1
|
Schukarucha Gomes A, Ellis CE, Spigelman AF, Dos Santos T, Maghera J, Suzuki K, MacDonald PE. Molecular correlates of glycine receptor activity in human β cells. Mol Metab 2025; 96:102156. [PMID: 40258441 PMCID: PMC12059332 DOI: 10.1016/j.molmet.2025.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025] Open
Abstract
OBJECTIVES Glycine acts in an autocrine positive feedback loop in human β cells through its ionotropic receptors (GlyRs). In type 2 diabetes (T2D), islet GlyR activity is impaired by unknown mechanisms. We sought to investigate if the GlyR dysfunction in T2D is replicated by hyperglycemia per se, and to further characterize its action in β cells and islets. METHODS GlyR-mediated currents were measured using whole-cell patch-clamp in human β cells from donors with or without T2D, or after high glucose (15 mM) culture. We also correlated glycine-induced current amplitude with transcript expression levels through patch-seq. The expression of the GlyR α1, α3, and β subunit mRNA splice variants was compared between islets from donors with and without T2D, and after high glucose culture. Insulin secretion from human islets was measured in the presence or absence of the GlyR antagonist strychnine. RESULTS Although gene expression of GlyRs was decreased in T2D islets, and β cell GlyR-mediated currents were smaller, we found no evidence for a shift in GlyR subunit splicing. Glycine-induced currents are also reduced after 48 h culture of islets from donors without diabetes in high glucose, where we also find the reduction of the α1 subunit expression, but an increase in the α3 subunit. We discovered that glycine-evoked currents are highly heterogeneous amongst β cells, inversely correlate with donor HbA1c, and are significantly correlated to the expression of 92 different transcripts and gene regulatory networks (GRNs) that include CREB3(+), RREB1(+) and ZNF697(+). Finally, glucose-stimulated insulin secretion is decreased in the presence of the GlyR antagonist strychnine. CONCLUSIONS We demonstrate that glucose can modulate GlyR expression, and that the current decrease in T2D is likely due to the receptor gene expression downregulation, and not a change in transcript splicing. Moreover, we define a previously unknown set of genes and regulons that are correlated to GlyR-mediated currents and could be involved in GlyR downregulation in T2D. Among those we validate the negative impact of EIF4EBP1 expression on GlyR activity.
Collapse
Affiliation(s)
- Amanda Schukarucha Gomes
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Cara E Ellis
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Aliya F Spigelman
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Theodore Dos Santos
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Jasmine Maghera
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada.
| |
Collapse
|
2
|
Oguh AU, Haemmerle MW, Sen S, Rozo AV, Shrestha S, Cartailler JP, Fazelinia H, Ding H, Preza S, Yang J, Yang X, Sussel L, Alvarez-Dominguez JR, Doliba N, Spruce LA, Arrojo E Drigo R, Stoffers DA. E3 ligase substrate adaptor SPOP fine-tunes the UPR of pancreatic β cells. Genes Dev 2025; 39:261-279. [PMID: 39797759 PMCID: PMC11789638 DOI: 10.1101/gad.352010.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/07/2024] [Indexed: 01/13/2025]
Abstract
The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific Spop deletion mouse strain (Spop βKO) and found that Spop is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux. Integration of proteomic, TF-regulatory gene network, and biochemical analyses identified XBP1 as a functionally important SPOP substrate in pancreatic β cells. Furthermore, loss of SPOP strengthened the IRE1α-XBP1 axis of unfolded protein response (UPR) signaling. ER stress promoted proteasomal degradation of SPOP, supporting a model whereby SPOP fine-tunes XBP1 activation during the UPR. These results position SPOP as a regulator of β-cell function and proper UPR activation.
Collapse
Affiliation(s)
- Alexis U Oguh
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Matthew W Haemmerle
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Sabyasachi Sen
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Andrea V Rozo
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Shristi Shrestha
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Jean-Philippe Cartailler
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19146, USA
| | - Hua Ding
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19146, USA
| | - Sam Preza
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Juxiang Yang
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Xiaodun Yang
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Lori Sussel
- Department of Pediatrics and Cell and Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Juan R Alvarez-Dominguez
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Nicolai Doliba
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Lynn A Spruce
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19146, USA
| | - Rafael Arrojo E Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Doris A Stoffers
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;
| |
Collapse
|
3
|
Mick GJ, McCormick KL. The role of GABA in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1453396. [PMID: 39619323 PMCID: PMC11604429 DOI: 10.3389/fendo.2024.1453396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Gamma aminobutyric acid (GABA) is synthesized from glutamate by glutamic decarboxylase (GAD). The entero-pancreatic biology of GABA, which is produced by pancreatic islets, GAD-expressing microbiota, enteric immune cells, or ingested through diet, supports an essential physiologic role of GABA in the health and disease. Outside the central nervous system (CNS), GABA is uniquely concentrated in pancreatic β-cells. They express GAD65, which is a type 1 diabetes (T1D) autoantigen. Glutamate constitutes 10% of the amino acids in dietary protein and is preeminently concentrated in human milk. GABA is enriched in many foods, such as tomato and fermented cheese, and is an over-the-counter supplement. Selected microbiota in the midgut have the enzymatic capacity to produce GABA. Intestinal microbiota interact with gut-associated lymphoid tissue to maintain host defenses and immune tolerance, which are implicated in autoimmune disease. Although GABA is a widely known inhibitory neurotransmitter, oral GABA does not cross the blood brain barrier. Three diabetes-related therapeutic actions are ascribed to GABA, namely, increasing pancreatic β-cell content, attenuating excess glucagon and tamping down T-cell immune destruction. These salutary actions have been observed in numerous rodent diabetes models that usually employed high or near-continuous GABA doses. Clinical studies, to date, have identified positive effects of oral GABA on peripheral blood mononuclear cell cytokine release and plasma glucagon. Going forward, it is reassuring that oral GABA therapy has been well-tolerated and devoid of serious adverse effects.
Collapse
Affiliation(s)
- Gail J. Mick
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
4
|
Wang Y, Skinner EL, Roper MG. Comparison between capillary electrophoresis and fluorescence anisotropy competitive immunoassay for glucagon. Electrophoresis 2024; 45:1692-1700. [PMID: 38984929 PMCID: PMC11502243 DOI: 10.1002/elps.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Glucagon plays a crucial role in regulating glucose homeostasis; unfortunately, the mechanisms controlling its release are still unclear. Capillary electrophoresis (CE)- and fluorescence anisotropy (FA)-immunoassays (IA) have been used for online measurements of hormone secretion on microfluidic platforms, although their use in glucagon assays is less common. We set out to compare a glucagon-competitive IA using these two techniques. Theoretical calibration curves were generated for both CE- and FA-IA and results indicated that CE-IA provided higher sensitivity than FA-IA. These results were confirmed in an experiment where both assays showed limits of detection (LOD) of 30 nM, but the CE-IA had ∼300-fold larger sensitivity from 0 to 200 nM glucagon. However, in online experiments where reagents were mixed within the device, the sensitivity of the CE-IA was reduced ∼3-fold resulting in a higher LOD of 70 nM, whereas the FA-IA remained essentially unchanged. This lowered sensitivity in the online CE-IA was likely due to poor sampling by electroosmotic flow from the high salt solution necessary in online experiments, whereas pressure-based sampling used in FA-IA was not affected. We conclude that FA-IA, despite lowered sensitivity, is more suitable for online mixing scenarios due to the ability to use pressure-driven flow and other practical advantages such as the use of larger channels.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - Emily L. Skinner
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| |
Collapse
|
5
|
Knuth ER, Foster HR, Jin E, Ekstrand MH, Knudsen JG, Merrins MJ. Leucine Suppresses α-Cell cAMP and Glucagon Secretion via a Combination of Cell-Intrinsic and Islet Paracrine Signaling. Diabetes 2024; 73:1426-1439. [PMID: 38870025 PMCID: PMC11333377 DOI: 10.2337/db23-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Glucagon is critical for the maintenance of blood glucose, however nutrient regulation of pancreatic α-cells remains poorly understood. Here, we identified a role of leucine, a well-known β-cell fuel, in the α-cell-intrinsic regulation of glucagon release. In islet perifusion assays, physiologic concentrations of leucine strongly inhibited alanine- and arginine-stimulated glucagon secretion from human and mouse islets under hypoglycemic conditions. Mechanistically, leucine dose-dependently reduced α-cell cAMP, independently of Ca2+, ATP/ADP, or fatty acid oxidation. Leucine also reduced α-cell cAMP in islets treated with somatostatin receptor 2 antagonists or diazoxide, compounds that limit paracrine signaling from β/δ-cells. Studies in dispersed mouse islets confirmed an α-cell-intrinsic effect. The inhibitory effect of leucine on cAMP was mimicked by glucose, α-ketoisocaproate, succinate, and the glutamate dehydrogenase activator BCH and blocked by cyanide, indicating a mechanism dependent on mitochondrial metabolism. Glucose dose-dependently reduced the impact of leucine on α-cell cAMP, indicating an overlap in function; however, leucine was still effective at suppressing glucagon secretion in the presence of elevated glucose, amino acids, and the incretin GIP. Taken together, these findings show that leucine plays an intrinsic role in limiting the α-cell secretory tone across the physiologic range of glucose levels, complementing the inhibitory paracrine actions of β/δ-cells. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Emily R. Knuth
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Hannah R. Foster
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Erli Jin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Maia H. Ekstrand
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob G. Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J. Merrins
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
6
|
Li P, Zhu D. Clinical investigation of glucokinase activators for the restoration of glucose homeostasis in diabetes. J Diabetes 2024; 16:e13544. [PMID: 38664885 PMCID: PMC11045918 DOI: 10.1111/1753-0407.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/29/2024] Open
Abstract
As a sensor, glucokinase (GK) controls glucose homeostasis, which progressively declines in patients with diabetes. GK maintains the equilibrium of glucose levels and regulates the homeostatic system set points. Endocrine and hepatic cells can both respond to glucose cooperatively when GK is activated. GK has been under study as a therapeutic target for decades due to the possibility that cellular GK expression and function can be recovered, hence restoring glucose homeostasis in patients with type 2 diabetes. Five therapeutic compounds targeting GK are being investigated globally at the moment. They all have distinctive molecular structures and have been clinically shown to have strong antihyperglycemia effects. The mechanics, classification, and clinical development of GK activators are illustrated in this review. With the recent approval and marketing of the first GK activator (GKA), dorzagliatin, GKA's critical role in treating glucose homeostasis disorder and its long-term benefits in diabetes will eventually become clear.
