1
|
Sutharsan S, Fischer R, Gleiber W, Horsley A, Crosby J, Guo S, Xia S, Yu R, Newman KB, Elborn JS. Randomised, phase 1/2a trial of ION-827359, an antisense oligonucleotide inhibitor of ENaC. ERJ Open Res 2024; 10:00986-2023. [PMID: 39286058 PMCID: PMC11403593 DOI: 10.1183/23120541.00986-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/11/2024] [Indexed: 09/19/2024] Open
Abstract
Background Hyperactivity of epithelial sodium channel (ENaC) with increased sodium absorption is a feature of cystic fibrosis (CF). ION-827359 is a 2.5-generation antisense oligonucleotide targeted to reduce ENaC protein. This study evaluated ION-827359 safety, pharmacokinetics and pharmacodynamics. Methods In this three-part phase 1/2a, double-blind, randomised study, healthy volunteers received single doses of placebo or ION-827359 (3, 10, 37.5 or 100 mg; Part 1) or multiple doses of placebo or ION-827359 (5×10 mg, 5×37.5 mg, 5×75 mg or 10×37.5 mg; Part 2). People with CF (pwCF) received multiple doses of placebo or ION-827359 (5×10 mg, 5×37.5 mg, 5×75 mg and 5×100 mg; Part 3). Treatments were administered via Pari eFlow© mesh nebuliser. The primary outcome was safety; pharmacokinetic and pharmacodynamic parameters were also assessed. Results 64 healthy volunteers and 34 pwCF were enrolled. ION-827359 was well tolerated with an acceptable safety profile. There were no clinically relevant changes in laboratory values, ECG or vital signs. Systemic drug exposure was low (plasma half-life ∼2 weeks). Multiple doses of ION-827359 were associated with dose-dependent reductions in ENaC mRNA in bronchial epithelium. After multiple dosing, forced expiratory volume in 1 s was slightly higher in pwCF receiving ION-827359 (+2.9% with ION-827359 100 mg versus placebo; p=0.27). Conclusions The tolerability and safety of ION-827359 appear favourable at this stage of investigation. Reduction in ENaC mRNA supports mechanistic efficacy at the doses and regimens tested, and supports further investigation of ION-827359 in pwCF.
Collapse
Affiliation(s)
- Sivagurunathan Sutharsan
- Division of Cystic Fibrosis, Department of Pulmonary Medicine, University Medicine Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | | | - Wolfgang Gleiber
- Schwerpunkt Pneumologie/Allergologie, Goethe University, Frankfurt, Germany
| | - Alex Horsley
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Jeff Crosby
- Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Shuting Xia
- Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Rosie Yu
- Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | | | - J Stuart Elborn
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| |
Collapse
|
2
|
Esposito A, Rossi A, Stabile M, Pinto G, De Fino I, Melessike M, Tamanini A, Cabrini G, Lippi G, Aureli M, Loberto N, Renda M, Galietta LJV, Amoresano A, Dechecchi MC, De Gregorio E, Bragonzi A, Guaragna A. Assessing the Potential of N-Butyl-l-deoxynojirimycin (l-NBDNJ) in Models of Cystic Fibrosis as a Promising Antibacterial Agent. ACS Pharmacol Transl Sci 2024; 7:1807-1822. [PMID: 38898954 PMCID: PMC11184606 DOI: 10.1021/acsptsci.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Over the past few years, l-iminosugars have revealed attractive pharmacological properties for managing rare diseases including Cystic Fibrosis (CF). The iminosugar N-butyl-l-deoxynojirimycin (l-NBDNJ, ent-1), prepared by a carbohydrate-based route, was herein evaluated for its anti-inflammatory and anti-infective potential in models of CF lung disease infection. A significant decrease in the bacterial load in the airways was observed in the murine model of Pseudomonas aeruginosa chronic infection in the presence of l-NBDNJ, also accompanied by a modest reduction of inflammatory cells. Mechanistic insights into the observed activity revealed that l-NBDNJ interferes with the expression of proteins regulating cytoskeleton assembly and organization of the host cell, downregulates the main virulence factors of P. aeruginosa involved in the host response, and affects pathogen adhesion to human cells. These findings along with the observation of the absence of an in vitro bacteriostatic/bactericidal action of l-NBDNJ suggest the potential use of this glycomimetic as an antivirulence agent in the management of CF lung disease.
Collapse
Affiliation(s)
- Anna Esposito
- Department
of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples I-80125, Italy
| | - Alice Rossi
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Maria Stabile
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples I-80131, Italy
| | - Gabriella Pinto
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
| | - Ida De Fino
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Medede Melessike
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Anna Tamanini
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Giulio Cabrini
- Center on
Innovative Therapies for Cystic Fibrosis, Department of Life Sciences
and Biotechnology, University of Ferrara, Ferrara I-40121, Italy
| | - Giuseppe Lippi
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Massimo Aureli
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20054, Italy
| | - Nicoletta Loberto
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20054, Italy
| | - Mario Renda
- Telethon
Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples I-80078, Italy
| | - Luis J. V. Galietta
- Telethon
Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples I-80078, Italy
- Department
of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples I-80131, Italy
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
- Istituto
Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Rome I-00136, Italy
| | - Maria Cristina Dechecchi
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Eliana De Gregorio
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples I-80131, Italy
| | - Alessandra Bragonzi
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Annalisa Guaragna
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
| |
Collapse
|
3
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Fagunwa O, Davies K, Bradbury J. The Human Gut and Dietary Salt: The Bacteroides/ Prevotella Ratio as a Potential Marker of Sodium Intake and Beyond. Nutrients 2024; 16:942. [PMID: 38612976 PMCID: PMC11013828 DOI: 10.3390/nu16070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The gut microbiota is a dynamic ecosystem that plays a pivotal role in maintaining host health. The perturbation of these microbes has been linked to several health conditions. Hence, they have emerged as promising targets for understanding and promoting good health. Despite the growing body of research on the role of sodium in health, its effects on the human gut microbiome remain under-explored. Here, using nutrition and metagenomics methods, we investigate the influence of dietary sodium intake and alterations of the human gut microbiota. We found that a high-sodium diet (HSD) altered the gut microbiota composition with a significant reduction in Bacteroides and inverse increase in Prevotella compared to a low-sodium diet (LSD). However, there is no clear distinction in the Firmicutes/Bacteroidetes (F/B) ratio between the two diet types. Metabolic pathway reconstruction revealed the presence of sodium reabsorption genes in the HSD, but not LSD. Since it is currently difficult in microbiome studies to confidently associate the F/B ratio with what is considered healthy (e.g., low sodium) or unhealthy (e.g., high sodium), we suggest that the use of a genus-based ratio such as the Bacteroides/Prevotella (B/P) ratio may be more beneficial for the application of microbiome studies in health.
