showed reduced IL-7 level in melanoma patients. Thus, the aim of this study was to investigate the effect of IL-7 regulation on CD127 expression and CD8+ T cell responses in melanoma. Methods Healthy controls and primary cutaneous melanoma patients were enrolled. Membrane-bound CD127 (mCD127) expression on CD8+ T cells was determined by flow cytometry. Soluble CD127 (sCD127) protein level was measured by ELISA. Total CD127 and sCD127 mRNA level was measured by real-time PCR. CD8+ T cells were stimulated with recombinant human IL-7, along with signaling pathway inhibitors. CD8+ T cells were co-cultured with melanoma cell line, and the cytotoxicity of CD8+ T cells was assessed by measurement of lactate dehydrogenase expression. Results Plasma sCD127 was lower in melanoma patients compared with controls. The percentage of CD8+ T cells expressing mCD127 was higher, while sCD127 mRNA level was lower in peripheral and tumor-infiltrating CD8+ T cells from melanoma patients. There was no significant difference of total CD127 mRNA expression in CD8+ T cells between groups. IL-7 stimulation enhanced total CD127 and sCD127 mRNA expression and sCD127 release by CD8+ T cells. However, mCD127 mRNA expression on CD8+ T cells was not affected. This process was mainly mediated by phosphatidylinositol 3-kinase (PI3K) pathway. CD8+ T cells from melanoma patients exhibited decreased cytotoxicity. IL-7 stimulation promoted CD8+ T cell cytotoxicity, while inhibition of PI3K dampened IL-7-induced elevation of CD8+ T cell cytotoxicity. Conclusion The current data suggested that insufficient IL-7 secretion might contribute to CD8+ T cell exhaustion and CD127 dysregulation in patients with primary cutaneous melanoma.
Collapse
Affiliation(s)
- Hongxia He
- Department of Dermatology, The First Hospital of Shanxi Medical University, 85 South Jiefang Road, Taiyuan, 030000, Shanxi, China.
| | - Binjun Qiao
- Department of Emergency, The First Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Shuping Guo
- Department of Dermatology, The First Hospital of Shanxi Medical University, 85 South Jiefang Road, Taiyuan, 030000, Shanxi, China
| | - Hongzhou Cui
- Department of Dermatology, The First Hospital of Shanxi Medical University, 85 South Jiefang Road, Taiyuan, 030000, Shanxi, China
| | - Ziyan Zhang
- Department of Dermatology, The First Hospital of Shanxi Medical University, 85 South Jiefang Road, Taiyuan, 030000, Shanxi, China
| | - Junxia Qin
- Department of Dermatology, The Affiliated Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| |
Collapse
|
6
|
Niazmand S, Gowhari Shabgah A, Hosseinian S, Gholizadeh Navashenaq J, Kamali A, Khazdair MR, Baghcheghi Y, Hedayati‐Moghadam M. The effect of HTLV1 infection on inflammatory and oxidative parameters in the liver, kidney, and pancreases of BALB/c mice. Physiol Rep 2022; 10:e15243. [PMID: 35373925 PMCID: PMC8978595 DOI: 10.14814/phy2.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/05/2022] [Accepted: 02/13/2022] [Indexed: 12/04/2022] Open
Abstract
Viral infections are linked to the progression of inflammatory reactions and oxidative stress that play pivotal roles in systemic diseases. To confirm this phenomenon, in the present study, TNF-α level and oxidative stress markers were examined in the liver, kidney, and pancreas of HTLV1-infected male BALB/c mice. To this end, twenty BALB/c mice were divided into HTLV1-infected mice that were inoculated with 1-million HTLV1-infected cells (MT-2), and the control groups. Two months after inoculation, the peripheral blood, mesenteric lymph nodes, liver, kidney, and pancreas were collected after deep anesthetization of mice (ketamine, 30 mg/kg). The extracted DNA of mesenteric lymph nodes was obtained to quantify proviral load (PVL) using quantitative real-time polymerase chain reaction (qRT-PCR). The levels of lipid peroxidation, total thiol (SH), nitric oxide (NO), TNF-α, catalase (CAT), and superoxide dismutase (SOD) activities were examined in the liver, kidney, and pancreases. Furthermore, histopathological changes in the liver and kidney were evaluated. In liver tissue, the levels of MDA, TNF-α, and blood cell infiltration were significantly increased, and the levels of CAT and SOD were significantly decreased. In the kidney, a reduction in SOD, CAT, and total SH and an increase in MDA and NO were observed. In the pancreas, CAT activity, total SH, and SOD were decreased, and the levels of MDA and NO were enhanced. In terms of TNF-α production, it has been shown that the level of this inflammatory cytokine was increased in the liver, kidney, and pancreas. The HTLV1 may have a role in inducing inflammatory reactions and oxidative stress pathways in the tissues.
Collapse
Affiliation(s)
- Saeed Niazmand
- Department of PhysiologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Sara Hosseinian
- Department of PhysiologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Kamali
- Department of Infectious DiseasesSchool of MedicineJiroft University of Medical SciencesJiroftIran
| | | | - Yousef Baghcheghi
- Student Research Committee Jiroft University of Medical SciencesJiroftIran
| | - Mahdiyeh Hedayati‐Moghadam
- Student Research Committee Jiroft University of Medical SciencesJiroftIran
- Department of PhysiologySchool of MedicineJiroft University of Medical SciencesJiroftIran
| |
Collapse
|
7
|
Almishri W, Swain LA, D'Mello C, Le TS, Urbanski SJ, Nguyen HH. ADAM Metalloproteinase Domain 17 Regulates Cholestasis-Associated Liver Injury and Sickness Behavior Development in Mice. Front Immunol 2022; 12:779119. [PMID: 35095853 PMCID: PMC8793775 DOI: 10.3389/fimmu.2021.779119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) is a ubiquitously expressed membrane-bound enzyme that mediates shedding of a wide variety of important regulators in inflammation including cytokines and adhesion molecules. Hepatic expression of numerous cytokines and adhesion molecules are increased in cholestatic liver diseases including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), however, the pathophysiological role of ADAM17 in regulating these conditions remains unknown. Therefore, we evaluated the role of ADAM17 in a mouse model of cholestatic liver injury due to bile duct ligation (BDL). We found that BDL enhanced hepatic ADAM17 protein expression, paralleled by increased ADAM17 bioactivity. Moreover, inhibition of ADAM17 bioactivity with the specific inhibitor DPC 333 significantly improved both biochemical and histological evidence of liver damage in BDL mice. Patients with cholestatic liver disease commonly experience adverse behavioral symptoms, termed sickness behaviors. Similarly, BDL in mice induces reproducible sickness behavior development, driven by the upregulated expression of cytokines and adhesion molecules that are in turn regulated by ADAM17 activity. Indeed, inhibition of ADAM17 activity significantly ameliorated BDL-associated sickness behavior development. In translational studies, we evaluated changes in ADAM17 protein expression in liver biopsies obtained from patients with PBC and PSC, compared to normal control livers. PSC and PBC patients demonstrated increased hepatic ADAM17 expression in hepatocytes, cholangiocytes and in association with liver-infiltrating immune cells compared to normal controls. In summary, cholestatic liver injury in mice and humans is associated with increased hepatic ADAM17 expression. Furthermore, inhibition of ADAM17 activity improves both cholestatic liver injury and associated sickness behavior development, suggesting that ADAM17 inhibition may represent a novel therapeutic approach for treating patients with PBC/PSC.
Collapse
Affiliation(s)
- Wagdi Almishri
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam A Swain
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlotte D'Mello
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tyson S Le
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stefan J Urbanski
- Department of Pathology & Laboratory Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henry H Nguyen
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Chatterjee S, Sinha S, Molla S, Hembram KC, Kundu CN. PARP inhibitor Veliparib (ABT-888) enhances the anti-angiogenic potentiality of Curcumin through deregulation of NECTIN-4 in oral cancer: Role of nitric oxide (NO). Cell Signal 2021; 80:109902. [PMID: 33373686 DOI: 10.1016/j.cellsig.2020.109902] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
Concurrent use of DNA damaging agents with PARP inhibitors contribute to the effectiveness of the anticancer therapy. But there is a dearth of reports on the antiangiogenic effects of PARP inhibitors and the suppression of angiogenesis by this drug combination is not yet reported. For the successful development of cancer therapeutics, anti-cancer drugs ought to have anti-angiogenic potentiality along with their DNA damaging abilities. In this current piece of work, we investigated the in vitro and in ovo anti-angiogenic effect of Curcumin and Veliparib (a PARP inhibitor) in oral cancer. Recent evidences suggest an involvement of the NECTIN-4 in cancer angiogenesis and the exact molecular pathway of this involvement remains to be delineated. We observed that the soluble NECTIN-4 secreted from H357 oral cancer cells enhanced the angiogenesis of endothelial cells (HUVECs) and this was inhibited by Curcumin-Veliparib combination. NECTIN-4 enhanced vascularization, induced vasodilation and triggered the angiogenic sprouting via endothelial tip cell filopodia. Data indicated that NECTIN-4 mediated angiogenesis is associated with PI3K-AKT-mediated nitric oxide (NO) formation. A noticeable increase in the NO enhanced epithelial NO level through HIF-1α mediated iNOS activation. We observed that increased NO enhanced the NECTIN-4 mediated eNOS expression and thereby elicited further angiogenesis. Curcumin antagonised the NECTIN-4-induced angiogenesis through inhibition of PI3K-AKT mediated eNOS pathway and Veliparib synergized the effect of Curcumin. Our observations indicate that NO is cardinal in inducing NECTIN-4 mediated angiogenesis in H357 cells. Thus, Curcumin-Veliparib combination suppresses angiogenesis through deregulation of the PI3K-AKT-eNOS pathway downstream to the NECTIN-4.