Collapse
Affiliation(s)
- Ping Li
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| | - Dalong Zhu
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
7
|
Feng L, Chen C, Guo Q, Chen L, Yang W. Improvement of early-phase insulin secretion is an independent factor for achieving glycaemic control: A pooled analysis of SEED and DAWN study. Diabetes Obes Metab 2024; 26:745-753. [PMID: 37985364 DOI: 10.1111/dom.15370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
AIM To investigate the effect of improving early phase insulin secretion function for glycaemic control in patients with type 2 diabetes mellitus treated with a new class of antidiabetic drug dorzagliatin. MATERIALS AND METHODS Early insulin secretion function was studied in 726 participants of which 414 were treated with dorzagliatin in the SEED and DAWN study. The early insulinogenic index (IGI30min ) and disposition index (DI) were used to assess early-phase insulin secretion function in this study. Logistic regression analysis was performed to verify the importance of IGI30min and DI indices for achieving effective glycaemic control. RESULTS The reduction in HbA1c has a significant correlation with the improvement of IGI30min for patients that received 24 weeks of dorzagliatin treatment (p < .001), and this correlation was not observed in the placebo group (p = .364). In the dorzagliatin treatment group, the responders showed significant improvements in homeostasis model assessment 2-β, IGI30min and DI compared with the non-responders. Logistic regression analysis revealed that the odds ratio (OR) for achieving glycaemic control was 1.28 (95% CI 1.14-1.43) for baseline IGI30min , and 1.24 (95% CI 1.14-1.35) for the 24-week incremental IGI30min from baseline. The OR for baseline DI and 24-week changes in DI from baseline were 1.39 (95% CI 1.2-1.6) and 1.30 (95% CI 1.19-1.43) respectively. The timing of insulin secretion analysis showed the significant contribution of early-phase insulin secretion, rather than late-phase insulin secretion, to postprandial glucose control with the OR for the incremental IGI30min and IGI2h to postprandial glucose control were 1.3 (95% CI 1.19-1.42) and 1 (95% CI 1-1.01) respectively. CONCLUSIONS Restoring the impaired early-phase insulin secretion function in patients with type 2 diabetes mellitus is a critical factor for improving the glycaemic control by dorzagliatin treatment.
Collapse
Affiliation(s)
| | | | | | - Li Chen
- Hua Medicine, Shanghai, China
| | - Wenying Yang
- Japan-China Friendship Hospital, Beijing, China
- Taikang Yanyuan Rehabilitation Hospital, Beijing, China
| |
Collapse
|
8
|
Marques C, Friedrich F, Liu L, Castoldi F, Pietrocola F, Lanekoff I. Global and Spatial Metabolomics of Individual Cells Using a Tapered Pneumatically Assisted nano-DESI Probe. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2518-2524. [PMID: 37830184 PMCID: PMC10623638 DOI: 10.1021/jasms.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
Single-cell metabolomics has the potential to reveal unique insights into intracellular mechanisms and biological processes. However, the detection of metabolites from individual cells is challenging due to their versatile chemical properties and concentrations. Here, we demonstrate a tapered probe for pneumatically assisted nanospray desorption electrospray ionization (PA nano-DESI) mass spectrometry that enables both chemical imaging of larger cells and global metabolomics of smaller 15 μm cells. Additionally, by depositing cells in predefined arrays, we show successful metabolomics from three individual INS-1 cells per minute, which enabled the acquisition of data from 479 individual cells. Several cells were used to optimize analytical conditions, and 93 or 97 cells were used to monitor metabolome alterations in INS-1 cells after exposure to a low or high glucose concentration, respectively. Our analytical approach offers insights into cellular heterogeneity and provides valuable information about cellular processes and responses in individual cells.
Collapse
Affiliation(s)
- Cátia Marques
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Felix Friedrich
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Liangwen Liu
- Department
of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Francesca Castoldi
- Department
of Biosciences and Nutrition, Karolinska
Institute, 14152 Huddinge, Sweden
| | - Federico Pietrocola
- Department
of Biosciences and Nutrition, Karolinska
Institute, 14152 Huddinge, Sweden
| | - Ingela Lanekoff
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
9
|
Zeng J, Gan S, Mi N, Liu Y, Su X, Zhang W, Zhang J, Yu F, Dong X, Han M, Luo J, Zhang Y, Chen L, Ma J. Diabetes remission in drug-naïve patients with type 2 diabetes after dorzagliatin treatment: A prospective cohort study. Diabetes Obes Metab 2023; 25:2878-2887. [PMID: 37385967 DOI: 10.1111/dom.15179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023]
Abstract
AIM To investigate the post-treatment effect of dorzagliatin in drug-naïve patients with type 2 diabetes (T2D) regarding the achievement of stable glycaemic control and drug-free diabetes remission. MATERIALS AND METHODS Patients who completed dorzagliatin treatment in the SEED trial and achieved stable glycaemic control were enrolled in this 52-week study without any antidiabetic medication. The primary endpoint was the diabetes remission probability at week 52 using the Kaplan-Meier method. The potential factors that contribute to stable glycaemic control and diabetes remission based on the characteristics of patients before and after treatment with dorzagliatin were analysed. A post hoc sensitivity analysis of diabetes remission probability using the American Diabetes Association (ADA) definition was conducted. RESULTS The Kaplan-Meier remission probability was 65.2% (95% CI: 52.0%, 75.6%) at week 52. Based on the ADA definition, the remission probability was 52.0% (95% CI: 31.2%, 69.2%) at week 12. The significant improvements in the insulin secretion index ΔC30/ΔG30 (41.46 ± 77.68, P = .0238), disposition index (1.22 ± 1.65, P = .0030), and steady-state variables of HOMA2-β (11.49 ± 14.58, P < .0001) and HOMA2-IR (-0.16 ± 0.36, P = .0130) during the SEED trial were important factors in achieving drug-free remission. A significant improvement in time in range (TIR), a measure of glucose homeostasis, in the SEED trial from 60% to more than 80% (estimated treatment difference, 23.8%; 95% CI: 7.3%, 40.2%; P = .0084) was observed. CONCLUSIONS In drug-naïve patients with T2D, dorzagliatin treatment leads to stable glycaemic control and drug-free diabetes remission. Improvements in β-cell function and TIR in these patients are important contributors to diabetes remission.
Collapse
Affiliation(s)
- Jiao'e Zeng
- Department of Endocrinology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Shenglian Gan
- Department of Endocrinology, The First People's Hospital of Changde City, Changde, China
| | - Nianrong Mi
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofei Su
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenli Zhang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Juan Zhang
- Department of Endocrinology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Fang Yu
- Department of Endocrinology, The First People's Hospital of Changde City, Changde, China
| | - Xiaolin Dong
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Minmin Han
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianfeng Luo
- Department of Biostatistics, Public Health School, Fudan University, Shanghai, China
| | - Yi Zhang
- Hua Medicine (Shanghai) Ltd., Shanghai, China
| | - Li Chen
- Hua Medicine (Shanghai) Ltd., Shanghai, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Li C, Zhang Y, Chen L, Li X. Glucokinase and glucokinase activator. LIFE METABOLISM 2023; 2:load031. [PMID: 39872624 PMCID: PMC11749227 DOI: 10.1093/lifemeta/load031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 01/30/2025]
Abstract
Glucokinase (GK) plays a pivotal role in glucose homeostasis as the glucose sensor in the pancreas and liver. Loss of function of GK results in hyperglycemia, and gain of function causes congenital hyperinsulinemic hypoglycemia. We speculate that the progressive loss of GK at both messenger RNA (mRNA) and protein levels in the islets and liver would be the key mechanism for Type 2 diabetes (T2D) pathogenesis. The development of GK activator (GKA) as an anti-diabetic drug has been endeavored for several decades. The failure of the early development of GKAs is due to the limitation of understanding the mode of GKA action. The success of dorzagliatin in the treatment of T2D has brought new hope for GK in setting a good model for repairing the underlying defects in the pancreatic islets and liver of T2D patients.
Collapse
Affiliation(s)
- Changhong Li
- Nanjing AscendRare and Hua Medicine, Nanjing, Jiangsu 210000, China
| | - Yi Zhang
- Hua Medicine, Shanghai 201203, China
| | - Li Chen
- Hua Medicine, Shanghai 201203, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Hamilton A, Eliasson L, Knudsen JG. Amino acids and the changing face of the α-cell. Peptides 2023; 166:171039. [PMID: 37295651 DOI: 10.1016/j.peptides.2023.171039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Glucagon has long been defined by its glucogenic action and as a result α-cells have been characterised based largely on their interaction with glucose. Recent findings have challenged this preconception, bringing to the fore the significant role glucagon plays in amino acid breakdown and underlining the importance of amino acids in glucagon secretion. The challenge that remains is defining the mechanism that underlie these effects - understanding which amino acids are most important, how they act on the α-cell and how their actions integrate with other fuels such as glucose and fatty acids. This review will describe the current relationship between amino acids and glucagon and how we can use this knowledge to redefine the α-cell.
