1
|
Timoshina PS, Nesterenko AM, Parshina EA, Orlov EE, Eroshkin FM, Zaraisky AG. Dissecting the mystery of embryonic scaling: The Scalers Hypothesis and its confirmation in sea urchin embryos. Cells Dev 2024:203972. [PMID: 39437893 DOI: 10.1016/j.cdev.2024.203972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Embryonic scaling, the ability of embryos to regulate their spatial structure in proportion to size, remains a fascinating yet poorly studied problem in developmental biology. First described in sea urchin embryos by Hans Driesch, this phenomenon is now recognized as a striking example of how living organisms use non-equilibrium self-organization, based on reaction-diffusion (RD) systems, to generate pattern-determining morphogen concentration gradients that scale with size. Although specific molecular mechanisms for scaling such gradients have been described in some cases, a general approach for the targeted identification of such mechanisms had not been developed until recently. In search of a solution, we hypothesized the obligatory participation in scaling mechanisms of special genes, which we named "scalers." We supposed that these genes share two critical features: their expression is sensitive to embryo size, and their protein products determine the scale of morphogen concentration gradients. As proof of principle, we recently identified scalers by detecting differentially expressed genes in wild-type and half-size Xenopus laevis gastrula embryos. Furthermore, we described a mechanism by which one of the identified scalers, the gene encoding Metalloproteinase 3 (Mmp3), regulates the scaling of gradients of the morphogenic protein Bmp and its antagonists, Chordin and Noggin1/2. In the present work, we have made an important theoretical generalization of the Scalers Hypothesis by proving a statement regarding the obligatory presence of scalers in closed RD systems generating morphogen concentration gradients. Furthermore, through a systematic analysis of all known types of embryonic scaling models based on RD systems, we demonstrate that scalers are present in all known types of such models, either explicitly or implicitly. Finally, to test the universality of the Scalers Hypothesis, we applied our method to identify scalers that adjust Bmp/Chordin gradients to the size of the sea urchin embryo, Strongylocentrotus droebachiensis. Our results show that at least two members of the gene cluster encoding astacin metalloproteinases of the Span family, namely bp10 and Span, exhibit properties characteristic of scalers. Namely, their expression levels increase significantly in half-size embryos, and their protein products specifically degrade Chordin. Additionally, we found that the loss of function of bp10 and span leads to a narrowing of the dorsal domain of the Bmp signaling nuclear effector, pSmad1/5. These findings not only validate the Scalers Hypothesis but also uncover a novel mechanism by which Span proteinases fine-tune Chordin and Bmp morphogen concentration gradients in sea urchins. Thus, the Scalers Hypothesis and the approach to targeted search for such genes developed on its basis open up promising avenues for future research into scaling mechanisms in various biological systems.
Collapse
Affiliation(s)
- Polina S Timoshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya str., Moscow 117997, Russia
| | - Alexey M Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya str., Moscow 117997, Russia
| | - Elena A Parshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya str., Moscow 117997, Russia
| | - Eugeny E Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya str., Moscow 117997, Russia
| | - Fedor M Eroshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya str., Moscow 117997, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya str., Moscow 117997, Russia; Pirogov Russian National Research Medical University, 1 Ostrovityanova str., 117997 Moscow, Russia.
| |
Collapse
|
2
|
Vadon-Le Goff S, Tessier A, Napoli M, Dieryckx C, Bauer J, Dussoyer M, Lagoutte P, Peyronnel C, Essayan L, Kleiser S, Tueni N, Bettler E, Mariano N, Errazuriz-Cerda E, Fruchart Gaillard C, Ruggiero F, Becker-Pauly C, Allain JM, Bruckner-Tuderman L, Nyström A, Moali C. Identification of PCPE-2 as the endogenous specific inhibitor of human BMP-1/tolloid-like proteinases. Nat Commun 2023; 14:8020. [PMID: 38049428 PMCID: PMC10696041 DOI: 10.1038/s41467-023-43401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/08/2023] [Indexed: 12/06/2023] Open
Abstract
BMP-1/tolloid-like proteinases (BTPs) are major players in tissue morphogenesis, growth and repair. They act by promoting the deposition of structural extracellular matrix proteins and by controlling the activity of matricellular proteins and TGF-β superfamily growth factors. They have also been implicated in several pathological conditions such as fibrosis, cancer, metabolic disorders and bone diseases. Despite this broad range of pathophysiological functions, the putative existence of a specific endogenous inhibitor capable of controlling their activities could never be confirmed. Here, we show that procollagen C-proteinase enhancer-2 (PCPE-2), a protein previously reported to bind fibrillar collagens and to promote their BTP-dependent maturation, is primarily a potent and specific inhibitor of BTPs which can counteract their proteolytic activities through direct binding. PCPE-2 therefore differs from the cognate PCPE-1 protein and extends the possibilities to fine-tune BTP activities, both in physiological conditions and in therapeutic settings.
Collapse
Affiliation(s)
- Sandrine Vadon-Le Goff
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Agnès Tessier
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- University of Freiburg, Faculty of Biology, 79104, Freiburg, Germany
| | - Manon Napoli
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Cindy Dieryckx
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Julien Bauer
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Mélissa Dussoyer
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Priscillia Lagoutte
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Célian Peyronnel
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Lucie Essayan
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Svenja Kleiser
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- University of Freiburg, Faculty of Biology, 79104, Freiburg, Germany
| | - Nicole Tueni
- Laboratoire de Mécanique des Solides, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- INRIA, 91120, Palaiseau, France
- Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Emmanuel Bettler
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Natacha Mariano
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Elisabeth Errazuriz-Cerda
- University of Lyon, Centre d'Imagerie Quantitative Lyon-Est (CIQLE), SFR Santé-Lyon Est, 69373, Lyon, France
| | - Carole Fruchart Gaillard
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Florence Ruggiero
- ENS Lyon, CNRS UMR 5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), 69007, Lyon, France
| | - Christoph Becker-Pauly
- University of Kiel, Biochemical Institute, Unit for Degradomics of the Protease Web, Kiel, Germany
| | - Jean-Marc Allain
- Laboratoire de Mécanique des Solides, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- INRIA, 91120, Palaiseau, France
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Catherine Moali
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France.