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Sefinew Molla
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Krushna Chandra Hembram
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
9
|
Fisetin protects against high fat diet-induced nephropathy by inhibiting inflammation and oxidative stress via the blockage of iRhom2/NF-κB signaling. Int Immunopharmacol 2021; 92:107353. [PMID: 33429334 DOI: 10.1016/j.intimp.2020.107353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
Promoted inflammation enhances the development of nephropathy in obesity. Fisetin (3,3',4',7-tetrahydroxyflavone, FIS) is a naturally occurring dietary flavonoid, and exhibits anti-inflammatory and anti-oxidative properties. Inactive rhomboid protein 2 (iRhom2), an inactive member of the rhomboid intramembrane proteinase family, is an essential inflammation-associated regulator. Here, we attempted to investigate the protective mechanisms of FIS against high fat diet (HFD)-induced nephropathy, with particular focus on iRhom2. We found that HFD induced systematic and renal pro-inflammatory cytokine production. Furthermore, iRhom2 expression was markedly elevated in kidney of HFD-fed mice, and in PAL-incubated macrophages, accompanied with high phosphorylation of NF-κB. Significant oxidative stress was observed in kidney of HFD-fed mice through suppressing Nrf-2/HO-1 signaling. Moreover, activation of iRhom2/NF-κB signaling and oxidative stress by PAL was detected in macrophages, which were effectively reversed by FIS. Importantly, we showed that iRhom2 knockdown significantly abrogated the ability of FIS to restrain inflammation and oxidative stress induced by PAL in macrophages, indicating that iRhom2 might be a potential therapeutic target for FIS during nephropathy treatment. Together, these results revealed that FIS could mitigate HFD-induced renal injury by regulating iRhom2/NF-κB and Nrf-2/HO-1 signaling pathways.
Collapse
|
10
|
Adrain C, Cavadas M. The complex life of rhomboid pseudoproteases. FEBS J 2020; 287:4261-4283. [DOI: 10.1111/febs.15548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Colin Adrain
- Instituto Gulbenkian de Ciência (IGC) Oeiras Portugal
- Centre for Cancer Research and Cell Biology Queen's University Belfast UK
| | | |
Collapse
|
11
|
Belluati A, Craciun I, Palivan CG. Bioactive Catalytic Nanocompartments Integrated into Cell Physiology and Their Amplification of a Native Signaling Cascade. ACS NANO 2020; 14:12101-12112. [PMID: 32869973 DOI: 10.1021/acsnano.0c05574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioactive nanomaterials have the potential to overcome the limitations of classical pharmacological approaches by taking advantage of native pathways to influence cell behavior, interacting with them and eliciting responses. Herein, we propose a cascade system mediated by two catalytic nanocompartments (CNC) with biological activity. Activated by nitric oxide (NO) produced by inducible nitric oxidase synthase (iNOS), soluble guanylyl cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), a second messenger that modulates a broad range of physiological functions. As alterations in cGMP signaling are implicated in a multitude of pathologies, its signaling cascade represents a viable target for therapeutic intervention. Following along this line, we encapsulated iNOS and sGC in two separate polymeric compartments that function in unison to produce NO and cGMP. Their action was tested in vitro by monitoring the derived changes in cytoplasmic calcium concentrations of HeLa and differentiated C2C12 myocytes, where the produced second messenger influenced the cellular homeostasis.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
12
|
iRhom2: An Emerging Adaptor Regulating Immunity and Disease. Int J Mol Sci 2020; 21:ijms21186570. [PMID: 32911849 PMCID: PMC7554728 DOI: 10.3390/ijms21186570] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The rhomboid family are evolutionary conserved intramembrane proteases. Their inactive members, iRhom in Drosophila melanogaster and iRhom1 and iRhom2 in mammals, lack the catalytic center and are hence labelled “inactive” rhomboid family members. In mammals, both iRhoms are involved in maturation and trafficking of the ubiquitous transmembrane protease a disintegrin and metalloprotease (ADAM) 17, which through cleaving many biologically active molecules has a critical role in tumor necrosis factor alpha (TNFα), epidermal growth factor receptor (EGFR), interleukin-6 (IL-6) and Notch signaling. Accordingly, with iRhom2 having a profound influence on ADAM17 activation and substrate specificity it regulates these signaling pathways. Moreover, iRhom2 has a role in the innate immune response to both RNA and DNA viruses and in regulation of keratin subtype expression in wound healing and cancer. Here we review the role of iRhom2 in immunity and disease, both dependent and independent of its regulation of ADAM17.
Collapse
|
13
|
Scalise M, Console L, Rovella F, Galluccio M, Pochini L, Indiveri C. Membrane Transporters for Amino Acids as Players of Cancer Metabolic Rewiring. Cells 2020; 9:cells9092028. [PMID: 32899180 PMCID: PMC7565710 DOI: 10.3390/cells9092028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells perform a metabolic rewiring to sustain an increased growth rate and compensate for the redox stress caused by augmented energy metabolism. The metabolic changes are not the same in all cancers. Some features, however, are considered hallmarks of this disease. As an example, all cancer cells rewire the amino acid metabolism for fulfilling both the energy demand and the changed signaling routes. In these altered conditions, some amino acids are more frequently used than others. In any case, the prerequisite for amino acid utilization is the presence of specific transporters in the cell membrane that can guarantee the absorption and the traffic of amino acids among tissues. Tumor cells preferentially use some of these transporters for satisfying their needs. The evidence for this phenomenon is the over-expression of selected transporters, associated with specific cancer types. The knowledge of the link between the over-expression and the metabolic rewiring is crucial for understanding the molecular mechanism of reprogramming in cancer cells. The continuous growth of information on structure-function relationships and the regulation of transporters will open novel perspectives in the fight against human cancers.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Filomena Rovella
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) via Amendola 122/O, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-09-8449-2939
| |
Collapse
|
14
|
Côté SC, Burke Schinkel SC, Berthoud TK, Barros PO, Sanchez‐Vidales M, Davidson AM, Crawley AM, Angel JB. IL-7 induces sCD127 release and mCD127 downregulation in human CD8 + T cells by distinct yet overlapping mechanisms, both of which are impaired in HIV infection. Eur J Immunol 2020; 50:1537-1549. [PMID: 32390135 PMCID: PMC7586945 DOI: 10.1002/eji.201948453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023]
Abstract
The IL‐7 receptor specific α chain, CD127, can be expressed both as a membrane‐associated (mCD127) and a soluble form (sCD127), however, the mechanisms involved in their regulation remain to be defined. We first demonstrated in primary human CD8+ T cells that IL‐7‐induced downregulation of mCD127 expression is dependent on JAK and PI3K signaling, whereas IL‐7‐induced sCD127 release is also mediated by STAT5. Following stimulation with IL‐7, expression of alternatively spliced variants of the CD127 gene, sCD127 mRNA, is reduced, but to a lesser degree than the full‐length gene. Evaluation of the role of proteases revealed that MMP‐9 was involved in sCD127 release, without affecting the expression of mCD127, suggesting it does not induce direct shedding from the cell surface. Since defects in the IL‐7/CD127 pathway occur in various diseases, including HIV, we evaluated CD8+ T cells derived from HAART‐treated HIV‐infected individuals and found that IL‐7‐induced (1) downregulation of mCD127, (2) release of sCD127, and (3) expression of the sCD127 mRNA were all impaired. Expression of mCD127 and sCD127 is, therefore, regulated by distinct, but overlapping, mechanisms and their impairment in HIV infection contributes to our understanding of the CD8+ T cell dysfunction that persists despite effective antiretroviral therapy.