Collapse
Affiliation(s)
- Alexander Hamilton
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark; Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| | - Lena Eliasson
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| | - Jakob G Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
12
|
Sandholm N, Dahlström EH, Groop PH. Genetic and epigenetic background of diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1163001. [PMID: 37324271 PMCID: PMC10262849 DOI: 10.3389/fendo.2023.1163001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic kidney disease (DKD) is a severe diabetic complication that affects up to half of the individuals with diabetes. Elevated blood glucose levels are a key underlying cause of DKD, but DKD is a complex multifactorial disease, which takes years to develop. Family studies have shown that inherited factors also contribute to the risk of the disease. During the last decade, genome-wide association studies (GWASs) have emerged as a powerful tool to identify genetic risk factors for DKD. In recent years, the GWASs have acquired larger number of participants, leading to increased statistical power to detect more genetic risk factors. In addition, whole-exome and whole-genome sequencing studies are emerging, aiming to identify rare genetic risk factors for DKD, as well as epigenome-wide association studies, investigating DNA methylation in relation to DKD. This article aims to review the identified genetic and epigenetic risk factors for DKD.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emma H. Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Shojima N, Yamauchi T. Progress in genetics of type 2 diabetes and diabetic complications. J Diabetes Investig 2023; 14:503-515. [PMID: 36639962 PMCID: PMC10034958 DOI: 10.1111/jdi.13970] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Type 2 diabetes results from a complex interaction between genetic and environmental factors. Precision medicine for type 2 diabetes using genetic data is expected to predict the risk of developing diabetes and complications and to predict the effects of medications and life-style intervention more accurately for individuals. Genome-wide association studies (GWAS) have been conducted in European and Asian populations and new genetic loci have been identified that modulate the risk of developing type 2 diabetes. Novel loci were discovered by GWAS in diabetic complications with increasing sample sizes. Large-scale genome-wide association analysis and polygenic risk scores using biobank information is making it possible to predict the development of type 2 diabetes. In the ADVANCE clinical trial of type 2 diabetes, a multi-polygenic risk score was useful to predict diabetic complications and their response to treatment. Proteomics and metabolomics studies have been conducted and have revealed the associations between type 2 diabetes and inflammatory signals and amino acid synthesis. Using multi-omics analysis, comprehensive molecular mechanisms have been elucidated to guide the development of targeted therapy for type 2 diabetes and diabetic complications.
Collapse
Affiliation(s)
- Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Chen L, Zhang J, Sun Y, Zhao Y, Liu X, Fang Z, Feng L, He B, Zou Q, Tracey GJ. A phase I open-label clinical trial to study drug-drug interactions of Dorzagliatin and Sitagliptin in patients with type 2 diabetes and obesity. Nat Commun 2023; 14:1405. [PMID: 36918550 PMCID: PMC10014962 DOI: 10.1038/s41467-023-36946-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
This is a phase 1, open-label, single-sequence, multiple-dose, single-center trial conducted in the US (NCT03790839), to evaluate the clinical pharmacokinetics, safety and pharmacodynamics of dorzagliatin co-administered with sitagliptin in patients with T2D and obesity. The trial has completed. 15 patients with T2D and obesity were recruited and treated with sitagliptin 100 mg QD on Day 1-5, followed by a combination of sitagliptin 100 mg QD with dorzagliatin 75 mg BID at second stage on Day 6-10 and the third stage of dorzagliatin 75 mg BID alone on Day 11-15. Primary outcomes include pharmacokinetic geometric mean ratio (GMR), safety and tolerability. Secondary outcomes include the incremental area under the curve for 4 hours post oral glucose tolerance test (iAUC) of pharmacodynamic biomarkers and glucose sensitivity. GMR for AUC0-24h and Cmax were 92.63 (90% CI, 85.61, 100.22) and 98.14 (90% CI, 83.73, 115.03) in combination/sitagliptin, and 100.34 (90% CI, 96.08, 104.79) and 102.34 (90% CI, 86.92, 120.50) in combination/dorzagliatin, respectively. Combination treatment did not increase the adverse events and well-tolerated in T2D patients. Lack of clinically meaningful pharmacokinetic interactions between dorzagliatin and sitagliptin, and an improvement of glycemic control under combination potentially support their co-administration for diabetes management.
Collapse
Affiliation(s)
- Li Chen
- Hua Medicine (Shanghai) Limited, Shanghai, China.
| | - Jiayi Zhang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yu Sun
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yu Zhao
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Xiang Liu
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Zhiyin Fang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Lingge Feng
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Bin He
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Quanfei Zou
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | | |
Collapse
|
15
|
Monitoring hormone and small molecule secretion dynamics from islets-on-chip. Anal Bioanal Chem 2023; 415:533-544. [PMID: 36459167 DOI: 10.1007/s00216-022-04460-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Tissue functions such as hormone secretion involve the interplay of multiple chemical signals and metabolic processes over time. Measuring the different components involved is useful in unraveling the interactions, but often requires use of multiple analytical techniques. The challenge of measuring the necessary components with temporal resolution is greater when tissue samples are limited. Here, an accessible microfluidic platform compatible with multiple measurement techniques to monitor cell secretions has been developed. The platform is applied to islets of Langerhans, micro-organs involved in glucose homeostasis and diabetes. The device houses 1 to 8 islets and the perfusion fluid can be controlled to change conditions, e.g., glucose concentration, in seconds. Samples are collected in fractions and split for offline analysis. The device is paired with a scaled-down immunoassay, AlphaLISA, for hormone quantification and liquid chromatography-mass spectrometry for small molecule quantification to study secretion dynamics. The combined system allows the first simultaneous measurement of insulin, glucagon, biogenic amines, and amino acids from islet secretions. The combined measurements revealed correlation in secretion events and differences in timing of release between hormones and biogenic amines and amino acids. These efforts decreased the number of islets required compared to standard approaches, thus decreasing necessary animal use, reagent use, and cost, while increasing information content achievable from one sample. The microfluidic device is a suitable platform for in-depth characterization of secretion from small tissue samples.
Collapse
|
16
|
Sarnobat D, Moffett RC, Ma J, Flatt PR, McClenaghan NH, Tarasov AI. Taurine rescues pancreatic β-cell stress by stimulating α-cell transdifferentiation. Biofactors 2023. [PMID: 36714992 DOI: 10.1002/biof.1938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023]
Abstract
The semi-essential ubiquitous amino acid taurine has been shown to alleviate obesity and hyperglycemia in humans; however, the pathways underlying the antidiabetic actions have not been characterized. We explored the effect of chronic taurine exposure on cell biology of pancreatic islets, in degenerative type 1-like diabetes. The latter was modeled by small dose of streptozotocin (STZ) injection for 5 days in mice, followed by a 10-day administration of taurine (2% w/v, orally) in the drinking water. Taurine treatment opposed the detrimental changes in islet morphology and β-/α-cell ratio, induced by STZ diabetes, coincidentally with a significant 3.9 ± 0.7-fold enhancement of proliferation and 40 ± 5% reduction of apoptosis in β-cells. In line with these findings, the treatment counteracted an upregulation of antioxidant (Sod1, Sod2, Cat, Gpx1) and downregulation of islet expansion (Ngn3, Itgb1) genes induced by STZ, in a pancreatic β-cell line. At the same time, taurine enhanced the transdifferentiation of α-cells into β-cells by 2.3 ± 0.8-fold, echoed in strong non-metabolic elevation of cytosolic Ca2+ levels in pancreatic α-cells. Our data suggest a bimodal effect of dietary taurine on islet β-cell biology, which combines the augmentation of α-/β-cell transdifferentiation with downregulation of apoptosis. The dualism of action, stemming presumably from the intra- and extracellular modality of the signal, is likely to explain the antidiabetic potential of taurine supplementation.
Collapse
Affiliation(s)
- Dipak Sarnobat
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | | |
Collapse
|
17
|
Martin A, Mick GJ, Choat HM, Lunsford AA, Tse HM, McGwin GG, McCormick KL. A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes. Nat Commun 2022; 13:7928. [PMID: 36566274 PMCID: PMC9790014 DOI: 10.1038/s41467-022-35544-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
Gamma aminobutyric acid(GABA) is synthesized by glutamate decarboxylase(GAD) in β-cells. Regarding Type 1 diabetes(T1D), animal/islet-cell studies found that GABA promotes insulin secretion, inhibits α-cell glucagon and dampens immune inflammation, while GAD immunization may also preserve β-cells. We evaluated the safety and efficacy of oral GABA alone, or combination GABA with GAD, on the preservation of residual insulin secretion in recent-onset T1D. Herein we report a single-center, double-blind, one-year, randomized trial in 97 children conducted March 2015 to June 2019(NCT02002130). Using a 2:1 treatment:placebo ratio, interventions included oral GABA twice-daily(n = 41), or oral GABA plus two-doses GAD-alum(n = 25), versus placebo(n = 31). The primary outcome, preservation of fasting/meal-stimulated c-peptide, was not attained. Of the secondary outcomes, the combination GABA/GAD reduced fasting and meal-stimulated serum glucagon, while the safety/tolerability of GABA was confirmed. There were no clinically significant differences in glycemic control or diabetes antibody titers. Given the low GABA dose for this pediatric trial, future investigations using higher-dose or long-acting GABA formulations, either alone or with GAD-alum, could be considered, although GABA alone or in combination with GAD-alum did nor preserve beta-cell function in this trial.
