1
|
Troeira Henriques S, Lawrence N, Kan MW, Malins LR, Craik DJ. Cell-Penetrating Cyclic and Disulfide-Rich Peptides Are Privileged Molecular Scaffolds for Intracellular Targeting. Biochemistry 2025; 64:1437-1449. [PMID: 40082248 DOI: 10.1021/acs.biochem.4c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Peptides that have a head-to-tail cyclic backbone tend to be more stable than linear peptides, as do peptides that contain one or more cross-linking disulfide bond. Some of these cyclic and/or disulfide rich peptides have been reported to penetrate cells. These include peptides from a wide range of natural sources, including plants, spiders, crabs, and humans. In this review we describe the structures and biophysical properties of a selected set of such peptides that have been studied in our laboratories. We further describe how they can be engineered to enhance their stability and cellular uptake, and to fine-tune selective cell entry and activity toward intracellular therapeutic targets. Examples of targets described include intracellular protein-protein interactions implicated in cancer, intracellular malarial parasites and intracellular bacterial targets. In addition to the important advances being made with these nature-inspired peptides, the rapid strides in machine learning and artificial intelligence seen over recent years promise to accelerate the use of de novo design methods to produce peptides that are able to pass through biological membranes. We describe examples where such approaches have been used to design macrocyclic peptides and peptide-drug conjugates that can penetrate cell membranes and even have significant oral bioavailability in some cases.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicole Lawrence
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Meng-Wei Kan
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lara R Malins
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- The Australian National University, Canberra, ACT 2601, Australia
| | - David J Craik
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Cândido ES, Gasparetto LS, Luchi LV, Pimentel JP, Cardoso MH, Macedo ML, de la Fuente-Nunez C, Franco OL. Small and Versatile Cyclotides as Anti-infective Agents. ACS Infect Dis 2025; 11:386-397. [PMID: 39842000 PMCID: PMC11833872 DOI: 10.1021/acsinfecdis.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
Plants provide an abundant source of potential therapeutic agents, including a diverse array of compounds, such as cyclotides, which are peptides known for their antimicrobial activity. Cyclotides are multifaceted molecules with a wide range of biological activities. Their unique topology forms a head-to-tail cyclic structure reinforced by a cysteine knot, which confers chemical and thermal stability. These molecules can directly target membranes of infectious agents by binding to phosphatidylethanolamine in lipid membranes, leading to membrane permeabilization. Additionally, they function as carriers and cell-penetrating molecules, demonstrating antiviral, antibacterial, antifungal, and nematicidal properties. The structure of cyclotides is also amenable to chemical synthesis, facilitating drug design through residue substitutions or grafting of bioactive epitopes within the cyclotide scaffold to enhance peptide stability. In this review, we explore the multifunctionality of these biomolecules as anti-infective agents, emphasizing their potential as a novel class of antimicrobial drugs.
Collapse
Affiliation(s)
- Elizabete
de Souza Cândido
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| | - Liryel Silva Gasparetto
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - Livia Veiga Luchi
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - João Pedro
Farias Pimentel
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
| | - Marlon Henrique Cardoso
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
- Laboratório
de Purificação de Proteínas e suas Funções
Biológicas, Universidade Federal
de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Maria Lígia
Rodrigues Macedo
- Laboratório
de Purificação de Proteínas e suas Funções
Biológicas, Universidade Federal
de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Cesar de la Fuente-Nunez
- Machine
Biology
Group, Departments of Psychiatry and Microbiology, Institute for Biomedical
Informatics, Institute for Translational Medicine and Therapeutics,
Perelman School of Medicine, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 19104, United
States
- Penn Institute
for Computational Science, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Octávio Luiz Franco
- Programa
de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso
do Sul 79117-900, Brazil
- Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| |
Collapse
|
3
|
Grover A, Singh S, Sindhu S, Lath A, Kumar S. Advances in cyclotide research: bioactivity to cyclotide-based therapeutics. Mol Divers 2025:10.1007/s11030-025-11113-w. [PMID: 39862350 DOI: 10.1007/s11030-025-11113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae. These native cyclotides exhibit several bioactivities, such as anti-bacterial, anti-HIV, anti-fungal, pesticidal, cytotoxic, and hemolytic activities which have immense significance in agriculture and therapeutics. The general mode of action of cyclotides is related to their structure, where their hydrophobic face penetrates the cell membrane and disrupts it to exhibit anti-microbial, cytotoxic, or hemolytic activities. Thus, the structure-activity relationship is of significance in cyclotides. Further, owing to their, small size, stability, and potential to interact and cross the membrane barrier of cells, they make promising choices for developing peptide-based biologics. However, challenges, such as production complexity, pharmacokinetic limitations, and off-target effects hinder their development. Advancements in cyclotide engineering, such as peptide grafting, ligand conjugation, and nanocarrier integration, heterologous production along with computational design optimization, can help overcome these challenges. Given the potential of these cyclic peptides, the present review focuses on the diversity, bioactivities, and structure-activity relationships of cyclotides, and advancements in cyclotides engineering emphasizing their unique attributes for diverse medical and biotechnological applications.
Collapse
Affiliation(s)
- Ankita Grover
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sawraj Singh
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sonal Sindhu
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Amit Lath
- Department of Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sanjay Kumar
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
4
|
Lamb HO, Benfield AH, Henriques ST. Peptides as innovative strategies to combat drug resistance in cancer therapy. Drug Discov Today 2024; 29:104206. [PMID: 39395530 DOI: 10.1016/j.drudis.2024.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Drug resistance is the leading cause of treatment failure in patients with cancer. Thus, innovative therapeutic strategies are required to overcome this critical challenge and improve patient outcomes. In this review, we examine the potential of peptide-based therapies to combat drug resistance in cancer. We highlight the unique strategies and mechanisms that can be explored by using peptides, including their ability to selectively target tumours, facilitate drug delivery into cancer cells, and inhibit key intracellular proteins that drive cancer progression and resistance. Peptides offer a promising approach to overcoming both intrinsic and adaptative cancer resistance against chemotherapy, targeted therapies, and biologics.
Collapse
Affiliation(s)
- Henry O Lamb
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Jiang Z, Huang YH, Kaas Q, Craik DJ, Wang CK. Structure and Activity of Reconstructed Pseudo-Ancestral Cyclotides. ChemMedChem 2024; 19:e202400124. [PMID: 38632079 DOI: 10.1002/cmdc.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Cyclotides are cyclic peptides that are promising scaffolds for the design of drug candidates and chemical tools. However, despite there being hundreds of reported cyclotides, drug design studies have commonly focussed on a select few prototypic examples. Here, we explored whether ancestral sequence reconstruction could be used to generate new cyclotides for further optimization. We show that the reconstructed 'pseudo-ancestral' sequences, named Ancy-m (for the ancestral cyclotide of the Möbius sub-family) and Ancy-b (for the bracelet sub-family), have well-defined structures like their extant members, comprising the core structural feature of a cyclic cystine knot. This motif underpins efforts to re-engineer cyclotides for agrochemical and therapeutic applications. We further show that the reconstructed sequences are resistant to temperatures approaching boiling, bind to phosphatidyl-ethanolamine lipid bilayers at micromolar affinity, and inhibit the growth of insect cells at inhibitory concentrations in the micromolar range. Interestingly, the Ancy-b cyclotide had a higher oxidative folding yield than its comparator cyclotide cyO2, which belongs to the bracelet cyclotide subfamily known to be notoriously difficult to fold. Overall, this study provides new cyclotide sequences not yet found naturally that could be valuable starting points for the understanding of cyclotide evolution and for further optimization as drug leads.
Collapse
Affiliation(s)
- Zhihao Jiang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
6
|
Tran GH, Tran TH, Pham SH, Xuan HL, Dang TT. Cyclotides: The next generation in biopesticide development for eco-friendly agriculture. J Pept Sci 2024; 30:e3570. [PMID: 38317283 DOI: 10.1002/psc.3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Chemical pesticides remain the predominant method for pest management in numerous countries. Given the current landscape of agriculture, the development of biopesticides has become increasingly crucial. The strategy empowers farmers to efficiently manage pests and diseases, while prioritizing minimal adverse effects on the environment and human health, hence fostering sustainable management. In recent years, there has been a growing interest and optimism surrounding the utilization of peptide biopesticides for crop protection. These sustainable and environmentally friendly substances have been recognized as viable alternatives to synthetic pesticides due to their outstanding environmental compatibility and efficacy. Numerous studies have been conducted to synthesize and identify peptides that exhibit activity against significant plant pathogens. One of the peptide classes is cyclotides, which are cyclic cysteine-rich peptides renowned for their wide range of sequences and functions. In this review, we conducted a comprehensive analysis of cyclotides, focusing on their structural attributes, developmental history, significant biological functions in crop protection, techniques for identification and investigation, and the application of biotechnology to enhance cyclotide synthesis. The objective is to emphasize the considerable potential of cyclotides as the next generation of plant protection agents on the global scale.