Collapse
Affiliation(s)
| | | | - Tamara K. Berthoud
- The Ottawa Hospital Research InstituteOttawaONCanada
- Department of BiochemistryMicrobiology, and ImmunologyThe University of OttawaOttawaONCanada
| | - Priscila O. Barros
- The Ottawa Hospital Research InstituteOttawaONCanada
- Department of BiochemistryMicrobiology, and ImmunologyThe University of OttawaOttawaONCanada
| | - Maria Sanchez‐Vidales
- The Ottawa Hospital Research InstituteOttawaONCanada
- Department of BiochemistryMicrobiology, and ImmunologyThe University of OttawaOttawaONCanada
| | - April M. Davidson
- The Ottawa Hospital Research InstituteOttawaONCanada
- Department of BiochemistryMicrobiology, and ImmunologyThe University of OttawaOttawaONCanada
| | - Angela M. Crawley
- The Ottawa Hospital Research InstituteOttawaONCanada
- Department of BiochemistryMicrobiology, and ImmunologyThe University of OttawaOttawaONCanada
- Department of BiologyCarleton UniversityOttawaONCanada
| | - Jonathan B. Angel
- The Ottawa Hospital Research InstituteOttawaONCanada
- Department of BiochemistryMicrobiology, and ImmunologyThe University of OttawaOttawaONCanada
- Division of Infectious DiseasesThe Ottawa HospitalOttawaONCanada
| |
Collapse
|
15
|
Ma HY, Yamamoto G, Xu J, Liu X, Karin D, Kim JY, Alexandrov LB, Koyama Y, Nishio T, Benner C, Heinz S, Rosenthal SB, Liang S, Sun M, Karin G, Zhao P, Brodt P, Mckillop IH, Quehenberger O, Dennis E, Saltiel A, Tsukamoto H, Gao B, Karin M, Brenner DA, Kisseleva T. IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. J Hepatol 2020; 72:946-959. [PMID: 31899206 PMCID: PMC7167339 DOI: 10.1016/j.jhep.2019.12.016] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Chronic alcohol consumption is a leading risk factor for the development of hepatocellular carcinoma (HCC), which is associated with a marked increase in hepatic expression of pro-inflammatory IL-17A and its receptor IL-17RA. METHODS Genetic deletion and pharmacological blocking were used to characterize the role of IL-17A/IL-17RA signaling in the pathogenesis of HCC in mouse models and human specimens. RESULTS We demonstrate that the global deletion of the Il-17ra gene suppressed HCC in alcohol-fed diethylnitrosamine-challenged Il-17ra-/- and major urinary protein-urokinase-type plasminogen activator/Il-17ra-/- mice compared with wild-type mice. When the cell-specific role of IL-17RA signaling was examined, the development of HCC was decreased in both alcohol-fed Il-17raΔMΦ and Il-17raΔHep mice devoid of IL-17RA in myeloid cells and hepatocytes, but not in Il-17raΔHSC mice (deficient in IL-17RA in hepatic stellate cells). Deletion of Il-17ra in myeloid cells ameliorated tumorigenesis via suppression of pro-tumorigenic/inflammatory and pro-fibrogenic responses in alcohol-fed Il-17raΔMΦ mice. Remarkably, despite a normal inflammatory response, alcohol-fed Il-17raΔHep mice developed the fewest tumors (compared with Il-17raΔMΦ mice), with reduced steatosis and fibrosis. Steatotic IL-17RA-deficient hepatocytes downregulated the expression of Cxcl1 and other chemokines, exhibited a striking defect in tumor necrosis factor (TNF)/TNF receptor 1-dependent caspase-2-SREBP1/2-DHCR7-mediated cholesterol synthesis, and upregulated the production of antioxidant vitamin D3. The pharmacological blocking of IL-17A/Th-17 cells using anti-IL-12/IL-23 antibodies suppressed the progression of HCC (by 70%) in alcohol-fed mice, indicating that targeting IL-17 signaling might provide novel strategies for the treatment of alcohol-induced HCC. CONCLUSIONS Overall, IL-17A is a tumor-promoting cytokine, which critically regulates alcohol-induced hepatic steatosis, inflammation, fibrosis, and HCC. LAY SUMMARY IL-17A is a tumor-promoting cytokine, which critically regulates inflammatory responses in macrophages (Kupffer cells and bone-marrow-derived monocytes) and cholesterol synthesis in steatotic hepatocytes in an experimental model of alcohol-induced HCC. Therefore, IL-17A may be a potential therapeutic target for patients with alcohol-induced HCC.
Collapse
Affiliation(s)
- Hsiao-Yen Ma
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA,Department of Surgery, University of California San Diego, San Diego, CA 92093, USA
| | - Gen Yamamoto
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA,Department of Surgery, University of California San Diego, San Diego, CA 92093, USA
| | - Jun Xu
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA,Department of Surgery, University of California San Diego, San Diego, CA 92093, USA
| | - Xiao Liu
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA,Department of Surgery, University of California San Diego, San Diego, CA 92093, USA
| | - Daniel Karin
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Ju Youn Kim
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Yukinori Koyama
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Takahiro Nishio
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Chris Benner
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Sven Heinz
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Sara B. Rosenthal
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Shuang Liang
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Mengxi Sun
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Gabriel Karin
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Peng Zhao
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Pnina Brodt
- Department of Medicine, McGill University and the McGill University Health Center, Montreal, QC H4A3J1, Canada
| | - Iain H. Mckillop
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Oswald Quehenberger
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Ed Dennis
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Alan Saltiel
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Department of Pathology Keck School of Medicine of USC, Los Angeles, CA 90033, USA,University of Southern California, and Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Karin
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - David A. Brenner
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Dulloo I, Muliyil S, Freeman M. The molecular, cellular and pathophysiological roles of iRhom pseudoproteases. Open Biol 2020; 9:190003. [PMID: 30890028 PMCID: PMC6451368 DOI: 10.1098/rsob.190003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
iRhom proteins are catalytically inactive relatives of rhomboid intramembrane proteases. There is a rapidly growing body of evidence that these pseudoenzymes have a central function in regulating inflammatory and growth factor signalling and consequent roles in many diseases. iRhom pseudoproteases have evolved new domains from their proteolytic ancestors, which are integral to their modular regulation and functions. Although we cannot yet conclude the full extent of their molecular and cellular mechanisms, there is a clearly emerging theme that they regulate the stability and trafficking of other membrane proteins. In the best understood case, iRhoms act as regulatory cofactors of the ADAM17 protease, controlling its function of shedding cytokines and growth factors. It seems likely that as the involvement of iRhoms in human diseases is increasingly recognized, they will become the focus of pharmaceutical interest, and here we discuss what is known about their molecular mechanisms and relevance in known pathologies.
Collapse
Affiliation(s)
- Iqbal Dulloo
- Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE , UK
| | - Sonia Muliyil
- Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE , UK
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE , UK
| |
Collapse
|
17
|
López-Vanegas NC, Hernández G, Maldonado-Vega M, Calderón-Salinas JV. Leukocyte apoptosis, TNF-α concentration and oxidative damage in lead-exposed workers. Toxicol Appl Pharmacol 2020; 391:114901. [PMID: 32004562 DOI: 10.1016/j.taap.2020.114901] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
Abstract
Lead intoxication can generate pro-inflammatory conditions that have been proposed to be associated with cell injuries and oxidative stress. The pro-inflammatory state can participate in the pathophysiology of this toxicity to generate immune response dysfunctions, which could condition the presence of clinical manifestations and susceptibility to infections already described in lead-exposed patients. In the present work, we study workers of a battery recycler factory (n = 24) who are chronically exposed to lead and compared them with non-lead exposed workers (n = 17). Lead-exposed workers had high lead concentrations in blood (med 69.8 vs. 1.7 μg/dL), low δ-ALAD activity (med 149 vs. 1100 nmol PBG/h/mL), high lipid peroxidation (med 0.86 vs. 0.69 nmol/mL) and high erythrocytes apoptosis (med 0.81 vs. 0.50% PS externalization) in relation to non-lead exposed workers. Also, lead-exposed workers had a high incidence of signs and symptoms related to lead intoxication and a higher frequency of infections. The higher leukocyte apoptosis (med 18.3 vs. 8.2% PS externalization) and lower basal TNF-α concentration (med 0.38 vs. 0.94 pg/mL) in lead-exposed workers imply an immune response dysfunction; however, there was no difference in the TNF-α concentration when leukocytes were stimulated with lipopolysaccharide in whole blood (med 44 vs. 70 pg/mL), suggesting that lead-exposed workers might develop adaptation mechanisms to reduce basal TNF-α release through downregulation processes proposed for this cytokine.