Collapse
Affiliation(s)
- Alexandra Martin
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gail J Mick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Heather M Choat
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alison A Lunsford
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerald G McGwin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth L McCormick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Chen KH, Doliba N, May CL, Roman J, Ustione A, Tembo T, Negron A, Radovick S, Piston DW, Glaser B, Kaestner KH, Matschinsky FM. Genetic activation of glucokinase in a minority of pancreatic beta cells causes hypoglycemia in mice. Life Sci 2022; 309:120952. [PMID: 36100080 PMCID: PMC10312065 DOI: 10.1016/j.lfs.2022.120952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/05/2023]
Abstract
AIMS Glucokinase (GK) is expressed in the glucose-sensing cells of the islets of Langerhans and plays a critical role in glucose homeostasis. Here, we tested the hypothesis that genetic activation of GK in a small subset of β-cells is sufficient to change the glucose set-point of the whole islet. MATERIAL AND METHODS Mouse models of cell-type specific GK deficiency (GKKO) and genetic enzyme activation (GKKI) in a subset of β-cells were obtained by crossing the αGSU (gonadotropin alpha subunit)-Cre transgene with the appropriate GK mutant alleles. Metabolic analyses consisted of glucose tolerance tests, perifusion of isolated islets and intracellular calcium measurements. KEY FINDINGS The αGSU-Cre transgene produced genetically mosaic islets, as Cre was active in 15 ± 1.2 % of β-cells. While mice deficient for GK in a subset of islet cells were normal, unexpectedly, GKKI mice were chronically hypoglycemic, glucose intolerant, and had a lower threshold for glucose stimulated insulin secretion. GKKI mice exhibited an average fasting blood glucose level of 3.5 mM. GKKI islets responded with intracellular calcium signals that spread through the whole islets at 1 mM and secreted insulin at 3 mM glucose. SIGNIFICANCE Genetic activation of GK in a minority of β-cells is sufficient to change the glucose threshold for insulin secretion in the entire islet and thereby glucose homeostasis in the whole animal. These data support the model in which β-cells with higher GK activity function as 'hub' or 'trigger' cells and thus control insulin secretion by the β-cell collective within the islet.
Collapse
Affiliation(s)
- Kevin H Chen
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Nicolai Doliba
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Catherine L May
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Jeffrey Roman
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Teguru Tembo
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Ariel Negron
- Department of Medicine and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Sally Radovick
- Department of Medicine and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Benjamin Glaser
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA.
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA.
| |
Collapse
|
19
|
Capozzi ME, D'Alessio DA, Campbell JE. The past, present, and future physiology and pharmacology of glucagon. Cell Metab 2022; 34:1654-1674. [PMID: 36323234 PMCID: PMC9641554 DOI: 10.1016/j.cmet.2022.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The evolution of glucagon has seen the transition from an impurity in the preparation of insulin to the development of glucagon receptor agonists for use in type 1 diabetes. In type 2 diabetes, glucagon receptor antagonists have been explored to reduce glycemia thought to be induced by hyperglucagonemia. However, the catabolic actions of glucagon are currently being leveraged to target the rise in obesity that paralleled that of diabetes, bringing the pharmacology of glucagon full circle. During this evolution, the physiological importance of glucagon advanced beyond the control of hepatic glucose production, incorporating critical roles for glucagon to regulate both lipid and amino acid metabolism. Thus, it is unsurprising that the study of glucagon has left several paradoxes that make it difficult to distill this hormone down to a simplified action. Here, we describe the history of glucagon from the past to the present and suggest some direction to the future of this field.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
20
|
Hagan DW, Ferreira SM, Santos GJ, Phelps EA. The role of GABA in islet function. Front Endocrinol (Lausanne) 2022; 13:972115. [PMID: 36246925 PMCID: PMC9558271 DOI: 10.3389/fendo.2022.972115] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gamma aminobutyric acid (GABA) is a non-proteinogenic amino acid and neurotransmitter that is produced in the islet at levels as high as in the brain. GABA is synthesized by the enzyme glutamic acid decarboxylase (GAD), of which the 65 kDa isoform (GAD65) is a major autoantigen in type 1 diabetes. Originally described to be released via synaptic-like microvesicles or from insulin secretory vesicles, beta cells are now understood to release substantial quantities of GABA directly from the cytosol via volume-regulated anion channels (VRAC). Once released, GABA influences the activity of multiple islet cell types through ionotropic GABAA receptors and metabotropic GABAB receptors. GABA also interfaces with cellular metabolism and ATP production via the GABA shunt pathway. Beta cells become depleted of GABA in type 1 diabetes (in remaining beta cells) and type 2 diabetes, suggesting that loss or reduction of islet GABA correlates with diabetes pathogenesis and may contribute to dysfunction of alpha, beta, and delta cells in diabetic individuals. While the function of GABA in the nervous system is well-understood, the description of the islet GABA system is clouded by differing reports describing multiple secretion pathways and effector functions. This review will discuss and attempt to unify the major experimental results from over 40 years of literature characterizing the role of GABA in the islet.
Collapse
Affiliation(s)
- D. Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Sandra M. Ferreira
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Gustavo J. Santos
- Islet Biology and Metabolism Lab – I.B.M. Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Marques C, Liu L, Duncan KD, Lanekoff I. A Direct Infusion Probe for Rapid Metabolomics of Low-Volume Samples. Anal Chem 2022; 94:12875-12883. [PMID: 36070505 PMCID: PMC9494293 DOI: 10.1021/acs.analchem.2c02918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Targeted and nontargeted metabolomics has the potential to evaluate and detect global metabolite changes in biological systems. Direct infusion mass spectrometric analysis enables detection of all ionizable small molecules, thus simultaneously providing information on both metabolites and lipids in chemically complex samples. However, to unravel the heterogeneity of the metabolic status of cells in culture and tissue a low number of cells per sample should be analyzed with high sensitivity, which requires low sample volumes. Here, we present the design and characterization of the direct infusion probe, DIP. The DIP is simple to build and position directly in front of a mass spectrometer for rapid metabolomics of chemically complex biological samples using pneumatically assisted electrospray ionization at 1 μL/min flow rate. The resulting data is acquired in a square wave profile with minimal carryover between samples that enhances throughput and enables several minutes of uniform MS signal from 5 μL sample volumes. The DIP was applied to study the intracellular metabolism of insulin secreting INS-1 cells and the results show that exposure to 20 mM glucose for 15 min significantly alters the abundance of several small metabolites, amino acids, and lipids.
Collapse
Affiliation(s)
- Cátia Marques
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Liangwen Liu
- Department
of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Kyle D. Duncan
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Ingela Lanekoff
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
22
|
Pan X, Tao S, Tong N. Potential Therapeutic Targeting Neurotransmitter Receptors in Diabetes. Front Endocrinol (Lausanne) 2022; 13:884549. [PMID: 35669692 PMCID: PMC9163348 DOI: 10.3389/fendo.2022.884549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Neurotransmitters are signaling molecules secreted by neurons to coordinate communication and proper function among different sections in the central neural system (CNS) by binding with different receptors. Some neurotransmitters as well as their receptors are found in pancreatic islets and are involved in the regulation of glucose homeostasis. Neurotransmitters can act with their receptors in pancreatic islets to stimulate or inhibit the secretion of insulin (β cell), glucagon (α cell) or somatostatin (δ cell). Neurotransmitter receptors are either G-protein coupled receptors or ligand-gated channels, their effects on blood glucose are mainly decided by the number and location of them in islets. Dysfunction of neurotransmitters receptors in islets is involved in the development of β cell dysfunction and type 2 diabetes (T2D).Therapies targeting different transmitter systems have great potential in the prevention and treatment of T2D and other metabolic diseases.
Collapse
Affiliation(s)
- Xiaohui Pan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetes and Islet Transplantation, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shibing Tao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology, Ziyang First People’s Hospital, Ziyang, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetes and Islet Transplantation, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Zhu D, Li X, Ma J, Zeng J, Gan S, Dong X, Yang J, Lin X, Cai H, Song W, Li X, Zhang K, Zhang Q, Lu Y, Bu R, Shao H, Wang G, Yuan G, Ran X, Liao L, Zhao W, Li P, Sun L, Shi L, Jiang Z, Xue Y, Jiang H, Li Q, Li Z, Fu M, Liang Z, Guo L, Liu M, Xu C, Li W, Yu X, Qin G, Yang Z, Su B, Zeng L, Geng H, Shi Y, Zhao Y, Zhang Y, Yang W, Chen L. Dorzagliatin in drug-naïve patients with type 2 diabetes: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med 2022; 28:965-973. [PMID: 35551294 DOI: 10.1038/s41591-022-01802-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
Improving glucose sensitivity remains an unmet medical need in treating type 2 diabetes (T2D). Dorzagliatin is a dual-acting, orally bioavailable glucokinase activator that enhances glucokinase activity in a glucose-dependent manner, improves glucose-stimulated insulin secretion and demonstrates effects on glycemic control in patients with T2D. We report the findings of a randomized, double-blind, placebo-controlled phase 3 clinical trial to evaluate the efficacy and safety of dorzagliatin in patients with T2D. Eligible drug-naïve patients with T2D (n = 463) were randomly assigned to the dorzagliatin or placebo group at a ratio of 2:1 for 24 weeks of double-blind treatment, followed by 28 weeks of open-label treatment with dorzagliatin for all patients. The primary efficacy endpoint was the change in glycated hemoglobin from baseline to week 24. Safety was assessed throughout the trial. At week 24, the least-squares mean change in glycated hemoglobin from baseline (95% confidence interval) was -1.07% (-1.19%, -0.95%) in the dorzagliatin group and -0.50% (-0.68%, -0.32%) in the placebo group (estimated treatment difference, -0.57%; 95% confidence interval: -0.79%, -0.36%; P < 0.001). The incidence of adverse events was similar between the two groups. There were no severe hypoglycemia events or drug-related serious adverse events in the dorzagliatin group. In summary, dorzagliatin improved glycemic control in drug-naïve patients with T2D and showed a good tolerability and safety profile.
