1
|
Alavi SMH, Barzegar-Fallah S, Yoshida M, Butts IAE, Osada M. Serotonin-Induced Sperm Hyper-Motility In Pacific Oyster (Crassostrea Gigas) Associates With K + Efflux and Membrane Hyperpolarization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025. [PMID: 40200823 DOI: 10.1002/jez.2918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025]
Abstract
Serotonin (5-HT) induces sperm hyper-motility in bivalves. This process has been suggested to be associated with K+ efflux due to higher concentrations of K+ ions in testicular fluid compared to that of seawater. This hypothesis was supported by inhibition of 5-HT-induced sperm hyper-motility in artificial seawater (ASW) containing high extracellular K+ ions or in the presence of a voltage-dependent K+ channel blocker (4-AP). Here, we studied changes of sperm membrane potential to elucidate 5-HT-induced sperm hyper-motility signaling in Pacific oyster (Crassostrea gigas). Sperm motility was partially initiated (48.34 ± 7.80%) in ASW, and decreased at 5 min post-activation (p < 0.05). In the presence of 10-5 M 5-HT, sperm motility was recorded 81.63 ± 3.55%, which remained unchanged within 60 min post-activation. After sperm activation in ASW with or without 5-HT, fluorescence intensity of membrane potential-sensitive fluorescent (DiSC3(5)) was decreased to lower than that of the resting stage, indicating membrane hyperpolarization. Induction of membrane hyperpolarization, using valinomycin or in K+-free ASW (KF-ASW) could not trigger sperm hyper-motility, suggesting that hyperpolarization itself did not induce sperm hyper-motility. Next, we showed that membrane hyperpolarization was due to K+ efflux. The fluorescence intensity of DiSC3(5) was increased in ASW or KF-ASW containing 4-AP, suggesting membrane depolarization due to inhibition of K+ efflux. The valinomycin-induced membrane hyperpolarization was changed to depolarization by subsequent additions of KCl, suggesting that changes in the electrochemical gradient of K+ ions resulted in the retention of intracellular K+ ions. Observed membrane depolarization in the presence of 4-AP or high K+ ions was associated with inhibition of 5-HT-induced sperm hyper-motility. Taken together, this study shows that 5-HT-induced sperm hyper-motility was associated with membrane hyperpolarization due to K+ efflux.
Collapse
Affiliation(s)
- Sayyed Mohammad Hadi Alavi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- School of Biology, College of Science, University of Tehran, Tehran, Tehran, Iran
| | - Sepideh Barzegar-Fallah
- School of Biology, College of Science, University of Tehran, Tehran, Tehran, Iran
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Kanagawa, Japan
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - Makoto Osada
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Sánchez-Cárdenas C, Oliver EI, Chávez JC, Luque GM, Hernández-Cruz A, Buffone MG, Darszon A, Visconti PE, Romarowski A. Ion channels and transporters involved in calcium flux regulation in mammalian sperm. Curr Top Dev Biol 2025; 162:351-385. [PMID: 40180515 DOI: 10.1016/bs.ctdb.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
After ejaculation, mammalian spermatozoa are not capable of fertilizing a metaphase II-arrested egg. They require to undergo a series of biochemical and physiological processes collectively known as capacitation. In all these processes, the regulation of calcium ions fluxes plays essential roles and involves participation of many channels and transporters localized in the plasma membrane as well as in the membrane of intracellular organelles. In mammalian sperm, a fraction of these molecules has been proposed to contribute to mature sperm function. However, in many cases, the evidence for the presence of a given protein is based on the use of agonists and antagonists with more than one target. In this review, we will critically analyze the published evidence supporting the presence of these molecules in mammalian sperm with special emphasis to methods involving tandem mass spectrometry identification, electrophysiological evidence and controlled immunoassays.
Collapse
Affiliation(s)
- Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico.
| | - Enrique I Oliver
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Arturo Hernández-Cruz
- Departamento de Neuropatología Molecular y Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States.