Collapse
Affiliation(s)
| | - Gerardo Hernández
- Section Methodology of Science, Centro de Investigación y Estudios Avanzados-IPN, Ciudad de México, Mexico
| | - María Maldonado-Vega
- Planning, Teaching and Research Department, Hospital Regional de Alta Especialidad del Bajío, Blvd. Milenio 130, San Carlos La Roncha, León, Guanajuato, Mexico
| | | |
Collapse
|
18
|
Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev 2020; 40:158-189. [PMID: 31192483 PMCID: PMC6908786 DOI: 10.1002/med.21599] [Citation(s) in RCA: 471] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
A considerable number of human diseases have an inflammatory component, and a key mediator of immune activation and inflammation is inducible nitric oxide synthase (iNOS), which produces nitric oxide (NO) from l-arginine. Overexpressed or dysregulated iNOS has been implicated in numerous pathologies including sepsis, cancer, neurodegeneration, and various types of pain. Extensive knowledge has been accumulated about the roles iNOS plays in different tissues and organs. Additionally, X-ray crystal and cryogenic electron microscopy structures have shed new insights on the structure and regulation of this enzyme. Many potent iNOS inhibitors with high selectivity over related NOS isoforms, neuronal NOS, and endothelial NOS, have been discovered, and these drugs have shown promise in animal models of endotoxemia, inflammatory and neuropathic pain, arthritis, and other disorders. A major issue in iNOS inhibitor development is that promising results in animal studies have not translated to humans; there are no iNOS inhibitors approved for human use. In addition to assay limitations, both the dual modalities of iNOS and NO in disease states (ie, protective vs harmful effects) and the different roles and localizations of NOS isoforms create challenges for therapeutic intervention. This review summarizes the structure, function, and regulation of iNOS, with focus on the development of iNOS inhibitors (historical and recent). A better understanding of iNOS' complex functions is necessary before specific drug candidates can be identified for classical indications such as sepsis, heart failure, and pain; however, newer promising indications for iNOS inhibition, such as depression, neurodegenerative disorders, and epilepsy, have been discovered.
Collapse
Affiliation(s)
- Maris A. Cinelli
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Current address: Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824
| | - Ha T. Do
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Current address: Mersana Therapeutics, Inc., Cambridge, MA 02139
| | - Galen P. Miley
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
19
|
Wang R, Geller DA, Wink DA, Cheng B, Billiar TR. NO and hepatocellular cancer. Br J Pharmacol 2019; 177:5459-5466. [PMID: 31423564 PMCID: PMC7707086 DOI: 10.1111/bph.14838] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
NO has broad and sometimes dichotomous roles in cancer. The effects of NO in tumours depend on the type and localization of NOS isoforms, concentration and duration of NO exposure, and cellular sensitivity to NO. Hepatocellular carcinoma (HCC) is a common and lethal disease for which no effective therapy other than surgical resection exists. Over two decades of research has yielded evidence that NO generated by the inducible NOS (iNOS or NOS2) contributes to HCC progression in at least a subset of patients with HCC. The co-expression of iNOS with COX-2 may portend a particularly aggressive cancer phenotype in HCC and at the same time reveal an opportunity for pharmacological intervention. In this review, we focus on what is known about the influence of NO in HCC neoplastic transformation, proliferation and apoptosis, angiogenesis, invasion, and metastasis, cancer stem cells, and the host immune response against the tumour. We discuss the implications of recent findings for targeting the NO pathways in HCC.
Collapse
Affiliation(s)
- Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David A Geller
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David A Wink
- Cancer Inflammation Program, NCI/NIH, Frederick, MD, USA
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Liang H, Ding X, Yu Y, Zhang H, Wang L, Kan Q, Ma S, Guan F, Sun T. Adipose-derived mesenchymal stem cells ameliorate acute liver injury in rat model of CLP induced-sepsis via sTNFR1. Exp Cell Res 2019; 383:111465. [DOI: 10.1016/j.yexcr.2019.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
|
21
|
Sharman MJ, Verdile G, Kirubakaran S, Parenti C, Singh A, Watt G, Karl T, Chang D, Li CG, Münch G. Targeting Inflammatory Pathways in Alzheimer's Disease: A Focus on Natural Products and Phytomedicines. CNS Drugs 2019; 33:457-480. [PMID: 30900203 DOI: 10.1007/s40263-019-00619-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of the brains of Alzheimer's disease (AD) patients have revealed key neuropathological features, such as the deposition of aggregates of insoluble amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs). These pathological protein deposits, including Aβ peptides (which form senile plaques) and hyperphosphorylated tau (which aggregates into NFTs), have been assumed to be 'the cause of AD'. Aβ has been extensively targeted to develop an effective disease-modifying therapy, but with limited clinical success. Emerging therapies are also now targeting further pathological processes in AD, including neuroinflammation. This review focuses on the inflammatory and oxidative stress-related changes that occur in AD, and discusses some emerging anti-inflammatory natural products and phytomedicines. Many of the promising compounds are cytokine-suppressive anti-inflammatory drugs (CSAIDs), which target the proinflammatory AP1 and nuclear factor-κB signalling pathways and inhibit the expression of many proinflammatory cytokines, such as interleukin (IL)-1, IL-6, tumour necrosis factor-α, or nitric oxide produced by inducible nitric oxide synthase. However, many of these phytomedicines have not been tested in rigorous clinical trials in AD patients. It is not yet clear if the active compounds reach an effective concentration in the brain (due to limited bioavailability) or if they can slow down AD progression in long-term trials. The authors suggest that it is crucial for both the pharmacological and complementary medicine industries to conduct and fund those studies to significantly advance the field.
Collapse
Affiliation(s)
- Matthew J Sharman
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag 1322, Launceston, TAS, 7250, Australia
| | - Giuseppe Verdile
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia
| | - Shanmugam Kirubakaran
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Cristina Parenti
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Ahilya Singh
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Georgina Watt
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Tim Karl
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia.,School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,Pharmacology Unit, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
22
|
Somasundaram V, Basudhar D, Bharadwaj G, No JH, Ridnour LA, Cheng RY, Fujita M, Thomas DD, Anderson SK, McVicar DW, Wink DA. Molecular Mechanisms of Nitric Oxide in Cancer Progression, Signal Transduction, and Metabolism. Antioxid Redox Signal 2019; 30:1124-1143. [PMID: 29634348 PMCID: PMC6354612 DOI: 10.1089/ars.2018.7527] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 01/03/2023]
Abstract
SIGNIFICANCE Cancer is a complex disease, which not only involves the tumor but its microenvironment comprising different immune cells as well. Nitric oxide (NO) plays specific roles within tumor cells and the microenvironment and determines the rate of cancer progression, therapy efficacy, and patient prognosis. Recent Advances: Key understanding of the processes leading to dysregulated NO flux within the tumor microenvironment over the past decade has provided better understanding of the dichotomous role of NO in cancer and its importance in shaping the immune landscape. It is becoming increasingly evident that nitric oxide synthase 2 (NOS2)-mediated NO/reactive nitrogen oxide species (RNS) are heavily involved in cancer progression and metastasis in different types of tumor. More recent studies have found that NO from NOS2+ macrophages is required for cancer immunotherapy to be effective. CRITICAL ISSUES NO/RNS, unlike other molecules, are unique in their ability to target a plethora of oncogenic pathways during cancer progression. In this review, we subcategorize the different levels of NO produced by cells and shed light on the context-dependent temporal effects on cancer signaling and metabolic shift in the tumor microenvironment. FUTURE DIRECTIONS Understanding the source of NO and its spaciotemporal profile within the tumor microenvironment could help improve efficacy of cancer immunotherapies by improving tumor infiltration of immune cells for better tumor clearance.