Collapse
Affiliation(s)
- Dalong Zhu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xiaoying Li
- Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Jiao'e Zeng
- Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Shenglian Gan
- The First People's Hospital of Changde City, Changde, China
| | - Xiaolin Dong
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Yang
- The First Hospital of Shanxi Medical University, Taiyuan, China
| | | | - Hanqing Cai
- The Second Hospital of Jilin University, Changchun, China
| | - Weihong Song
- Chenzhou First People's Hospital, Chenzhou, China
| | - Xuefeng Li
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Keqin Zhang
- Tongji Hospital of Tongji University, Shanghai, China
| | - Qiu Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yibing Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Huige Shao
- Changsha Central Hospital, Changsha, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun, China
| | - Guoyue Yuan
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xingwu Ran
- West China Hospital, Sichuan University, Chengdu, China
| | - Lin Liao
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wenjuan Zhao
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ping Li
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Sun
- Siping Hospital of China Medical University, Siping, China
| | - Lixin Shi
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhaoshun Jiang
- The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Yaoming Xue
- Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Hongwei Jiang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Quanmin Li
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | | | - Maoxiong Fu
- The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | | | - Lian Guo
- Chongqing University Three Gorges Central Hospital, Chongqing, China
| | - Ming Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Chun Xu
- The Third Medical Center of PLA General Hospital, Beijing, China
| | - Wenhui Li
- Peking Union Medical College Hospital, Beijing, China
| | - Xuefeng Yu
- Tongji Hospital, Tongji Medical College of HUST, Wuhan, China
| | - Guijun Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhou Yang
- Jiangxi Pingxiang People's Hospital, Pingxiang, China
| | - Benli Su
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Longyi Zeng
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | - Yu Zhao
- Hua Medicine, Shanghai, China
| | | | - Wenying Yang
- China-Japan Friendship Hospital, Beijing, China.
| | - Li Chen
- Hua Medicine, Shanghai, China.
| |
Collapse
|
24
|
Morriseau TS, Doucette CA, Dolinsky VW. More than meets the islet: aligning nutrient and paracrine inputs with hormone secretion in health and disease. Am J Physiol Endocrinol Metab 2022; 322:E446-E463. [PMID: 35373587 DOI: 10.1152/ajpendo.00411.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pancreatic islet is responsive to an array of endocrine, paracrine, and nutritional inputs that adjust hormone secretion to ensure accurate control of glucose homeostasis. Although the mechanisms governing glucose-coupled insulin secretion have received the most attention, there is emerging evidence for a multitude of physiological signaling pathways and paracrine networks that collectively regulate insulin, glucagon, and somatostatin release. Moreover, the modulation of these pathways in conditions of glucotoxicity or lipotoxicity are areas of both growing interest and controversy. In this review, the contributions of external, intrinsic, and paracrine factors in pancreatic β-, α-, and δ-cell secretion across the full spectrum of physiological (i.e., fasting and fed) and pathophysiological (gluco- and lipotoxicity; diabetes) environments will be critically discussed.
Collapse
Affiliation(s)
- Taylor S Morriseau
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christine A Doucette
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
25
|
Yang W, Zhu D, Gan S, Dong X, Su J, Li W, Jiang H, Zhao W, Yao M, Song W, Lu Y, Zhang X, Li H, Wang G, Qiu W, Yuan G, Ma J, Li W, Li Z, Wang X, Zeng J, Yang Z, Liu J, Liang Y, Lu S, Zhang H, Liu H, Liu P, Fan K, Jiang X, Li Y, Su Q, Ning T, Tan H, An Z, Jiang Z, Liu L, Zhou Z, Zhang Q, Li X, Shan Z, Xue Y, Mao H, Shi L, Ye S, Zhang X, Sun J, Li P, Yang T, Li F, Lin J, Zhang Z, Zhao Y, Li R, Guo X, Yao Q, Lu W, Qu S, Li H, Tan L, Wang W, Yao Y, Chen D, Li Y, Gao J, Hu W, Fei X, Wu T, Dong S, Jin W, Li C, Zhao D, Feng B, Zhao Y, Zhang Y, Li X, Chen L. Dorzagliatin add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med 2022; 28:974-981. [PMID: 35551292 PMCID: PMC9117147 DOI: 10.1038/s41591-022-01803-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
Metformin, the first-line therapy for type 2 diabetes (T2D), decreases hepatic glucose production and reduces fasting plasma glucose levels. Dorzagliatin, a dual-acting orally bioavailable glucokinase activator targeting both the pancreas and liver glucokinase, decreases postprandial glucose in patients with T2D. In this randomized, double-blind, placebo-controlled phase 3 trial, the efficacy and safety of dorzagliatin as an add-on therapy to metformin were assessed in patients with T2D who had inadequate glycemic control using metformin alone. Eligible patients with T2D (n = 767) were randomly assigned to receive dorzagliatin or placebo (1:1 ratio) as an add-on to metformin (1,500 mg per day) for 24 weeks of double-blind treatment, followed by 28 weeks of open-label treatment with dorzagliatin for all patients. The primary efficacy endpoint was the change in glycated hemoglobin (HbA1c) levels from baseline to week 24, and safety was assessed throughout the trial. At week 24, the least-squares mean change from baseline in HbA1c (95% confidence interval (CI)) was -1.02% (-1.11, -0.93) in the dorzagliatin group and -0.36% (-0.45, -0.26) in the placebo group (estimated treatment difference, -0.66%; 95% CI: -0.79, -0.53; P < 0.0001). The incidence of adverse events was similar between groups. There were no severe hypoglycemia events or drug-related serious adverse events in the dorzagliatin and metformin combined therapy group. In patients with T2D who experienced inadequate glycemic control with metformin alone, dorzagliatin resulted in effective glycemic control with good tolerability and safety profile ( NCT03141073 ).
Collapse
Grants
- The study sponsor was Hua Medicine. Hua Medicine participated in the design, conduct, and data analysis and interpretation of the clinical study, the preparation of the manuscript, and involved in making decision to publish. This study was also partially funded by grants from the National Major Scientific and Technological Special Project for Significant New Drugs Development (2014ZX09101002004 and 2018ZX09711002-012-001), Shanghai Science and Technology Innovation Action Project (14431908300, 15XD1520500, 17DZ1910200, and 19431905200), Shanghai Pudong District Science and Technology Innovation Action Project (PKJ2014-S06), and Shanghai Municipal Commission of Economy and Informatization Innovation Action Project (XC-ZXSJ-01-2015-02 and 18XI-18).
Collapse
Affiliation(s)
| | - Dalong Zhu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Shenglian Gan
- The First People's Hospital of Changde City, Changde, China
| | - Xiaolin Dong
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junping Su
- Cangzhou People's Hospital, Cangzhou, China
| | - Wenhui Li
- Peking Union Medical College Hospital, Beijing, China
| | - Hongwei Jiang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Wenjuan Zhao
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Minxiu Yao
- Qingdao Central Hospital, Qingdao, China
| | - Weihong Song
- Chenzhou First People's Hospital, Chenzhou, China
| | - Yibing Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuzhen Zhang
- Tongji Hospital of Tongji University, Shanghai, China
| | - Huifang Li
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guixia Wang
- The First Bethune Hospital of Jilin University, Changchun, China
| | - Wei Qiu
- Huzhou Central Hospital, Huzhou, China
| | - Guoyue Yuan
- The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | | | - Wei Li
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ziling Li
- Inner Mongolia Baogang Hospital, Baotou, China
| | - Xiaoyue Wang
- The First People's Hospital of Yue Yang, Yueyang, China
| | - Jiao'e Zeng
- Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Zhou Yang
- Jiangxi Pingxiang People's Hospital, Pingxiang, China
| | - Jingdong Liu
- Jiangxi Provincial People's Hospital, Nanchang, China
| | | | - Song Lu
- Chongqing General Hospital, Chongqing, China
| | - Huili Zhang
- Qinghai University Affiliated Hospital, Xining, China
| | - Hui Liu
- Luoyang Central Hospital, Luoyang, China
| | - Ping Liu
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Kuanlu Fan
- The General Hospital of Xuzhou City Mining Group, Xuzhou, China
| | - Xiaozhen Jiang
- Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yufeng Li
- Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China
| | - Qing Su
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Ning
- Baotou Central Hospital, Baotou, China
| | - Huiwen Tan
- West China Hospital of Sichuan University, Chengdu, China
| | - Zhenmei An
- West China Hospital of Sichuan University, Chengdu, China
| | - Zhaoshun Jiang
- The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Lijun Liu
- Yiyang Central Hospital, Yiyang, China
| | - Zunhai Zhou
- Yangpu Hospital, Tongji University, Shanghai, China
| | - Qiu Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuefeng Li
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhongyan Shan
- The First Hospital of China Medical University, Shenyang, China
| | - Yaoming Xue
- Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Hong Mao
- The Central Hospital of Wuhan, Wuhan, China
| | - Lixin Shi
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | - Xiaomei Zhang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jiao Sun
- Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ping Li
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tao Yang
- Jiangsu Province Hospital, Nanjing, China
| | - Feng Li
- Jining No. 1 People's Hospital, Jining, China
| | - Jingna Lin
- Tianjin People's Hospital, Tianjin, China
| | | | - Ying Zhao
- Jilin Central General Hospital, Jilin, China
| | - Ruonan Li
- Third People's Hospital of Yunnan Province, Kunming, China
| | - Xiaohui Guo
- Peking University First Hospital, Beijing, China
| | - Qi Yao
- Ningbo First Hospital, Ningbo, China
| | - Weiping Lu
- The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Shen Qu
- Shanghai Tenth People's Hospital, Shanghai, China
| | - Hongmei Li
- Emergency General Hospital, Beijing, China
| | - Liling Tan
- The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenbo Wang
- Peking University Shougang Hospital, Beijing, China
| | - Yongli Yao
- Qinghai Provincial People's Hospital, Xining, China
| | | | - Yulan Li
- Liuzhou People's Hospital, Liuzhou, China
| | - Jialin Gao
- Yijishan Hospital, The First Affiliated Hospital of Wannan Medical University, Wuhu, China
| | - Wen Hu
- The Second People's Hospital of Huai'an, Huai'an, China
| | | | | | - Song Dong
- Aerospace Center Hospital, Beijing, China
| | | | - Chenzhong Li
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Zhao
- Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Bo Feng
- Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yu Zhao
- Hua Medicine (Shanghai) Ltd., Shanghai, China
| | - Yi Zhang
- Hua Medicine (Shanghai) Ltd., Shanghai, China
| | - Xiaoying Li
- Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li Chen
- Hua Medicine (Shanghai) Ltd., Shanghai, China.