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Bhagwat S, Asadi L, McCarthy R, Ferreira J, Li P, Li E, Spivak S, Gaydon A, Reddy V, Armstrong C, Morrill SR, Zhou H, Lewis AL, Lewis WG, Santi CM. Bacterial Vaginosis Toxins Impair Sperm Capacitation and Fertilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640991. [PMID: 40093112 PMCID: PMC11908240 DOI: 10.1101/2025.03.01.640991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Study question What effect do toxins produced by bacterial vaginosis (BV) bacteria have on sperm function? Summary answer Bacterial vaginosis toxins dysregulate sperm capacitation and intracellular calcium homeostasis and impair the ability of sperm to fertilize oocytes. What is known already In bacterial vaginosis, which is linked to infertility, overgrowth of Prevotella and Gardnerella in the vagina is accompanied by elevated concentrations of the toxins lipopolysaccharide (LPS) and vaginolysin (VLY). Study design size duration This was a laboratory study in which human semen samples were collected from consenting healthy donors with normal semen parameters. Mouse sperm samples were obtained from the caudal epididymis. Participants/materials setting methods Motile mouse and human sperm were isolated via swim-up and treated under non-capacitating or capacitating conditions. LPS from Escherichia coli was commercially available. VLY was produced by cloning the Gardnerella VLY protein in the ClearColi expression system. Mouse sperm were pre-incubated in in vitro fertilization medium with LPS or VLY and then co-cultured with ovulated cumulus-oocyte complexes. The effects of LPS and VLY on sperm motility and hyperactivation were assessed with computer-assisted sperm analysis. Effects on viability were assessed by Hoechst staining. Acrosomal exocytosis was assessed in sperm from transgenic Acr-eGFP mice and in human sperm stained with Pisum sativum agglutinin FITC. Intracellular calcium dynamics were assessed by staining sperm with the calcium-sensitive dye Fluo-4 AM and fluorescent imaging several sperm at the single-cell level. The effects of LPS on sperm from CatSper knock-out mice were assessed. Additionally, sperm were treated with a toll-like receptor 4 antagonist and further exposed to LPS. Main results and the role of chance Exposure of mouse sperm to LPS or VLY significantly decreased in vitro fertilization ( P < 0.05). Under capacitating conditions, both toxins initially increased mouse and human sperm hyperactivation, then significantly decreased sperm motility ( P < 0.05), hyperactivation ( P < 0.05), and acrosomal exocytosis ( P < 0.01). These changes were accompanied by a rapid and irreversible increase in intracellular calcium concentration. Effects of LPS, but not VLY, were prevented by polymyxin-B, which aggregates LPS. The LPS-induced intracellular calcium increase required external calcium but not the calcium channel CatSper and was inhibited by the Toll-like receptor 4 antagonist. Limitations reasons for caution First, the commercially available LPS we used was isolated from Escherichia coli , rather than from the BV-associated bacteria Prevotella bivia . Second, we did not quantify the absolute sperm intracellular calcium concentration before or after LPS or VLY treatment. Third, all of our experiments were in vitro . Wider implications of the findings These studies suggest that BV-associated toxins contribute to infertility by, in part, impairing sperm capacitation and reducing their fertilizing ability. Study funding/competing interests This work was supported by the National Institutes of Health (grant #R01 HD069631). The authors declare that they have no conflict of interest.
Collapse
|
4
|
Milewski D, James PF. Alpha4 Na,K-ATPase Localization and Expression Are Dynamic Aspects of Spermatogenesis and in Sperm Incubated Under Capacitating Conditions. Int J Mol Sci 2025; 26:1817. [PMID: 40076443 PMCID: PMC11898761 DOI: 10.3390/ijms26051817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Utilizing high-resolution microscopy in conjunction with a new antibody highly specific for rat alpha4 Na,K-ATPase, we describe changes in alpha4 expression during spermatogenesis and in sperm incubated under capacitating and noncapacitating conditions. Immunohistochemical analyses showed alpha4 expression at low levels in spermatogonia and in pachytene spermatocytes. Alpha4 then becomes highly expressed on round spermatids and the midpiece of elongated spermatozoa within the seminiferous tubules. In noncapacitating conditions, alpha4 was confined mainly to the flagellum of mature sperm; however, under capacitating conditions, sperm acquired intense alpha4 staining along the acrosomal region of the sperm head. To visualize the precise localization of alpha4 in the sperm head, we performed an ultrastructural analysis using immuno-scanning electron microscopy. Under capacitating conditions, sperm exhibited alpha4 staining along the dorsal surface of the sperm head associated with the acrosome. In addition, after 4 h of incubation in motility buffer, we observed an increase in alpha4 protein in sperm that could be blocked with chloramphenicol, a mitochondrial-type ribosome inhibitor. These findings demonstrate that both the localization and expression level of alpha4 Na,K-ATPase are dynamic aspects of sperm maturation and suggest that sperm motility and capacitation may be supported by these changes to the location and amount of this protein.