Collapse
Affiliation(s)
- Omololu Fagunwa
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| | - Kirsty Davies
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Jane Bradbury
- School of Medicine, Edge Hill University, Ormskirk L39 4QP, UK;
| |
Collapse
|
5
|
Algammal AM, Eidaroos NH, Alfifi KJ, Alatawy M, Al-Harbi AI, Alanazi YF, Ghobashy MOI, khafagy AR, Esawy AM, El-Sadda SS, Hetta HF, El-Tarabili RM. oprL Gene Sequencing, Resistance Patterns, Virulence Genes, Quorum Sensing and Antibiotic Resistance Genes of XDR Pseudomonas aeruginosa Isolated from Broiler Chickens. Infect Drug Resist 2023; 16:853-867. [PMID: 36818807 PMCID: PMC9937075 DOI: 10.2147/idr.s401473] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Background Pseudomonas aeruginosa is incriminated in septicemia, significant economic losses in the poultry production sector, and severe respiratory infections in humans. This study aimed to investigate the occurrence, oprL sequencing, antimicrobial resistance patterns, virulence-determinant, Quorum sensing, and antibiotic resistance genes of P. aeruginosa retrieved from broiler chickens. Methods Two hundred samples were collected from 120 broiler chickens from broiler farms at Ismailia Governorate, Egypt. Consequently, the bacteriological examination was conducted and the obtained P. aeruginosa strains were tested for oprL gene sequencing, antibiogram, and PCR screening of virulence, Quorum sensing, and antibiotic resistance genes. Results The overall prevalence of P. aeruginosa in the examined birds was 28.3%. The oprL gene sequence analysis underlined that the tested strain expressed a notable genetic identity with various P. aeruginosa strains isolated from different geographical areas in the USA, India, China, Chile, and Ghana. PCR evidenced that the obtained P. aeruginosa strains, carrying virulence-related genes: oprL, toxA, aprA, phzM, and exoS in a prevalence of 100%, 100%, 42.5%, 33.3%, and 25.9%, respectively. Moreover, the recovered P. aeruginosa strains possessed the Quorum sensing genes: lasI, lasR, rhlI, and rhlR in a prevalence of 85.2%, 85.2%, 81.5%, and 81.5%, respectively. Furthermore, 40.7% of the isolated P. aeruginosa were XDR to seven antimicrobial classes, possessing sul1, bla TEM, tetA, bla CTX-M, bla OXA-1, and aadA1 genes. Conclusion As we can tell, this is the first report emphasizing the evolution of XDR P. aeruginosa strains from broiler chicken in Egypt, which is supposed to be a serious threat to public health. The emerging XDR P. aeruginosa in poultry frequently harbored the oprL, toxA, and aprA virulence genes, the lasI, lasR, rhlI, and rhlR Quorum sensing genes, and the sul1, bla TEM, tetA, bla CTXM, bla OXA-1, and aadA1 resistance genes.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt,Correspondence: Abdelazeem M Algammal, Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt, Email
| | - Nada H Eidaroos
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Khyreyah J Alfifi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Yasmene F Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Madeha O I Ghobashy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia,Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed R khafagy
- Department of Microbiology, Faculty of Veterinary Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Hammers DE, Donahue DL, Tucker Z, Ashfeld BL, Ploplis VA, Castellino FJ, Lee SW. Streptolysin S targets the sodium-bicarbonate cotransporter NBCn1 to induce inflammation and cytotoxicity in human keratinocytes during Group A Streptococcal infection. Front Cell Infect Microbiol 2022; 12:1002230. [PMID: 36389147 PMCID: PMC9663810 DOI: 10.3389/fcimb.2022.1002230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Group A <i>Streptococcus</i> (GAS, <i>Streptococcus pyogenes</i>) is a Gram-positive human pathogen that employs several secreted and surface-bound virulence factors to manipulate its environment, allowing it to cause a variety of disease outcomes. One such virulence factor is Streptolysin S (SLS), a ribosomally-produced peptide toxin that undergoes extensive post-translational modifications. The activity of SLS has been studied for over 100 years owing to its rapid and potent ability to lyse red blood cells, and the toxin has been shown to play a major role in GAS virulence <i>in vivo</i>. We have previously demonstrated that SLS induces hemolysis by targeting the chloride-bicarbonate exchanger Band 3 in erythrocytes, indicating that SLS is capable of targeting host proteins to promote cell lysis. However, the possibility that SLS has additional protein targets in other cell types, such as keratinocytes, has not been explored. Here, we use bioinformatics analysis and chemical inhibition studies to demonstrate that SLS targets the electroneutral sodium-bicarbonate cotransporter NBCn1 in keratinocytes during GAS infection. SLS induces NF-κB activation and host cytotoxicity in human keratinocytes, and these processes can be mitigated by treating keratinocytes with the sodium-bicarbonate cotransport inhibitor S0859. Furthermore, treating keratinocytes with SLS disrupts the ability of host cells to regulate their intracellular pH, and this can be monitored in real time using the pH-sensitive dye pHrodo Red AM in live imaging studies. These results demonstrate that SLS is a multifunctional bacterial toxin that GAS uses in numerous context-dependent ways to promote host cell cytotoxicity and increase disease severity. Studies to elucidate additional host targets of SLS have the potential to impact the development of therapeutics for severe GAS infections.
Collapse
Affiliation(s)
- Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Deborah L. Donahue
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Zachary D. Tucker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Brandon L. Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Victoria A. Ploplis
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J. Castellino
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,*Correspondence: Shaun W. Lee,
| |
Collapse
|
7
|
Unravelling the Distinctive Virulence Traits and Clonal Relationship among the Pseudomonas aeruginosa Isolates from Diabetic Patients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with P. aeruginosa are three times more common in people with diabetes than in non-diabetic individuals. Investigations disclosing the distinguishing traits of P. aeruginosa strains to cause respiratory and wound infection in diabetics is limited. Wound swab and sputum from infected diabetic patients were used for the isolation of P. aeruginosa. The confirmed isolates were evaluated for their virulence factor production, antibiotic susceptibility, and clonal relationship. The study confirmed the increased virulence of sputum isolates characterized by their multidrug resistant nature, strong biofilm formation at 72h [(p<0.05) =0.003)] and 96h [(p<0.05) =0.002)] and elaboration of proteolytic enzymes (40.0%). Albeit the fact that wound isolates were less virulent than the sputum isolates, there was an increased siderophore production (77.0%). Nearly 90.0% of the isolates including sputum and wound were resistant to colistin. Random Amplified Polymorphic DNA analysis showed no distinct lineages of wound and sputum isolates. The study disclosed the higher prevalence of virulent P. aeruginosa in causing infection in the diabetics. No distinct lineages of the wound and sputum isolates indicated their ability to adapt to different host environments. To the best of our knowledge, this is the first study to show the difference in virulence traits among the P. aeruginosa strains isolated from sputum and wound of diabetic patients. Our study distinctly reveals the significance of periodic examination of antibiotic resistance and virulence factors of P. aeruginosa in order to recognize the possible co-regulatory mechanism involved in their expression.
Collapse
|
8
|
Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens 2022; 11:pathogens11030300. [PMID: 35335624 PMCID: PMC8950561 DOI: 10.3390/pathogens11030300] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is associated with several human infections, mainly related to healthcare services. In the hospital, it is associated with resistance to several antibiotics, which poses a great challenge to therapy. However, one of the biggest challenges in treating P. aeruginosa infections is that related to biofilms. The complex structure of the P. aeruginosa biofilm contributes an additional factor to the pathogenicity of this microorganism, leading to therapeutic failure, in addition to escape from the immune system, and generating chronic infections that are difficult to eradicate. In this review, we address several molecular aspects of the pathogenicity of P. aeruginosa biofilms.
Collapse
|
9
|
Goss CH, Fajac I, Jain R, Seibold W, Gupta A, Hsu MC, Sutharsan S, Davies JC, Mall MA. Efficacy and safety of inhaled ENaC inhibitor BI 1265162 in patients with cystic fibrosis: BALANCE-CF 1, a randomised, phase II study. Eur Respir J 2022; 59:2100746. [PMID: 34385272 PMCID: PMC8850685 DOI: 10.1183/13993003.00746-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/19/2021] [Indexed: 12/05/2022]
Abstract
BACKGROUND Inhibition of the epithelial sodium channel (ENaC) in cystic fibrosis (CF) airways provides a mutation-agnostic approach that could improve mucociliary clearance in all CF patients. BI 1265162 is an ENaC inhibitor with demonstrated pre-clinical efficacy and safety already demonstrated in humans. OBJECTIVE We present results from BALANCE-CFTM 1, a phase II, placebo-controlled, randomised, double-blind study of four dose levels of BI 1265162 versus placebo for 4 weeks on top of standard of care in adults and adolescents with CF. RESULTS Initially, 28 randomised subjects (BI 1265162 200 µg twice daily n=14, placebo twice daily n=14) were assessed at an interim futility analysis. Compared with placebo, numerical changes of -0.8% (95% CI -6.6 to 4.9%) in percentage predicted forced expiratory volume in 1s (ppFEV1) and +2.1 units (95% CI -2.4 to 6.5 units) in lung clearance index (LCI) were observed in the active group, meeting a pre-defined stopping rule; accordingly, the study was terminated. Recruitment had continued during the interim analysis and pending results; 24 patients were added across three dose levels and placebo. The final results including these patients (+1.5% ppFEV1, 200 µg twice-daily dose versus placebo) were not supportive of relevant clinical effect. Furthermore, LCI change was not supportive, although interpretation was limited due to insufficient traces meeting quality criteria. A 9.4-point improvement in the Cystic Fibrosis Questionnaire - Revised Respiratory Domain was observed in the 200 µg twice daily dose group versus placebo. BI 1265162 up to 200 µg twice daily was safe and well-tolerated. Pharmacokinetics were similar to those in healthy volunteers. CONCLUSION BI 1265162 was safe, but did not demonstrate a potential for clinical benefit. Development has been terminated.