| |
Collapse
|
26
|
Zmazek J, Grubelnik V, Markovič R, Marhl M. Modeling the Amino Acid Effect on Glucagon Secretion from Pancreatic Alpha Cells. Metabolites 2022; 12:metabo12040348. [PMID: 35448534 PMCID: PMC9028923 DOI: 10.3390/metabo12040348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a burdensome problem in modern society, and intensive research is focused on better understanding the underlying cellular mechanisms of hormone secretion for blood glucose regulation. T2DM is a bi-hormonal disease, and in addition to 100 years of increasing knowledge about the importance of insulin, the second hormone glucagon, secreted by pancreatic alpha cells, is becoming increasingly important. We have developed a mathematical model for glucagon secretion that incorporates all major metabolic processes of glucose, fatty acids, and glutamine as the most abundant postprandial amino acid in blood. In addition, we consider cAMP signaling in alpha cells. The model predictions quantitatively estimate the relative importance of specific metabolic and signaling pathways and particularly emphasize the important role of glutamine in promoting glucagon secretion, which is in good agreement with known experimental data.
Collapse
Affiliation(s)
- Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia; (J.Z.); (R.M.)
| | - Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia;
| | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia; (J.Z.); (R.M.)
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia;
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia; (J.Z.); (R.M.)
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
27
|
Abstract
Beta cells of the pancreatic islet express many different types of ion channels. These channels reside in the β-cell plasma membrane as well as subcellular organelles and their coordinated activity and sensitivity to metabolism regulate glucose-dependent insulin secretion. Here, we review the molecular nature, expression patterns, and functional roles of many β-cell channels, with an eye toward explaining the ionic basis of glucose-induced insulin secretion. Our primary focus is on KATP and voltage-gated Ca2+ channels as these primarily regulate insulin secretion; other channels in our view primarily help to sculpt the electrical patterns generated by activated β-cells or indirectly regulate metabolism. Lastly, we discuss why understanding the physiological roles played by ion channels is important for understanding the secretory defects that occur in type 2 diabetes. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
- Benjamin Thompson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
28
|
Asadi F, Dhanvantari S. Pathways of Glucagon Secretion and Trafficking in the Pancreatic Alpha Cell: Novel Pathways, Proteins, and Targets for Hyperglucagonemia. Front Endocrinol (Lausanne) 2021; 12:726368. [PMID: 34659118 PMCID: PMC8511682 DOI: 10.3389/fendo.2021.726368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with diabetes mellitus exhibit hyperglucagonemia, or excess glucagon secretion, which may be the underlying cause of the hyperglycemia of diabetes. Defective alpha cell secretory responses to glucose and paracrine effectors in both Type 1 and Type 2 diabetes may drive the development of hyperglucagonemia. Therefore, uncovering the mechanisms that regulate glucagon secretion from the pancreatic alpha cell is critical for developing improved treatments for diabetes. In this review, we focus on aspects of alpha cell biology for possible mechanisms for alpha cell dysfunction in diabetes: proglucagon processing, intrinsic and paracrine control of glucagon secretion, secretory granule dynamics, and alterations in intracellular trafficking. We explore possible clues gleaned from these studies in how inhibition of glucagon secretion can be targeted as a treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
- Imaging Research Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
29
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
30
|
Eaton WJ, Roper MG. A microfluidic system for monitoring glucagon secretion from human pancreatic islets of Langerhans. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3614-3619. [PMID: 34308945 PMCID: PMC8375491 DOI: 10.1039/d1ay00703c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Glucagon is a 29-amino acid peptide released from α-cells within pancreatic islets of Langerhans to help raise blood glucose levels. While a plethora of methodologies have been developed for quantitative measurement of insulin released from islets, such methods are not well developed for glucagon despite its importance in blood sugar regulation. In this work, a simple yet robust microfluidic device was developed for holding human pancreatic islets and perfuse them with glucose. The perfusate was collected into 2 min fractions and glucagon quantified using a homogeneous time-resolved Förster resonance energy transfer (TR-FRET) sandwich immunoassay. Simulation of fluid flow within the microfluidic device indicated the device produced low amounts of shear stress on islets, and characterization of the flow with standard glucagon solutions revealed response times within 2 fractions (<4 min). Results with human islets from multiple donors demonstrated either a "burst" of glucagon or a "sustained" glucagon release across the entire period of stimulation. The simplicity, yet robustness, of the device and method is expected to appeal to a number of researchers examining pancreatic islet physiology.
Collapse
Affiliation(s)
- Wesley J. Eaton
- Department of Chemistry and Biochemistry, Florida State University95 Chieftain WayTallahasseeFL 32306USA+1-850-644-1846
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University95 Chieftain WayTallahasseeFL 32306USA+1-850-644-1846
| |
Collapse
|
31
|
Ng XW, Chung YH, Piston DW. Intercellular Communication in the Islet of Langerhans in Health and Disease. Compr Physiol 2021; 11:2191-2225. [PMID: 34190340 PMCID: PMC8985231 DOI: 10.1002/cphy.c200026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood glucose homeostasis requires proper function of pancreatic islets, which secrete insulin, glucagon, and somatostatin from the β-, α-, and δ-cells, respectively. Each islet cell type is equipped with intrinsic mechanisms for glucose sensing and secretory actions, but these intrinsic mechanisms alone cannot explain the observed secretory profiles from intact islets. Regulation of secretion involves interconnected mechanisms among and between islet cell types. Islet cells lose their normal functional signatures and secretory behaviors upon dispersal as compared to intact islets and in vivo. In dispersed islet cells, the glucose response of insulin secretion is attenuated from that seen from whole islets, coordinated oscillations in membrane potential and intracellular Ca2+ activity, as well as the two-phase insulin secretion profile, are missing, and glucagon secretion displays higher basal secretion profile and a reverse glucose-dependent response from that of intact islets. These observations highlight the critical roles of intercellular communication within the pancreatic islet, and how these communication pathways are crucial for proper hormonal and nonhormonal secretion and glucose homeostasis. Further, misregulated secretions of islet secretory products that arise from defective intercellular islet communication are implicated in diabetes. Intercellular communication within the islet environment comprises multiple mechanisms, including electrical synapses from gap junctional coupling, paracrine interactions among neighboring cells, and direct cell-to-cell contacts in the form of juxtacrine signaling. In this article, we describe the various mechanisms that contribute to proper islet function for each islet cell type and how intercellular islet communications are coordinated among the same and different islet cell types. © 2021 American Physiological Society. Compr Physiol 11:2191-2225, 2021.
Collapse
Affiliation(s)
- Xue W Ng
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - Yong H Chung
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
32
|
Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol 2021; 22:142-158. [PMID: 33398164 PMCID: PMC8115730 DOI: 10.1038/s41580-020-00317-7] [Citation(s) in RCA: 336] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Metabolic homeostasis in mammals is tightly regulated by the complementary actions of insulin and glucagon. The secretion of these hormones from pancreatic β-cells and α-cells, respectively, is controlled by metabolic, endocrine, and paracrine regulatory mechanisms and is essential for the control of blood levels of glucose. The deregulation of these mechanisms leads to various pathologies, most notably type 2 diabetes, which is driven by the combined lesions of impaired insulin action and a loss of the normal insulin secretion response to glucose. Glucose stimulates insulin secretion from β-cells in a bi-modal fashion, and new insights about the underlying mechanisms, particularly relating to the second or amplifying phase of this secretory response, have been recently gained. Other recent work highlights the importance of α-cell-produced proglucagon-derived peptides, incretin hormones from the gastrointestinal tract and other dietary components, including certain amino acids and fatty acids, in priming and potentiation of the β-cell glucose response. These advances provide a new perspective for the understanding of the β-cell failure that triggers type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
- Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
33
|
Henquin JC. Paracrine and autocrine control of insulin secretion in human islets: evidence and pending questions. Am J Physiol Endocrinol Metab 2021; 320:E78-E86. [PMID: 33103455 DOI: 10.1152/ajpendo.00485.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin secretion by β-cells is largely controlled by circulating nutrients, hormones, and neurotransmitters. However, recent years have witnessed the multiplication of studies investigating whether local regulation also takes place within pancreatic islets, in which β-cells cohabit with several other cell types. The cell composition and architectural organization of human islets differ from those of rodent islets and are particularly favorable to cellular interactions. An impressive number of hormonal (glucagon, glucagon-like peptide-1, somatostatin, etc.) and nonhormonal products (ATP, acetylcholine, γ-aminobutyric acid, dopamine, etc.) are released by islet cells and have been implicated in a local control of insulin secretion. This review analyzes reports directly testing paracrine and autocrine control of insulin secretion in isolated human islets. Many of these studies were designed on background information collected in rodent islets. However, the perspective of the review is not to highlight species similarities or specificities but to contrast established and speculative mechanisms in human islets. It will be shown that the current evidence is convincing only for a minority of candidates for a paracrine function whereas arguments supporting a physiological role of others do not stand up to scrutiny. Several pending questions await further investigation.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
34
|
Moede T, Leibiger B, Vaca Sanchez P, Daré E, Köhler M, Muhandiramlage TP, Leibiger IB, Berggren PO. Glucokinase intrinsically regulates glucose sensing and glucagon secretion in pancreatic alpha cells. Sci Rep 2020; 10:20145. [PMID: 33214580 PMCID: PMC7678872 DOI: 10.1038/s41598-020-76863-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023] Open
Abstract
The secretion of glucagon by pancreatic alpha cells is regulated by a number of external and intrinsic factors. While the electrophysiological processes linking a lowering of glucose concentrations to an increased glucagon release are well characterized, the evidence for the identity and function of the glucose sensor is still incomplete. In the present study we aimed to address two unsolved problems: (1) do individual alpha cells have the intrinsic capability to regulate glucagon secretion by glucose, and (2) is glucokinase the alpha cell glucose sensor in this scenario. Single cell RT-PCR was used to confirm that glucokinase is the main glucose-phosphorylating enzyme expressed in rat pancreatic alpha cells. Modulation of glucokinase activity by pharmacological activators and inhibitors led to a lowering or an increase of the glucose threshold of glucagon release from single alpha cells, measured by TIRF microscopy, respectively. Knockdown of glucokinase expression resulted in a loss of glucose control of glucagon secretion. Taken together this study provides evidence for a crucial role of glucokinase in intrinsic glucose regulation of glucagon release in rat alpha cells.