Collapse
Affiliation(s)
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
5
|
Delgado‐Bermúdez A, Yeste M, Bonet S, Pinart E. Physiological role of potassium channels in mammalian germ cell differentiation, maturation, and capacitation. Andrology 2025; 13:184-201. [PMID: 38436215 PMCID: PMC11815548 DOI: 10.1111/andr.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Ion channels are essential for differentiation and maturation of germ cells, and even for fertilization in mammals. Different types of potassium channels have been identified, which are grouped into voltage-gated channels (Kv), ligand-gated channels (Kligand), inwardly rectifying channels (Kir), and tandem pore domain channels (K2P). MATERIAL-METHODS The present review includes recent findings on the role of potassium channels in sperm physiology of mammals. RESULTS-DISCUSSION While most studies conducted thus far have been focused on the physiological role of voltage- (Kv1, Kv3, and Kv7) and calcium-gated channels (SLO1 and SLO3) during sperm capacitation, especially in humans and rodents, little data about the types of potassium channels present in the plasma membrane of differentiating germ cells exist. In spite of this, recent evidence suggests that the content and regulation mechanisms of these channels vary throughout spermatogenesis. Potassium channels are also essential for the regulation of sperm cell volume during epididymal maturation and for preventing premature membrane hyperpolarization. It is important to highlight that the nature, biochemical properties, localization, and regulation mechanisms of potassium channels are species-specific. In effect, while SLO3 is the main potassium channel involved in the K+ current during sperm capacitation in rodents, different potassium channels are implicated in the K+ outflow and, thus, plasma membrane hyperpolarization during sperm capacitation in other mammalian species, such as humans and pigs. CONCLUSIONS Potassium conductance is essential for male fertility, not only during sperm capacitation but throughout the spermiogenesis and epididymal maturation.
Collapse
Affiliation(s)
- Ariadna Delgado‐Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
| |
Collapse
|
6
|
Arroyo-Salvo C, Río S, Bogetti ME, Plaza J, Miragaya M, Yaneff A, Davio C, Fissore R, Gervasi MG, Gambini A, Perez-Martinez S. Effect of bicarbonate and polyvinyl alcohol on in vitro capacitation and fertilization ability of cryopreserved equine spermatozoa. Andrology 2025; 13:382-395. [PMID: 38804843 DOI: 10.1111/andr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Factors contributing to the limited success of in vitro fertilization in horses remain to be studied. In this work, we elucidated the effect of different essential capacitation media components, bicarbonate, and bovine serum albumin or polyvinyl-alcohol, and the incubation microenvironment on sperm parameters associated with capacitation, acrosome reaction, and their ability to activate oocytes via heterologous intracytoplasmic spermatozoa injection in equine cryopreserved spermatozoa. METHODS Frozen-thawed spermatozoa underwent incubation at different time intervals in either Tyrode's albumin lactate pyruvate medium (non-capacitating; NC) or Tyrode's albumin lactate pyruvate supplemented with bicarbonate, bicarbonate and polyvinyl-alcohol, bicarbonate and bovine serum albumin, polyvinyl-alcohol and bovine serum albumin alone. Protein kinase A-phosphorylated substrates and tyrosine phosphorylation levels, sperm motility, and acrosome reaction percentages were evaluated. After determining the best condition media (capacitating; CAP), heterologous intracytoplasmic spermatozoa injection on pig oocytes was performed and the phospholipase C zeta sperm localization pattern was evaluated. RESULTS Incubation of frozen-thawed equine spermatozoa with bicarbonate and polyvinyl-alcohol in atmospheric air for 45 min induced an increase in protein kinase A-phosphorylated substrates and tyrosine phosphorylation levels compared to NC condition. Sperm incubation in bicarbonate and polyvinyl-alcohol medium showed an increase in total motility and progressive motility with respect to NC (p ≤ 0.05). Interestingly, three parameters associated with sperm hyperactivation were modulated under bicarbonate and polyvinyl-alcohol conditions. The kinematic parameters curvilinear velocity and amplitude of lateral head displacement significantly increased, while straightness significantly diminished (curvilinear velocity: bicarbonate and polyvinyl-alcohol = 120.9 ± 2.9 vs. NC = 76.91 ± 6.9 µm/s) (amplitude of lateral head displacement: bicarbonate and polyvinyl-alcohol = 1.15 ± 0.02 vs. NC = 0.77 ± 0.03 µm) (straightness: bicarbonate and polyvinyl-alcohol = 0.76 ± 0.01 vs. NC = 0.87 ± 0.02) (p ≤ 0.05). Moreover, the spontaneous acrosome reaction significantly increased in spermatozoa incubated in this condition. Finally, bicarbonate and polyvinyl-alcohol medium was established as CAP medium. Although no differences were found in phospholipase C zeta localization pattern in spermatozoa incubated under CAP, equine spermatozoa pre-incubated in CAP condition for 45 min showed higher fertilization rates when injected into matured pig oocytes (NC: 47.6% vs. CAP 76.5%; p ≤ 0.05). CONCLUSION These findings underscore the importance of bicarbonate and polyvinyl-alcohol in supporting critical events associated with in vitro sperm capacitation in the horse, resulting in higher oocyte activation percentages following heterologous intracytoplasmic spermatozoa injection. This protocol could have an impact on reproductive efficiency in the equine breeding industry.