| |
Collapse
|
3
|
Chen X, Tan H, Xu J, Tian Y, Yuan Q, Zuo Y, Chen Q, Hong X, Fu H, Hou FF, Zhou L, Liu Y. Klotho-derived peptide 6 ameliorates diabetic kidney disease by targeting Wnt/β-catenin signaling. Kidney Int 2022; 102:506-520. [PMID: 35644285 DOI: 10.1016/j.kint.2022.04.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023]
Abstract
Diabetic kidney disease (DKD) is one of the most common and devastating complications of diabetic mellitus, and its prevalence is rising worldwide. Klotho, an anti-aging protein, is kidney protective in DKD. However, its large size, prohibitive cost and structural complexity hamper its potential utility in clinics. Here we report that Klotho-derived peptide 6 (KP6) mimics Klotho function and ameliorates DKD. In either an accelerated model of DKD induced by streptozotocin and advanced oxidation protein products in unilateral nephrectomized mice or db/db mice genetically prone to diabetes, chronic infusion of KP6 reversed established proteinuria, attenuated glomerular hypertrophy, mitigated podocyte damage, and ameliorated glomerulosclerosis and interstitial fibrotic lesions, but did not affect serum phosphorus and calcium levels. KP6 inhibited β-catenin activation in vivo and blocked the expression of its downstream target genes in glomerular podocytes and tubular epithelial cells. In vitro, KP6 prevented podocyte injury and inhibited β-catenin activation induced by high glucose without affecting Wnt expression. Co-immunoprecipitation revealed that KP6 bound to Wnt ligands and disrupted the engagement of Wnts with low density lipoprotein receptor-related protein 6, thereby interrupting Wnt/β-catenin signaling. Mutated KP6 with a scrambled amino acid sequence failed to bind Wnts and did not alleviate DKD in db/db mice. Thus, our studies identified KP6 as a novel Klotho-derived peptide that ameliorated DKD by blocking Wnt/β-catenin. Hence, our findings also suggest a new therapeutic strategy for the treatment of patients with DKD.
Collapse
Affiliation(s)
- Xiaowen Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Jie Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Yuan Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Qian Yuan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Yangyang Zuo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Qiyan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
4
|
Sharma U, Vadon-Le Goff S, Harlos K, Zhao Y, Mariano N, Bijakowski C, Bourhis JM, Moali C, Hulmes DJS, Aghajari N. Dynamics of the secreted frizzled related protein Sizzled and potential implications for binding to bone morphogenetic protein-1 (BMP-1). Sci Rep 2022; 12:14850. [PMID: 36050373 PMCID: PMC9437010 DOI: 10.1038/s41598-022-18795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Sizzled (Szl) is both a secreted frizzled related protein (sFRP) and a naturally occurring inhibitor of the zinc metalloproteinase bone morphogenetic protein-1 (BMP-1), a key regulator of extracellular matrix assembly and growth factor activation. Here we present a new crystal structure for Szl which differs from that previously reported by a large scale (90°) hinge rotation between its cysteine-rich and netrin-like domains. We also present results of a molecular docking analysis showing interactions likely to be involved in the inhibition of BMP-1 activity by Szl. When compared with known structures of BMP-1 in complex with small molecule inhibitors, this reveals features that may be helpful in the design of new inhibitors to prevent the excessive accumulation of extracellular matrix that is the hallmark of fibrotic diseases.
Collapse
Affiliation(s)
- Urvashi Sharma
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
- National Institute of Biologicals, A-32, Institutional Area, Sector 62, Noida, 201309, India
| | - Sandrine Vadon-Le Goff
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Karl Harlos
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Yuguang Zhao
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Natacha Mariano
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Cecile Bijakowski
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Jean-Marie Bourhis
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
5
|
Brandt KJ, Burger F, Baptista D, Roth A, Fernandes da Silva R, Montecucco F, Mach F, Miteva K. Single-Cell Analysis Uncovers Osteoblast Factor Growth Differentiation Factor 10 as Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation Associated with Plaque Rupture in Human Carotid Artery Disease. Int J Mol Sci 2022; 23:1796. [PMID: 35163719 PMCID: PMC8836240 DOI: 10.3390/ijms23031796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Vascular smooth muscle cells (VSMCs) undergo a complex phenotypic switch in response to atherosclerosis environmental triggers, contributing to atherosclerosis disease progression. However, the complex heterogeneity of VSMCs and how VSMC dedifferentiation affects human carotid artery disease (CAD) risk has not been clearly established. (2) Method: A single-cell RNA sequencing analysis of CD45- cells derived from the atherosclerotic aorta of Apolipoprotein E-deficient (Apoe-/-) mice on a normal cholesterol diet (NCD) or a high cholesterol diet (HCD), respecting the site-specific predisposition to atherosclerosis was performed. Growth Differentiation Factor 10 (GDF10) role in VSMCs phenotypic switch was investigated via flow cytometry, immunofluorescence in human atherosclerotic plaques. (3) Results: scRNAseq analysis revealed the transcriptomic profile of seven clusters, five of which showed disease-relevant gene signature of VSMC macrophagic calcific phenotype, VSMC mesenchymal chondrogenic phenotype, VSMC inflammatory and fibro-phenotype and VSMC inflammatory phenotype. Osteoblast factor GDF10 involved in ossification and osteoblast differentiation emerged as a hallmark of VSMCs undergoing phenotypic switch. Under hypercholesteremia, GDF10 triggered VSMC osteogenic switch in vitro. The abundance of GDF10 expressing osteogenic-like VSMCs cells was linked to the occurrence of carotid artery disease (CAD) events. (4) Conclusions: Taken together, these results provide evidence about GDF10-mediated VSMC osteogenic switch, with a likely detrimental role in atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Karim J. Brandt
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Rafaela Fernandes da Silva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 6627, Brazil
- Swiss Institute for Translational and Entrepreneurial Medicine, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Fabrizio Montecucco
- Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy;
- First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Francois Mach
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| |
Collapse
|
6
|
Yan Y, Wang Q. BMP Signaling: Lighting up the Way for Embryonic Dorsoventral Patterning. Front Cell Dev Biol 2022; 9:799772. [PMID: 35036406 PMCID: PMC8753366 DOI: 10.3389/fcell.2021.799772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
One of the most significant events during early embryonic development is the establishment of a basic embryonic body plan, which is defined by anteroposterior, dorsoventral (DV), and left-right axes. It is well-known that the morphogen gradient created by BMP signaling activity is crucial for DV axis patterning across a diverse set of vertebrates. The regulation of BMP signaling during DV patterning has been strongly conserved across evolution. This is a remarkable regulatory and evolutionary feat, as the BMP gradient has been maintained despite the tremendous variation in embryonic size and shape across species. Interestingly, the embryonic DV axis exhibits robust stability, even in face of variations in BMP signaling. Multiple lines of genetic, molecular, and embryological evidence have suggested that numerous BMP signaling components and their attendant regulators act in concert to shape the developing DV axis. In this review, we summarize the current knowledge of the function and regulation of BMP signaling in DV patterning. Throughout, we focus specifically on popular model animals, such as Xenopus and zebrafish, highlighting the similarities and differences of the regulatory networks between species. We also review recent advances regarding the molecular nature of DV patterning, including the initiation of the DV axis, the formation of the BMP gradient, and the regulatory molecular mechanisms behind BMP signaling during the establishment of the DV axis. Collectively, this review will help clarify our current understanding of the molecular nature of DV axis formation.