Collapse
Affiliation(s)
- Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jae Hong No
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Lisa A. Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Robert Y.S. Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Basic Medical Sciences for Radiation Damages, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Douglas D. Thomas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Stephen K. Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Daniel W. McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - David A. Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
23
|
Saldanha AA, Vieira L, Ribeiro RIMDA, Thomé RG, Santos HBD, Silva DB, Carollo CA, Oliveira FMD, Lopes DDO, Siqueira JMD, Soares AC. Chemical composition and evaluation of the anti-inflammatory and antinociceptive activities of Duguetia furfuracea essential oil: Effect on edema, leukocyte recruitment, tumor necrosis factor alpha production, iNOS expression, and adenosinergic and opioidergic systems. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:325-336. [PMID: 30445104 DOI: 10.1016/j.jep.2018.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Duguetia furfuracea (A. St. -Hil.) Saff. (Annonaceae) is commonly known in Brazil as "araticum-seco," and its root is used in folk medicine to treat inflammatory and painful disorders. However, no studies have been performed to evaluate these therapeutic activities. AIM OF THE STUDY Investigate the chemical composition, anti-inflammatory and antinociceptive effects, and elucidate the possible antinociceptive mechanisms of action from the essential oil of D. furfuracea (EODf) underground stem bark. MATERIALS AND METHODS Chemical composition was determined by gas chromatography and mass spectrometry (GC/MS). The paw edema induced by LPS, formalin-induced nociception, LPS-induced thermal hyperalgesia and rota-rod tests in vivo were used to evaluate the anti-inflammatory and antinociceptive effects in addition to the alteration on motor coordination. Histological analyses and an immunohistochemistry assay for iNOS were performed on mouse footpads of naive, control, 10 mg/kg EODf, and 10 mg/kg indomethacin (Ind) groups. The samples were removed at 1, 3, and 6 h after subplantar injection of LPS. In addition, the involvement of the adenosinergic, opioidergic, serotonergic, and cholinergic systems were investigated, in order to elucidate possible antinociceptive mechanisms. RESULTS Twenty-four volatile constituents were detected and identified. (E)-asarone (21.9%), bicyclogermacrene (16.7%), 2,4,5-trimethoxystyrene (16.1%), α-gurjunene (15%), cyperene (7.8%), and (E)-caryophyllene (4.6%) were major compounds found in EODf. Oral treatment (p.o.) with EODf (1, 3, and 10 mg/kg) significantly inhibited the paw edema induced by LPS. At 10 mg/kg EODf promoted inhibition of tumor necrosis factor alpha (TNF-α) production, recruitment of polymorphonuclear (PMN) leukocytes and inducible nitric oxide synthase (iNOS) expression in paw tissue. EODf (10 and 30 mg/kg, p.o.) also reduced licking time in both phases of the formalin test and it had a significant effect on the LPS-induced thermal hyperalgesia model. The administration of caffeine (Caf) and naloxone (Nal) reversed the antinociceptive activity of EODf, in the first phase of the formalin test and in the LPS-induced thermal hyperalgesia model. Moreover, Nal was also able to abolish the antinociception caused by EODf, in the second phase of formalin test. In the rota-rod test, EODf-treated animals did not show any alteration of motor coordination. CONCLUSIONS Our findings indicate that EODf underground stem bark produces anti-inflammatory and both central and peripheral antinociceptive effects. Furthermore, the antinociceptive activity of EODf underground stem bark is possibly mediated by adenosinergic and opioidergic pathways, and its properties do not induce effects on motor coordination. These results support the use of the folk medicine, D. furfuracea root, to treat inflammation and painful conditions.
Collapse
Affiliation(s)
- Aline Aparecida Saldanha
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis 35501-296, Brazil; Laboratório de Farmacognosia/Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Letícia Vieira
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis 35501-296, Brazil
| | | | - Ralph Gruppi Thomé
- Laboratório de Processamento de Tecidos (LAPR OTEC), Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Hélio Batista Dos Santos
- Laboratório de Processamento de Tecidos (LAPR OTEC), Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Carlos Alexandre Carollo
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Débora de Oliveira Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - João Máximo de Siqueira
- Laboratório de Farmacognosia/Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Adriana Cristina Soares
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis 35501-296, Brazil.
| |
Collapse
|
24
|
iNOS promotes CD24 +CD133 + liver cancer stem cell phenotype through a TACE/ADAM17-dependent Notch signaling pathway. Proc Natl Acad Sci U S A 2018; 115:E10127-E10136. [PMID: 30297396 PMCID: PMC6205478 DOI: 10.1073/pnas.1722100115] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD24+CD133+ liver cancer stem cells (LCSCs) express higher levels of the inducible nitric oxide synthase (iNOS) and possess self-renewal and tumor growth properties. iNOS is associated with more aggressive hepatocellular carcinoma (HCC), leading to the upregulation of Notch1 signaling. The activation of Notch1 by iNOS/NO is dependent on cGMP/PKG-mediated activation of TACE and upregulation of iRhom-2. The expression of iNOS, CD24, and CD133 correlates with the expression of activated TACE and Notch signaling in more aggressive human HCC. These findings have implications for understanding how LCSCs are regulated in the setting of chronic inflammation, where signals to upregulate iNOS are often present. Targeting iNOS could have therapeutic benefit in HCC. The inducible nitric oxide synthase (iNOS) is associated with more aggressive solid tumors, including hepatocellular carcinoma (HCC). Notch signaling in cancer stem cells promotes cancer progression and requires Notch cleavage by ADAM (a disintegrin and metalloprotease) proteases. We hypothesized that iNOS/NO promotes Notch1 activation through TACE/ADAM17 activation in liver cancer stem cells (LCSCs), leading to a more aggressive cancer phenotype. Expression of the stem cell markers CD24 and CD133 in the tumors of patients with HCC was associated with greater iNOS expression and worse outcomes. The expression of iNOS in CD24+CD133+ LCSCs, but not CD24−CD133− LCSCs, promoted Notch1 signaling and stemness characteristics in vitro and in vivo, as well as accelerating HCC initiation and tumor formation in the mouse xenograft tumor model. iNOS/NO led to Notch1 signaling through a pathway involving the soluble guanylyl cyclase/cGMP/PKG-dependent activation of TACE/ADAM17 and up-regulation of iRhom2 in LCSCs. In patients with HCC, higher TACE/ADAM17 expression and Notch1 activation correlated with poor prognosis. These findings link iNOS to Notch1 signaling in CD24+CD133+ LCSCs through the activation of TACE/ADAM17 and identify a mechanism for how iNOS contributes to progression of CD24+CD133+ HCC.
Collapse
|
25
|
Josephs SF, Ichim TE, Prince SM, Kesari S, Marincola FM, Escobedo AR, Jafri A. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl Med 2018; 16:242. [PMID: 30170620 PMCID: PMC6119315 DOI: 10.1186/s12967-018-1611-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/18/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor (TNF)-alpha was originally identified in the 1970s as the serum mediator of innate immunity capable of inducing hemorrhagic necrosis in tumors. Today, a wide spectrum of biological activities have been attributed to this molecule, and clinical translation has mainly occurred not in using it to treat cancer, but rather to inhibit its effects to treat autoimmunity. Clinical trials utilizing systemic TNF-alpha administration have resulted in an unacceptable level of toxicities, which blocked its development. In contrast, localized administration of TNF-alpha in the form of isolated limb perfusion have yielded excellent results in soft tissue sarcomas. Here we describe a novel approach to leveraging the potent antineoplastic activities of TNF-alpha by enhancing activity of locally produced TNF-alpha through extracorporeal removal of soluble TNF-alpha receptors. Specifically, it is known that cancerous tissues are infiltrated with monocytes, T cells, and other cells capable of producing TNF-alpha. It is also known that tumors, as well as cells in the tumor microenvironment produce soluble TNF-alpha receptors. The authors believe that by selectively removing soluble TNF-alpha receptors local enhancement of endogenous TNF-alpha activity may provide for enhanced tumor cell death without associated systemic toxicities.
Collapse
Affiliation(s)
| | | | | | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA
| | | | | | | |
Collapse
|
26
|
Xu J, Sriramula S, Lazartigues E. Excessive Glutamate Stimulation Impairs ACE2 Activity Through ADAM17-Mediated Shedding in Cultured Cortical Neurons. Cell Mol Neurobiol 2018; 38:1235-1243. [PMID: 29766392 DOI: 10.1007/s10571-018-0591-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
Abstract
The excitotoxicity of glutamate plays an important role in the progression of various neurological disorders via participating in inflammation and neuronal damage. In this study, we identified the role of excessive glutamate stimulation in the modulation of angiotensin-converting enzyme type 2 (ACE2), a critical component in the compensatory axis of the renin-angiotensin system (RAS). In primary cultured cortical neurons, high concentration of glutamate (100 µM) significantly reduced the enzymatic activity of ACE2. The elevated activity of ADAM17, a member of the 'A Disintegrin And Metalloprotease' (ADAM) family, was found to contribute to this glutamate-induced ACE2 down-regulation. The decrease of ACE2 activity could be prevented by pre-treatment with antagonists targeting ionotropic glutamate receptors. In addition, the glutamate-induced decrease in ACE2 activity was significantly attenuated when the neurons were co-treated with MitoTEMPOL or blockers that target oxidative stress-mediated signaling pathway. In summary, our study reveals a strong relationship between excessive glutamate stimulation and ADAM17-mediated impairment in ACE2 activity, suggesting a possible cross-talk between glutamate-induced excitotoxicity and dysregulated RAS.