Collapse
Affiliation(s)
- Camila Arroyo-Salvo
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Buenos Aires, Argentina
| | - Sofía Río
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Buenos Aires, Argentina
| | - María Eugenia Bogetti
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Buenos Aires, Argentina
| | - Jessica Plaza
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, INITRA, Buenos Aires, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, INITRA, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - María Gracia Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Andrés Gambini
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland, Australia
| | - Silvina Perez-Martinez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
7
|
Rodríguez Gil JE, Blanco-Prieto O. Techniques to Determine Mammalian Sperm Capacitation. Methods Mol Biol 2025; 2897:463-495. [PMID: 40202654 DOI: 10.1007/978-1-0716-4406-5_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The detection of the achievement of the capacitation status in a sperm sample is a very important asset for optimizing most reproductive techniques centered on semen, from freezing to "in vitro" fertilization. However, there is not a single, simple test that can determine the precise capacitation of a sample. This implies that a combined panel of separate tests focused on separate aspects of sperm function must be carried out to obtain a precise knowledge of the functional status of the sample. This work deals with a brief explanation of the most important techniques applied at these moments to determine sperm capacitation, with an emphasis not on the description of each technique, but on the advantages, disadvantages, and main purposes taking into account practical aspects such as the precise target by which a laboratory wants to determine capacitation. In this way, the main aim of this work is to give a practical guide for practitioners of laboratories from separate objectives, from standard semen quality analysis to molecular and/or mechanistic studies of sperm function, for choosing the most adequate tests to determine capacitation basing on the intended precise targets chosen in each case.
Collapse
Affiliation(s)
- Joan E Rodríguez Gil
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.
| | | |
Collapse
|
8
|
Pacheco-Castillo H, Zagal-Huerta EE, Acevedo-Fernández JJ, Negrete-León E, Nishigaki T, Beltrán C. Hyperglycemia adversely affects critical physiological events related to rat sperm capacitation. Biochem Biophys Res Commun 2024; 734:150610. [PMID: 39217810 DOI: 10.1016/j.bbrc.2024.150610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hyperglycemia, the hallmark of diabetes mellitus (DM), is the main cause of DM-related systemic complications, including reproductive issues. Furthermore, the incidence of DM in males of reproductive ages is becoming an increasing concern, as the complexity of sperm capacitation (an essential process for fertilizing the egg) extends beyond conventional sperm parameters such as count, viability, and motility. Capacitation defects cause male infertility, and DM-related hyperglycemia may affect this process. We explore the effects of uncontrolled hyperglycemia on sperm using alloxan-induced hyperglycemic Wistar rats. In addition to assessing conventional sperm parameters, we also evaluated functional indicators, including hyperactivation (HA) with a pharmacological approach and assessed its effects with a computer-assisted sperm analysis (CASA); fluorescence indicators to monitor membrane potential (EmR, DiSC3(5)) and mitochondrial membrane potential (Ψ, JC-1); CatSper activity, using its ability to permeate Na+ ions, and ATP levels with the luciferin-luciferase reaction. We confirmed previous findings with our hyperglycemic model, which replicated the typical reduction on conventional sperm parameters. In sperm from hyperglycemic rats, we observed increased motility and HA levels after pharmacological treatment. Additionally, CatSper activity was unaffected by hyperglycemia, while EmR was hyperpolarized under non-capacitating condition. Finally, we noted a low percentage of hyperpolarized Ψ and reduced ATP content. This study highlights the significance of impact of hyperglycemia on sperm physiology and capacitation. We proposed that low ATP levels perturb energy state, signaling pathways, ion channels activity, motility, and HA. Our findings offer insight into DM-associated infertility and potential treatment strategies.