Collapse
Affiliation(s)
- Yifang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Lagoutte P, Bettler E, Vadon-Le Goff S, Moali C. Procollagen C-proteinase enhancer-1 (PCPE-1), a potential biomarker and therapeutic target for fibrosis. Matrix Biol Plus 2021; 11:100062. [PMID: 34435180 PMCID: PMC8377038 DOI: 10.1016/j.mbplus.2021.100062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The correct balance between collagen synthesis and degradation is essential for almost every aspect of life, from development to healthy aging, reproduction and wound healing. When this balance is compromised by external or internal stress signals, it very often leads to disease as is the case in fibrotic conditions. Fibrosis occurs in the context of defective tissue repair and is characterized by the excessive, aberrant and debilitating deposition of fibril-forming collagens. Therefore, the numerous proteins involved in the biosynthesis of fibrillar collagens represent a potential and still underexploited source of therapeutic targets to prevent fibrosis. One such target is procollagen C-proteinase enhancer-1 (PCPE-1) which has the unique ability to accelerate procollagen maturation by BMP-1/tolloid-like proteinases (BTPs) and contributes to trigger collagen fibrillogenesis, without interfering with other BTP functions or the activities of other extracellular metalloproteinases. This role is achieved through a fine-tuned mechanism of action that is close to being elucidated and offers promising perspectives for drug design. Finally, the in vivo data accumulated in recent years also confirm that PCPE-1 overexpression is a general feature and early marker of fibrosis. In this review, we describe the results which presently support the driving role of PCPE-1 in fibrosis and discuss the questions that remain to be solved to validate its use as a biomarker or therapeutic target.
Collapse
Key Words
- ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs
- AS, aortic valve stenosis
- BMP, bone morphogenetic protein
- Biomarker
- CKD, chronic kidney disease
- CP, C-propeptide
- CUB, complement, Uegf, BMP-1
- CVD, cardiovascular disease
- Collagen
- DMD, Duchenne muscular dystrophy
- ECM, extracellular matrix
- EGF, epidermal growth factor
- ELISA, enzyme-linked immunosorbent assay
- Fibrillogenesis
- Fibrosis
- HDL, high-density lipoprotein
- HSC, hepatic stellate cell
- HTS, hypertrophic scar
- IPF, idiopathic pulmonary fibrosis
- LDL, low-density lipoprotein
- MI, myocardial infarction
- MMP, matrix metalloproteinase
- NASH, nonalcoholic steatohepatitis
- NTR, netrin
- OPMD, oculopharyngeal muscular dystrophy
- PABPN1, poly(A)-binding protein nuclear 1
- PCP, procollagen C-proteinase
- PCPE, procollagen C-proteinase enhancer
- PNP, procollagen N-proteinase
- Proteolysis
- SPC, subtilisin proprotein convertase
- TGF-β, transforming growth-factor β
- TIMP, tissue inhibitor of metalloproteinases
- TSPN, thrombospondin-like N-terminal
- Therapeutic target
- eGFR, estimated glomerular filtration rate
- mTLD, mammalian tolloid
- mTLL, mammalian tolloid-like
Collapse
Affiliation(s)
- Priscillia Lagoutte
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Emmanuel Bettler
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Catherine Moali
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| |
Collapse
|
8
|
Liu Y, Neogi A, Mani A. The role of Wnt signalling in development of coronary artery disease and its risk factors. Open Biol 2020; 10:200128. [PMID: 33081636 PMCID: PMC7653355 DOI: 10.1098/rsob.200128] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
The Wnt signalling pathways are composed of a highly conserved cascade of events that govern cell differentiation, apoptosis and cell orientation. Three major and distinct Wnt signalling pathways have been characterized: the canonical Wnt pathway (or Wnt/β-catenin pathway), the non-canonical planar cell polarity pathway and the non-canonical Wnt/Ca2+ pathway. Altered Wnt signalling pathway has been associated with diverse diseases such as disorders of bone density, different malignancies, cardiac malformations and heart failure. Coronary artery disease is the most common type of heart disease in the United States. Atherosclerosis is a multi-step pathological process, which starts with lipid deposition and endothelial cell dysfunction, triggering inflammatory reactions, followed by recruitment and aggregation of monocytes. Subsequently, monocytes differentiate into tissue-resident macrophages and transform into foam cells by the uptake of modified low-density lipoprotein. Meanwhile, further accumulations of lipids, infiltration and proliferation of vascular smooth muscle cells, and deposition of the extracellular matrix occur under the intima. An atheromatous plaque or hyperplasia of the intima and media is eventually formed, resulting in luminal narrowing and reduced blood flow to the myocardium, leading to chest pain, angina and even myocardial infarction. The Wnt pathway participates in all different stages of this process, from endothelial dysfunction to lipid deposit, and from initial inflammation to plaque formation. Here, we focus on the role of Wnt cascade in pathophysiological mechanisms that take part in coronary artery disease from both clinical and experimental perspectives.