Collapse
Affiliation(s)
- Christopher H Goss
- Dept of Medicine, Dept of Pediatrics, University of Washington, Seattle Children's Hospital and Research Institute, Seattle, WA, USA
| | | | - Raksha Jain
- Dept of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Ming-Chi Hsu
- Boehringer Ingelheim, Shanghai, China
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Sivagurunathan Sutharsan
- Division for Cystic Fibrosis, Dept of Pulmonary Medicine, University Medicine Essen - Ruhrlandklinik, Essen, Germany
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK
- Paediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| | - Marcus A Mall
- Dept of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| |
Collapse
|
10
|
Tsilosani A, Gao C, Zhang W. Aldosterone-Regulated Sodium Transport and Blood Pressure. Front Physiol 2022; 13:770375. [PMID: 35197862 PMCID: PMC8859437 DOI: 10.3389/fphys.2022.770375] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aldosterone is a major mineralocorticoid steroid hormone secreted by glomerulosa cells in the adrenal cortex. It regulates a variety of physiological responses including those to oxidative stress, inflammation, fluid disruption, and abnormal blood pressure through its actions on various tissues including the kidney, heart, and the central nervous system. Aldosterone synthesis is primarily regulated by angiotensin II, K+ concentration, and adrenocorticotrophic hormone. Elevated serum aldosterone levels increase blood pressure largely by increasing Na+ re-absorption in the kidney through regulating transcription and activity of the epithelial sodium channel (ENaC). This review focuses on the signaling pathways involved in aldosterone synthesis and its effects on Na+ reabsorption through ENaC.
Collapse
Affiliation(s)
- Akaki Tsilosani
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Chao Gao
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
11
|
Woodall M, Reidel B, Kesimer M, Tarran R, Baines DL. Culture with apically applied healthy or disease sputum alters the airway surface liquid proteome and ion transport across human bronchial epithelial cells. Am J Physiol Cell Physiol 2021; 321:C954-C963. [PMID: 34613844 PMCID: PMC8714986 DOI: 10.1152/ajpcell.00234.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Airway secretions contain many signaling molecules and peptides/proteins that are
not found in airway surface liquid (ASL) generated by normal human bronchial
epithelial cells (NHBEs) in vitro. These play a key role in innate defense and
mediate communication between the epithelium, the immune cells, and the external
environment. We investigated how culture of NHBE with apically applied
secretions from healthy or diseased (cystic fibrosis, CF) lungs affected
epithelial function with a view to providing better in vitro models of the in
vivo environment. NHBEs from 6 to 8 different donors were cultured at air-liquid
interface (ALI), with apically applied sputum from normal healthy donors (normal
lung sputum; NLS) or CF donors (CFS) for 2–4 h, 48 h, or with sputum
reapplied over 48 h. Proteomics analysis was carried out on the sputa and on the
NHBE ASL before and after culture with sputa. Transepithelial electrical
resistance (TEER), short circuit current (Isc), and changes to ASL
height were measured. There were 71 proteins common to both sputa but not ASL.
The protease:protease inhibitor balance was increased in CFS compared with NLS
and ASL. Culture of NHBE with sputa for 48 h identified additional factors not
present in NLS, CFS, or ASL alone. Culture with either NLS or CFS for 48 h
increased cystic fibrosis transmembrane regulator (CFTR) activity,
calcium-activated chloride channel (CaCC) activity, and changed ASL height.
These data indicate that culture with healthy or disease sputum changes the
proteomic profile of ASL and ion transport properties of NHBE and this may
increase physiological relevance when using in vitro airway models.
Collapse
Affiliation(s)
- Maximillian Woodall
- Institute for Infection and Immunity, St George's, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Boris Reidel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Deborah L Baines
- Institute for Infection and Immunity, St George's, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| |
Collapse
|
12
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
13
|
Mall MA. ENaC inhibition in cystic fibrosis: potential role in the new era of CFTR modulator therapies. Eur Respir J 2020; 56:2000946. [PMID: 32732328 PMCID: PMC7758539 DOI: 10.1183/13993003.00946-2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/18/2020] [Indexed: 01/07/2023]
Abstract
Small-molecule cystic fibrosis transmembrane conductance regulator (CFTR) modulator drugs for cystic fibrosis are the first therapies since the disease was initially described by Fanconi et al. [1] in 1936 to target and partially restore the function of the CFTR Cl− channel. CFTR modulator therapy is expected to have significant clinical benefits for many, but it does not result in a cure and is not appropriate or available for all patients with cystic fibrosis [2, 3]. In this review, evidence is described suggesting that inhibiting the epithelial Na+ channel (ENaC) responsible for the Na+/fluid absorption that contributes to airway surface dehydration and impaired mucociliary clearance (MCC) observed in cystic fibrosis airways may significantly improve clinical outcomes irrespective of the CFTR genotype, and may synergise with currently approved CFTR modulators to further improve clinical outcomes. ENaC inhibition with BI 1265162 is a promising strategy to optimise outcomes in patients with CF either eligible, or ineligible, for CFTR modulator therapy. Phase II clinical trials of BI 1265162 must now show this translates into clinical benefit. https://bit.ly/2OQ1IUI
Collapse
Affiliation(s)
- Marcus A Mall
- Dept of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| |
Collapse
|
14
|
Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020; 12:E616. [PMID: 32630625 PMCID: PMC7407299 DOI: 10.3390/pharmaceutics12070616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.
Collapse
Affiliation(s)
- Fahad A. Almughem
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Ahmad M. Aldossary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Essam A. Tawfik
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| |
Collapse
|
15
|
Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, Moehrlen U, Lode H, Huwer H, Hudel M, Mraheil MA, Toque HAF, Chakraborty T, Hamacher J. Impact of Bacterial Toxins in the Lungs. Toxins (Basel) 2020; 12:toxins12040223. [PMID: 32252376 PMCID: PMC7232160 DOI: 10.3390/toxins12040223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.
Collapse
Affiliation(s)
- Rudolf Lucas
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
| | - Joyce Gonzales
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Thomas Bodmer
- Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland;
| | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland;
| | - Hartmut Lode
- Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany;
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 Voelklingen/Saar, Germany;
| | - Martina Hudel
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Mobarak Abu Mraheil
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Haroldo Alfredo Flores Toque
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Trinad Chakraborty
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, D-66421 Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, D-66421 Homburg, Germany
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| |
Collapse
|
16
|
Kleyman TR, Eaton DC. Regulating ENaC's gate. Am J Physiol Cell Physiol 2020; 318:C150-C162. [PMID: 31721612 PMCID: PMC6985836 DOI: 10.1152/ajpcell.00418.2019] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Epithelial Na+ channels (ENaCs) are members of a family of cation channels that function as sensors of the extracellular environment. ENaCs are activated by specific proteases in the biosynthetic pathway and at the cell surface and remove embedded inhibitory tracts, which allows channels to transition to higher open-probability states. Resolved structures of ENaC and an acid-sensing ion channel revealed highly organized extracellular regions. Within the periphery of ENaC subunits are unique domains formed by antiparallel β-strands containing the inhibitory tracts and protease cleavage sites. ENaCs are inhibited by Na+ binding to specific extracellular site(s), which promotes channel transition to a lower open-probability state. Specific inositol phospholipids and channel modification by Cys-palmitoylation enhance channel open probability. How these regulatory factors interact in a concerted manner to influence channel open probability is an important question that has not been resolved. These various factors are reviewed, and the impact of specific factors on human disorders is discussed.
Collapse
Affiliation(s)
- Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, and Departments of Cell Biology and of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Douglas C Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
17
|
Ebenezer DL, Fu P, Krishnan Y, Maienschein-Cline M, Hu H, Jung S, Madduri R, Arbieva Z, Harijith A, Natarajan V. Genetic deletion of Sphk2 confers protection against Pseudomonas aeruginosa mediated differential expression of genes related to virulent infection and inflammation in mouse lung. BMC Genomics 2019; 20:984. [PMID: 31842752 PMCID: PMC6916461 DOI: 10.1186/s12864-019-6367-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is an opportunistic Gram-negative bacterium that causes serious life threatening and nosocomial infections including pneumonia. PA has the ability to alter host genome to facilitate its invasion, thus increasing the virulence of the organism. Sphingosine-1- phosphate (S1P), a bioactive lipid, is known to play a key role in facilitating infection. Sphingosine kinases (SPHK) 1&2 phosphorylate sphingosine to generate S1P in mammalian cells. We reported earlier that Sphk2-/- mice offered significant protection against lung inflammation, compared to wild type (WT) animals. Therefore, we profiled the differential expression of genes between the protected group of Sphk2-/- and the wild type controls to better understand the underlying protective mechanisms related to the Sphk2 deletion in lung inflammatory injury. Whole transcriptome shotgun sequencing (RNA-Seq) was performed on mouse lung tissue using NextSeq 500 sequencing system. RESULTS Two-way analysis of variance (ANOVA) analysis was performed and differentially expressed genes following PA infection were identified using whole transcriptome of Sphk2-/- mice and their WT counterparts. Pathway (PW) enrichment analyses of the RNA seq data identified several signaling pathways that are likely to play a crucial role in pneumonia caused by PA such as those involved in: 1. Immune response to PA infection and NF-κB signal transduction; 2. PKC signal transduction; 3. Impact on epigenetic regulation; 4. Epithelial sodium channel pathway; 5. Mucin expression; and 6. Bacterial infection related pathways. Our genomic data suggests a potential role for SPHK2 in PA-induced pneumonia through elevated expression of inflammatory genes in lung tissue. Further, validation by RT-PCR on 10 differentially expressed genes showed 100% concordance in terms of vectoral changes as well as significant fold change. CONCLUSION Using Sphk2-/- mice and differential gene expression analysis, we have shown here that S1P/SPHK2 signaling could play a key role in promoting PA pneumonia. The identified genes promote inflammation and suppress others that naturally inhibit inflammation and host defense. Thus, targeting SPHK2/S1P signaling in PA-induced lung inflammation could serve as a potential therapy to combat PA-induced pneumonia.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, USA
| | | | | | - Hong Hu
- Department of Bioinformatics, University of Illinois, Chicago, USA
| | - Segun Jung
- Globus, University of Chicago, Chicago, IL, USA
| | - Ravi Madduri
- Globus, University of Chicago, Chicago, IL, USA
- Argonne National Laboratory, Chicago, IL, USA
| | - Zarema Arbieva
- Department of Core Genomics Facility, University of Illinois, Chicago, USA
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Room 3139, COMRB Building, 909, South Wolcott Avenue, Chicago, IL, 60612, USA.