Collapse
Affiliation(s)
- Jiaxi Xu
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, 1901 Perdido Street, Room 5218, New Orleans, LA, 70112, USA
| | - Srinivas Sriramula
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, 1901 Perdido Street, Room 5218, New Orleans, LA, 70112, USA.,Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, 1901 Perdido Street, Room 5218, New Orleans, LA, 70112, USA. .,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Neurosciences Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
27
|
Redox Regulation of Inflammatory Processes Is Enzymatically Controlled. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8459402. [PMID: 29118897 PMCID: PMC5651112 DOI: 10.1155/2017/8459402] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
Redox regulation depends on the enzymatically controlled production and decay of redox active molecules. NADPH oxidases, superoxide dismutases, nitric oxide synthases, and others produce the redox active molecules superoxide, hydrogen peroxide, nitric oxide, and hydrogen sulfide. These react with target proteins inducing spatiotemporal modifications of cysteine residues within different signaling cascades. Thioredoxin family proteins are key regulators of the redox state of proteins. They regulate the formation and removal of oxidative modifications by specific thiol reduction and oxidation. All of these redox enzymes affect inflammatory processes and the innate and adaptive immune response. Interestingly, this regulation involves different mechanisms in different biological compartments and specialized cell types. The localization and activity of distinct proteins including, for instance, the transcription factor NFκB and the immune mediator HMGB1 are redox-regulated. The transmembrane protein ADAM17 releases proinflammatory mediators, such as TNFα, and is itself regulated by a thiol switch. Moreover, extracellular redox enzymes were shown to modulate the activity and migration behavior of various types of immune cells by acting as cytokines and/or chemokines. Within this review article, we will address the concept of redox signaling and the functions of both redox enzymes and redox active molecules in innate and adaptive immune responses.
Collapse
|
28
|
Luo WW, Shu HB. Emerging roles of rhomboid-like pseudoproteases in inflammatory and innate immune responses. FEBS Lett 2017; 591:3182-3189. [PMID: 28815577 DOI: 10.1002/1873-3468.12796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022]
Abstract
Rhomboid-like pseudoproteases are a conserved superfamily of proteins related to the rhomboid intramembrane serine proteases that lack key catalytic residues. iRhom2, a member of the rhomboid-like pseudoprotease superfamily, regulates the maturation and trafficking of ADAM17 and is associated with inflammatory arthritis. Recent studies demonstrate that iRhom2 is also involved in innate immunity by regulating the trafficking and stability of MITA (also called STING), which is a central adaptor in innate antiviral signalling pathways. Here, we summarize recent progress on the roles and mechanisms of iRhom2 and its homologues in innate immunity and also discuss the links between the physiological functions of iRhoms and immunological diseases.
Collapse
Affiliation(s)
- Wei-Wei Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hong-Bing Shu
- Medical Research Institute, School of Medicine, Wuhan University, China
| |
Collapse
|
29
|
Grieve AG, Xu H, Künzel U, Bambrough P, Sieber B, Freeman M. Phosphorylation of iRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling. eLife 2017; 6. [PMID: 28432785 PMCID: PMC5436907 DOI: 10.7554/elife.23968] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Proteolytic cleavage and release from the cell surface of membrane-tethered ligands is an important mechanism of regulating intercellular signalling. TACE is a major shedding protease, responsible for the liberation of the inflammatory cytokine TNFα and ligands of the epidermal growth factor receptor. iRhoms, catalytically inactive members of the rhomboid-like superfamily, have been shown to control the ER-to-Golgi transport and maturation of TACE. Here, we reveal that iRhom2 remains associated with TACE throughout the secretory pathway, and is stabilised at the cell surface by this interaction. At the plasma membrane, ERK1/2-mediated phosphorylation and 14-3-3 protein binding of the cytoplasmic amino-terminus of iRhom2 alter its interaction with mature TACE, thereby licensing its proteolytic activity. We show that this molecular mechanism is responsible for triggering inflammatory responses in primary mouse macrophages. Overall, iRhom2 binds to TACE throughout its lifecycle, implying that iRhom2 is a primary regulator of stimulated cytokine and growth factor signalling. DOI:http://dx.doi.org/10.7554/eLife.23968.001 Injury or infection can cause tissues in the body to become inflamed. The immune system triggers this inflammation to help repair the injury or fight the infection. A signal molecule known as TNF – which is produced by immune cells called macrophages – triggers inflammation. This protein is normally attached to the surface of the macrophage, and it only activates inflammation once it has been cut free. An enzyme called TACE cuts and releases TNF from the surface of macrophages. This enzyme is made inside the cell and is then transported to the surface. On the way, TACE matures from an inactive form to a fully functional enzyme. Previous work revealed that a protein called iRhom2 controls TACE maturation, but it has been unclear whether iRhom2 affects TACE in any additional ways. Grieve et al. studied the relationship between iRhom2 and TACE in more detail. The experiments show two new roles for iRhom2: in protecting TACE from being destroyed at the cell surface, and prompting TACE to release TNF to trigger inflammation. Injury or infection causes small molecules called phosphate groups to be attached to iRhom2 in macrophages, which causes TACE to release TNF. The findings of Grieve et al. provide the first evidence that iRhom2 influences the activity of TACE throughout the enzyme’s lifetime. Excessive inflammation, often triggered by the uncontrolled release of TNF, can lead to rheumatoid arthritis, cancer and many other diseases. Therefore, iRhom2 could be a promising new target for anti-inflammatory drugs that may help to treat these conditions. DOI:http://dx.doi.org/10.7554/eLife.23968.002
Collapse
Affiliation(s)
- Adam Graham Grieve
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hongmei Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ulrike Künzel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul Bambrough
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Loughran P, Xu L, Billiar T. Nitric Oxide and the Liver. LIVER PATHOPHYSIOLOGY 2017:799-816. [DOI: 10.1016/b978-0-12-804274-8.00058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Szondy Z, Pallai A. Transmembrane TNF-alpha reverse signaling leading to TGF-beta production is selectively activated by TNF targeting molecules: Therapeutic implications. Pharmacol Res 2017; 115:124-132. [DOI: 10.1016/j.phrs.2016.11.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
|
32
|
Loughran PA, Lei Z, Xu L, Deng M, Billiar TR. Nitric Oxide in Sepsis and Hemorrhagic Shock: Beneficial or Detrimental? NITRIC OXIDE 2017:289-300. [DOI: 10.1016/b978-0-12-804273-1.00022-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Xu J, Mukerjee S, Silva-Alves CRA, Carvalho-Galvão A, Cruz JC, Balarini CM, Braga VA, Lazartigues E, França-Silva MS. A Disintegrin and Metalloprotease 17 in the Cardiovascular and Central Nervous Systems. Front Physiol 2016; 7:469. [PMID: 27803674 PMCID: PMC5067531 DOI: 10.3389/fphys.2016.00469] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/30/2016] [Indexed: 01/19/2023] Open
Abstract
ADAM17 is a metalloprotease and disintegrin that lodges in the plasmatic membrane of several cell types and is able to cleave a wide variety of cell surface proteins. It is somatically expressed in mammalian organisms and its proteolytic action influences several physiological and pathological processes. This review focuses on the structure of ADAM17, its signaling in the cardiovascular system and its participation in certain disorders involving the heart, blood vessels, and neural regulation of autonomic and cardiovascular modulation.
Collapse
Affiliation(s)
- Jiaxi Xu
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Snigdha Mukerjee
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | | | | | - Josiane C Cruz
- Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Camille M Balarini
- Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Valdir A Braga
- Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | | |
Collapse
|
34
|
Fu Q, Qin T, Chen L, Liu CJ, Zhang X, Wang YZ, Hu MX, Chu HY, Zhang HW. miR-29a up-regulation in AR42J cells contributes to apoptosis via targeting TNFRSF1A gene. World J Gastroenterol 2016; 22:4881-4890. [PMID: 27239114 PMCID: PMC4873880 DOI: 10.3748/wjg.v22.i20.4881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/29/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of miR-29a in rat acute pancreatitis and its functional role in AR42J cell apoptosis.
METHODS: Twelve SD rats were divided into a control group and an acute edematous pancreatitis (AEP) group randomly. AEP was induced by intraperitoneal injection of L-arginine (150 mg/kg) in the AEP group and equal volume of 0.9% NaCl was injected in the control group. The apoptosis of acinar cells in pancreatic tissue was determined by TUNEL assay. miRNA chip assay was performed to examine the expression of miRNAs in two groups. Besides, to further explore the role of miR-29a in apoptosis in vitro, recombinant rat TNF-α (50 ng/mL) was administered to treat the rat pancreatic acinar cell line AR42J for inducing AR42J cell apoptosis. Quantitative real-time PCR (qRT-PCR) was adopted to measure miR-29a expression. Then, miRNA mimic, miRNA antisense oligonucleotide (AMO) and control vector were used to transfect AR42J cells. The expression of miR-29a was confirmed by qRT-PCR and the apoptosis rate of AR42J cells was detected by flow cytometry analysis. Western blot was used to detect the expression of activated caspase3. Moreover, we used bioinformatics software and luciferase assay to test whether TNFRSF1A was the target gene of miR-29a. After transfection, qRT-PCR and Western blot was used to detect the expression of TNFRSF1A in AR42J cells after transfection.