Collapse
Affiliation(s)
- Ya Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Arpita Neogi
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Medicine, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Vonica A, Bhat N, Phan K, Guo J, Iancu L, Weber JA, Karger A, Cain JW, Wang ECE, DeStefano GM, O'Donnell-Luria AH, Christiano AM, Riley B, Butler SJ, Luria V. Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Dev Biol 2020; 464:71-87. [PMID: 32320685 PMCID: PMC7307705 DOI: 10.1016/j.ydbio.2020.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
Abstract
Animal development and homeostasis depend on precise temporal and spatial intercellular signaling. Components shared between signaling pathways, generally thought to decrease specificity, paradoxically can also provide a solution to pathway coordination. Here we show that the Bone Morphogenetic Protein (BMP) and Wnt signaling pathways share Apcdd1 as a common inhibitor and that Apcdd1 is a taxon-restricted gene with novel domains and signaling functions. Previously, we showed that Apcdd1 inhibits Wnt signaling (Shimomura et al., 2010), here we find that Apcdd1 potently inhibits BMP signaling in body axis formation and neural differentiation in chicken, frog, zebrafish. Furthermore, we find that Apcdd1 has an evolutionarily novel protein domain. Our results from experiments and modeling suggest that Apcdd1 may coordinate the outputs of two signaling pathways that are central to animal development and human disease.
Collapse
Affiliation(s)
- Alin Vonica
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Biology, The Nazareth College, Rochester, NY, 14618, USA
| | - Neha Bhat
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Keith Phan
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Jinbai Guo
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA
| | - Lăcrimioara Iancu
- Institut für Algebra und Zahlentheorie, Universität Stuttgart, D-70569, Stuttgart, Germany; Institute of Mathematics, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| | - Jessica A Weber
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, 02115, USA
| | - John W Cain
- Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA
| | - Etienne C E Wang
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Gina M DeStefano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Anne H O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Angela M Christiano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Bruce Riley
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA.
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA.
| | - Victor Luria
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Anastasi C, Rousselle P, Talantikite M, Tessier A, Cluzel C, Bachmann A, Mariano N, Dussoyer M, Alcaraz LB, Fortin L, Aubert A, Delolme F, El Kholti N, Armengaud J, Fournié P, Auxenfans C, Valcourt U, Goff SVL, Moali C. BMP-1 disrupts cell adhesion and enhances TGF-β activation through cleavage of the matricellular protein thrombospondin-1. Sci Signal 2020; 13:13/639/eaba3880. [PMID: 32636307 DOI: 10.1126/scisignal.aba3880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone morphogenetic protein 1 (BMP-1) is an important metalloproteinase that synchronizes growth factor activation with extracellular matrix assembly during morphogenesis and tissue repair. The mechanisms by which BMP-1 exerts these effects are highly context dependent. Because BMP-1 overexpression induces marked phenotypic changes in two human cell lines (HT1080 and 293-EBNA cells), we investigated how BMP-1 simultaneously affects cell-matrix interactions and growth factor activity in these cells. Increasing BMP-1 led to a loss of cell adhesion that depended on the matricellular glycoprotein thrombospondin-1 (TSP-1). BMP-1 cleaved TSP-1 between the VWFC/procollagen-like domain and the type 1 repeats that mediate several key TSP-1 functions. This cleavage induced the release of TSP-1 C-terminal domains from the extracellular matrix and abolished its previously described multisite cooperative interactions with heparan sulfate proteoglycans and CD36 on HT1080 cells. In addition, BMP-1-dependent proteolysis potentiated the TSP-1-mediated activation of latent transforming growth factor-β (TGF-β), leading to increased signaling through the canonical SMAD pathway. In primary human corneal stromal cells (keratocytes), endogenous BMP-1 cleaved TSP-1, and the addition of exogenous BMP-1 enhanced cleavage, but this had no substantial effect on cell adhesion. Instead, processed TSP-1 promoted the differentiation of keratocytes into myofibroblasts and stimulated production of the myofibroblast marker α-SMA, consistent with the presence of processed TSP-1 in human corneal scars. Our results indicate that BMP-1 can both trigger the disruption of cell adhesion and stimulate TGF-β signaling in TSP-1-rich microenvironments, which has important potential consequences for wound healing and tumor progression.
Collapse
Affiliation(s)
- Cyril Anastasi
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Patricia Rousselle
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Maya Talantikite
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Agnès Tessier
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Caroline Cluzel
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Alice Bachmann
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Natacha Mariano
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Mélissa Dussoyer
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Lindsay B Alcaraz
- University of Lyon, Centre Léon Bérard, INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), F-69373 Lyon, France
| | - Laëtitia Fortin
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Alexandre Aubert
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Frédéric Delolme
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France.,University of Lyon, ENS de Lyon, INSERM US8, CNRS UMS3444, SFR Biosciences, F-69366 Lyon, France
| | - Naïma El Kholti
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Jean Armengaud
- CEA Marcoule, Innovative Technologies for Detection and Diagnostics Laboratory (DRF/Joliot/DMTS/SPI/Li2D), F-30200 Bagnols-sur-Cèze, France
| | - Pierre Fournié
- Purpan University Hospital, Ophthalmology Department, F-31059 Toulouse, France.,University of Toulouse, CNRS UMR 5165, INSERM U1056, Epithelial Differentiation and Rheumatoid Autoimmunity Unit (UDEAR), F-31059 Toulouse, France
| | - Céline Auxenfans
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France.,Hospices Civils de Lyon, Tissue and Cell Bank, F-69437 Lyon, France
| | - Ulrich Valcourt
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France.,University of Lyon, Centre Léon Bérard, INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), F-69373 Lyon, France
| | - Sandrine Vadon-Le Goff
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Catherine Moali
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France.