Collapse
Affiliation(s)
- Hiram Pacheco-Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Erika Elena Zagal-Huerta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Juan José Acevedo-Fernández
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Elizabeth Negrete-León
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
9
|
Jabloñski M, Luque GM, Gomez Elias M, Sanchez Cardenas C, Xu X, de La Vega Beltran JL, Corkidi G, Linares A, Abonza V, Arenas-Hernandez A, Ramos-Godinez MDP, López-Saavedra A, Krapf D, Krapf D, Darszon A, Guerrero A, Buffone MG. Reorganization of the flagellum scaffolding induces a sperm standstill during fertilization. eLife 2024; 13:RP93792. [PMID: 39535529 PMCID: PMC11560130 DOI: 10.7554/elife.93792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after acrosomal exocytosis (AE) and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Midpiece contraction occurs in a subset of cells that undergo AE, and live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network's role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility.
Collapse
Affiliation(s)
- Martina Jabloñski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET)Buenos AiresArgentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET)Buenos AiresArgentina
| | - Matias Gomez Elias
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET)Buenos AiresArgentina
| | - Claudia Sanchez Cardenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Xinran Xu
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State UniversityFort CollinsUnited States
| | - Jose L de La Vega Beltran
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Alejandro Linares
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Victor Abonza
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | | | - María DP Ramos-Godinez
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología Unidad de Investigación Biomédica en CáncerMexicoMexico
| | - Alejandro López-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología Unidad de Investigación Biomédica en CáncerMexicoMexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la SaludMexico CityMexico
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR)RosarioArgentina
| | - Diego Krapf
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State UniversityFort CollinsUnited States
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Adán Guerrero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET)Buenos AiresArgentina
| |
Collapse
|
10
|
Peña FJ, Martín-Cano FE, Becerro-Rey L, da Silva-Álvarez E, Gaitskell-Phillips G, Ortega-Ferrusola C, Gil MC. Artificial intelligence in Andrological flow cytometry: The next step? Anim Reprod Sci 2024; 270:107619. [PMID: 39405780 DOI: 10.1016/j.anireprosci.2024.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Since its introduction in animal andrology, flow cytometry (FC) has dramatically evolved. Nowadays, many compartments and functions of the spermatozoa can be analyzed in thousands of spermatozoa, including, but not limited to DNA, acrosome, membrane integrity, membrane symmetry, permeability, and polarity; mitochondrial mass and mitochondrial membrane potential, identification of reactive oxygen species, ion dynamics, and cellular signaling among many others. Improved machines, many more probes, and new software are greatly expanding the amount of information that can be obtained from each flow cytometry analysis. Modern flow cytometers permit the simultaneous investigation of many different sperm compartments and functions and their interactions, allowing the identification of sperm phenotypes, helping to disclose different sperm populations within the ejaculate. Complex flow cytometry panels require a careful design of the experiment, including selecting probes (fully understanding the characteristics and properties of them) and adequate controls (technical and biological). Ideally, compensation and management of data ("cleaning", transformations, the establishment of gates) are better performed post-acquisition using specific software. Data can be expressed as a percentage of positive cells (typically viability assays), intensity of fluorescence (arbitrary fluorescence units, i.e. changes in intracellular Ca2+) or dim and bright populations (typically assays of membrane permeability or antigen expression). Furthermore, artificial intelligence/self-learning algorithms are improving visualization and management of data generated by modern flow cytometers. In this paper, recent developments in flow cytometry for animal andrology will be briefly reviewed; moreover, a small flow cytometry experiment will be used to illustrate how these techniques can improve data analysis.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain.