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, USA
- Department of Medicine, University of Illinois, Chicago, USA
| |
Collapse
|
18
|
Koeppen K, Barnaby R, Jackson AA, Gerber SA, Hogan DA, Stanton BA. Tobramycin reduces key virulence determinants in the proteome of Pseudomonas aeruginosa outer membrane vesicles. PLoS One 2019; 14:e0211290. [PMID: 30682135 PMCID: PMC6347270 DOI: 10.1371/journal.pone.0211290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Tobramycin is commonly used to treat Pseudomonas aeruginosa lung infections in patients with Cystic Fibrosis (CF). Tobramycin treatment leads to increased lung function and fewer clinical exacerbations in CF patients, and modestly reduces the density of P. aeruginosa in the lungs. P. aeruginosa resides primarily in the mucus overlying lung epithelial cells and secretes outer membrane vesicles (OMVs) that diffuse through the mucus and fuse with airway epithelial cells, thus delivering virulence factors into the cytoplasm that modify the innate immune response. The goal of this study was to test the hypothesis that Tobramycin reduces the abundance of virulence factors in OMVs secreted by P. aeruginosa. Characterization of the proteome of OMVs isolated from control or Tobramycin-exposed P. aeruginosa strain PAO1 revealed that Tobramycin reduced several OMV-associated virulence determinants, including AprA, an alkaline protease that enhances P. aeruginosa survival in the lung, and is predicted to contribute to the inhibitory effect of P. aeruginosa on Phe508del-CFTR Cl- secretion by primary human bronchial epithelial cells. Deletion of the gene encoding AprA reduced the inhibitory effect of P. aeruginosa on Phe508del-CFTR Cl- secretion. Moreover, as predicted by our proteomic analysis, OMVs isolated from Tobramycin treated P. aeruginosa had a diminished inhibitory effect on Phe508del-CFTR Cl- secretion compared to OMVs isolated from control P. aeruginosa. Taken together, our proteomic analysis of OMVs and biological validation suggest that Tobramycin may improve lung function in CF patients infected with P. aeruginosa by reducing several key virulence factors in OMVs that reduce CFTR Cl- secretion, which is essential for bacterial clearance from the lungs.
Collapse
Affiliation(s)
- Katja Koeppen
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Angelyca A. Jackson
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott A. Gerber
- Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
19
|
Garcia CJ, Pericleous A, Elsayed M, Tran M, Gupta S, Callaghan JD, Stella NA, Franks JM, Thibodeau PH, Shanks RMQ, Kadouri DE. Serralysin family metalloproteases protects Serratia marcescens from predation by the predatory bacteria Micavibrio aeruginosavorus. Sci Rep 2018; 8:14025. [PMID: 30232396 PMCID: PMC6145908 DOI: 10.1038/s41598-018-32330-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Micavibrio aeruginosavorus is an obligate Gram-negative predatory bacterial species that feeds on other Gram-negative bacteria by attaching to the surface of its prey and feeding on the prey's cellular contents. In this study, Serratia marcescens with defined mutations in genes for extracellular cell structural components and secreted factors were used in predation experiments to identify structures that influence predation. No change was measured in the ability of the predator to prey on S. marcescens flagella, fimbria, surface layer, prodigiosin and phospholipase-A mutants. However, higher predation was measured on S. marcescens metalloprotease mutants. Complementation of the metalloprotease gene, prtS, into the protease mutant, as well as exogenous addition of purified serralysin metalloprotease, restored predation to wild type levels. Addition of purified serralysin also reduced the ability of M. aeruginosavorus to prey on Escherichia coli. Incubating M. aeruginosavorus with purified metalloprotease was found to not impact predator viability; however, pre-incubating prey, but not the predator, with purified metalloprotease was able to block predation. Finally, using flow cytometry and fluorescent microscopy, we were able to confirm that the ability of the predator to bind to the metalloprotease mutant was higher than that of the metalloprotease producing wild-type. The work presented in this study shows that metalloproteases from S. marcescens could offer elevated protection from predation.
Collapse
Affiliation(s)
- Carlos J Garcia
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Androulla Pericleous
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Michael Tran
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Shilpi Gupta
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Jake D Callaghan
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nicholas A Stella
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jonathan M Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Patrick H Thibodeau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15221, USA
| | - Robert M Q Shanks
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA.
| |
Collapse
|
20
|
Balchak DM, Thompson RN, Kashlan OB. The epithelial Na + channel γ subunit autoinhibitory tract suppresses channel activity by binding the γ subunit's finger-thumb domain interface. J Biol Chem 2018; 293:16217-16225. [PMID: 30131333 DOI: 10.1074/jbc.ra118.004362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/21/2018] [Indexed: 01/11/2023] Open
Abstract
Epithelial Na+ channel (ENaC) maturation and activation require proteolysis of both the α and γ subunits. Cleavage at multiple sites in the finger domain of each subunit liberates their autoinhibitory tracts. Synthetic peptides derived from the proteolytically released fragments inhibit the channel, likely by reconstituting key interactions removed by the proteolysis. We previously showed that a peptide derived from the α subunit's autoinhibitory sequence (α-8) binds at the α subunit's finger-thumb domain interface. Despite low sequence similarity between the α and γ subunit finger domains, we hypothesized that a peptide derived from the γ subunit's autoinhibitory sequence (γ-11) inhibits the channel through an analogous mechanism. Using Xenopus oocytes, we found here that channels lacking a γ subunit thumb domain were no longer sensitive to γ-11, but remained sensitive to α-8. We identified finger domain sites in the γ subunit that dramatically reduced γ-11 inhibition. Using cysteines and sulfhydryl reactive cross-linkers introduced into both the peptide and the subunit, we also could cross-link γ-11 to both the finger domain and the thumb domain of the γ subunit. Our results suggest that α-8 and γ-11 occupy similar binding pockets within their respective subunits, and that proteolysis of the α and γ subunits activate the channel through analogous mechanisms.
Collapse
Affiliation(s)
| | | | - Ossama B Kashlan
- From the Department of Medicine, Renal-Electrolyte Division and .,the Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
21
|
Moore PJ, Tarran R. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin Ther Targets 2018; 22:687-701. [PMID: 30028216 DOI: 10.1080/14728222.2018.1501361] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for the CFTR anion channel. In the absence of functional CFTR, the epithelial Na+ channel is also dysregulated. Airway surface liquid (ASL) hydration is maintained by a balance between epithelial sodium channel (ENaC)-led Na+ absorption and CFTR-dependent anion secretion. This finely tuned homeostatic mechanism is required to maintain sufficient airway hydration to permit the efficient mucus clearance necessary for a sterile lung environment. In CF airways, the lack of CFTR and increased ENaC activity lead to ASL/mucus dehydration that causes mucus obstruction, neutrophilic infiltration, and chronic bacterial infection. Rehydration of ASL/mucus in CF airways can be achieved by inhibiting Na+ absorption with pharmacological inhibitors of ENaC. Areas covered: In this review, we discuss ENaC structure and function and its role in CF lung disease and focus on ENaC inhibition as a potential therapeutic target to rehydrate CF mucus. We also discuss the failure of the first generation of pharmacological inhibitors of ENaC and recent alternate strategies to attenuate ENaC activity in the CF lung. Expert opinion: ENaC is an attractive therapeutic target to rehydrate CF ASL that may serve as a monotherapy or function in parallel with other treatments. Given the increased number of strategies being employed to inhibit ENaC, this is an exciting and optimistic time to be in this field.