Collapse
Affiliation(s)
- Gia-Hoa Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thi-Huyen Tran
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
| | - Huy Luong Xuan
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| |
Collapse
|
7
|
Roseli RB, Huang YH, Henriques ST, Kaas Q, Craik DJ. Molecular dynamics simulations support a preference of cyclotide kalata B1 for phosphatidylethanolamine phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184268. [PMID: 38191035 DOI: 10.1016/j.bbamem.2023.184268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Kalata B1 (kB1), a naturally occurring cyclotide has been shown experimentally to bind lipid membranes that contain phosphatidylethanolamine (PE) phospholipids. Here, molecular dynamics simulations were used to explore its interaction with two phospholipids, palmitoyloleoylphosphatidylethanolamine (POPE), palmitoyloleoylphosphatidylcholine (POPC), and a heterogeneous membrane comprising POPC/POPE (90:10), to understand the basis for the selectivity of kB1 towards PE phospholipids. The simulations showed that in the presence of only 10 % POPE lipid, kB1 forms a stable binding complex with membrane bilayers. An ionic interaction between the E7 carboxylate group of kB1 and the ammonium group of PE headgroups consistently initiates binding of kB1 to the membrane. Additionally, stable noncovalent interactions such as hydrogen bonding (E7, T8, V10, G11, T13 and N15), cation-π (W23), and CH-π (W23) interactions between specific residues of kB1 and the lipid membrane play an important role in stabilizing the binding. These findings are consistent with a structure-activity relationship study on kB1 where lysine mutagenesis on the bioactive and hydrophobic faces of the peptide abolished membrane-dependent bioactivities. In summary, our simulations suggest the importance of residue E7 (in the bioactive face) in enabling kB1 to recognize and bind selectively to PE-containing phospholipids bilayers through ionic and hydrogen bonding interactions, and of W23 (in the hydrophobic face) for the association and insertion of kB1 into the lipid bilayer through cation-π and CH-π interactions. Overall, this work enhances our understanding of the molecular basis of the membrane binding and bioactivity of this prototypic cyclotide.
Collapse
Affiliation(s)
- Ras Baizureen Roseli
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
8
|
Huang YH, Jiang Z, Du Q, Yap K, Bigot A, Kaas Q, Wang CK, Craik DJ. Scanning mutagenesis identifies residues that improve the long-term stability and insecticidal activity of cyclotide kalata B1. J Biol Chem 2024; 300:105682. [PMID: 38272233 PMCID: PMC10877628 DOI: 10.1016/j.jbc.2024.105682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Cyclotides are plant-derived disulfide-rich cyclic peptides that have a natural function in plant defense and potential for use as agricultural pesticides. Because of their highly constrained topology, they are highly resistant to thermal, chemical, or enzymatic degradation. However, the stability of cyclotides at alkaline pH for incubation times of longer than a few days is poorly studied but important since these conditions could be encountered in the environment, during storage or field application as insecticides. In this study, kalata B1 (kB1), the prototypical cyclotide, was engineered to improve its long-term stability and retain its insecticidal activity via point mutations. We found that substituting either Asn29 or Gly1 to lysine or leucine increased the stability of kB1 by twofold when incubated in an alkaline buffer (pH = 9.0) for 7 days, while retaining its insecticidal activity. In addition, when Gly1 was replaced with lysine or leucine, the mutants could be cyclized using an asparaginyl endopeptidase, in vitro with a yield of ∼90% within 5 min. These results demonstrate the potential to manufacture kB1 mutants with increased stability and insecticidal activity recombinantly or in planta. Overall, the discovery of mutants of kB1 that have enhanced stability could be useful in leading to longer term activity in the field as bioinsecticides.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhihao Jiang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Qingdan Du
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
9
|
Sharma A, Butool B, Sahu P, Mishra R, Mohanty A. In Silico Analysis of Natural Plant-Derived Cyclotides with Antifungal Activity against Pathogenic Fungi. Protein Pept Lett 2024; 31:247-260. [PMID: 38445693 DOI: 10.2174/0109298665295545240223114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Fungal infections in plants, animals, and humans are widespread across the world. Limited classes of antifungal drugs to treat fungal infections and loss of drug efficacy due to rapidly evolving fungal strains pose a challenge in the agriculture and health sectors. Hence, the search for a new class of antifungal agents is imperative. Cyclotides are cyclic plant peptides with multiple bioactivities, including antifungal activity. They have six conserved cysteine residues forming three disulfide linkages (CI-CIV, CII-CV, CIII-CVI) that establish a Cyclic Cystine Knot (CCK) structure, making them extremely resistant to chemical, enzymatic, and thermal attacks. AIM This in silico analysis of natural, plant-derived cyclotides aimed to assess the parameters that can assist and hasten the process of selecting the cyclotides with potent antifungal activity and prioritize them for in vivo/ in vitro experiments. OBJECTIVE The objective of this study was to conduct in silico studies to compare the physicochemical parameters, sequence diversity, surface structures, and membrane-cyclotide interactions of experimentally screened (from literature survey) potent (MIC ≤ 20 μM) and non-potent (MIC > 20 μM) cyclotides for antifungal activity. METHODOLOGY Cyclotide sequences assessed for antifungal activity were retrieved from the database (Cybase). Various online and offline tools were used for sequence-based studies, such as physicochemical parameters, sequence diversity, and neighbor-joining trees. Structure-based studies involving surface structure analysis and membrane-cyclotide interaction were also carried out. All investigations were conducted in silico. RESULTS Physicochemical parameter values, viz. isoelectric point, net charge, and the number of basic amino acids, were significantly higher in potent cyclotides compared to non-potent cyclotides. The surface structure of potent cyclotides showed a larger hydrophobic patch with a higher number of hydrophobic amino acids. Furthermore, the membrane-cyclotide interaction studies of potent cyclotides revealed lower transfer free energy (ΔG transfer) and higher penetration depth into fungal membranes, indicating higher binding stability and membrane-disruption ability. CONCLUSION These in silico studies can be applied for rapidly identifying putatively potent antifungal cyclotides for in vivo and in vitro experiments, which will ultimately be relevant in the agriculture and pharmaceutical sectors.
Collapse
Affiliation(s)
- Akshita Sharma
- Department of Botany, Gargi College, University of Delhi, Delhi, India
| | - Bisma Butool
- Department of Botany, Gargi College, University of Delhi, Delhi, India
| | - Pallavi Sahu
- Department of Botany, Gargi College, University of Delhi, Delhi, India
| | - Reema Mishra
- Department of Botany, Gargi College, University of Delhi, Delhi, India
| | - Aparajita Mohanty
- Department of Botany, Gargi College, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Kocyigit E, Kocaadam-Bozkurt B, Bozkurt O, Ağagündüz D, Capasso R. Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies. Toxins (Basel) 2023; 15:356. [PMID: 37368657 PMCID: PMC10303728 DOI: 10.3390/toxins15060356] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Plants evolve to synthesize various natural metabolites to protect themselves against threats, such as insects, predators, microorganisms, and environmental conditions (such as temperature, pH, humidity, salt, and drought). Plant-derived toxic proteins are often secondary metabolites generated by plants. These proteins, including ribosome-inactivating proteins, lectins, protease inhibitors, α-amylase inhibitors, canatoxin-like proteins and ureases, arcelins, antimicrobial peptides, and pore-forming toxins, are found in different plant parts, such as the roots, tubers, stems, fruits, buds, and foliage. Several investigations have been conducted to explore the potential applications of these plant proteins by analyzing their toxic effects and modes of action. In biomedical applications, such as crop protection, drug development, cancer therapy, and genetic engineering, toxic plant proteins have been utilized as potentially useful instruments due to their biological activities. However, these noxious metabolites can be detrimental to human health and cause problems when consumed in high amounts. This review focuses on different plant toxic proteins, their biological activities, and their mechanisms of action. Furthermore, possible usage and removal strategies for these proteins are discussed.
Collapse
Affiliation(s)
- Emine Kocyigit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Turkey;
| | - Betul Kocaadam-Bozkurt
- Department of Nutrition and Dietetics, Erzurum Technical University, Yakutiye, 25100 Erzurum, Turkey; (B.K.-B.); (O.B.)
| | - Osman Bozkurt
- Department of Nutrition and Dietetics, Erzurum Technical University, Yakutiye, 25100 Erzurum, Turkey; (B.K.-B.); (O.B.)
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, Emek, 06490 Ankara, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
11
|
Ho TNT, Turner A, Pham SH, Nguyen HT, Nguyen LTT, Nguyen LT, Dang TT. Cysteine-rich peptides: From bioactivity to bioinsecticide applications. Toxicon 2023; 230:107173. [PMID: 37211058 DOI: 10.1016/j.toxicon.2023.107173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
Greater levels of insect resistance and constraints on the use of current pesticides have recently led to increased crop losses in agricultural production. Further, the health and environmental impacts of pesticides now restrict their application. Biologics based on peptides are gaining popularity as efficient crop protection agents with low environmental toxicity. Cysteine-rich peptides (whether originated from venoms or plant defense substances) are chemically stable and effective as insecticides in agricultural applications. Cysteine-rich peptides fulfill the stability and efficacy requirements for commercial uses and provide an environmentally benign alternative to small-molecule insecticides. In this article, cysteine-rich insecticidal peptide classes identified from plants and venoms will be highlighted, focusing on their structural stability, bioactivity and production.