| | - Francisco Eduardo Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Eva da Silva-Álvarez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
11
|
Priego Espinosa D, Espinal-Enríquez J, Aldana A, Aldana M, Martínez-Mekler G, Carneiro J, Darszon A. Reviewing mathematical models of sperm signaling networks. Mol Reprod Dev 2024; 91:e23766. [PMID: 39175359 DOI: 10.1002/mrd.23766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Dave Garbers' work significantly contributed to our understanding of sperm's regulated motility, capacitation, and the acrosome reaction. These key sperm functions involve complex multistep signaling pathways engaging numerous finely orchestrated elements. Despite significant progress, many parameters and interactions among these elements remain elusive. Mathematical modeling emerges as a potent tool to study sperm physiology, providing a framework to integrate experimental results and capture functional dynamics considering biochemical, biophysical, and cellular elements. Depending on research objectives, different modeling strategies, broadly categorized into continuous and discrete approaches, reveal valuable insights into cell function. These models allow the exploration of hypotheses regarding molecules, conditions, and pathways, whenever they become challenging to evaluate experimentally. This review presents an overview of current theoretical and experimental efforts to understand sperm motility regulation, capacitation, and the acrosome reaction. We discuss the strengths and weaknesses of different modeling strategies and highlight key findings and unresolved questions. Notable discoveries include the importance of specific ion channels, the role of intracellular molecular heterogeneity in capacitation and the acrosome reaction, and the impact of pH changes on acrosomal exocytosis. Ultimately, this review underscores the crucial importance of mathematical frameworks in advancing our understanding of sperm physiology and guiding future experimental investigations.
Collapse
Affiliation(s)
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Andrés Aldana
- Network Science Institute, Northeastern University, Boston, Massachusetts, USA
| | - Maximino Aldana
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gustavo Martínez-Mekler
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Jorge Carneiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
12
|
Jabloñski M, Luque GM, Gómez-Elías MD, Sanchez-Cardenas C, Xu X, de la Vega-Beltran JL, Corkidi G, Linares A, Abonza Amaro VX, Arenas-Hernandez A, Del Pilar Ramos-Godinez M, López-Saavedra A, Krapf D, Krapf D, Darszon A, Guerrero A, Buffone MG. Reorganization of the Flagellum Scaffolding Induces a Sperm Standstill During Fertilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546073. [PMID: 37904966 PMCID: PMC10614747 DOI: 10.1101/2023.06.22.546073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after AE and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Midpiece contraction occurs in a subset of cells that undergo AE, live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network's role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility. Significant statement In this work, we demonstrate that the helical structure of polymerized actin in the flagellum undergoes a rearrangement at the time of sperm-egg fusion. This process is driven by intracellular calcium and promotes a decrease in the sperm midpiece diameter as well as the arrest in motility, which is observed after the fusion process is initiated.
Collapse
|
13
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
14
|
Balestrini PA, Sulzyk V, Jabloñski M, Schiavi-Ehrenhaus LJ, González SN, Ferreira JJ, Gómez-Elías MD, Pomata P, Luque GM, Krapf D, Cuasnicu PS, Santi CM, Buffone MG. Membrane potential hyperpolarization: a critical factor in acrosomal exocytosis and fertilization in sperm within the female reproductive tract. Front Cell Dev Biol 2024; 12:1386980. [PMID: 38803392 PMCID: PMC11128623 DOI: 10.3389/fcell.2024.1386980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Hyperpolarization of the membrane potential (Em), a phenomenon regulated by SLO3 channels, stands as a central feature in sperm capacitation-a crucial process conferring upon sperm the ability to fertilize the oocyte. In vitro studies demonstrated that Em hyperpolarization plays a pivotal role in facilitating the mechanisms necessary for the development of hyperactivated motility (HA) and acrosomal exocytosis (AE) occurrence. Nevertheless, the physiological significance of sperm Em within the female reproductive tract remains unexplored. As an approach to this question, we studied sperm migration and AE incidence within the oviduct in the absence of Em hyperpolarization using a novel mouse model established by crossbreeding of SLO3 knock-out (KO) mice with EGFP/DsRed2 mice. Sperm from this model displays impaired HA and AE in vitro. Interestingly, examination of the female reproductive tract shows that SLO3 KO sperm can reach the ampulla, mirroring the quantity of sperm observed in wild-type (WT) counterparts, supporting that the HA needed to reach the fertilization site is not affected. However, a noteworthy distinction emerges-unlike WT sperm, the majority of SLO3 KO sperm arrive at the ampulla with their acrosomes still intact. Of the few SLO3 KO sperm that do manage to reach the oocytes within this location, fertilization does not occur, as indicated by the absence of sperm pronuclei in the MII-oocytes recovered post-mating. In vitro, SLO3 KO sperm fail to penetrate the ZP and fuse with the oocytes. Collectively, these results underscore the vital role of Em hyperpolarization in AE and fertilization within their physiological context, while also revealing that Em is not a prerequisite for the development of the HA motility, essential for sperm migration through the female tract to the ampulla.