| |
Collapse
|
11
|
Esteve P, Crespo I, Kaimakis P, Sandonís A, Bovolenta P. Sfrp1 Modulates Cell-signaling Events Underlying Telencephalic Patterning, Growth and Differentiation. Cereb Cortex 2020; 29:1059-1074. [PMID: 30084950 DOI: 10.1093/cercor/bhy013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
The mammalian dorsal telencephalic neuroepithelium develops-from medial to lateral-into the choroid plaque, cortical hem, hippocampal primordium and isocortex under the influence of Bmp, Wnt and Notch signaling. Correct telencephalic development requires a tight coordination of the extent/duration of these signals, but the identification of possible molecular coordinators is still limited. Here, we postulated that Secreted Frizzled Related Protein 1 (Sfrp1), a multifunctional regulator of Bmp, Wnt and Notch signaling strongly expressed during early telencephalic development, may represent 1 of such molecules. We report that in E10.5-E12.5 Sfrp1-/- embryos, the hem and hippocampal domains are reduced in size whereas the prospective neocortex is medially extended. These changes are associated with a significant reduction of the medio-lateral telencephalic expression of Axin2, a read-out of Wnt/βcatenin signaling activation. Furthermore, in the absence of Sfrp1, Notch signaling is increased, cortical progenitor cell cycle is shorter, with expanded progenitor pools and enhanced generation of early-born neurons. Hence, in postnatal Sfrp1-/- animals the anterior hippocampus is reduced and the neocortex is shorter in the antero-posterior and medio-lateral axis but is thicker. We propose that, by controlling Wnt and Notch signaling in opposite directions, Sfrp1 promotes hippocampal patterning and balances medio-lateral and antero-posterior cortex expansion.
Collapse
Affiliation(s)
- Pilar Esteve
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Inmaculada Crespo
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Polynikis Kaimakis
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Africa Sandonís
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| |
Collapse
|
12
|
Guevara T, Körschgen H, Cuppari A, Schmitz C, Kuske M, Yiallouros I, Floehr J, Jahnen-Dechent W, Stöcker W, Gomis-Rüth FX. The C-terminal region of human plasma fetuin-B is dispensable for the raised-elephant-trunk mechanism of inhibition of astacin metallopeptidases. Sci Rep 2019; 9:14683. [PMID: 31604990 PMCID: PMC6789097 DOI: 10.1038/s41598-019-51095-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023] Open
Abstract
Human fetuin-B plays a key physiological role in human fertility through its inhibitory action on ovastacin, a member of the astacin family of metallopeptidases. The inhibitor consists of tandem cystatin-like domains (CY1 and CY2), which are connected by a linker containing a "CPDCP-trunk" and followed by a C-terminal region (CTR) void of regular secondary structure. Here, we solved the crystal structure of the complex of the inhibitor with archetypal astacin from crayfish, which is a useful model of human ovastacin. Two hairpins from CY2, the linker, and the tip of the "legumain-binding loop" of CY1 inhibit crayfish astacin following the "raised-elephant-trunk mechanism" recently reported for mouse fetuin-B. This inhibition is exerted by blocking active-site cleft sub-sites upstream and downstream of the catalytic zinc ion, but not those flanking the scissile bond. However, contrary to the mouse complex, which was obtained with fetuin-B nicked at a single site but otherwise intact, most of the CTR was proteolytically removed during crystallization of the human complex. Moreover, the two complexes present in the crystallographic asymmetric unit diverged in the relative arrangement of CY1 and CY2, while the two complexes found for the mouse complex crystal structure were equivalent. Biochemical studies in vitro confirmed the differential cleavage susceptibility of human and mouse fetuin-B in front of crayfish astacin and revealed that the cleaved human inhibitor blocks crayfish astacin and human meprin α and β only slightly less potently than the intact variant. Therefore, the CTR of animal fetuin-B orthologs may have a function in maintaining a particular relative orientation of CY1 and CY2 that nonetheless is dispensable for peptidase inhibition.
Collapse
Affiliation(s)
- Tibisay Guevara
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Anna Cuppari
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Carlo Schmitz
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Julia Floehr
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
13
|
Zhu Q, Guo W, Zhang S, Feng Y, Wang X, Zhou L, Huang GR. Synergistic effect of PCPE1 and sFRP2 on the processing of procollagens via BMP1. FEBS Lett 2018; 593:119-127. [PMID: 30411347 DOI: 10.1002/1873-3468.13291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
Abstract
Procollagen processing is essential for organ development and tissue functions. Both procollagen C-proteinase enhancer 1 (PCPE1) and secreted frizzled-related protein 2 (sFRP2) play vital roles in collagen formation via regulating the procollagen C-proteinase activity of bone morphogenetic protein 1 (BMP1). However, whether the two proteins exert a synergistic effect on BMP1 activity remains unclear. Here, simultaneous knockdown of sFRP2 and PCPE1 led to less collagen formation in mouse embryonic fibroblasts and dorsalized phenotypes in zebrafish embryos. Further studies revealed a direct interaction between the Frizzled domain of sFRP2 and the complement/Uegf/BMP-1 domain of PCPE1, which enhances the cleavage activity of BMP1 on procollagen. These results suggest that double silencing of sFRP2 and PCPE1 may provide a strategy for treating fibrosis diseases caused by collagen deposition.
Collapse
Affiliation(s)
- Qin Zhu
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Wei Guo
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Shengjie Zhang
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yang Feng
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Xiao Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Libin Zhou
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Guo-Ru Huang
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| |
Collapse
|
14
|
Talantikite M, Lécorché P, Beau F, Damour O, Becker-Pauly C, Ho WB, Dive V, Vadon-Le Goff S, Moali C. Inhibitors of BMP-1/tolloid-like proteinases: efficacy, selectivity and cellular toxicity. FEBS Open Bio 2018; 8:2011-2021. [PMID: 30524951 PMCID: PMC6275283 DOI: 10.1002/2211-5463.12540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023] Open
Abstract
BMP‐1/tolloid‐like proteinases belong to the astacin family of human metalloproteinases, together with meprins and ovastacin. They represent promising targets to treat or prevent a wide range of diseases such as fibrotic disorders or cancer. However, the study of their pathophysiological roles is still impaired by the lack of well‐characterized inhibitors and the questions that remain regarding their selectivity and in vivo efficiency. As a first step towards the identification of suitable tools to be used in functional studies, we have undertaken a systematic comparison of seven molecules known to affect the proteolytic activity of human astacins including three hydroxamates (FG‐2575, UK383,367, S33A), the protein sizzled, a new phosphinic inhibitor (RXP‐1001) and broad‐spectrum protease inhibitors (GM6001, actinonin). Their efficacy in vitro, their cellular toxicity and efficacy in cell cultures were thoroughly characterized. We found that these molecules display very different potency and selectivity profiles, with hydroxamate FG‐2575 and the protein sizzled being very powerful and selective inhibitors of BMP‐1, whereas phosphinic peptide RXP‐1001 behaves as a broad‐spectrum inhibitor of astacins. Their use should therefore be carefully considered in agreement with the aim of the study to avoid result misinterpretation.