Collapse
Affiliation(s)
- Patrick J Moore
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA
| | - Robert Tarran
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
22
|
Gonzalez MR, Ducret V, Leoni S, Fleuchot B, Jafari P, Raffoul W, Applegate LA, Que YA, Perron K. Transcriptome Analysis of Pseudomonas aeruginosa Cultured in Human Burn Wound Exudates. Front Cell Infect Microbiol 2018. [PMID: 29535973 PMCID: PMC5835353 DOI: 10.3389/fcimb.2018.00039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a severe opportunistic pathogen and is one of the major causes of hard to treat burn wound infections. Herein we have used an RNA-seq transcriptomic approach to study the behavior of P. aeruginosa PAO1 growing directly on human burn wound exudate. A chemical analysis of compounds used by this bacterium, coupled with kinetics expression of central genes has allowed us to obtain a global view of P. aeruginosa physiological and metabolic changes occurring while growing on human burn wound exudate. In addition to the numerous virulence factors and their secretion systems, we have found that all iron acquisition mechanisms were overexpressed. Deletion and complementation with pyoverdine demonstrated that iron availability was a major limiting factor in burn wound exudate. The quorum sensing systems, known to be important for the virulence of P. aeruginosa, although moderately induced, were activated even at low cell density. Analysis of bacterial metabolism emphasized importance of lactate, lipid and collagen degradation pathways. Overall, this work allowed to designate, for the first time, a global view of P. aeruginosa characteristics while growing in human burn wound exudate and highlight the possible therapeutic approaches to combat P. aeruginosa burn wound infections.
Collapse
Affiliation(s)
- Manuel R Gonzalez
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Betty Fleuchot
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Paris Jafari
- Plastic, Reconstructive and Hand Surgery, Unit of Regenerative Therapy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery, Unit of Regenerative Therapy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lee A Applegate
- Plastic, Reconstructive and Hand Surgery, Unit of Regenerative Therapy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Bern University Hospital, Bern, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva and Centre Hospitalier Universitaire Vaudois, Geneva, Switzerland
| |
Collapse
|
23
|
Rickert-Zacharias V, Schultz C, Mall MA. A Protease Inhibitor Tackles Epithelial Sodium Channels in Cystic Fibrosis. Am J Respir Crit Care Med 2017; 194:650-2. [PMID: 27628073 DOI: 10.1164/rccm.201604-0781ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Verena Rickert-Zacharias
- 1 Department of Translational Pulmonology University of Heidelberg Heidelberg, Germany.,2 Molecular Medicine Partnership Unit European Molecular Biology Laboratory and University of Heidelberg Heidelberg, Germany.,3 Translational Lung Research Center Heidelberg German Center for Lung Research Heidelberg, Germany and
| | - Carsten Schultz
- 2 Molecular Medicine Partnership Unit European Molecular Biology Laboratory and University of Heidelberg Heidelberg, Germany.,3 Translational Lung Research Center Heidelberg German Center for Lung Research Heidelberg, Germany and.,4 Cell Biology and Biophysics Unit European Molecular Biology Laboratory Heidelberg, Germany
| | - Marcus A Mall
- 1 Department of Translational Pulmonology University of Heidelberg Heidelberg, Germany.,2 Molecular Medicine Partnership Unit European Molecular Biology Laboratory and University of Heidelberg Heidelberg, Germany.,3 Translational Lung Research Center Heidelberg German Center for Lung Research Heidelberg, Germany and
| |
Collapse
|
24
|
Emami A, Kazempour A, Pirbonyeh N, Keshavarzi A, Zardosht M. Hospitalization length survey and relation with distribution of LasA protease and type III secretion system encoding-genes in multi-drug resistant Pseudomonas aeruginosa isolates from burn wounds in southwest of Iran. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Kleyman TR, Kashlan OB, Hughey RP. Epithelial Na + Channel Regulation by Extracellular and Intracellular Factors. Annu Rev Physiol 2017; 80:263-281. [PMID: 29120692 DOI: 10.1146/annurev-physiol-021317-121143] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial Na+ channels (ENaCs) are members of the ENaC/degenerin family of ion channels that evolved to respond to extracellular factors. In addition to being expressed in the distal aspects of the nephron, where ENaCs couple the absorption of filtered Na+ to K+ secretion, these channels are found in other epithelia as well as nonepithelial tissues. This review addresses mechanisms by which ENaC activity is regulated by extracellular factors, including proteases, Na+, and shear stress. It also addresses other factors, including acidic phospholipids and modification of ENaC cytoplasmic cysteine residues by palmitoylation, which enhance channel activity by altering interactions of the channel with the plasma membrane.
Collapse
Affiliation(s)
- Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA; .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Ossama B Kashlan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA; .,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Rebecca P Hughey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA; .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| |
Collapse
|
26
|
Stanton BA. Effects of Pseudomonas aeruginosa on CFTR chloride secretion and the host immune response. Am J Physiol Cell Physiol 2017; 312:C357-C366. [PMID: 28122735 DOI: 10.1152/ajpcell.00373.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 12/18/2022]
Abstract
In the healthy lung the opportunistic pathogen, Pseudomonas aeruginosa, is rapidly eliminated by mucociliary clearance, a process that is dependent on the activity of the CFTR anion channel that, in concert with a number of other transport proteins, regulates the volume and composition of the periciliary surface liquid. This fluid layer is essential to enable cilia to clear pathogens from the lungs. However, in cystic fibrosis (CF), mutations in the CFTR gene reduce Cl- and [Formula: see text] secretion, thereby decreasing periciliary surface liquid volume and mucociliary clearance of bacteria. In CF this leads to persistent infection with the opportunistic pathogen, P. aeruginosa, which is the cause of reduced lung function and death in ~95% of CF patients. Others and we have conducted studies to elucidate the effects of P. aeruginosa on wild-type and Phe508del-CFTR Cl- secretion as well as on the host immune response. These studies have demonstrated that Cif (CFTR inhibitory factor), a virulence factor secreted by P. aeruginosa, is associated with reduced lung function in CF and induces the ubiquitination and degradation of wt-CFTR as well as TAP1, which plays a key role in viral and bacterial antigen presentation. Cif also enhances the degradation of Phe508del-CFTR that has been rescued by ORKAMBI, a drug approved for CF patients homozygous for the Phe508del-CFTR mutation, thereby reducing drug efficacy. This review is based on the Hans Ussing Distinguished Lecture at the 2016 Experimental Biology Meeting given by the author.
Collapse
Affiliation(s)
- Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
27
|
Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 2016; 173:2671-701. [PMID: 27278329 DOI: 10.1111/bph.13533] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC) are both members of the ENaC/degenerin family of amiloride-sensitive Na(+) channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na(+) reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone-dependent ENaC regulation and the evidence for an aldosterone-independent control of ENaC activity, such as regulation by dietary K(+) . We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles.
Collapse
Affiliation(s)
- Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Omar Alijevic
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
28
|
Metabolism and Pathogenicity of Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis. Microbiol Spectr 2016; 3. [PMID: 26350318 DOI: 10.1128/microbiolspec.mbp-0003-2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals with the genetic disease cystic fibrosis (CF) accumulate mucus or sputum in their lungs. This sputum is a potent growth substrate for a range of potential pathogens, and the opportunistic bacterium Pseudomonas aeruginosa is generally most difficult of these to eradicate. As a result, P. aeruginosa infections are frequently maintained in the CF lung throughout life, and are the leading cause of death for these individuals. While great effort has been expended to better understand and treat these devastating infections, only recently have researchers begun to rigorously examine the roles played by specific nutrients in CF sputum to cue P. aeruginosa pathogenicity. This chapter summarizes the current state of knowledge regarding how P. aeruginosa metabolism in CF sputum affects initiation and maintenance of these infections. It contains an overview of CF lung disease and the mechanisms of P. aeruginosa pathogenicity. Several model systems used to study these infections are described with emphasis on the challenge of replicating the chronic infections observed in humans with CF. Nutrients present in CF sputum are surveyed, and the impacts of these nutrients on the infection are discussed. The chapter concludes by addressing the future of this line of research including the use of next-generation technologies and the potential for metabolism-based therapeutics.