Collapse
Affiliation(s)
- Paula A. Balestrini
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Valeria Sulzyk
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Liza J. Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Soledad N. González
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Juan J. Ferreira
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matías D. Gómez-Elías
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Pablo Pomata
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Guillermina M. Luque
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Patricia S. Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Celia M. Santi
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, United States
| | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| |
Collapse
|
15
|
Mohanty G, Sanchez-Cardenas C, Paudel B, Tourzani DA, Salicioni AM, Santi CM, Gervasi MG, Pilsner JR, Darszon A, Visconti PE. Differential role of bovine serum albumin and HCO3- in the regulation of GSK3 alpha during mouse sperm capacitation. Mol Hum Reprod 2024; 30:gaae007. [PMID: 38341666 PMCID: PMC10914453 DOI: 10.1093/molehr/gaae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
To become fertile, mammalian sperm are required to undergo capacitation in the female tract or in vitro in defined media containing ions (e.g. HCO3 -, Ca2+, Na+, and Cl-), energy sources (e.g. glucose, pyruvate) and serum albumin (e.g. bovine serum albumin (BSA)). These different molecules initiate sequential and concomitant signaling pathways, leading to capacitation. Physiologically, capacitation induces changes in the sperm motility pattern (e.g. hyperactivation) and prepares sperm for the acrosomal reaction (AR), two events required for fertilization. Molecularly, HCO3 - activates the atypical adenylyl cyclase Adcy10 (aka sAC), increasing cAMP and downstream cAMP-dependent pathways. BSA, on the other hand, induces sperm cholesterol release as well as other signaling pathways. How these signaling events, occurring in different sperm compartments and with different kinetics, coordinate among themselves is not well established. Regarding the AR, recent work has proposed a role for glycogen synthase kinases (GSK3α and GSK3β). GSK3α and GSK3β are inactivated by phosphorylation of residues Ser21 and Ser9, respectively, in their N-terminal domain. Here, we present evidence that GSK3α (but not GSK3β) is present in the anterior head and that it is regulated during capacitation. Interestingly, BSA and HCO3 - regulate GSK3α in opposite directions. While BSA induces a fast GSK3α Ser21 phosphorylation, HCO3 - and cAMP-dependent pathways dephosphorylate this residue. We also show that the HCO3--induced Ser21 dephosphorylation is mediated by hyperpolarization of the sperm plasma membrane potential (Em) and by intracellular pH alkalinization. Previous reports indicate that GSK3 kinases mediate the progesterone-induced AR. Here, we show that GSK3 inhibition also blocks the Ca2+ ionophore ionomycin-induced AR, suggesting a role for GSK3 kinases downstream of the increase in intracellular Ca2+ needed for this exocytotic event. Altogether, our data indicate a temporal and biphasic GSK3α regulation with opposite actions of BSA and HCO3 -. Our results also suggest that this regulation is needed to orchestrate the AR during sperm capacitation.
Collapse
Affiliation(s)
- Gayatri Mohanty
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Claudia Sanchez-Cardenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, México
| | - Bidur Paudel
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Darya A Tourzani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Ana M Salicioni
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA
| | - María G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - J Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
16
|
Takei GL. Molecular mechanisms of mammalian sperm capacitation, and its regulation by sodium-dependent secondary active transporters. Reprod Med Biol 2024; 23:e12614. [PMID: 39416520 PMCID: PMC11480905 DOI: 10.1002/rmb2.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mammalian spermatozoa have to be "capacitated" to be fertilization-competent. Capacitation is a collective term for the physiological and biochemical changes in spermatozoa that occur within the female body. However, the regulatory mechanisms underlying capacitation have not been fully elucidated. Methods Previously published papers on capacitation, especially from the perspective of ions/channels/transporters, were extracted and summarized. Results Capacitation can be divided into two processes: earlier events (membrane potential hyperpolarization, intracellular pH rise, intracellular Ca2+ rise, etc.) and two major later events: hyperactivation and the acrosome reaction. Earlier events are closely interconnected with each other. Various channels/transporters are involved in the regulation of them, which ultimately lead to the later events. Manipulating the extracellular K+ concentration based on the oviductal concentration modifies membrane potential; however, the later events and fertilization are not affected, suggesting the uninvolvement of membrane potential in capacitation. Hyperpolarization is a highly conserved phenomenon among mammalian species, indicating its importance in capacitation. Therefore, the physiological importance of hyperpolarization apart from membrane potential is suggested. Conclusion The hypotheses are (1) hyperpolarizing Na+ dynamics (decrease in intracellular Na+) and Na+-driven secondary active transporters play a vital role in capacitation and (2) the sperm-specific potassium channel Slo3 is involved in volume and/or morphological regulation.