Collapse
Affiliation(s)
- Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - A Turner
- Molecular Biology Department, University of Texas, 100 E 24th St. Austin, USA
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - Ha T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Linh T T Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, 280 an Duong Vuong Street, District 5, Ho Chi Minh City, Viet Nam
| | - Luan T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
12
|
The potential of antifungal peptide Sesquin as natural food preservative. Biochimie 2022; 203:51-64. [PMID: 35395327 DOI: 10.1016/j.biochi.2022.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Sesquin is a wide spectrum antimicrobial peptide displaying a remarkable activity on fungi. Contrarily to most antimicrobial peptides, it presents an overall negative charge. In the present study, we elucidate the molecular basis of its mode of action towards biomimetic membranes by NMR and MD experiments. While a specific recognition of phosphatidylethanolamine (PE) might explain its activity in a variety of different organisms (including bacteria), a further interaction with ergosterol accounts for its strong antifungal activity. NMR data reveal a charge gradient along its amide protons allowing the peptide to reach the membrane phosphate groups despite its negative charge. Subsequently, the peptide gets structured inside the bilayer, reducing its order. MD simulations predict that its activity is retained in conditions commonly used for food preservation: low temperatures, high pressure, or the presence of electric field pulses, making Sesquin a good candidate as food preservative.
Collapse
|
13
|
Mehta L, Shambhawi, Kumar S, Mohanty A. In silico Analysis of Native Cyclotides with Antibacterial Activity against Gram-negative Bacteria. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
14
|
Dang TT, Huang YH, Ott S, Harvey PJ, Gilding EK, Tombling BJ, Chan LY, Kaas Q, Claridge-Chang A, Craik DJ. The acyclotide ribe 31 from Rinorea bengalensis has selective cytotoxicity and potent insecticidal properties in Drosophila. J Biol Chem 2022; 298:102413. [PMID: 36007611 PMCID: PMC9513267 DOI: 10.1016/j.jbc.2022.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclotides and acyclic versions of cyclotides (acyclotides) are peptides involved in plant defense. These peptides contain a cystine knot motif formed by three interlocked disulfide bonds, with the main difference between the two classes being the presence or absence of a cyclic backbone, respectively. The insecticidal activity of cyclotides is well documented, but no study to date explores the insecticidal activity of acyclotides. Here, we present the first in vivo evaluation of the insecticidal activity of acyclotides from Rinorea bengalensis on the vinegar fly Drosophila melanogaster. Of a group of structurally comparable acyclotides, ribe 31 showed the most potent toxicity when fed to D. melanogaster. We screened a range of acyclotides and cyclotides and found their toxicity toward human red blood cells was substantially lower than toward insect cells, highlighting their selectivity and potential for use as bioinsecticides. Our confocal microscopy experiments indicated their cytotoxicity is likely mediated via membrane disruption. Furthermore, our surface plasmon resonance studies suggested ribe 31 preferentially binds to membranes containing phospholipids with phosphatidyl-ethanolamine headgroups. Despite having an acyclic backbone, we determined the three-dimensional NMR solution structure of ribe 31 is similar to that of cyclotides. In summary, our results suggest that, with further optimization, ribe 31 could have applications as an insecticide due to its potent in vivo activity against D. melanogaster. More broadly, this work advances the field by demonstrating that acyclotides are more common than previously thought, have potent insecticidal activity, and have the advantage of potentially being more easily manufactured than cyclotides.
Collapse
Affiliation(s)
- Tien T Dang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Stanislav Ott
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Lai Y Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Adam Claridge-Chang
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore; Institute for Molecular and Cell Biology, A∗STAR, Singapore; Department of Physiology, National University of Singapore, Singapore, Singapore
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Ramos-Martín F, D'Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022; 203:118-138. [PMID: 35926681 DOI: 10.1016/j.biochi.2022.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Biomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types. This capacity is made possible by the intrinsic properties of its phospholipids, their distribution between the internal and external leaflet, and their ability to mutually interact, modulating the membrane fluidity and the exposition of key headgroups. Although common phospholipids can be found in the membranes of most organisms, some are characteristic of specific cell types. Here, we review the properties of the most common lipids and describe how they interact with each other in biomembrane. We then discuss how their assembly in bilayers determines some key physical-chemical properties such as permeability, potential and phase status. Finally, we describe how the exposition of specific phospholipids determines the recognition of cell types by membrane-targeting molecules.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
16
|
Conzelmann C, Muratspahić E, Tomašević N, Münch J, Gruber CW. In vitro Inhibition of HIV-1 by Cyclotide-Enriched Extracts of Viola tricolor. Front Pharmacol 2022; 13:888961. [PMID: 35712712 PMCID: PMC9196940 DOI: 10.3389/fphar.2022.888961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Since viral infectious diseases continue to be a global health threat, new antiviral drugs are urgently needed. A unique class of therapeutic compounds are antimicrobial peptides (AMPs). They can be found in humans, bacteria and plants. Plants express a wide variety of such defense peptides as part of their innate immune system to protect from invading pathogens. Cyclotides are non-classical AMPs that share a similar structure. Their unique topology consists of a circular peptide backbone and disulfide bonds. In previous studies they have been attributed to a wide range of biological activities. To identify novel cyclotides with antiviral activity, we established a library of plant extracts largely consisting of cyclotide-rich species and screened them as inhibitors of HIV-1 infection. Subsequent extraction and fractionation revealed four cyclotide-containing subfractions from Viola tricolor with antiviral activity. These subfractions inhibited HIV-1 infection with IC50 values between 0.6 and 11.2 μg/ml, and selectivity indices of up to 8.1. The identification and characterization of antiviral cyclotides and the determination of the antiviral mechanisms may allow to develop novel agents to combat viral infections. Therefore, cyclotides represent a natural source of bioactive molecules with prospects for development as therapeutics.
Collapse
Affiliation(s)
- Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nataša Tomašević
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Du Q, Huang YH, Wang CK, Kaas Q, Craik DJ. Mutagenesis of bracelet cyclotide hyen D reveals functionally and structurally critical residues for membrane binding and cytotoxicity. J Biol Chem 2022; 298:101822. [PMID: 35283188 PMCID: PMC9006653 DOI: 10.1016/j.jbc.2022.101822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/05/2022] Open
Abstract
Cyclotides have a wide range of bioactivities relevant for agricultural and pharmaceutical applications. This large family of naturally occurring macrocyclic peptides is divided into three subfamilies, with the bracelet subfamily being the largest and comprising the most potent cyclotides reported to date. However, attempts to harness the natural bioactivities of bracelet cyclotides and engineer-optimized analogs have been hindered by a lack of understanding of the structural and functional role of their constituent residues, which has been challenging because bracelet cyclotides are difficult to produce synthetically. We recently established a facile strategy to make the I11L mutant of cyclotide hyen D that is as active as the parent peptide, enabling the subsequent production of a series of variants. In the current study, we report an alanine mutagenesis structure-activity study of [I11L] hyen D to probe the role of individual residues on peptide folding using analytical chromatography, on molecular function using surface plasmon resonance, and on therapeutic potential using cytotoxicity assays. We found that Glu-6 and Thr-15 are critical for maintaining the structure of bracelet cyclotides and that hydrophobic residues in loops 2 and 3 are essential for membrane binding and cytotoxic activity, findings that are distinct from the structural and functional characteristics determined for other cyclotide subfamilies. In conclusion, this is the first report of a mutagenesis scan conducted on a bracelet cyclotide, offering insights into their function and supporting future efforts to engineer bracelet cyclotides for biotechnological applications.
Collapse
Affiliation(s)
- Qingdan Du
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia.
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
Gupta R, Kumari J, Pati S, Singh S, Mishra M, Ghosh SK. Interaction of cyclotide Kalata B1 protein with model cellular membranes of varied electrostatics. Int J Biol Macromol 2021; 191:852-860. [PMID: 34592223 DOI: 10.1016/j.ijbiomac.2021.09.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022]
Abstract
A uni-molecular layer of lipids at air-water interface mimicking one of the leaflets of the cellular membrane provides a simple model to understand the interaction of any foreign molecules with the membrane. Here, the interactions of protein Kalata B1 (KB1) of cyclotide family with the phospholipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DPPG), and 1,2-distearoyl-sn-glycero-3-ethylphosphocholine chloride salt (DSEPC) have been investigated. The addition of KB1 induces a change in pressure of the lipid monolayers. The characteristic time of the change in pressure is found to be dependent on the electrostatic nature of the lipid. Even though the protein is weakly surface active, it is capable of modifying the phase behavior and elastic properties of lipid monolayers with differences in their strength and nature making the layers more floppy. The KB1-lipid interaction has been quantified by calculating the excess Gibb's free energy of interaction and the 1-anilino-8-naphthalenesulfonate (ANS) binding studies. The interaction with zwitterionic DPPC and negatively charged DPPG lipids are found to be thermodynamically favorable whereas the protein shows a weaker response to positively charged DSEPC lipid. Therefore, the long ranged electrostatic is the initial driving force for the KB1 to recognize and subsequently attach to a cellular membrane. Thereafter, the hydrophobic region of the protein may penetrate into the hydrophobic core of the membrane via specific amino acid residues.