Collapse
|
29
|
Ghosh A, Boucher RC, Tarran R. Airway hydration and COPD. Cell Mol Life Sci 2015; 72:3637-52. [PMID: 26068443 PMCID: PMC4567929 DOI: 10.1007/s00018-015-1946-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung's mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (1) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na(+) channel (ENaC) to maintain airway hydration; (2) ciliary beating; and (3) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure.
Collapse
Affiliation(s)
- Arunava Ghosh
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - R C Boucher
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA.
| |
Collapse
|
30
|
Zhang L, Morrison AJ, Thibodeau PH. Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens. PLoS One 2015; 10:e0138419. [PMID: 26378460 PMCID: PMC4574703 DOI: 10.1371/journal.pone.0138419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/30/2015] [Indexed: 11/20/2022] Open
Abstract
The serralysin family of bacterial metalloproteases is associated with virulence in multiple modes of infection. These extracellular proteases are members of the Repeats-in-ToXin (RTX) family of toxins and virulence factors, which mediated virulence in E. coli, B. pertussis, and P. aeruginosa, as well as other animal and plant pathogens. The serralysin proteases are structurally dynamic and their folding is regulated by calcium binding to a C-terminal domain that defines the RTX family of proteins. Previous studies have suggested that interactions between N-terminal sequences and this C-terminal domain are important for the high thermal and chemical stabilities of the RTX proteases. Extending from this, stabilization of these interactions in the native structure may lead to hyperstabilization of the folded protein. To test this hypothesis, cysteine pairs were introduced into the N-terminal helix and the RTX domain and protease folding and activity were assessed. Under stringent pH and temperature conditions, the disulfide-bonded mutant showed increased protease activity and stability. This activity was dependent on the redox environment of the refolding reaction and could be blocked by selective modification of the cysteine residues before protease refolding. These data demonstrate that the thermal and chemical stability of these proteases is, in part, mediated by binding between the RTX domain and the N-terminal helix and demonstrate that stabilization of this interaction can further stabilize the active protease, leading to additional pH and thermal tolerance.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
| | - Anneliese J. Morrison
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
| | - Patrick H. Thibodeau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
- * E-mail:
| |
Collapse
|
31
|
Mall MA, Galietta LJV. Targeting ion channels in cystic fibrosis. J Cyst Fibros 2015; 14:561-70. [PMID: 26115565 DOI: 10.1016/j.jcf.2015.06.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/12/2022]
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause a characteristic defect in epithelial ion transport that plays a central role in the pathogenesis of cystic fibrosis (CF). Hence, pharmacological correction of this ion transport defect by targeting of mutant CFTR, or alternative ion channels that may compensate for CFTR dysfunction, has long been considered as an attractive approach to a causal therapy of this life-limiting disease. The recent introduction of the CFTR potentiator ivacaftor into the therapy of a subgroup of patients with specific CFTR mutations was a major milestone and enormous stimulus for seeking effective ion transport modulators for all patients with CF. In this review, we discuss recent breakthroughs and setbacks with CFTR modulators designed to rescue mutant CFTR including the common mutation F508del. Further, we examine the alternative chloride channels TMEM16A and SLC26A9, as well as the epithelial sodium channel ENaC as alternative targets in CF lung disease, which remains the major cause of morbidity and mortality in patients with CF. Finally, we will focus on the hurdles that still need to be overcome to make effective ion transport modulation therapies available for all patients with CF irrespective of their CFTR genotype.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany; Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
32
|
Identification of SlpB, a Cytotoxic Protease from Serratia marcescens. Infect Immun 2015; 83:2907-16. [PMID: 25939509 DOI: 10.1128/iai.03096-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/27/2015] [Indexed: 12/28/2022] Open
Abstract
The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens.
Collapse
|
33
|
Ray EC, Rondon-Berrios H, Boyd CR, Kleyman TR. Sodium retention and volume expansion in nephrotic syndrome: implications for hypertension. Adv Chronic Kidney Dis 2015; 22:179-84. [PMID: 25908466 PMCID: PMC4409655 DOI: 10.1053/j.ackd.2014.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 01/09/2023]
Abstract
Sodium retention is a major clinical feature of nephrotic syndrome. The mechanisms responsible for sodium retention in this setting have been a subject of debate for years. Excessive sodium retention occurs in some individuals with nephrotic syndrome in the absence of activation of the renin-angiotensin-aldosterone system, suggesting an intrinsic defect in sodium excretion by the kidney. Recent studies have provided new insights regarding mechanisms by which sodium transporters are activated by factors present in nephrotic urine. These mechanisms likely have a role in the development of hypertension in nephrotic syndrome, where hypertension may be difficult to control, and provide new therapeutic options for the management of blood pressure and edema in the setting of nephrotic syndrome.
Collapse
Affiliation(s)
- Evan C Ray
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Helbert Rondon-Berrios
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA.
| | - Cary R Boyd
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas R Kleyman
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
34
|
Edinger RS, Coronnello C, Bodnar AJ, Labarca M, Bhalla V, LaFramboise WA, Benos PV, Ho J, Johnson JP, Butterworth MB. Aldosterone regulates microRNAs in the cortical collecting duct to alter sodium transport. J Am Soc Nephrol 2014; 25:2445-57. [PMID: 24744440 PMCID: PMC4214524 DOI: 10.1681/asn.2013090931] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/05/2014] [Indexed: 12/26/2022] Open
Abstract
A role for microRNAs (miRs) in the physiologic regulation of sodium transport in the kidney has not been established. In this study, we investigated the potential of aldosterone to alter miR expression in mouse cortical collecting duct (mCCD) epithelial cells. Microarray studies demonstrated the regulation of miR expression by aldosterone in both cultured mCCD and isolated primary distal nephron principal cells. Aldosterone regulation of the most significantly downregulated miRs, mmu-miR-335-3p, mmu-miR-290-5p, and mmu-miR-1983 was confirmed by quantitative RT-PCR. Reducing the expression of these miRs separately or in combination increased epithelial sodium channel (ENaC)-mediated sodium transport in mCCD cells, without mineralocorticoid supplementation. Artificially increasing the expression of these miRs by transfection with plasmid precursors or miR mimic constructs blunted aldosterone stimulation of ENaC transport. Using a newly developed computational approach, termed ComiR, we predicted potential gene targets for the aldosterone-regulated miRs and confirmed ankyrin 3 (Ank3) as a novel aldosterone and miR-regulated protein. A dual-luciferase assay demonstrated direct binding of the miRs with the Ank3-3' untranslated region. Overexpression of Ank3 increased and depletion of Ank3 decreased ENaC-mediated sodium transport in mCCD cells. These findings implicate miRs as intermediaries in aldosterone signaling in principal cells of the distal kidney nephron.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John P Johnson
- Renal-Electrolyte Division, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael B Butterworth
- Renal-Electrolyte Division, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Zhang L, Franks J, Stolz DB, Conway JF, Thibodeau PH. Inducible polymerization and two-dimensional assembly of the repeats-in-toxin (RTX) domain from the Pseudomonas aeruginosa alkaline protease. Biochemistry 2014; 53:6452-62. [PMID: 25232897 PMCID: PMC4204888 DOI: 10.1021/bi5007546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Self-assembling proteins represent
potential scaffolds for the
organization of enzymatic activities. The alkaline protease repeats-in-toxin
(RTX) domain from Pseudomonas aeruginosa undergoes
multiple structural transitions in the presence and absence of calcium,
a native structural cofactor. In the absence of calcium, this domain
is capable of spontaneous, ordered polymerization, producing amyloid-like
fibrils and large two-dimensional protein sheets. This polymerization
occurs under near-physiological conditions, is rapid, and can be controlled
by regulating calcium in solution. Fusion of the RTX domain to a soluble
protein results in the incorporation of engineered protein function
into these macromolecular assemblies. Applications of this protein
sequence in bacterial adherence and colonization and the generation
of biomaterials are discussed.