Collapse
Affiliation(s)
- Maya Talantikite
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France
| | - Pascaline Lécorché
- CEA Saclay Institut Frédéric Joliot Direction de la recherche fondamentale SIMOPRO Gif-sur-Yvette France
| | - Fabrice Beau
- CEA Saclay Institut Frédéric Joliot Direction de la recherche fondamentale SIMOPRO Gif-sur-Yvette France
| | - Odile Damour
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France.,Banque de Tissus et Cellules Hospices Civils de Lyon France
| | - Christoph Becker-Pauly
- Institute of Biochemistry Unit for Degradomics of the Protease Web Christian-Albrechts-University Kiel Germany
| | | | - Vincent Dive
- CEA Saclay Institut Frédéric Joliot Direction de la recherche fondamentale SIMOPRO Gif-sur-Yvette France
| | - Sandrine Vadon-Le Goff
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France
| |
Collapse
|
15
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
16
|
Lacroix M, Tessier A, Dumestre-Pérard C, Vadon-Le Goff S, Gout E, Bruckner-Tuderman L, Kiritsi D, Nyström A, Ricard-Blum S, Moali C, Hulmes DJS, Thielens NM. Interaction of Complement Defence Collagens C1q and Mannose-Binding Lectin with BMP-1/Tolloid-like Proteinases. Sci Rep 2017; 7:16958. [PMID: 29209066 PMCID: PMC5717261 DOI: 10.1038/s41598-017-17318-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/19/2017] [Indexed: 12/26/2022] Open
Abstract
The defence collagens C1q and mannose-binding lectin (MBL) are immune recognition proteins that associate with the serine proteinases C1r/C1s and MBL-associated serine proteases (MASPs) to trigger activation of complement, a major innate immune system. Bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases (BTPs) are metalloproteinases with major roles in extracellular matrix assembly and growth factor signalling. Despite their different functions, C1r/C1s/MASPs and BTPs share structural similarities, including a specific CUB-EGF-CUB domain arrangement found only in these enzymes that mediates interactions with collagen-like proteins, suggesting a possible functional relationship. Here we investigated the potential interactions between the defence collagens C1q and MBL and the BTPs BMP-1 and mammalian tolloid-like-1 (mTLL-1). C1q and MBL bound to immobilized BMP-1 and mTLL-1 with nanomolar affinities. These interactions involved the collagen-like regions of the defence collagens and were inhibited by pre-incubation of C1q or MBL with their cognate complement proteinases. Soluble BMP-1 and mTLL-1 did not inhibit complement activation and the defence collagens were neither substrates nor inhibitors of BMP-1. Finally, C1q co-localized with BMP-1 in skin biopsies following melanoma excision and from patients with recessive dystrophic epidermolysis bullosa. The observed interactions provide support for a functional link between complement and BTPs during inflammation and tissue repair.
Collapse
Affiliation(s)
- Monique Lacroix
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Agnès Tessier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - Chantal Dumestre-Pérard
- Laboratoire d'Immunologie, Pôle de Biologie, CHU Grenoble Alpes, 38700, La Tronche, France.,BNI group, TIMC-IMAG UMR5525 Université Grenoble Alpes, 38706, La Tronche, France
| | - Sandrine Vadon-Le Goff
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - Evelyne Gout
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sylvie Ricard-Blum
- Univ. Lyon, University Claude Bernard Lyon 1, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622, Villeurbanne, France
| | - Catherine Moali
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - David J S Hulmes
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France.
| | | |
Collapse
|
17
|
Bu Q, Li Z, Zhang J, Xu F, Liu J, Liu H. The crystal structure of full-length Sizzled from Xenopus laevis yields insights into Wnt-antagonistic function of secreted Frizzled-related proteins. J Biol Chem 2017; 292:16055-16069. [PMID: 28808056 DOI: 10.1074/jbc.m117.791756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/13/2017] [Indexed: 01/05/2023] Open
Abstract
The Wnt-signaling pathway is crucial to cell proliferation, differentiation, and migration. The secreted Frizzled-related proteins (sFRPs) represent the largest family of secreted Wnt inhibitors. However, their function in antagonizing Wnt signaling has remained somewhat controversial. Here, we report the crystal structure of Sizzled from Xenopus laevis, the first full-length structure of an sFRP. Tethered by an inter-domain disulfide bond and a linker, the N-terminal cysteine-rich domain (CRD) and the C-terminal netrin-like domain (NTR) of Sizzled are arranged in a tandem fashion, with the NTR domain occluding the groove of CRD for Wnt accessibility. A Dual-Luciferase assay demonstrated that removing the NTR domain and replacing the CRD groove residues His-116 and His-118 with aromatic residues may significantly enhance antagonistic function of Sizzled in inhibiting Wnt3A signaling. Sizzled is a monomer in solution, and Sizzled CRD exhibited different packing in the crystal, suggesting that sFRPs do not have a conserved CRD dimerization mode. Distinct from the canonical NTR domain, the Sizzled NTR adopts a novel α/β folding with two perpendicular helices facing the central mixed β-sheet. The subgroup of human sFRP1/2/5 and Sizzled should have a similar NTR domain that features a highly positively charged region, opposite the NTR-CRD interface, suggesting that the NTR domain in human sFRPs, at least sFRP1/2/5, is unlikely to bind to Wnt but is likely involved in biphasic Wnt signaling modulation. In summary, the Sizzled structure provides the first insights into how the CRD and the NTR domains relate to each other for modulating Wnt-antagonistic function of sFRPs.