Collapse
Affiliation(s)
- Ritika Gupta
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Jyoti Kumari
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Shailja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru university, New Delhi 110067, India
| | - Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
19
|
Huang YH, Du Q, Jiang Z, King GJ, Collins BM, Wang CK, Craik DJ. Enabling Efficient Folding and High-Resolution Crystallographic Analysis of Bracelet Cyclotides. Molecules 2021; 26:5554. [PMID: 34577034 PMCID: PMC8467136 DOI: 10.3390/molecules26185554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Cyclotides have attracted great interest as drug design scaffolds because of their unique cyclic cystine knotted topology. They are classified into three subfamilies, among which the bracelet subfamily represents the majority and comprises the most bioactive cyclotides, but are the most poorly utilized in drug design applications. A long-standing challenge has been the very low in vitro folding yields of bracelets, hampering efforts to characterize their structures and activities. Herein, we report substantial increases in bracelet folding yields enabled by a single point mutation of residue Ile-11 to Leu or Gly. We applied this discovery to synthesize mirror image enantiomers and used quasi-racemic crystallography to elucidate the first crystal structures of bracelet cyclotides. This study provides a facile strategy to produce bracelet cyclotides, leading to a general method to easily access their atomic resolution structures and providing a basis for development of biotechnological applications.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Qingdan Du
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhihao Jiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gordon J. King
- The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
| | - Conan K. Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.-H.H.); (Q.D.); (Z.J.); (B.M.C.); (C.K.W.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
20
|
Zakaryan H, Chilingaryan G, Arabyan E, Serobian A, Wang G. Natural antimicrobial peptides as a source of new antiviral agents. J Gen Virol 2021; 102. [PMID: 34554085 PMCID: PMC10026734 DOI: 10.1099/jgv.0.001661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current antiviral drugs are limited because of their adverse side effects and increased rate of resistance. In recent decades, much scientific effort has been invested in the discovery of new synthetic and natural compounds with promising antiviral properties. Among this new generation of compounds, antimicrobial peptides with antiviral activity have been described and are attracting attention due to their mechanism of action and biological properties. To understand the potential of antiviral peptides (AVPs), we analyse the antiviral activity of well-known AVP families isolated from different natural sources, discuss their physical-chemical properties, and demonstrate how AVP databases can guide us to design synthetic AVPs with better therapeutic properties. All considerations in this sphere of antiviral therapy clearly demonstrate the remarkable contribution that AVPs may make in conquering old as well as newly emerging viruses that plague humanity.
Collapse
Affiliation(s)
- Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
- Denovo Sciences CJSC, 0033, Yerevan, Armenia
| | - Garri Chilingaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Erik Arabyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | | | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| |
Collapse
|
21
|
van den Broek K, Epple M, Kersten LS, Kuhn H, Zielesny A. Quantitative Estimation of Cyclotide-Induced Bilayer Membrane Disruption by Lipid Extraction with Mesoscopic Simulation. J Chem Inf Model 2021; 61:3027-3040. [PMID: 34008405 DOI: 10.1021/acs.jcim.1c00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclotide-induced membrane disruption is studied at the microsecond timescale by dissipative particle dynamics to quantitatively estimate a kinetic rate constant for membrane lipid extraction with a ″sandwich″ interaction model where two bilayer membranes enclose a cyclotide/water compartment. The obtained bioactivity trends for cyclotides Kalata B1, Cycloviolacin O2, and selected mutants with different membrane types are in agreement with experimental findings: For all membranes investigated, Cycloviolacin O2 shows a higher lipid extraction activity than Kalata B1. The presence of cholesterol leads to a decreased cyclotide activity compared to cholesterol-free membranes. Phosphoethanolamine-rich membranes exhibit an increased membrane disruption. A cyclotide's ″hydrophobic patch″ surface area is important for its bioactivity. A replacement of or with charged amino acid residues may lead to super-mutants with above-native activity but without simple charge-activity patterns. Cyclotide mixtures show linearly additive bioactivities without significant sub- or over-additive effects. The proposed method can be applied as a fast and easy-to-use tool for exploring structure-activity relationships of cyclotide/membrane systems: With the open software provided, the rate constant of a single cyclotide/membrane system can be determined in about 1 day by a scientific end-user without programming skills.
Collapse
Affiliation(s)
- Karina van den Broek
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany.,Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, 45665 Recklinghausen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Lisa Sophie Kersten
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, 45665 Recklinghausen, Germany
| | - Hubert Kuhn
- CAM-D Technologies GmbH, 42697 Solingen, Germany
| | - Achim Zielesny
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, 45665 Recklinghausen, Germany
| |
Collapse
|
22
|
Lei X, Liu S, Zhou R, Meng XY. Molecular Dynamics Simulation Study on Interactions of Cycloviolacin with Different Phospholipids. J Phys Chem B 2021; 125:3476-3485. [PMID: 33787269 DOI: 10.1021/acs.jpcb.0c10513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclotides are disulfide-rich cyclic peptides isolated from plants, which are extremely stable against thermal and proteolytic degradation, with a variety of biological activities including antibacterial, hemolytic, anti-HIV, and anti-tumor. Most of these bioactivities are related to their preference for binding to certain types of phospholipids and subsequently disrupt lipid membranes. In the present study, we use a cyclotide, cycloviolacin O2 (cyO2), as a model system to investigate its interactions with three lipid bilayers 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)-doped POPE, and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), to help understand its potential mechanism of action toward the membranes at the molecular level using molecular dynamics simulations. In our simulations, cyO2 repeatedly forms stable binding complexes with the POPE-containing bilayers, while within the same simulation time scale, it "jumps" back and forth on the surface of the POPC bilayer without a strong binding. Detailed analyses reveal that the electrostatic attraction is the main driving force for the initial bindings between cyO2 and the lipids, but with strikingly different strengths in different bilayers. For the POPE-containing bilayers, the charged residues of cyO2 attract both POPE amino and phosphate head groups favorably; meanwhile, its hydrophobic residues are deeply inserted into the lipid hydrophobic tails (core) of the membrane, thus forming stable binding complexes. In contrast, POPC lipids with three methyl groups on the amino head group create a steric hindrance when interacting with cyO2, thus resulting in a relatively difficult binding of cyO2 on POPC compared to POPE. Our current findings provide additional insights for a better understanding of how cyO2 binds to the POPE-containing membrane, which should shed light on the future cyclotide-based antibacterial agent design.
Collapse
Affiliation(s)
- Xiaotong Lei
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shengtang Liu
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xuan-Yu Meng
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
23
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Payne CD, Franke B, Fisher MF, Hajiaghaalipour F, McAleese CE, Song A, Eliasson C, Zhang J, Jayasena AS, Vadlamani G, Clark RJ, Minchin RF, Mylne JS, Rosengren KJ. A chameleonic macrocyclic peptide with drug delivery applications. Chem Sci 2021; 12:6670-6683. [PMID: 34040741 PMCID: PMC8132947 DOI: 10.1039/d1sc00692d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Head-to-tail cyclized peptides are intriguing natural products with unusual properties. The PawS-Derived Peptides (PDPs) are ribosomally synthesized as part of precursors for seed storage albumins in species of the daisy family, and are post-translationally excised and cyclized during proteolytic processing. Here we report a PDP twice the typical size and with two disulfide bonds, identified from seeds of Zinnia elegans. In water, synthetic PDP-23 forms a unique dimeric structure in which two monomers containing two β-hairpins cross-clasp and enclose a hydrophobic core, creating a square prism. This dimer can be split by addition of micelles or organic solvent and in monomeric form PDP-23 adopts open or closed V-shapes, exposing different levels of hydrophobicity dependent on conditions. This chameleonic character is unusual for disulfide-rich peptides and engenders PDP-23 with potential for cell delivery and accessing novel targets. We demonstrate this by conjugating a rhodamine dye to PDP-23, creating a stable, cell-penetrating inhibitor of the P-glycoprotein drug efflux pump.