Collapse
Affiliation(s)
- Liang Zhang
- Departments of Cell Biology and ‡Structural Biology, The University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15261, United States
| | | | | | | | | |
Collapse
|
36
|
Pavlov TS, Levchenko V, Staruschenko A. Role of Rho GDP dissociation inhibitor α in control of epithelial sodium channel (ENaC)-mediated sodium reabsorption. J Biol Chem 2014; 289:28651-9. [PMID: 25164814 DOI: 10.1074/jbc.m114.558262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The epithelial sodium channel (ENaC) is expressed in the aldosterone-sensitive distal nephron where it performs sodium reabsorption from the lumen. We have recently shown that ENaC activity contributes to the development of salt-induced hypertension as a result of deficiency of EGF level. Previous studies revealed that Rho GDP-dissociation inhibitor α (RhoGDIα) is involved in the control of salt-sensitive hypertension and renal injury via Rac1, which is one of the small GTPases activating ENaC. Here we investigated the intracellular mechanism mediating the involvement of the RhoGDIα/Rac1 axis in the control of ENaC and the effect of EGF on ENaC in this pathway. We demonstrated that RhoGDIα is highly expressed in the cortical collecting ducts of mice and rats, and its expression is down-regulated in Dahl salt-sensitive rats fed a high salt diet. Knockdown of RhoGDIα in cultured cortical collecting duct principal cells increased ENaC subunits expression and ENaC-mediated sodium reabsorption. Furthermore, RhoGDIα deficiency causes enhanced response to EGF treatment. Patch clamp analysis reveals that RhoGDIα significantly decreases ENaC current density and prevents its up-regulation by RhoA and Rac1. Inhibition of Rho kinase with Y27632 had no effects on ENaC response to EGF either in control or RhoGDIα knocked down cells. However, EGF treatment increased levels of active Rac1, which was further enhanced in RhoGDIα-deficient cells. We conclude that changes in the RhoGDIα-dependent pathway have a permissive role in the Rac1-mediated enhancement of ENaC activity observed in salt-induced hypertension.
Collapse
Affiliation(s)
- Tengis S Pavlov
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Vladislav Levchenko
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Alexander Staruschenko
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
37
|
Modulation of the epithelial sodium channel (ENaC) by bacterial metalloproteases and protease inhibitors. PLoS One 2014; 9:e100313. [PMID: 24963801 PMCID: PMC4070987 DOI: 10.1371/journal.pone.0100313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/25/2014] [Indexed: 12/28/2022] Open
Abstract
The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP) from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC), leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.
Collapse
|
38
|
McGuigan L, Callaghan M. The evolving dynamics of the microbial community in the cystic fibrosis lung. Environ Microbiol 2014; 17:16-28. [DOI: 10.1111/1462-2920.12504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Luke McGuigan
- Department of Science; Centre of Microbial Host Interactions (CMHI); ITT-Dublin; Dublin Ireland
| | - Máire Callaghan
- Department of Science; Centre of Microbial Host Interactions (CMHI); ITT-Dublin; Dublin Ireland
| |
Collapse
|
39
|
Warnock DG, Kusche-Vihrog K, Tarjus A, Sheng S, Oberleithner H, Kleyman TR, Jaisser F. Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. Nat Rev Nephrol 2014; 10:146-57. [PMID: 24419567 DOI: 10.1038/nrneph.2013.275] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.
Collapse
Affiliation(s)
- David G Warnock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 34294-0007, USA
| | - Kristina Kusche-Vihrog
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Antoine Tarjus
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Shaohu Sheng
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Hans Oberleithner
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Thomas R Kleyman
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Frederic Jaisser
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
40
|
Abstract
Pseudomonas aeruginosa secretes into its environment at least seven extracellular proteases: pseudolysin (LasB protease; elastase), aeruginolysin (alkaline proteinase), staphylolysin (staphylolytic endopeptidase; LasA protease), lysyl endopeptidase (protease IV; PrpL), PASP (P. aeruginosa small protease), LepA (Large ExoProtease A), and an aminopeptidase. Their action on host proteins, both individually and synergistically, plays important roles in pathogenesis of P. aeruginosa infections. Methods to measure/detect their activities are fundamental for understanding their physiological functions, roles in pathogenesis, mechanisms of action, regulation, and secretion. Most assays for determination/detection of proteolytic activity employ modified/non-modified casein or gelatin as substrates. In the quantitative assay, fragments generated from azocasein are separated from undigested substrate by trichloroacetic acid precipitation and their absorbance is measured. In non-quantitative assays, proteolytic activity is detected as clearing zones around bacterial growth or samples of culture supernatants on casein containing solid media formed due to local casein degradation. In zymography, individual proteases are detected as clear bands in gelatin/casein containing gels after SDS-PAGE separation, renaturation and protein staining. The elastinolytic capacity of P. aeruginosa is reflected by clearing zones on nutrient agar plates containing insoluble elastin instead of casein. Mueller-Hinton agar plates on which S. aureus cells are grown as a lawn are used to assess the susceptibility of S. aureus isolates to staphylolysin. A clear zone around a staphylolysin-containing sample indicates inhibition of S. aureus growth. Methods for measuring the activity of individual proteases are based on their cleavage specificity. These include assays of elastinolytic activity of pseudolysin and/or staphylolysin using elastin-Congo red as a substrate, a method for determination of staphylolytic activity in which the rate of S. aureus cell lysis is determined spectrophotometrically, and methods for determination of peptidase activity of pseudolysin, staphylolysin, lysyl endopeptidase, and the aminopeptidase. The latter methods employ chromogenic or fluorogenic peptide derivatives comprising a short amino acid sequence matching the preferred cleavage site of the protease as substrates. As only one peptide bond is cleaved in each substrate, these assays permit kinetic studies.
Collapse
|
41
|
Abstract
Asthma, Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF) are all pulmonary diseases which are characterized by chronic inflammation and an increase in mucus production. Excess mucus in the airways correlates with pathophysiology such as a decline in lung function and prolonged bacterial infections. New drugs to treat these chronic respiratory diseases are currently being developed and include both inhaled and orally administered compounds. Whilst oral drugs may be easier to administer, they are more prone to side-effects due to higher bioavailability. Inhaled compounds may show reduced bioavailability, but face their own unique challenges. For example, thick mucus in the respiratory tracts of asthma, CF and COPD patients can act as a physical barrier that impedes drug delivery. Mucus also contains a high number of enzymes and proteases that may degrade compounds before they reach their site of action. Furthermore, some classes of drugs are rapidly absorbed across the respiratory epithelia into systemic circulation, which may limit their duration of action and/or cause off-target effects. This review discusses some of the different treatment options that are currently available and the considerations that need to be taken into account to produce new therapies for the treatment of chronic respiratory diseases.
Collapse
Affiliation(s)
- Jean Tyrrell
- Cystic Fibrosis/Pulmonary Research and Treatment Center, North Carolina, USA
| | - Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, North Carolina, USA ; Department of Cell Biology and Physiology, University of North Carolina, North Carolina, USA
| |
Collapse
|
42
|
Hendricks MR, Bomberger JM. Who's really in control: microbial regulation of protein trafficking in the epithelium. Am J Physiol Cell Physiol 2013; 306:C187-97. [PMID: 24133062 DOI: 10.1152/ajpcell.00277.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to evolutionary pressure, there are many complex interactions at the interface between pathogens and eukaryotic host cells wherein host cells attempt to clear invading microorganisms and pathogens counter these mechanisms to colonize and invade host tissues. One striking observation from studies focused on this interface is that pathogens have multiple mechanisms to modulate and disrupt normal cellular physiology to establish replication niches and avoid clearance. The precision by which pathogens exert their effects on host cells makes them excellent tools to answer questions about cell physiology of eukaryotic cells. Furthermore, an understanding of these mechanisms at the host-pathogen interface will benefit our understanding of how pathogens cause disease. In this review, we describe a few examples of how pathogens disrupt normal cellular physiology and protein trafficking at epithelial cell barriers to underscore how pathogens modulate cellular processes to cause disease and how this knowledge has been utilized to learn about cellular physiology.
Collapse
Affiliation(s)
- Matthew R Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
43
|
Garnett JP, Gray MA, Tarran R, Brodlie M, Ward C, Baker EH, Baines DL. Elevated paracellular glucose flux across cystic fibrosis airway epithelial monolayers is an important factor for Pseudomonas aeruginosa growth. PLoS One 2013; 8:e76283. [PMID: 24124542 PMCID: PMC3790714 DOI: 10.1371/journal.pone.0076283] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/22/2013] [Indexed: 01/17/2023] Open
Abstract
People with cystic fibrosis (CF) who develop related diabetes (CFRD) have accelerated pulmonary decline, increased infection with antibiotic-resistant Pseudomonas aeruginosa and increased pulmonary exacerbations. We have previously shown that glucose concentrations are elevated in airway surface liquid (ASL) of people with CF, particularly in those with CFRD. We therefore explored the hypotheses that glucose homeostasis is altered in CF airway epithelia and that elevation of glucose flux into ASL drives increased bacterial growth, with an effect over and above other cystic fibrosis transmembrane conductance regulator (CFTR)-related ASL abnormalities. The aim of this study was to compare the mechanisms governing airway glucose homeostasis in CF and non-CF primary human bronchial epithelial (HBE) monolayers, under normal conditions and in the presence of Ps. aeruginosa filtrate. HBE-bacterial co-cultures were performed in the presence of 5 mM or 15 mM basolateral glucose to investigate how changes in blood glucose, such as those seen in CFRD, affects luminal Ps. aeruginosa growth. Calu-3 cell monolayers were used to evaluate the potential importance of glucose on Ps. aeruginosa growth, in comparison to other hallmarks of the CF ASL, namely mucus hyperviscosity and impaired CFTR-dependent fluid secretions. We show that elevation of basolateral glucose promotes the apical growth of Ps. aeruginosa on CF airway epithelial monolayers more than non-CF monolayers. Ps. aeruginosa secretions elicited more glucose flux across CF airway epithelial monolayers compared to non-CF monolayers which we propose increases glucose availability in ASL for bacterial growth. In addition, elevating basolateral glucose increased Ps. aeruginosa growth over and above any CFTR-dependent effects and the presence or absence of mucus in Calu-3 airway epithelia-bacteria co-cultures. Together these studies highlight the importance of glucose as an additional factor in promoting Ps. aeruginosa growth and respiratory infection in CF disease.