RESULTS: The expression of miR-29a was much higher in the AEP group compared with the control group as displayed by the miRNA chip assay. After inducing apoptosis of AR42J cells in vitro, the expression of miR-29a was significantly increased by 1.49 ± 0.04 times in comparison with the control group. As revealed by qRT-PCR assay, the expression of miR-29a was 2.68 ± 0.56 times higher in the miR-29a mimic group relative to the control vector group, accompanied with an obviously increased acinar cell apoptosis rate (42.83 ± 1.25 vs 24.97 ± 0.15, P < 0.05). Moreover, the expression of miR-29a in the miRNA AMO group was 0.46 ± 0.05 times lower than the control vector group, and the cell apoptosis rate was much lower accordingly (17.27 ± 1.36 vs 24.97 ± 0.15, P < 0.05). The results of bioinformatics software and luciferase assay showed that TNFRSF1A might be a target gene of miR-29a. TNFRSF1A expression was up-regulated in the miR-29a mimic group, while the miR-29a AMO group showed the reverse trend.
CONCLUSION: miR-29a might promote the apoptosis of AR42J cells via up-regulating the expression of its target gene TNFRSF1A.
Collapse
|
35
|
Zhang L, Xiang W, Wang G, Yan Z, Zhu Z, Guo Z, Sengupta R, Chen AF, Loughran PA, Lu B, Wang Q, Billiar TR. Interferon β (IFN-β) Production during the Double-stranded RNA (dsRNA) Response in Hepatocytes Involves Coordinated and Feedforward Signaling through Toll-like Receptor 3 (TLR3), RNA-dependent Protein Kinase (PKR), Inducible Nitric Oxide Synthase (iNOS), and Src Protein. J Biol Chem 2016; 291:15093-107. [PMID: 27226571 DOI: 10.1074/jbc.m116.717942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/19/2022] Open
Abstract
The sensing of double-stranded RNA (dsRNA) in the liver is important for antiviral defenses but can also contribute to sterile inflammation during liver injury. Hepatocytes are often the target of viral infection and are easily injured by inflammatory insults. Here we sought to establish the pathways involved in the production of type I interferons (IFN-I) in response to extracellular poly(I:C), a dsRNA mimetic, in hepatocytes. This was of interest because hepatocytes are long-lived and, unlike most immune cells that readily die after activation with dsRNA, are not viewed as cells with robust antimicrobial capacity. We found that poly(I:C) leads to rapid up-regulation of inducible nitric oxide synthase (iNOS), double-stranded RNA-dependent protein kinase (PKR), and Src. The production of IFN-β was dependent on iNOS, PKR, and Src and partially dependent on TLR3/Trif. iNOS and Src up-regulation was partially dependent on TLR3/Trif but entirely dependent on PKR. The phosphorylation of TLR3 on tyrosine 759 was shown to increase in parallel to IFN-β production in an iNOS- and Src-dependent manner, and Src was found to directly interact with TLR3 in the endosomal compartment of poly(I:C)-treated cells. Furthermore, we identified a robust NO/cGMP/PKG-dependent feedforward pathway for the amplification of iNOS expression. These data identify iNOS/NO as an integral component of IFN-β production in response to dsRNA in hepatocytes in a pathway that involves the coordinated activities of TLR3/Trif and PKR.
Collapse
Affiliation(s)
- Liyong Zhang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Wenpei Xiang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, the Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Wang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhengzheng Yan
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhaowei Zhu
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhong Guo
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Rajib Sengupta
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Alex F Chen
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Patricia A Loughran
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, the Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, and
| | - Ben Lu
- the Xiangya Third Hospital and Central South University School of Medicine, Changsha, China
| | - Qingde Wang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Timothy R Billiar
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213,
| |
Collapse
|
36
|
Green LA, Njoku V, Mund J, Case J, Yoder M, Murphy MP, Clauss M. Endogenous Transmembrane TNF-Alpha Protects Against Premature Senescence in Endothelial Colony Forming Cells. Circ Res 2016; 118:1512-24. [PMID: 27076598 DOI: 10.1161/circresaha.116.308332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/13/2016] [Indexed: 01/13/2023]
Abstract
RATIONALE Transmembrane tumor necrosis factor-α (tmTNF-α) is the prime ligand for TNF receptor 2, which has been shown to mediate angiogenic and blood vessel repair activities in mice. We have previously reported that the angiogenic potential of highly proliferative endothelial colony-forming cells (ECFCs) can be explained by the absence of senescent cells, which in mature endothelial cells occupy >30% of the population, and that exposure to a chronic inflammatory environment induced premature, telomere-independent senescence in ECFCs. OBJECTIVE The goal of this study was to determine the role of tmTNF-α in the proliferation of ECFCs. METHODS AND RESULTS Here, we show that tmTNF-α expression on ECFCs selects for higher proliferative potential and when removed from the cell surface promotes ECFC senescence. Moreover, the induction of premature senescence by chronic inflammatory conditions is blocked by inhibition of tmTNF-α cleavage. Indeed, the mechanism of chronic inflammation-induced premature senescence involves an abrogation of tmTNF/TNF receptor 2 signaling. This process is mediated by activation of the tmTNF cleavage metalloprotease TNF-α-converting enzyme via p38 MAP kinase activation and its concurrent export to the cell surface by means of increased iRhom2 expression. CONCLUSIONS Thus, we conclude that tmTNF-α on the surface of highly proliferative ECFCs plays an important role in the regulation of their proliferative capacity.
Collapse
Affiliation(s)
- Linden A Green
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.).
| | - Victor Njoku
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| | - Julie Mund
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| | - Jaime Case
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| | - Mervin Yoder
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| | - Michael P Murphy
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| | - Matthias Clauss
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| |
Collapse
|
37
|
Deng M, Loughran PA, Zhang L, Scott MJ, Billiar TR. Shedding of the tumor necrosis factor (TNF) receptor from the surface of hepatocytes during sepsis limits inflammation through cGMP signaling. Sci Signal 2015; 8:ra11. [PMID: 25628461 DOI: 10.1126/scisignal.2005548] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteolytic cleavage of the tumor necrosis factor (TNF) receptor (TNFR) from the cell surface contributes to anti-inflammatory responses and may be beneficial in reducing the excessive inflammation associated with multiple organ failure and mortality during sepsis. Using a clinically relevant mouse model of polymicrobial abdominal sepsis, we found that the production of inducible nitric oxide synthase (iNOS) in hepatocytes led to the cyclic guanosine monophosphate (cGMP)-dependent activation of the protease TACE (TNF-converting enzyme) and the shedding of TNFR. Furthermore, treating mice with a cGMP analog after the induction of sepsis increased TNFR shedding and decreased systemic inflammation. Similarly, increasing the abundance of cGMP with a clinically approved phosphodiesterase 5 inhibitor (sildenafil) also decreased markers of systemic inflammation, protected against organ injury, and increased circulating amounts of TNFR1 in mice with sepsis. We further confirmed that a similar iNOS-cGMP-TACE pathway was required for TNFR1 shedding by human hepatocytes in response to the bacterial product lipopolysaccharide. Our data suggest that increasing the bioavailability of cGMP might be beneficial in ameliorating the inflammation associated with sepsis.
Collapse
Affiliation(s)
- Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA. Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Liyong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
38
|
Freeman M. The Rhomboid-Like Superfamily: Molecular Mechanisms and Biological Roles. Annu Rev Cell Dev Biol 2014; 30:235-54. [DOI: 10.1146/annurev-cellbio-100913-012944] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew Freeman
- Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom;
| |
Collapse
|
39
|
Düsterhöft S, Höbel K, Oldefest M, Lokau J, Waetzig GH, Chalaris A, Garbers C, Scheller J, Rose-John S, Lorenzen I, Grötzinger J. A disintegrin and metalloprotease 17 dynamic interaction sequence, the sweet tooth for the human interleukin 6 receptor. J Biol Chem 2014; 289:16336-48. [PMID: 24790088 DOI: 10.1074/jbc.m114.557322] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A disintegrin and metalloprotease 17 (ADAM17) is a major sheddase involved in the regulation of a wide range of biological processes. Key substrates of ADAM17 are the IL-6 receptor (IL-6R) and TNF-α. The extracellular region of ADAM17 consists of a prodomain, a catalytic domain, a disintegrin domain, and a membrane-proximal domain as well as a small stalk region. This study demonstrates that this juxtamembrane segment is highly conserved, α-helical, and involved in IL-6R binding. This process is regulated by the structure of the preceding membrane-proximal domain, which acts as molecular switch of ADAM17 activity operated by a protein-disulfide isomerase. Hence, we have termed the conserved stalk region "Conserved ADAM seventeen dynamic interaction sequence" (CANDIS). Finally, we identified the region in IL-6R that binds to CANDIS. In contrast to the type I transmembrane proteins, the IL-6R, and IL-1RII, CANDIS does not bind the type II transmembrane protein TNF-α, demonstrating fundamental differences in the respective shedding by ADAM17.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- From the Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Katharina Höbel
- From the Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Mirja Oldefest
- From the Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Juliane Lokau
- From the Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Georg H Waetzig
- the CONARIS Research Institute AG, Schauenburgerstr. 116, 24118 Kiel, Germany, and
| | - Athena Chalaris
- From the Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Christoph Garbers
- From the Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany, the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jürgen Scheller
- the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stefan Rose-John
- From the Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Inken Lorenzen
- From the Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Joachim Grötzinger
- From the Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany,
| |
Collapse
|
40
|
Time-Course of the Effects of QSYQ in Promoting Heart Function in Ameroid Constrictor-Induced Myocardial Ischemia Pigs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:571076. [PMID: 24817898 PMCID: PMC4003740 DOI: 10.1155/2014/571076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/09/2014] [Accepted: 03/09/2014] [Indexed: 11/17/2022]
Abstract
We aim to investigate the therapeutic effects of QSYQ on a pig myocardial ischemia (MI) model and to determine its mechanism of action. The MI model was induced by Ameroid constriction of the left anterior descending coronary (LAD) in Ba-Ma miniature pigs. Four groups were created: model group, digoxin group, QSYQ group, and sham-operated group. Heart function, Ang II, CGMP, TXB2, BNP, and cTnT were evaluated before (3 weeks after operation: 0 weeks) and at 2, 4, and 8 weeks after drug administration. After 8 weeks of administration, the pigs were sacrificed for cardiac injury measurements. Pigs with MI showed obvious histological changes, including BNP, cTnT, Ang II, CGRP, TXB2, and ET, deregulated heart function, and increased levels of apoptotic cells in myocardial tissue. Treatment with QSYQ improved cardiac remodeling by counteracting those events. The administration of QSYQ was accompanied by a restoration of heart function and of the levels of Ang II, CGRP, TXB2, ET BNP, and cTnT. In addition, QSYQ attenuated administration, reduced the apoptosis, and decreased the level of TNF- α and active caspase-3. In conclusion, administration of QSYQ could attenuate Ameroid constrictor induced myocardial ischemia, and TNF- α and active caspase-3 seemed to be the critical potential target of QSYQ.