Collapse
Affiliation(s)
- Colton D Payne
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Bastian Franke
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Mark F Fisher
- The University of Western Australia, School of Molecular Sciences, The ARC Centre of Excellence in Plant Energy Biology Crawley WA 6009 Australia
| | | | - Courtney E McAleese
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Angela Song
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Carl Eliasson
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Jingjing Zhang
- The University of Western Australia, School of Molecular Sciences, The ARC Centre of Excellence in Plant Energy Biology Crawley WA 6009 Australia
| | - Achala S Jayasena
- The University of Western Australia, School of Molecular Sciences, The ARC Centre of Excellence in Plant Energy Biology Crawley WA 6009 Australia
| | - Grishma Vadlamani
- The University of Western Australia, School of Molecular Sciences, The ARC Centre of Excellence in Plant Energy Biology Crawley WA 6009 Australia
| | - Richard J Clark
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Rodney F Minchin
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences, The ARC Centre of Excellence in Plant Energy Biology Crawley WA 6009 Australia
| | - K Johan Rosengren
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| |
Collapse
|
25
|
Fu Y, Jaarsma AH, Kuipers OP. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs). Cell Mol Life Sci 2021; 78:3921-3940. [PMID: 33532865 PMCID: PMC7853169 DOI: 10.1007/s00018-021-03759-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
The emergence and re-emergence of viral epidemics and the risks of antiviral drug resistance are a serious threat to global public health. New options to supplement or replace currently used drugs for antiviral therapy are urgently needed. The research in the field of ribosomally synthesized and post-translationally modified peptides (RiPPs) has been booming in the last few decades, in particular in view of their strong antimicrobial activities and high stability. The RiPPs with antiviral activity, especially those against enveloped viruses, are now also gaining more interest. RiPPs have a number of advantages over small molecule drugs in terms of specificity and affinity for targets, and over protein-based drugs in terms of cellular penetrability, stability and size. Moreover, the great engineering potential of RiPPs provides an efficient way to optimize them as potent antiviral drugs candidates. These intrinsic advantages underscore the good therapeutic prospects of RiPPs in viral treatment. With the aim to highlight the underrated antiviral potential of RiPPs and explore their development as antiviral drugs, we review the current literature describing the antiviral activities and mechanisms of action of RiPPs, discussing the ongoing efforts to improve their antiviral potential and demonstrate their suitability as antiviral therapeutics. We propose that antiviral RiPPs may overcome the limits of peptide-based antiviral therapy, providing an innovative option for the treatment of viral disease.
Collapse
Affiliation(s)
- Yuxin Fu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Ate H Jaarsma
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
26
|
Chauhan S, Dhawan DK, Saini A, Preet S. Antimicrobial peptides against colorectal cancer-a focused review. Pharmacol Res 2021; 167:105529. [PMID: 33675962 DOI: 10.1016/j.phrs.2021.105529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022]
Abstract
Despite recent advances in the treatment of colorectal cancer (CRC), low patient survival rate due to emergence of drug resistant cancer cells, metastasis and multiple deleterious side effects of chemotherapy, is a cause of public concern globally. To negate these clinical conundrums, search for effective and harmless novel molecular entities for the treatment of CRC is an urgent necessity. Since antimicrobial peptides (AMPs) are part of innate immunity of living beings, it is quite imperative to look for essential attributes of these peptides which may contribute to their effectiveness against carcinogenesis. Once identified, those characteristics can be suitably modified using several synthetic and computational techniques to further enhance their selectivity and pharmacokinetic profiles. Hence, this review analyses scientific reports describing the antiproliferative action of AMPs derived from several sources, particularly focusing on various colon cancer in vitro/in vivo investigations. On perusal of the literature, it appears that AMPs based therapeutics would definitely find special place in CRC therapy in future either alone or as an adjunct to chemotherapy provided some necessary alterations are made in their natural structures to make them more compatible with modern clinical practice. In this context, further in-depth research is warranted in adequate in vivo models.
Collapse
Affiliation(s)
- Sonia Chauhan
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Devinder K Dhawan
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Avneet Saini
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Simran Preet
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
27
|
Soon TN, Chia AYY, Yap WH, Tang YQ. Anticancer Mechanisms of Bioactive Peptides. Protein Pept Lett 2021; 27:823-830. [PMID: 32271692 DOI: 10.2174/0929866527666200409102747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Despite technological advancement, there is no 100% effective treatment against metastatic cancer. Increasing resistance of cancer cells towards chemotherapeutic drugs along with detrimental side effects remained a concern. Thus, the urgency in developing new anticancer agents has been raised. Anticancer peptides have been proven to display potent activity against a wide variety of cancer cells. Several mode of actions describing their cytostatic and cytotoxic effect on cancer cells have been proposed which involves cell surface binding leading to membranolysis or internalization to reach their intracellular target. Understanding the mechanism of action of these anticancer peptides is important in achieving full therapeutic success. In the present article, we discuss the anticancer action of peptides accompanied by the mechanisms underpinning their toxicity to cancer cells.
Collapse
Affiliation(s)
- Tsuey Ning Soon
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yin-Quan Tang
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
28
|
Grover T, Mishra R, Gulati P, Mohanty A. An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics. Peptides 2021; 135:170430. [PMID: 33096195 DOI: 10.1016/j.peptides.2020.170430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
Cyclotides are plant-derived mini-proteins of 28 - 37 amino acids. They have a characteristic head-to-tail cyclic backbone and three disulfide cross-linkages formed by six highly conserved cysteine residues, creating a unique knotted ring structure, known as a cyclic cystine knot (CCK) motif. The CCK topology confers immense stability to cyclotides with resistance to thermal and enzymatic degradation. Native cyclotides are of interest due to their multiple biological activities with several potential applications in agricultural (e.g. biopesticides, antifungal) and pharmaceutical (e.g. anti-HIV, cytotoxic to tumor cells) sectors. The most recent application of insecticidal activity of cyclotides is the commercially available biopesticidal spray known as 'Sero X' for cotton crops. Cyclotides have a general mode of action and their potency of bioactivity is determined through their binding ability, pore formation and disruption of the target biological membranes. Keeping in view the important potential applications of biological activities of cyclotides and the lack of an extensive and analytical compilation of bioactive cyclotides, the present review systematically describes eight major biological activities of the native cyclotides from four angiosperm families viz. Fabaceae, Poaceae, Rubiaceae, Violaceae. The bioactivities of 94 cytotoxic, 57 antibacterial, 44 hemolytic, 25 antifungal, 21 anti-HIV, 20 nematocidal, 10 insecticidal and 5 molluscicidal cyclotides have been comprehensively elaborated. Further, their distribution in angiosperm families, mode of action and future prospects have also been discussed.
Collapse
Affiliation(s)
- Tripti Grover
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India
| | - Reema Mishra
- Department of Botany, Gargi College, University of Delhi, India
| | - Pooja Gulati
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Aparajita Mohanty
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India.
| |
Collapse
|
29
|
Muratspahić E, Koehbach J, Gruber CW, Craik DJ. Harnessing cyclotides to design and develop novel peptide GPCR ligands. RSC Chem Biol 2020; 1:177-191. [PMID: 34458757 PMCID: PMC8341132 DOI: 10.1039/d0cb00062k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclotides are plant-derived cyclic, disulfide-rich peptides with a unique cyclic cystine knot topology that confers them with remarkable structural stability and resistance to proteolytic degradation. Recently, cyclotides have emerged as promising scaffold molecules for designing peptide-based therapeutics. Here, we provide examples of how engineering cyclotides using molecular grafting may lead to the development of novel peptide ligands of G protein-coupled receptors (GPCRs), today's most exploited drug targets. Integrating bioactive epitopes into stable cyclotide scaffolds can lead to improved pharmacokinetics and oral activity as well as selectivity and high enzymatic stability. We also discuss and highlight the importance of engineered cyclotides as novel tools to study GPCR signaling.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
30
|
Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183480. [PMID: 32979382 DOI: 10.1016/j.bbamem.2020.183480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Anticancer chemo- and targeted therapies are limited in some cases due to strong side effects and/or drug resistance. Peptides have received renascent interest as anticancer therapeutics and are currently being considered as alternatives and/or as complementary to biologics and small-molecule drugs. Gomesin, a disulfide-rich host defense peptide expressed in the Brazilian spider Acanthoscurria gomesiana selectively targets and disrupts cancer cell membranes. In the current study, we employed a range of biophysical methodologies with model membranes and bioassays to investigate the use of a cyclic analogue of gomesin as a drug scaffold to internalize cancer cells. We found that cyclic gomesin can internalize cancer cells via endocytosis and direct membrane permeation. In addition, we designed an improved non-disruptive and non-toxic cyclic gomesin analogue by incorporating D-amino acids within the scaffold. This improved analogue retained the ability to enter cancer cells and can be used as a scaffold to deliver drugs. Efforts to investigate the internalization mechanism used by host defense peptides, and to improve their stability, potency, selectivity and ability to permeate cancer cell membranes will increase the opportunities to repurpose peptides as templates for designing alternative anticancer therapeutic leads.
Collapse
|
31
|
Yin H, Huang YH, Deprey K, Condon ND, Kritzer JA, Craik DJ, Wang CK. Cellular Uptake and Cytosolic Delivery of a Cyclic Cystine Knot Scaffold. ACS Chem Biol 2020; 15:1650-1661. [PMID: 32315152 DOI: 10.1021/acschembio.0c00297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclotides are macrocyclic peptides with exceptionally stable structures and have been reported to penetrate cells, making them promising scaffolds for the delivery of inhibitory peptides to target intracellular proteins. However, their cellular uptake and cytosolic localization have been poorly understood until now, which has limited their therapeutic potential. In this study, the recently developed chloroalkane penetration assay was combined with established assays to characterize the cellular uptake and cytosolic delivery of the prototypic cyclotide, kalata B1. We show that kalata B1 enters the cytosol at low efficiency. A structure-activity study of residues in loop 6 showed that some modifications, such as increasing cationic residue content, did not affect delivery efficiency, whereas others, including introducing a single hydrophobic amino acid, did significantly improve cytosolic delivery. Our results provide a foundation for the further development of a structurally unique class of scaffolds for the delivery of therapeutic cargoes into cells.