Collapse
Affiliation(s)
- James P. Garnett
- Division of Biomedical Sciences, St George's University of London, London, United Kingdom
| | - Michael A. Gray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Centre, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Malcolm Brodlie
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Christopher Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Emma H. Baker
- Division of Biomedical Sciences, St George's University of London, London, United Kingdom
| | - Deborah L. Baines
- Division of Biomedical Sciences, St George's University of London, London, United Kingdom
| |
Collapse
|
44
|
Hobbs CA, Da Tan C, Tarran R. Does epithelial sodium channel hyperactivity contribute to cystic fibrosis lung disease? J Physiol 2013; 591:4377-87. [PMID: 23878362 DOI: 10.1113/jphysiol.2012.240861] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Airway epithelia absorb Na+ through the epithelial Na+ channel (ENaC) and secrete Cl- through the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. This balance maintains sufficient airway surface liquid hydration to permit efficient mucus clearance, which is needed to maintain sterility of the lung. Cystic fibrosis (CF) is a common autosomal recessive inherited disease caused by mutations in the CFTR gene that lead to the reduction or elimination of the CFTR protein. CF is a multi-organ disease that affects epithelia lining the intestines, lungs, pancreas, sweat ducts and vas deferens, among others. CF lungs are characterized by viscous, dehydrated mucus, persistent neutrophilia and chronic infections. ENaC is negatively regulated by CFTR and, in patients with CF, the absence of CFTR results in a double hit of reduced Cl-/HCO3- and H2O secretion as well as ENaC hyperactivity and increased Na+ and H2O absorption. Together, these effects are hypothesized to trigger mucus dehydration, resulting in a failure to clear mucus. Rehydrating CF mucus has become a recent clinical focus and yields important end-points for clinical trials. However, while ENaC hyperactivity in CF airways has been detected in vivo and in vitro, recent data have brought the role of ENaC in CF lung disease pathogenesis into question. This review will focus on our current understanding of the contribution of ENaC to CF pathogenesis.
Collapse
Affiliation(s)
- Carey A Hobbs
- R. Tarran: 7125 Thurston Bowles Building, UNC, Chapel Hill, NC 27599-7248, USA.
| | | | | |
Collapse
|
45
|
Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl- flux in the lung. J Bacteriol 2013; 195:4013-9. [PMID: 23836869 DOI: 10.1128/jb.00339-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with multiple niches in the human body, including the lung. P. aeruginosa infections are particularly damaging or fatal for patients with ventilator-associated pneumonia, chronic obstructive pulmonary disease, and cystic fibrosis (CF). To establish an infection, P. aeruginosa relies on a suite of virulence factors, including lipopolysaccharide, phospholipases, exoproteases, phenazines, outer membrane vesicles, type III secreted effectors, flagella, and pili. These factors not only damage the epithelial cell lining but also induce changes in cell physiology and function such as cell shape, membrane permeability, and protein synthesis. While such virulence factors are important in initial infection, many become dysregulated or nonfunctional during the course of chronic infection. Recent work on the virulence factors alkaline protease (AprA) and CF transmembrane conductance regulator inhibitory factor (Cif) show that P. aeruginosa also perturbs epithelial ion transport and osmosis, which may be important for the long-term survival of this microbe in the lung. Here we discuss the literature regarding host physiology-altering virulence factors with a focus on Cif and AprA and their potential roles in chronic infection and immune evasion.
Collapse
|
46
|
Tarran R, Sabater JR, Clarke TC, Tan CD, Davies CM, Liu J, Yeung A, Garland AL, Stutts MJ, Abraham WM, Phillips G, Baker WR, Wright CD, Wilbert S. Nonantibiotic macrolides prevent human neutrophil elastase-induced mucus stasis and airway surface liquid volume depletion. Am J Physiol Lung Cell Mol Physiol 2013; 304:L746-56. [PMID: 23542952 DOI: 10.1152/ajplung.00292.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucus clearance is an important component of the lung's innate defense system. A failure of this system brought on by mucus dehydration is common to both cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Mucus clearance rates are regulated by the volume of airway surface liquid (ASL) and by ciliary beat frequency (CBF). Chronic treatment with macrolide antibiotics is known to be beneficial to both CF and COPD patients. However, chronic macrolide usage may induce bacterial resistance. We have developed a novel macrolide, 2'-desoxy-9-(S)-erythromycylamine (GS-459755), that has significantly diminished antibiotic activity against Staphylococcus aureus, Streptococcus pneumonia, Moraxella catarrhalis, and Haemophilus influenzae. Since neutrophilia frequently occurs in chronic lung disease and human neutrophil elastase (HNE) induces mucus stasis by activating the epithelial sodium channel (ENaC), we tested the ability of GS-459755 to protect against HNE-induced mucus stasis. GS-459755 had no effect on HNE activity. However, GS-459755 pretreatment protected against HNE-induced ASL volume depletion in human bronchial epithelial cells (HBECs). The effect of GS-459755 on ASL volume was dose dependent (IC₅₀ ~3.9 μM) and comparable to the antibacterial macrolide azithromycin (IC₅₀ ~2.4 μM). Macrolides had no significant effect on CBF or on transepithelial water permeability. However, the amiloride-sensitive transepithelial voltage, a marker of ENaC activity, was diminished by macrolide pretreatment. We conclude that GS-459755 may limit HNE-induced activation of ENaC and may be useful for the treatment of mucus dehydration in CF and COPD without inducing bacterial resistance.
Collapse
Affiliation(s)
- Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27516, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rauh R, Soell D, Haerteis S, Diakov A, Nesterov V, Krueger B, Sticht H, Korbmacher C. A mutation in the β-subunit of ENaC identified in a patient with cystic fibrosis-like symptoms has a gain-of-function effect. Am J Physiol Lung Cell Mol Physiol 2012; 304:L43-55. [PMID: 23087020 DOI: 10.1152/ajplung.00093.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In some patients with atypical cystic fibrosis (CF), only one allele of the CF transmembrane conductance regulator (CFTR) gene is affected. Mutations of the epithelial sodium channel (ENaC) may contribute to the pathophysiology of the disease in these patients. To functionally characterize a mutation in the β-subunit of ENaC (βV348M) recently identified in a patient with severe CF-like symptoms (Mutesa et al. 2009), we expressed wild-type (wt) αβγENaC or mutant αβV348MγENaC in Xenopus laevis oocytes. The βV348M mutation stimulated amiloride-sensitive whole-cell current (ΔI(ami)) by ∼40% but had no effect on surface expression or single-channel conductance of ENaC. Instead the mutation increased channel open probability (P(o)). Proteolytic activation of mutant ENaC by chymotrypsin was reduced compared with that of wt ENaC (∼3.0-fold vs. ∼4.2-fold), which is consistent with the increased baseline P(o) of mutant ENaC. Similarly, the ENaC activator S3969 stimulated mutant ENaC currents to a lesser degree (by ∼2.6-fold) than wt ENaC currents (by ∼3.5-fold). The gain-of-function effect of the βV348M mutation was confirmed by whole-cell current measurements in HEK293 cells transiently transfected with wt or mutant ENaC. Computational channel modeling in combination with functional expression of different βV348 mutants in oocytes suggests that the βV348M mutation increases channel P(o) by destabilizing the closed channel state. Our findings indicate that the gain-of-function effect of the βV348M mutation may contribute to CF pathophysiology by inappropriately increasing sodium and fluid absorption in the respiratory tract.
Collapse
Affiliation(s)
- Robert Rauh
- Institut für Zelluläre und Molekulare Physiologie, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|