Collapse
Affiliation(s)
- Qixin Bu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhiqiang Li
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Junying Zhang
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Fei Xu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianmei Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Heli Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and .,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
18
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
19
|
Abstract
Substrate cleavage by metalloproteinases involves nucleophilic attack on the scissile peptide bond by a water molecule that is polarized by a catalytic metal, usually a zinc ion, and a general base, usually the carboxyl group of a glutamic acid side chain. The zinc ion is most often complexed by imidazole nitrogens of histidine side chains. This arrangement suggests that the physiological pH optimum of most metalloproteinases is in the neutral range. In addition to their catalytic metal ion, many metalloproteinases contain additional transition metal or alkaline earth ions, which are structurally important or modulate the catalytic activity. As a consequence, these enzymes are generally sensitive to metal chelators. Moreover, the catalytic metal can be displaced by adventitious metal ions from buffers or biological fluids, which may fundamentally alter the catalytic function. Therefore, handling, purification, and assaying of metalloproteinases require specific precautions to warrant their stability.
Collapse
Affiliation(s)
- Sven Fridrich
- Johannes Gutenberg University Mainz, Institute of Zoology, Cell and Matrix Biology, Germany
| | - Konstantin Karmilin
- Johannes Gutenberg University Mainz, Institute of Zoology, Cell and Matrix Biology, Germany
| | - Walter Stöcker
- Johannes Gutenberg University Mainz, Institute of Zoology, Cell and Matrix Biology, Germany
| |
Collapse
|
20
|
Song G, Cao HX, Yao SX, Li CT. Abnormal expression of WIF1 in hepatocellular carcinoma cells and its regulating effect on invasion and metastasis factors of TIMP-3 and caveolin-1 of hepatocellular carcinoma. ASIAN PAC J TROP MED 2015; 8:958-963. [PMID: 26614997 DOI: 10.1016/j.apjtm.2015.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To discuss the abnormal expression of Wnt inhibitory factor (WIF1) in hepatocellular carcinoma cells and its regulating effect on the hepatocellular carcinoma invasion and metastasis factors of tissue inhibitor of matrix metalloproteinases-3 (TIMP-3) and caveolin-1. METHODS RT-PCR and Western blot were employed to detect the expression of WIF1 in six hepatocellular carcinoma cell lines of HepG2, Hep3B, Huh7, PLC/PRF/5, SMMC-7721 and MHCC97 and the immortalized human liver cell line THLE-3. Besides, Lipofectamine 2000 was employed to transfect the eukaryotic expression vector pcDNA3.1-WIF1 and blank plasmid pcDNA3.1 into hepatocellular carcinoma cell lines. Transwell assay was used to detect the effect of WIF1 on the invasion ability of hepatocellular carcinoma cells; Western blot was used to detect the effect of WIF1 on the expression of TIMP-3 and caveolin-1 in hepatocellular carcinoma cells, it also discussed the effect on the expression of β-catenin. RESULTS The expression of WIF1 in hepatocellular carcinoma cell lines was lower than that in the normal liver cell lines (P < 0.01); while there was basically no expression of WIF1 in the human highly metastatic cell line MHCC-97 and moderate expression in HepG2 and SMMC-7721. Therefore, HepG2 and SMMC-7721 were chosen as the further experimental cell lines. After transfecting the eukaryotic expression vector pcDNA3.1-WIF1 and blank plasmid pcDNA3.1 into hepatocellular carcinoma cell lines, compared with the blank plasmid group, the cell viability and invasion ability in the WIF1 group were all reduced (P < 0.01), the expression of TIMP-3, caveolin-1 and mRNA were all down-regulated (P < 0.01), and the expression of β-catenin was decreased (P < 0.01). CONCLUSIONS Because of down-regulation or missing of expression of WIF1 in hepatocellular carcinoma cell lines, the up-regulation of WIF1 expression can significantly inhibit the invasion and metastasis of HepG2 and SMMC-7721 of hepatocellular carcinoma cell lines, which are related to the up-regulated expression of TIMP-3 and down-regulated expression of caveolin-1 and may be realized through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Guang Song
- Department of Interventional Therapy, Affiliated Tangshan Workers Hospital of Hebei Medical University, Tangshan 063000, Hebei, China
| | - Hong-Xia Cao
- Department of Interventional Therapy, Affiliated Tangshan Workers Hospital of Hebei Medical University, Tangshan 063000, Hebei, China
| | - Shao-Xin Yao
- Department of Interventional Therapy, Affiliated Tangshan Workers Hospital of Hebei Medical University, Tangshan 063000, Hebei, China
| | - Cang-Tuo Li
- Department of Interventional Therapy, Affiliated Tangshan Workers Hospital of Hebei Medical University, Tangshan 063000, Hebei, China.
| |
Collapse
|
21
|
Abstract
The postnatal skeleton undergoes growth, remodeling, and repair. We hypothesized that skeletal progenitor cells active during these disparate phases are genetically and phenotypically distinct. We identified a highly potent regenerative cell type that we term the fracture-induced bone, cartilage, stromal progenitor (f-BCSP) in the fracture callus of adult mice. The f-BCSP possesses significantly enhanced skeletogenic potential compared with BCSPs harvested from uninjured bone. It also recapitulates many gene expression patterns involved in perinatal skeletogenesis. Our results indicate that the skeletal progenitor population is functionally stratified, containing distinct subsets responsible for growth, regeneration, and repair. Furthermore, our findings suggest that injury-induced changes to the skeletal stem and progenitor microenvironments could activate these cells and enhance their regenerative potential.
Collapse
|
22
|
Secreted Frizzled-related protein 3 (sFRP3)-mediated suppression of interleukin-6 receptor release by A disintegrin and metalloprotease 17 (ADAM17) is abrogated in the osteoarthritis-associated rare double variant of sFRP3. Biochem J 2015; 468:507-18. [DOI: 10.1042/bj20141231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
A disintegrin and metalloprotease 17 (ADAM17) activity and secreted Frizzled-related protein 3 (sFRP3) down-regulation or expression of its rare double variant is associated with arthritis. sFRP3 interacts with interleukin-6 receptor (IL-6R) and ADAM17 and suppresses ADAM17 activity, whereas the rare variant does not; these findings provide explanation for their opposing pathogenic associations.