Collapse
|
41
|
Schwarz J, Schmidt S, Will O, Koudelka T, Köhler K, Boss M, Rabe B, Tholey A, Scheller J, Schmidt-Arras D, Schwake M, Rose-John S, Chalaris A. Polo-like kinase 2, a novel ADAM17 signaling component, regulates tumor necrosis factor α ectodomain shedding. J Biol Chem 2013; 289:3080-93. [PMID: 24338472 DOI: 10.1074/jbc.m113.536847] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ADAM17 (a disintegrin and metalloprotease 17) controls pro- and anti-inflammatory signaling events by promoting ectodomain shedding of cytokine precursors and cytokine receptors. Despite the well documented substrate repertoire of ADAM17, little is known about regulatory mechanisms, leading to substrate recognition and catalytic activation. Here we report a direct interaction of the acidophilic kinase Polo-like kinase 2 (PLK2, also known as SNK) with the cytoplasmic portion of ADAM17 through the C-terminal noncatalytic region of PLK2 containing the Polo box domains. PLK2 activity leads to ADAM17 phosphorylation at serine 794, which represents a novel phosphorylation site. Activation of ADAM17 by PLK2 results in the release of pro-TNFα and TNF receptors from the cell surface, and pharmacological inhibition of PLK2 leads to down-regulation of LPS-induced ADAM17-mediated shedding on primary macrophages and dendritic cells. Importantly, PLK2 expression is up-regulated during inflammatory conditions increasing ADAM17-mediated proteolytic events. Our findings suggest a new role for PLK2 in the regulation of inflammatory diseases by modulating ADAM17 activity.
Collapse
Affiliation(s)
- Jeanette Schwarz
- From the Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schwarz J, Broder C, Helmstetter A, Schmidt S, Yan I, Müller M, Schmidt-Arras D, Becker-Pauly C, Koch-Nolte F, Mittrücker HW, Rabe B, Rose-John S, Chalaris A. Short-term TNFα shedding is independent of cytoplasmic phosphorylation or furin cleavage of ADAM17. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3355-3367. [DOI: 10.1016/j.bbamcr.2013.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/23/2013] [Accepted: 10/05/2013] [Indexed: 01/06/2023]
|
43
|
Xia H, Sriramula S, Chhabra KH, Lazartigues E. Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension. Circ Res 2013; 113:1087-1096. [PMID: 24014829 DOI: 10.1161/circresaha.113.301811] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Overactivity of the brain renin-angiotensin system is a major contributor to neurogenic hypertension. Although overexpression of angiotensin-converting enzyme type 2 (ACE2) has been shown to be beneficial in reducing hypertension by transforming angiotensin II into angiotensin-(1-7), several groups have reported decreased brain ACE2 expression and activity during the development of hypertension. OBJECTIVE We hypothesized that ADAM17-mediated ACE2 shedding results in decreased membrane-bound ACE2 in the brain, thus promoting the development of neurogenic hypertension. METHODS AND RESULTS To test this hypothesis, we used the deoxycorticosterone acetate-salt model of neurogenic hypertension in nontransgenic and syn-hACE2 mice overexpressing ACE2 in neurons. Deoxycorticosterone acetate-salt treatment in nontransgenic mice led to significant increases in blood pressure, hypothalamic angiotensin II levels, inflammation, impaired baroreflex sensitivity, and autonomic dysfunction, as well as decreased hypothalamic ACE2 activity and expression, although these changes were blunted or prevented in syn-hACE2 mice. In addition, reduction of ACE2 expression and activity in the brain paralleled an increase in ACE2 activity in the cerebrospinal fluid of nontransgenic mice after deoxycorticosterone acetate-salt treatment and were accompanied by enhanced ADAM17 expression and activity in the hypothalamus. Chronic knockdown of ADAM17 in the brain blunted the development of hypertension and restored ACE2 activity and baroreflex function. CONCLUSIONS Our data provide the first evidence that ADAM17-mediated shedding impairs brain ACE2 compensatory activity, thus contributing to the development of neurogenic hypertension.
Collapse
Affiliation(s)
- Huijing Xia
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kavaljit H Chhabra
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
44
|
Sildenafil (Viagra) protective effects on neuroinflammation: the role of iNOS/NO system in an inflammatory demyelination model. Mediators Inflamm 2013; 2013:321460. [PMID: 23970812 PMCID: PMC3736464 DOI: 10.1155/2013/321460] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 12/19/2022] Open
Abstract
We recently demonstrated that sildenafil reduces the expression of cytokines, COX-2, and GFAP in a demyelinating model induced in wild-type (WT) mice. Herein, the understandings of the neuroprotective effect of sildenafil and the mediation of iNOS/NO system on inflammatory demyelination induced by cuprizone were investigated. The cerebella of iNOS(-/-) mice were examined after four weeks of treatment with cuprizone alone or combined with sildenafil. Cuprizone increased GFAP, Iba-1, TNF- α , COX-2, IL-1 β , and IFN- γ expression, decreased expression of glutathione S-transferase pi (GSTpi), and damaged myelin in iNOS(-/-) mice. Sildenafil reduced Iba-1, IFN- γ , and IL-1 β levels but had no effect on the expression of GFAP, TNF- α , and COX-2 compared to the cuprizone group. Sildenafil elevated GSTpi levels and improved the myelin structure/ultrastructure. iNOS(-/-) mice suffered from severe inflammation following treatment with cuprizone, while WT mice had milder inflammation, as found in the previous study. It is possible that inflammatory regulation through iNOS-feedback is absent in iNOS(-/-) mice, making them more susceptible to inflammation. Sildenafil has at least a partial anti-inflammatory effect through iNOS inhibition, as its effect on iNOS(-/-) mice was limited. Further studies are required to explain the underlying mechanism of the sildenafil effects.
Collapse
|
45
|
Bergbold N, Lemberg MK. Emerging role of rhomboid family proteins in mammalian biology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2840-8. [PMID: 23562403 DOI: 10.1016/j.bbamem.2013.03.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/26/2013] [Accepted: 03/26/2013] [Indexed: 01/19/2023]
Abstract
From proteases that cleave peptide bonds in the plane of the membrane, rhomboids have evolved into a heterogeneous superfamily with a wide range of different mechanistic properties. In mammals 14 family members have been annotated based on a shared conserved membrane-integral rhomboid core domain, including intramembrane serine proteases and diverse proteolytically inactive homologues. While the function of rhomboid proteases is the proteolytic release of membrane-tethered factors, rhomboid pseudoproteases including iRhoms and derlins interact with their clients without cleaving them. It has become evident that specific recognition of membrane protein substrates and clients by the rhomboid fold reflects a spectrum of cellular functions ranging from growth factor activation, trafficking control to membrane protein degradation. This review summarizes recent progress on rhomboid family proteins in the mammalian secretory pathway and raises the question whether they can be seen as new drug targets for inflammatory diseases and cancer. This article is part of a special issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Nina Bergbold
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | |
Collapse
|