Collapse
Affiliation(s)
- Tilo Moede
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden.
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| | - Pilar Vaca Sanchez
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| | - Elisabetta Daré
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| | - Martin Köhler
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| | - Thusitha P Muhandiramlage
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| |
Collapse
|
35
|
Moreira BP, Silva AM, Martins AD, Monteiro MP, Sousa M, Oliveira PF, Alves MG. Effect of Leptin in Human Sertoli Cells Mitochondrial Physiology. Reprod Sci 2020; 28:920-931. [DOI: 10.1007/s43032-020-00328-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
|
36
|
Yu W, Wu N, Li L, OuYang H, Qian M, Shen H. A Review of Research Progress on Glycemic Variability and Gestational Diabetes. Diabetes Metab Syndr Obes 2020; 13:2729-2741. [PMID: 32801819 PMCID: PMC7414929 DOI: 10.2147/dmso.s261486] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/11/2020] [Indexed: 01/27/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is associated with many adverse obstetric outcomes and neonatal outcomes, including preeclampsia, Cesarean section, and macrosomia. Active screening and early diabetes control can reduce the occurrence of adverse outcomes. Glycosylated hemoglobin (HbA1c) only reflects average blood glucose levels, but not glycemic variability (GV). Studies have shown that GV can cause a series of adverse reactions, and good control of GV can reduce the incidence of adverse pregnancy outcomes in patients with GDM. In order to provide clinicians with a better basis for diagnosis and treatment, this study reviewed the measurement, evaluation, and control of GV, the importance of GV for patients with GDM, and correlations between GV and maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Wenshu Yu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’ s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’ s Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’ s Republic of China
| | - Hong OuYang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’ s Republic of China
| | - Meichen Qian
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’ s Republic of China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
37
|
Schwartsburd P. A View on Pathogenesis of ≪Vicious Cancer Progression Cycle≫. Front Oncol 2020; 10:690. [PMID: 32426290 PMCID: PMC7204907 DOI: 10.3389/fonc.2020.00690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Unrestricted tumor growth requires a permanent supply of glucose that can be obtained from cancer-stimulated hepatic glucose production and/or glucose redirecting from host insulin resistant tissues to cancer cells. This study proposes a mechanism based on metabolic and hormonal changes that may provoke glucose delivery to cancer cells through two interconnected "vicious cycles" whose continuous activity drives cancer progression. As follows from the proposed here feedback model, these "vicious cycles" result from cancer-mediated manipulation of host glucose sensors. The derived conclusions contribute to a better understanding of cancer pathogenesis and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Polina Schwartsburd
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
38
|
Yu Q, Lai BK, Ahooghalandari P, Helander A, Gylfe E, Gilon P, Tengholm A. γ-Hydroxybutyrate does not mediate glucose inhibition of glucagon secretion. J Biol Chem 2020; 295:5419-5426. [PMID: 32156704 PMCID: PMC7170508 DOI: 10.1074/jbc.ra119.009577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 03/09/2020] [Indexed: 11/26/2022] Open
Abstract
Hypersecretion of glucagon from pancreatic α-cells strongly contributes to diabetic hyperglycemia. Moreover, failure of α-cells to increase glucagon secretion in response to falling blood glucose concentrations compromises the defense against hypoglycemia, a common complication in diabetes therapy. However, the mechanisms underlying glucose regulation of glucagon secretion are poorly understood and likely involve both α-cell-intrinsic and intraislet paracrine signaling. Among paracrine factors, glucose-stimulated release of the GABA metabolite γ-hydroxybutyric acid (GHB) from pancreatic β-cells might mediate glucose suppression of glucagon release via GHB receptors on α-cells. However, the direct effects of GHB on α-cell signaling and glucagon release have not been investigated. Here, we found that GHB (4-10 μm) lacked effects on the cytoplasmic concentrations of the secretion-regulating messengers Ca2+ and cAMP in mouse α-cells. Glucagon secretion from perifused mouse islets was also unaffected by GHB at both 1 and 7 mm glucose. The GHB receptor agonist 3-chloropropanoic acid and the antagonist NCS-382 had no effects on glucagon secretion and did not affect stimulation of secretion induced by a drop in glucose from 7 to 1 mm Inhibition of endogenous GHB formation with the GABA transaminase inhibitor vigabatrin also failed to influence glucagon secretion at 1 mm glucose and did not prevent the suppressive effect of 7 mm glucose. In human islets, GHB tended to stimulate glucagon secretion at 1 mm glucose, an effect mimicked by 3-chloropropanoic acid. We conclude that GHB does not mediate the inhibitory effect of glucose on glucagon secretion.
Collapse
Affiliation(s)
- Qian Yu
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Bao Khanh Lai
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, 1200 Brussels, Belgium
| | | | - Anders Helander
- Department of Laboratory Medicine, Karolinska Institutet, and Clinical Pharmacology and Clinical Chemistry, Karolinska University Laboratory, SE-141 86 Stockholm, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, 1200 Brussels, Belgium
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
39
|
Metabolomics Analysis of Nutrient Metabolism in β-Cells. J Mol Biol 2020; 432:1429-1445. [DOI: 10.1016/j.jmb.2019.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
|
40
|
Chloride transporters and channels in β-cell physiology: revisiting a 40-year-old model. Biochem Soc Trans 2020; 47:1843-1855. [PMID: 31697318 PMCID: PMC6925527 DOI: 10.1042/bst20190513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
It is accepted that insulin-secreting β-cells release insulin in response to glucose even in the absence of functional ATP-sensitive K+ (KATP)-channels, which play a central role in a 'consensus model' of secretion broadly accepted and widely reproduced in textbooks. A major shortcoming of this consensus model is that it ignores any and all anionic mechanisms, known for more than 40 years, to modulate β-cell electrical activity and therefore insulin secretion. It is now clear that, in addition to metabolically regulated KATP-channels, β-cells are equipped with volume-regulated anion (Cl-) channels (VRAC) responsive to glucose concentrations in the range known to promote electrical activity and insulin secretion. In this context, the electrogenic efflux of Cl- through VRAC and other Cl- channels known to be expressed in β-cells results in depolarization because of an outwardly directed Cl- gradient established, maintained and regulated by the balance between Cl- transporters and channels. This review will provide a succinct historical perspective on the development of a complex hypothesis: Cl- transporters and channels modulate insulin secretion in response to nutrients.
Collapse
|
41
|
Wendt A, Eliasson L. Pancreatic α-cells - The unsung heroes in islet function. Semin Cell Dev Biol 2020; 103:41-50. [PMID: 31983511 DOI: 10.1016/j.semcdb.2020.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
Abstract
The pancreatic islets of Langerhans consist of several hormone-secreting cell types important for blood glucose control. The insulin secreting β-cells are the best studied of these cell types, but less is known about the glucagon secreting α-cells. The α-cells secrete glucagon as a response to low blood glucose. The major function of glucagon is to release glucose from the glycogen stores in the liver. In both type 1 and type 2 diabetes, glucagon secretion is dysregulated further exaggerating the hyperglycaemia, and in type 1 diabetes α-cells fail to counter regulate hypoglycaemia. Although glucagon has been recognized for almost 100 years, the understanding of how glucagon secretion is regulated and how glucagon act within the islet is far from complete. However, α-cell research has taken off lately which is promising for future knowledge. In this review we aim to highlight α-cell regulation and glucagon secretion with a special focus on recent discoveries from human islets. We will present some novel aspects of glucagon function and effects of selected glucose lowering agents on glucagon secretion.
Collapse
Affiliation(s)
- Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden.
| |
Collapse
|
42
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
43
|
Noguchi GM, Huising MO. Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 2019; 1:1189-1201. [PMID: 32694675 PMCID: PMC7378277 DOI: 10.1038/s42255-019-0148-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a complex mini organ composed of a variety of endocrine cells and their support cells, which together tightly control blood glucose homeostasis. Changes in glucose concentration are commonly regarded as the chief signal controlling insulin-secreting beta cells, glucagon-secreting alpha cells and somatostatin-secreting delta cells. However, each of these cell types is highly responsive to a multitude of endocrine, paracrine, nutritional and neural inputs, which collectively shape the final endocrine output of the islet. Here, we review the principal inputs for each islet-cell type and the physiological circumstances in which these signals arise, through the prism of the insights generated by the transcriptomes of each of the major endocrine-cell types. A comprehensive integration of the factors that influence blood glucose homeostasis is essential to successfully improve therapeutic strategies for better diabetes management.