Collapse
Affiliation(s)
- Huawu Yin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirsten Deprey
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Nicholas D. Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
32
|
Du Q, Chan LY, Gilding EK, Henriques ST, Condon ND, Ravipati AS, Kaas Q, Huang YH, Craik DJ. Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus. J Biol Chem 2020; 295:10911-10925. [PMID: 32414842 DOI: 10.1074/jbc.ra120.012627] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclotides are plant-derived peptides characterized by an ∼30-amino acid-long cyclic backbone and a cystine knot motif. Cyclotides have diverse bioactivities, and their cytotoxicity has attracted significant attention for its potential anticancer applications. Hybanthus enneaspermus (Linn) F. Muell is a medicinal herb widely used in India as a libido enhancer, and a previous study has reported that it may contain cyclotides. In the current study, we isolated 11 novel cyclotides and 1 known cyclotide (cycloviolacin O2) from H. enneaspermus and used tandem MS to determine their amino acid sequences. We found that among these cyclotides, hyen C comprises a unique sequence in loops 1, 2, 3, 4, and 6 compared with known cyclotides. The most abundant cyclotide in this plant, hyen D, had anticancer activity comparable to that of cycloviolacin O2, one of the most cytotoxic known cyclotides. We also provide mechanistic insights into how these novel cyclotides interact with and permeabilize cell membranes. Results from surface plasmon resonance experiments revealed that hyen D, E, L, and M and cycloviolacin O2 preferentially interact with model lipid membranes that contain phospholipids with phosphatidyl-ethanolamine headgroups. The results of a lactate dehydrogenase assay indicated that exposure to these cyclotides compromises cell membrane integrity. Using live-cell imaging, we show that hyen D induces rapid membrane blebbing and cell necrosis. Cyclotide-membrane interactions correlated with the observed cytotoxicity, suggesting that membrane permeabilization and disintegration underpin cyclotide cytotoxicity. These findings broaden our knowledge on the indigenous Indian herb H. enneaspermus and have uncovered cyclotides with potential anticancer activity.
Collapse
Affiliation(s)
- Qingdan Du
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lai Y Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Institute of Health & Biomedical Innovation and Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Anjaneya S Ravipati
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Tammineni R, Gulati P, Kumar S, Mohanty A. An overview of acyclotides: Past, present and future. PHYTOCHEMISTRY 2020; 170:112215. [PMID: 31812106 DOI: 10.1016/j.phytochem.2019.112215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Acyclotides are plant-based, acyclic miniproteins with cystine knot motif formed by three conserved disulfide linkages and lack head to tail ligation. Acyclotides may not necessarily be less stable, even though they lack cyclic backbone, as the conserved cystine knot feature provides the required stability. Violacin A was the first acyclotide, isolated from Viola odorata in 2006. Until now, acyclotides have been reported from five dicot families (Violaceae, Rubiaceae, Cucurbitaceae, Solanaceae, Fabaceae) and one monocot family (Poaceae). In Poaceae, only acyclotides have been found whereas in dicot families both cyclotides and acyclotides have been isolated. In last 15 years, several acyclotides with antimicrobial, cytotoxic and hemolytic bioactivities have been discovered. Thus, although many naturally expressed acyclotides do exhibit bioactivities, the linearization of the cyclic peptides may result in loss of bioactivities. Although, bioactivities of acyclotides are comparable to their cyclic counterparts, the numbers of isolated acyclotides are still few. Further, those discovered, have the scope to be screened for agriculturally important activities (insecticidal, anti-helminthic, molluscicidal) and pharmaceutical properties (anticancer, anti-HIV, immuno-stimulant). The feasibility of application of acyclotides is because of their relatively less complex biological synthesis compared to cyclotides, as the cyclization step is not needed. This attribute facilitates the production of transgenic crops and/or its expression in heterologous organisms, lacking cyclization machinery. Keeping in view the bioactivities and the wide array of emerging potential applications of acyclotides, the present review discusses their distribution in plants, gene and protein structure, biosynthesis, bioactivities and mechanism of action. Further, their potential applications and future perspectives to exploit them in agriculture and pharmaceutical industries have been highlighted.
Collapse
Affiliation(s)
- Ramya Tammineni
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India
| | - Pooja Gulati
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sanjay Kumar
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | | |
Collapse
|
34
|
Labyrinthopeptins Exert Broad-Spectrum Antiviral Activity through Lipid-Binding-Mediated Virolysis. J Virol 2020; 94:JVI.01471-19. [PMID: 31666384 DOI: 10.1128/jvi.01471-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
To counteract the serious health threat posed by known and novel viral pathogens, drugs that target a variety of viruses through a common mechanism have attracted recent attention due to their potential in treating (re)emerging infections, for which direct-acting antivirals are not available. We found that labyrinthopeptins A1 and A2, the prototype congeners of carbacyclic lanthipeptides, inhibit the proliferation of diverse enveloped viruses, including dengue virus, Zika virus, West Nile virus, hepatitis C virus, chikungunya virus, Kaposi's sarcoma-associated herpesvirus, cytomegalovirus, and herpes simplex virus, in the low micromolar to nanomolar range. Mechanistic studies on viral particles revealed that labyrinthopeptins induce a virolytic effect through binding to the viral membrane lipid phosphatidylethanolamine (PE). These effects are enhanced by a combined equimolar application of both labyrinthopeptins, and a clear synergism was observed across a concentration range corresponding to 10% to 90% inhibitory concentrations of the compounds. Time-resolved experiments with large unilamellar vesicles (LUVs) reveal that membrane lipid raft compositions (phosphatidylcholine [PC]/PE/cholesterol/sphingomyelin at 17:10:33:40) are particularly sensitive to labyrinthopeptins in comparison to PC/PE (90:10) LUVs, even though the overall PE amount remains constant. Labyrinthopeptins exhibited low cytotoxicity and had favorable pharmacokinetic properties in mice (half-life [t 1/2] = 10.0 h), which designates them promising antiviral compounds acting by an unusual viral lipid targeting mechanism.IMPORTANCE For many viral infections, current treatment options are insufficient. Because the development of each antiviral drug is time-consuming and expensive, the prospect of finding broad-spectrum antivirals that can fight multiple, diverse viruses-well-known viruses as well as (re)emerging species-has gained attention, especially for the treatment of viral coinfections. While most known broad-spectrum agents address processes in the host cell, we found that targeting lipids of the free virus outside the host cell with the natural products labyrinthopeptin A1 and A2 is a viable strategy to inhibit the proliferation of a broad range of viruses from different families, including chikungunya virus, dengue virus, Zika virus, Kaposi's sarcoma-associated herpesvirus, and cytomegalovirus. Labyrinthopeptins bind to viral phosphatidylethanolamine and induce virolysis without exerting cytotoxicity on host cells. This represents a novel and unusual mechanism to tackle medically relevant viral infections.
Collapse
|
35
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
36
|
Henriques ST, Peacock H, Benfield AH, Wang CK, Craik DJ. Is the Mirror Image a True Reflection? Intrinsic Membrane Chirality Modulates Peptide Binding. J Am Chem Soc 2019; 141:20460-20469. [PMID: 31765148 DOI: 10.1021/jacs.9b11194] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptides with pharmaceutical activities are attractive drug leads, and knowledge of their mode-of-action is essential for translation into the clinic. Comparison of native and enantiomeric peptides has long been used as a powerful approach to discriminate membrane- or receptor-mediated modes-of-action on the basis of the assumption that interactions with cell membranes are independent of peptide chirality. Here, we revisit this paradigm with the cyclotide kalata B1, a drug scaffold with intrinsic membrane-binding activity whose enantiomer is less potent than native peptide. To investigate this chirality dependence, we compared peptide-lipid binding using mirror image model membranes. We synthesized phospholipids with non-natural chirality and demonstrate that native kalata B1 binds with higher affinity to phospholipids with chirality found in eukaryotic membranes. This study shows for the first time that the chiral environment of lipid bilayers can modulate the function of membrane-active peptides and challenges the view that peptide-lipid interactions are achiral.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia.,School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation , Queensland University of Technology , Translational Research Institute , Brisbane , Queensland 4102 , Australia
| | - Hayden Peacock
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Aurélie H Benfield
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia.,School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation , Queensland University of Technology , Translational Research Institute , Brisbane , Queensland 4102 , Australia
| | - Conan K Wang
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
37
|
Sang J, Kulkarni K, Watson GM, Ma X, Craik DJ, Henriques ST, Poth AG, Benfield AH, Wilce JA. Evaluation of Cyclic Peptide Inhibitors of the Grb7 Breast Cancer Target: Small Change in Cargo Results in Large Change in Cellular Activity. Molecules 2019; 24:molecules24203739. [PMID: 31627265 PMCID: PMC6832895 DOI: 10.3390/molecules24203739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022] Open
Abstract
Grb7 is an adapter protein, overexpressed in HER2+ve breast and other cancers, and identified as a therapeutic target. Grb7 promotes both proliferative and migratory cellular pathways through interaction of its SH2 domain with upstream binding partners including HER2, SHC, and FAK. Here we present the evaluation of a series of monocyclic and bicyclic peptide inhibitors that have been developed to specifically and potently target the Grb7 SH2-domain. All peptides tested were found to inhibit signaling in both ERK and AKT pathways in SKBR-3 and MDA-MB-231 cell lines. Proliferation, migration, and invasion assays revealed, however, that the second-generation bicyclic peptides were not more bioactive than the first generation G7-18NATE peptide, despite their higher in vitro affinity for the target. This was found not to be due to steric hindrance by the cell-permeability tag, as ascertained by ITC, but to differences in the ability of the bicyclic peptides to interact with and penetrate cellular membranes, as determined using SPR and mass spectrometry. These studies reveal that just small differences to amino acid composition can greatly impact the effectiveness of peptide inhibitors to their intracellular target and demonstrate that G7-18NATE remains the most effective peptide inhibitor of Grb7 developed to date.