Collapse
|
23
|
BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling. Matrix Biol 2015; 44-46:14-23. [DOI: 10.1016/j.matbio.2015.02.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 11/20/2022]
|
24
|
Delolme F, Anastasi C, Alcaraz LB, Mendoza V, Vadon-Le Goff S, Talantikite M, Capomaccio R, Mevaere J, Fortin L, Mazzocut D, Damour O, Zanella-Cléon I, Hulmes DJS, Overall CM, Valcourt U, Lopez-Casillas F, Moali C. Proteolytic control of TGF-β co-receptor activity by BMP-1/tolloid-like proteases revealed by quantitative iTRAQ proteomics. Cell Mol Life Sci 2015; 72:1009-27. [PMID: 25260970 PMCID: PMC11113849 DOI: 10.1007/s00018-014-1733-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/29/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
The metalloproteinase BMP-1 (bone morphogenetic protein-1) plays a major role in the control of extracellular matrix (ECM) assembly and growth factor activation. Most of the growth factors activated by BMP-1 are members of the TGF-β superfamily known to regulate multiple biological processes including embryonic development, wound healing, inflammation and tumor progression. In this study, we used an iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomic approach to reveal the release of proteolytic fragments from the cell surface or the ECM by BMP-1. Thirty-eight extracellular proteins were found in significantly higher or lower amounts in the conditioned medium of HT1080 cells overexpressing BMP-1 and thus, could be considered as candidate substrates. Strikingly, three of these new candidates (betaglycan, CD109 and neuropilin-1) were TGF-β co-receptors, also acting as antagonists when released from the cell surface, and were chosen for further substrate validation. Betaglycan and CD109 proved to be directly cleaved by BMP-1 and the corresponding cleavage sites were extensively characterized using a new mass spectrometry approach. Furthermore, we could show that the ability of betaglycan and CD109 to interact with TGF-β was altered after cleavage by BMP-1, leading to increased and prolonged SMAD2 phosphorylation in BMP-1-overexpressing cells. Betaglycan processing was also observed in primary corneal keratocytes, indicating a general and novel mechanism by which BMP-1 directly affects signaling by controlling TGF-β co-receptor activity. The proteomic data have been submitted to ProteomeXchange with the identifier PXD000786 and doi: 10.6019/PXD000786 .
Collapse
Affiliation(s)
- Frédéric Delolme
- UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS/Université de Lyon, 69367 Lyon, France
- Centre Commun de Microanalyse des Protéines, UMS 3444, Institut de Biologie et Chimie des Protéines, 69367 Lyon, France
| | - Cyril Anastasi
- UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS/Université de Lyon, 69367 Lyon, France
| | - Lindsay B. Alcaraz
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Université de Lyon, Centre Léon Bérard, 69373 Lyon, France
| | - Valentin Mendoza
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, 04510 Mexico, Mexico
| | - Sandrine Vadon-Le Goff
- UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS/Université de Lyon, 69367 Lyon, France
| | - Maya Talantikite
- UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS/Université de Lyon, 69367 Lyon, France
| | - Robin Capomaccio
- UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS/Université de Lyon, 69367 Lyon, France
| | - Jimmy Mevaere
- UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS/Université de Lyon, 69367 Lyon, France
| | - Laëtitia Fortin
- UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS/Université de Lyon, 69367 Lyon, France
| | - Dominique Mazzocut
- Centre Commun de Microanalyse des Protéines, UMS 3444, Institut de Biologie et Chimie des Protéines, 69367 Lyon, France
| | - Odile Damour
- UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS/Université de Lyon, 69367 Lyon, France
- Banque de Tissus et Cellules, Hospices Civils de Lyon, 69437 Lyon, France
| | - Isabelle Zanella-Cléon
- Centre Commun de Microanalyse des Protéines, UMS 3444, Institut de Biologie et Chimie des Protéines, 69367 Lyon, France
| | - David J. S. Hulmes
- UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS/Université de Lyon, 69367 Lyon, France
| | | | - Ulrich Valcourt
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Université de Lyon, Centre Léon Bérard, 69373 Lyon, France
| | - Fernando Lopez-Casillas
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, 04510 Mexico, Mexico
| | - Catherine Moali
- UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS/Université de Lyon, 69367 Lyon, France
| |
Collapse
|
25
|
Goldsmith EC, Bradshaw AD, Spinale FG. Cellular mechanisms of tissue fibrosis. 2. Contributory pathways leading to myocardial fibrosis: moving beyond collagen expression. Am J Physiol Cell Physiol 2012; 304:C393-402. [PMID: 23174564 DOI: 10.1152/ajpcell.00347.2012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
While the term "fibrosis" can be misleading in terms of the complex patterns and processes of myocardial extracellular matrix (ECM) remodeling, fibrillar collagen accumulation is a common consequence of relevant pathophysiological stimuli, such as pressure overload (PO) and myocardial infarction (MI). Fibrillar collagen accumulation in both PO and MI is predicated on a number of diverse cellular and extracellular events, which include changes in fibroblast phenotype (transdifferentiation), posttranslational processing and assembly, and finally, degradation. The expansion of a population of transformed fibroblasts/myofibroblasts is a significant cellular event with respect to ECM remodeling in both PO and MI. The concept that this cellular expansion within the myocardial ECM may be due, at least in part, to endothelial-mesenchymal transformation and thereby not dissimilar to events observed in cancer progression holds intriguing future possibilities. Studies regarding determinants of procollagen processing, such as procollagen C-endopeptidase enhancer (PCOLCE), and collagen assembly, such as the secreted protein acidic and rich in cysteine (SPARC), have identified potential new targets for modifying the fibrotic response in both PO and MI. Finally, the transmembrane matrix metalloproteinases, such as MMP-14, underscore the diversity and complexity of this ECM proteolytic family as this protease can degrade the ECM as well as induce a profibrotic response. The growing recognition that the myocardial ECM is a dynamic entity containing a diversity of matricellular and nonstructural proteins as well as proteases and that the fibrillar collagens can change in structure and content in a rapid temporal fashion has opened up new avenues for modulating what was once considered an irreversible event--myocardial fibrosis.
Collapse
Affiliation(s)
- Edie C Goldsmith
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|