Collapse
Affiliation(s)
- Glyn M Noguchi
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA.
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
44
|
Yu Q, Shuai H, Ahooghalandari P, Gylfe E, Tengholm A. Glucose controls glucagon secretion by directly modulating cAMP in alpha cells. Diabetologia 2019; 62:1212-1224. [PMID: 30953108 PMCID: PMC6560012 DOI: 10.1007/s00125-019-4857-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/22/2019] [Indexed: 01/18/2023]
Abstract
AIMS/HYPOTHESIS Glucagon is critical for normal glucose homeostasis and aberrant secretion of the hormone aggravates dysregulated glucose control in diabetes. However, the mechanisms by which glucose controls glucagon secretion from pancreatic alpha cells remain elusive. The aim of this study was to investigate the role of the intracellular messenger cAMP in alpha-cell-intrinsic glucose regulation of glucagon release. METHODS Subplasmalemmal cAMP and Ca2+ concentrations were recorded in isolated and islet-located alpha cells using fluorescent reporters and total internal reflection microscopy. Glucagon secretion from mouse islets was measured using ELISA. RESULTS Glucose induced Ca2+-independent alterations of the subplasmalemmal cAMP concentration in alpha cells that correlated with changes in glucagon release. Glucose-lowering-induced stimulation of glucagon secretion thus corresponded to an elevation in cAMP that was independent of paracrine signalling from insulin or somatostatin. Imposed cAMP elevations stimulated glucagon secretion and abolished inhibition by glucose elevation, while protein kinase A inhibition mimicked glucose suppression of glucagon release. CONCLUSIONS/INTERPRETATION Glucose concentrations in the hypoglycaemic range control glucagon secretion by directly modulating the cAMP concentration in alpha cells independently of paracrine influences. These findings define a novel mechanism for glucose regulation of glucagon release that underlies recovery from hypoglycaemia and may be disturbed in diabetes.
Collapse
Affiliation(s)
- Qian Yu
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Hongyan Shuai
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Parvin Ahooghalandari
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
45
|
Schwartsburd P. Cancer-Induced Reprogramming of Host Glucose Metabolism: "Vicious Cycle" Supporting Cancer Progression. Front Oncol 2019; 9:218. [PMID: 31019893 PMCID: PMC6458235 DOI: 10.3389/fonc.2019.00218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Unrestricted cancer growth requires permanent supply of glucose that can be obtained from cancer-mediated reprogramming of glucose metabolism in the cancer-bearing host. The pathological mechanisms by which cancer cells exert their negative influence on host glucose metabolism are largely unknown. This paper proposes a mechanism of metabolic and hormonal changes that may favor glucose delivery to tumor (not host) cells by creating a cancer-host "vicious cycle" whose prolonged action drives cancer progression and promotes host cachexia. To verify this hypothesis, a feedback model of host-cancer interactions that create the "vicious cycle" via cancer-induced reprogramming of host glucose metabolism is proposed. This model is capable of answering some crucial questions as to how anabolic cancer cells can reprogram the systemic glucose metabolism and why these pathways were not observed in pregnancy. The current paper helps to better understanding a pathogenesis of cancer progression and identify hormonal/metabolic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Polina Schwartsburd
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
46
|
Evans K, Wang X, Roper MG. Chiral micellar electrokinetic chromatographic separation for determination of L- and D-primary amines released from murine islets of Langerhans. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:1276-1283. [PMID: 31073338 PMCID: PMC6502259 DOI: 10.1039/c8ay02471e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
D-amino acids have been located in various tissues including the endocrine portion of the pancreas, the islets of Langerhans. D-Serine (D-Ser), is of particular interest since it is an agonist for the ionotropic N-methyl-D-aspartate receptors. To examine the potential release of D-Ser and other D-amino acids from islets, a chiral micellar electrokinetic chromatography method was developed by derivatizing primary amines with 2,3-naphthalenedicarboxaldehyde and to achieve resolution of the enantiomers, two surfactants were used in the separation, sodium dodecyl sulfate and sodium deoxycholate. With the optimized conditions, 7 of 13 enantiomeric pairs that were tested had greater than baseline resolution, while the resolution of numerous other L-amino acids and small molecules were maintained. For the 17 compounds that were fully resolved, limits of detection were less than 10 nM. The resulting optimized separation method produced high efficiency peaks, with an average of 300,000 theoretical plates per peak and a peak capacity of 120. The method was used to examine the release of small molecules from groups of 50 murine islets of Langerhans. A peak was detected from islets incubated with 20 mM glucose that co-migrated with a D-Ser standard, although its level was below the quantifiable limit.
Collapse
Affiliation(s)
- Kimberly Evans
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| | - Xue Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| |
Collapse
|
47
|
Araujo TR, da Silva JA, Vettorazzi JF, Freitas IN, Lubaczeuski C, Magalhães EA, Silva JN, Ribeiro ES, Boschero AC, Carneiro EM, Bonfleur ML, Ribeiro RA. Glucose intolerance in monosodium glutamate obesity is linked to hyperglucagonemia and insulin resistance in α cells. J Cell Physiol 2018; 234:7019-7031. [PMID: 30317580 DOI: 10.1002/jcp.27455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Thiago R. Araujo
- Campus UFRJ‐Macaé, Universidade Federal do R io de Janeiro Macaé Brazil
| | - Joel A. da Silva
- Campus UFRJ‐Macaé, Universidade Federal do R io de Janeiro Macaé Brazil
| | - Jean F. Vettorazzi
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | | | - Camila Lubaczeuski
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | | | - Juliana N. Silva
- Campus UFRJ‐Macaé, Universidade Federal do R io de Janeiro Macaé Brazil
| | - Elane S. Ribeiro
- Campus UFRJ‐Macaé, Universidade Federal do R io de Janeiro Macaé Brazil
| | - Antonio C. Boschero
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | - Everardo M. Carneiro
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | - Maria L. Bonfleur
- Centro de Ciências Biológicas e da Saúde Universidade Estadual do Oeste do Paraná (UNIOESTE) Cascavel Brazil
| | | |
Collapse
|
48
|
Nesterov SV, Yaguzhinsky LS, Podoprigora GI, Nartsissov YR. Autocatalytic cycle in the pathogenesis of diabetes mellitus: biochemical and pathophysiological aspects of metabolic therapy with natural amino acids on the example of glycine. DIABETES MELLITUS 2018. [DOI: 10.14341/dm9529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this work systematization (classification) of biochemical and physiological processes that cause disorders in the human body during the development of diabetes mellitus is carried out. The development of the disease is considered as the interaction and mutual reinforcement of two groups of parallel processes. The first group has a molecular nature and it is associated with impairment of ROS-regulation system which includes NADPH oxidases, RAGE receptors, mitochondria, cellular peroxireductase system and the immune system. The second group has a pathophysiological nature and it is associated with impairment of microcirculation and liver metabolism. The analysis of diabetes biochemistry based on different published references yields a creation of a block diagram evaluating the disease development over time. Two types of autocatalytic processes were identified: autocatalysis in the cascade of biochemical reactions and "cross-section" catalysis, in which biochemical and pathophysiological processes reinforce each other. The developed model has shown the possibility of using pharmacologically active natural metabolite glycine as a medicine inhibiting the development of diabetes. Despite the fact that glycine is a substitute amino acid the drop in the glycine blood concentration occurs even in the early stages of diabetes development and can aggravate the disease. It is shown that glycine is a potential blocker of key autocatalytic cycles, including biochemical and pathophysiological processes. The analysis of the glycine action based on the developed model is in complete agreement with the results of clinical trials in which glycine has improved blood biochemistry of diabetic patients and thereby it prevents the development of diabetic complications.
Collapse
|
49
|
Ikegami R, Shimizu I, Sato T, Yoshida Y, Hayashi Y, Suda M, Katsuumi G, Li J, Wakasugi T, Minokoshi Y, Okamoto S, Hinoi E, Nielsen S, Jespersen NZ, Scheele C, Soga T, Minamino T. Gamma-Aminobutyric Acid Signaling in Brown Adipose Tissue Promotes Systemic Metabolic Derangement in Obesity. Cell Rep 2018; 24:2827-2837.e5. [DOI: 10.1016/j.celrep.2018.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022] Open
|
50
|
Stuhlmann T, Planells-Cases R, Jentsch TJ. LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nat Commun 2018. [PMID: 29773801 DOI: 10.1038/s41467‐018‐04353‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glucose homeostasis depends critically on insulin that is secreted by pancreatic β-cells. Serum glucose, which is directly sensed by β-cells, stimulates depolarization- and Ca2+-dependent exocytosis of insulin granules. Here we show that pancreatic islets prominently express LRRC8A and LRRC8D, subunits of volume-regulated VRAC anion channels. Hypotonicity- or glucose-induced β-cell swelling elicits canonical LRRC8A-dependent VRAC currents that depolarize β-cells to an extent that causes electrical excitation. Glucose-induced excitation and Ca2+ responses are delayed in onset, but not abolished, in β-cells lacking the essential VRAC subunit LRRC8A. Whereas Lrrc8a disruption does not affect tolbutamide- or high-K+-induced insulin secretion from pancreatic islets, it reduces first-phase glucose-induced insulin secretion. Mice lacking VRAC in β-cells have normal resting serum glucose levels but impaired glucose tolerance. We propose that opening of LRRC8/VRAC channels increases glucose sensitivity and insulin secretion of β-cells synergistically with KATP closure. Neurotransmitter-permeable LRRC8D-containing VRACs might have additional roles in autocrine/paracrine signaling within islets.
Collapse
Affiliation(s)
- Till Stuhlmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Graduate Program of the Faculty for Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Neurocure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|