Collapse
Affiliation(s)
- Jianrong Sang
- Department of Physiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - Ketav Kulkarni
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - Gabrielle M Watson
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - Xiuquan Ma
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Sónia T Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane 4102, Australia.
| | - Aaron G Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Aurélie H Benfield
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane 4102, Australia.
| | - Jacqueline A Wilce
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| |
Collapse
|
38
|
Huang YH, Du Q, Craik DJ. Cyclotides: Disulfide-rich peptide toxins in plants. Toxicon 2019; 172:33-44. [DOI: 10.1016/j.toxicon.2019.10.244] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022]
|
39
|
Philippe GJB, Gaspar D, Sheng C, Huang YH, Benfield AH, Condon ND, Weidmann J, Lawrence N, Löwer A, Castanho MARB, Craik DJ, Troeira Henriques S. Cell Membrane Composition Drives Selectivity and Toxicity of Designed Cyclic Helix-Loop-Helix Peptides with Cell Penetrating and Tumor Suppressor Properties. ACS Chem Biol 2019; 14:2071-2087. [PMID: 31390185 DOI: 10.1021/acschembio.9b00593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor suppressor protein p53 is inactive in a large number of cancers, including some forms of sarcoma, breast cancer, and leukemia, due to overexpression of its intrinsic inhibitors MDM2 and MDMX. Reactivation of p53 tumor suppressor activity, via disruption of interactions between MDM2/X and p53 in the cytosol, is a promising strategy to treat cancer. Peptides able to bind MDM2 and/or MDMX were shown to prevent MDM2/X:p53 interactions, but most possess low cell penetrability, low stability, and/or high toxicity to healthy cells. Recently, the designed peptide cHLH-p53-R was reported to possess high affinity for MDM2, resistance toward proteases, cell-penetrating properties, and toxicity toward cancer cells. This peptide uses a stable cyclic helix-loop-helix (cHLH) scaffold, which includes two helices connected with a Gly loop and cyclized to improve stability. In the current study, we were interested in examining the cell selectivity of cHLH-p53-R, its cellular internalization, and ability to reactivate the p53 pathway. We designed analogues of cHLH-p53-R and employed biochemical and biophysical methodologies using in vitro model membranes and cell-based assays to compare their structure, activity, and mode-of-action. Our studies show that cHLH is an excellent scaffold to stabilize and constrain p53-mimetic peptides with helical conformation, and reveal that anticancer properties of cHLH-p53-R are mediated by its ability to selectively target, cross, and disrupt cancer cell membranes, and not by activation of the p53 pathway. These findings highlight the importance of examining the mode-of-action of designed peptides to fully exploit their potential to develop targeted therapies.
Collapse
Affiliation(s)
- Grégoire J.-B. Philippe
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Caibin Sheng
- Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Aurélie H. Benfield
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Nicholas D. Condon
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Joachim Weidmann
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - David J. Craik
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
40
|
Vernen F, Harvey PJ, Dias SA, Veiga AS, Huang YH, Craik DJ, Lawrence N, Troeira Henriques S. Characterization of Tachyplesin Peptides and Their Cyclized Analogues to Improve Antimicrobial and Anticancer Properties. Int J Mol Sci 2019; 20:E4184. [PMID: 31455019 PMCID: PMC6747087 DOI: 10.3390/ijms20174184] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Tachyplesin I, II and III are host defense peptides from horseshoe crab species with antimicrobial and anticancer activities. They have an amphipathic β-hairpin structure, are highly positively-charged and differ by only one or two amino acid residues. In this study, we compared the structure and activity of the three tachyplesin peptides alongside their backbone cyclized analogues. We assessed the peptide structures using nuclear magnetic resonance (NMR) spectroscopy, then compared the activity against bacteria (both in the planktonic and biofilm forms) and a panel of cancerous cells. The importance of peptide-lipid interactions was examined using surface plasmon resonance and fluorescence spectroscopy methodologies. Our studies showed that tachyplesin peptides and their cyclic analogues were most potent against Gram-negative bacteria and melanoma cell lines, and showed a preference for binding to negatively-charged lipid membranes. Backbone cyclization did not improve potency, but improved peptide stability in human serum and reduced toxicity toward human red blood cells. Peptide-lipid binding affinity, orientation within the membrane, and ability to disrupt lipid bilayers differed between the cyclized peptide and the parent counterpart. We show that tachyplesin peptides and cyclized analogues have similarly potent antimicrobial and anticancer properties, but that backbone cyclization improves their stability and therapeutic potential.
Collapse
Affiliation(s)
- Felicitas Vernen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susana A Dias
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
- School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland 4102, Australia.
| |
Collapse
|
41
|
Poth AG, Huang YH, Le TT, Kan MW, Craik DJ. Pharmacokinetic characterization of kalata B1 and related therapeutics built on the cyclotide scaffold. Int J Pharm 2019; 565:437-446. [DOI: 10.1016/j.ijpharm.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 02/08/2023]
|
42
|
Camarero JA, Campbell MJ. The Potential of the Cyclotide Scaffold for Drug Development. Biomedicines 2019; 7:biomedicines7020031. [PMID: 31010257 PMCID: PMC6631875 DOI: 10.3390/biomedicines7020031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclotides are a novel class of micro-proteins (≈30-40 residues long) with a unique topology containing a head-to-tail cyclized backbone structure further stabilized by three disulfide bonds that form a cystine knot. This unique molecular framework makes them exceptionally stable to physical, chemical, and biological degradation compared to linear peptides of similar size. The cyclotides are also highly tolerant to sequence variability, aside from the conserved residues forming the cystine knot, and are orally bioavailable and able to cross cellular membranes to modulate intracellular protein-protein interactions (PPIs), both in vitro and in vivo. These unique properties make them ideal scaffolds for many biotechnological applications, including drug discovery. This review provides an overview of the properties of cyclotides and their potential for the development of novel peptide-based therapeutics. The selective disruption of PPIs still remains a very challenging task, as the interacting surfaces are relatively large and flat. The use of the cell-permeable highly constrained polypeptide molecular frameworks, such as the cyclotide scaffold, has shown great promise, as it provides unique pharmacological properties. The use of molecular techniques, such as epitope grafting, and molecular evolution have shown to be highly effective for the selection of bioactive cyclotides. However, despite successes in employing cyclotides to target PPIs, some of the challenges to move them into the clinic still remain.
Collapse
Affiliation(s)
- Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA 9033, USA.
| | - Maria Jose Campbell
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
| |
Collapse
|
43
|
Gerlach SL, Chandra PK, Roy U, Gunasekera S, Göransson U, Wimley WC, Braun SE, Mondal D. The Membrane-Active Phytopeptide Cycloviolacin O2 Simultaneously Targets HIV-1-infected Cells and Infectious Viral Particles to Potentiate the Efficacy of Antiretroviral Drugs. MEDICINES 2019; 6:medicines6010033. [PMID: 30823453 PMCID: PMC6473583 DOI: 10.3390/medicines6010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/25/2022]
Abstract
Background: Novel strategies to increase the efficacy of antiretroviral (ARV) drugs will be of crucial importance. We hypothesize that membranes of HIV-1-infected cells and enveloped HIV-1 particles may be preferentially targeted by the phytopeptide, cycloviolacin O2 (CyO2) to significantly enhance ARV efficacy. Methods: Physiologically safe concentrations of CyO2 were determined via red blood cell (RBC) hemolysis. SYTOX-green dye-uptake and radiolabeled saquinavir (³H-SQV) uptake assays were used to measure pore-formation and drug uptake, respectively. ELISA, reporter assays and ultracentrifugation were conducted to analyze the antiviral efficacy of HIV-1 protease and fusion inhibitors alone and co-exposed to CyO2. Results: CyO2 concentrations below 0.5 μM did not show substantial hemolytic activity, yet these concentrations enabled rapid pore-formation in HIV-infected T-cells and monocytes and increased drug uptake. ELISA for HIV-1 p24 indicated that CyO2 enhances the antiviral efficacy of both SQV and nelfinavir. CyO2 (< 0.5 μM) alone decreases HIV-1 p24 production, but it did not affect the transcription regulatory function of the HIV-1 long terminal repeat (LTR). Ultracentrifugation studies clearly showed that CyO2 exposure disrupted viral integrity and decreased the p24 content of viral particles. Furthermore, direct HIV-1 inactivation by CyO2 enhanced the efficacy of enfuvirtide. Conclusions: The membrane-active properties of CyO2 may help suppress viral load and augment antiretroviral drug efficacy.
Collapse
Affiliation(s)
- Samantha L Gerlach
- Department of Biology, Division of Science, Technology, Engineering and Mathematics, Dillard University, New Orleans, LA 70122, USA.
- Department of Pharmacology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| | - Partha K Chandra
- Department of Pharmacology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| | - Upal Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Sunithi Gunasekera
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| | - Ulf Göransson
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| | - Stephen E Braun
- Tulane National Primate Research Center, Covington, LA 70112, USA.
| | - Debasis Mondal
- Department of Pharmacology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| |
Collapse
|
44
|
Ojeda PG, Henriques ST, Pan Y, Nicolazzo JA, Craik DJ, Wang CK. Lysine to arginine mutagenesis of chlorotoxin enhances its cellular uptake. Biopolymers 2018; 108. [PMID: 28459137 DOI: 10.1002/bip.23025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Chlorotoxin (CTX), a disulfide-rich peptide from the scorpion Leiurus quinquestriatus, has several promising biopharmaceutical properties, including preferential affinity for certain cancer cells, high serum stability, and cell penetration. These properties underpin its potential for use as a drug design scaffold, especially for the treatment of cancer; indeed, several analogs of CTX have reached clinical trials. Here, we focus on its ability to internalize into cells-a trait associated with a privileged subclass of peptides called cell-penetrating peptides-and whether it can be improved through conservative substitutions. Mutants of CTX were made using solid-phase peptide synthesis and internalization into human cervical carcinoma (HeLa) cells was monitored by fluorescence and confocal microscopy. CTX_M1 (ie, [K15R/K23R]CTX) and CTX_M2 (ie, [K15R/K23R/Y29W]CTX) mutants showed at least a twofold improvement in uptake compared to CTX. We further showed that these mutants internalize into HeLa cells largely via an energy-dependent mechanism. Importantly, the mutants have high stability, remaining intact in serum for over 24 h; thus, retaining the characteristic stability of their parent peptide. Overall, we have shown that simple conservative substitutions can enhance the cellular uptake of CTX, suggesting that such type of mutations might be useful for improving uptake of other peptide toxins.
Collapse
Affiliation(s)
- Paola G Ojeda
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
45
|
Madio B, Peigneur S, Chin YKY, Hamilton BR, Henriques ST, Smith JJ, Cristofori-Armstrong B, Dekan Z, Boughton BA, Alewood PF, Tytgat J, King GF, Undheim EAB. PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cell Mol Life Sci 2018; 75:4511-4524. [PMID: 30109357 PMCID: PMC11105382 DOI: 10.1007/s00018-018-2897-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Sea anemone venoms have long been recognized as a rich source of peptides with interesting pharmacological and structural properties, but they still contain many uncharacterized bioactive compounds. Here we report the discovery, three-dimensional structure, activity, tissue localization, and putative function of a novel sea anemone peptide toxin that constitutes a new, sixth type of voltage-gated potassium channel (KV) toxin from sea anemones. Comprised of just 17 residues, κ-actitoxin-Ate1a (Ate1a) is the shortest sea anemone toxin reported to date, and it adopts a novel three-dimensional structure that we have named the Proline-Hinged Asymmetric β-hairpin (PHAB) fold. Mass spectrometry imaging and bioassays suggest that Ate1a serves a primarily predatory function by immobilising prey, and we show this is achieved through inhibition of Shaker-type KV channels. Ate1a is encoded as a multi-domain precursor protein that yields multiple identical mature peptides, which likely evolved by multiple domain duplication events in an actinioidean ancestor. Despite this ancient evolutionary history, the PHAB-encoding gene family exhibits remarkable sequence conservation in the mature peptide domains. We demonstrate that this conservation is likely due to intra-gene concerted evolution, which has to our knowledge not previously been reported for toxin genes. We propose that the concerted evolution of toxin domains provides a hitherto unrecognised way to circumvent the effects of the costly evolutionary arms race considered to drive toxin gene evolution by ensuring efficient secretion of ecologically important predatory toxins.
Collapse
Affiliation(s)
- Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, 3000, Belgium
| | - Yanni K Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jennifer J Smith
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Cristofori-Armstrong
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Berin A Boughton
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, 3000, Belgium
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
46
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
47
|
Agwa AJ, Peigneur S, Chow CY, Lawrence N, Craik DJ, Tytgat J, King GF, Henriques ST, Schroeder CI. Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes. J Biol Chem 2018; 293:9041-9052. [PMID: 29703751 DOI: 10.1074/jbc.ra118.002553] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/25/2018] [Indexed: 11/06/2022] Open
Abstract
Gating modifier toxins (GMTs) are venom-derived peptides isolated from spiders and other venomous creatures and modulate activity of disease-relevant voltage-gated ion channels and are therefore being pursued as therapeutic leads. The amphipathic surface profile of GMTs has prompted the proposal that some GMTs simultaneously bind to the cell membrane and voltage-gated ion channels in a trimolecular complex. Here, we examined whether there is a relationship among spider GMT amphipathicity, membrane binding, and potency or selectivity for voltage-gated sodium (NaV) channels. We used NMR spectroscopy and in silico calculations to examine the structures and physicochemical properties of a panel of nine GMTs and deployed surface plasmon resonance to measure GMT affinity for lipids putatively found in proximity to NaV channels. Electrophysiology was used to quantify GMT activity on NaV1.7, an ion channel linked to chronic pain. Selectivity of the peptides was further examined against a panel of NaV channel subtypes. We show that GMTs adsorb to the outer leaflet of anionic lipid bilayers through electrostatic interactions. We did not observe a direct correlation between GMT amphipathicity and affinity for lipid bilayers. Furthermore, GMT-lipid bilayer interactions did not correlate with potency or selectivity for NaVs. We therefore propose that increased membrane binding is unlikely to improve subtype selectivity and that the conserved amphipathic GMT surface profile is an adaptation that facilitates simultaneous modulation of multiple NaVs.
Collapse
Affiliation(s)
- Akello J Agwa
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Steve Peigneur
- Laboratory of Toxicology and Pharmacology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Chun Yuen Chow
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Nicole Lawrence
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - David J Craik
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Jan Tytgat
- Laboratory of Toxicology and Pharmacology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Glenn F King
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Sónia Troeira Henriques
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Christina I Schroeder
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| |
Collapse
|
48
|
Chemical Synthesis and Functional Analysis of VarvA Cyclotide. Molecules 2018; 23:molecules23040952. [PMID: 29671790 PMCID: PMC6017059 DOI: 10.3390/molecules23040952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Cyclotides are circular peptides found in various plant families. A cyclized backbone, together with multiple disulfide bonds, confers the peptides’ exceptional stability against protease digestion and thermal denaturation. In addition, the features of these antimicrobial molecules make them suitable for use in animal farming, such as aquaculture. Fmoc solid phase peptide synthesis on 2-chlorotrityl chlorine (CTC) resin using the “tea-bag” approach was conducted to generate the VarvA cyclotide identified previously from Viola arvensis. MALDI-TOF mass spectrometry determined the correct peptide amino acid sequence and the cyclization sites-critical in this multicyclic compound. The cyclotide showed antimicrobial activity against various Gram-negative bacteria, including recurrent pathogens present in Chilean aquaculture. The highest antimicrobial activity was found to be against Flavobacterium psychrophilum. In addition, membrane blebbing on the bacterial surface after exposure to the cyclotide was visualized by SEM microscopy and the Sytox Green permeabilization assay showed the ability to disrupt the bacterial membrane. We postulate that this compound can be proposed for the control of fish farming infections.
Collapse
|
49
|
Zhu S, Sani M, Separovic F. Interaction of cationic antimicrobial peptides from Australian frogs with lipid membranes. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shiying Zhu
- School of ChemistryBio21 Institute, University of MelbourneMelbourne VIC3010 Australia
| | - Marc‐Antoine Sani
- School of ChemistryBio21 Institute, University of MelbourneMelbourne VIC3010 Australia
| | - Frances Separovic
- School of ChemistryBio21 Institute, University of MelbourneMelbourne VIC3010 Australia
| |
Collapse
|
50
|
Zhang RY, Thapa P, Espiritu MJ, Menon V, Bingham JP. From nature to creation: Going around in circles, the art of peptide cyclization. Bioorg Med Chem 2018; 26:1135-1150. [DOI: 10.1016/j.bmc.2017.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 02/02/2023]
|