Collapse
Affiliation(s)
- Gen L. Takei
- Department of Pharmacology and ToxicologyDokkyo Medical UniversityTochigiJapan
| |
Collapse
|
17
|
Faggi M, Vanzetti A, Teijeiro JM. Effect of glucose and reactive oxygen species on boar sperm induced-acrosome exocytosis. Res Vet Sci 2023; 164:105013. [PMID: 37742485 DOI: 10.1016/j.rvsc.2023.105013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Ejaculated boar spermatozoa can be liquid preserved for several days and be easily activated to produce physiological changes. One of the major changes is acrosome exocytosis that is physiologically related to capacitation. Glycolysis and reactive oxygen species (ROS) were studied regarding several boar sperm functions, but data available about their effect on boar sperm acrosome exocytosis are scarce. The objective of this work was to evaluate the effect of glucose and ROS on boar sperm acrosome exocytosis. We evaluated acrosome exocytosis by progesterone induction of capacitated sperm and assess viability, kinematics parameters, ROS levels, ATP content and Protein Kinase A activity in media with or without glucose and hydrogen peroxide or potassium chromate, as source of ROS. Our results show that glucose has no effect on acrosome exocytosis and also, it is not necessary for boar sperm capacitation, although it has a positive effect in the presence of ROS. On the other hand, ROS effects are related to spontaneous acrosome reaction. We conclude that glycolysis may function as a metabolic pathway that provides sustain but is not directly involved in boar sperm acrosome exocytosis and capacitation. Also, ROS do not promote capacitation in boar sperm, but affect spontaneous acrosome exocytosis.
Collapse
Affiliation(s)
- Melina Faggi
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Agustín Vanzetti
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina; CONICET.
| |
Collapse
|
18
|
Lyon MD, Ferreira JJ, Li P, Bhagwat S, Butler A, Anderson K, Polo M, Santi CM. SLO3: A Conserved Regulator of Sperm Membrane Potential. Int J Mol Sci 2023; 24:11205. [PMID: 37446382 DOI: 10.3390/ijms241311205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Sperm cells must undergo a complex maturation process after ejaculation to be able to fertilize an egg. One component of this maturation is hyperpolarization of the membrane potential to a more negative value. The ion channel responsible for this hyperpolarization, SLO3, was first cloned in 1998, and since then much progress has been made to determine how the channel is regulated and how its function intertwines with various signaling pathways involved in sperm maturation. Although Slo3 was originally thought to be present only in the sperm of mammals, recent evidence suggests that a primordial form of the gene is more widely expressed in some fish species. Slo3, like many reproductive genes, is rapidly evolving with low conservation between closely related species and different regulatory and pharmacological profiles. Despite these differences, SLO3 appears to have a conserved role in regulating sperm membrane potential and driving large changes in response to stimuli. The effect of this hyperpolarization of the membrane potential may vary among mammalian species just as the regulation of the channel does. Recent discoveries have elucidated the role of SLO3 in these processes in human sperm and provided tools to target the channel to affect human fertility.
Collapse
Affiliation(s)
- Maximilian D Lyon
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ping Li
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shweta Bhagwat
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alice Butler
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kelsey Anderson
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Maria Polo
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Cong S, Zhang J, Pan F, Pan L, Zhang A, Ma J. Research progress on ion channels and their molecular regulatory mechanisms in the human sperm flagellum. FASEB J 2023; 37:e23052. [PMID: 37352114 DOI: 10.1096/fj.202300756r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
The ion channels in sperm tail play an important role in triggering key physiological reactions, e.g., progressive motility, hyperactivation, required for successful fertilization. Among them, CatSper and KSper have been shown to be important ion channels for the transport of Ca2+ and K+ . Moreover, the voltage-gated proton channel Hv1, the sperm-specific sodium-hydrogen exchanger (sNHE), the epithelial sodium channel (ENaC), members of the temperature-sensitive TRP channel family, and the cystic fibrosis transmembrane regulator (CFTR) are also found in the flagellum. This review focuses on the latest advances in ion channels located at the flagellum, describes how they affect sperm physiological function, and summarizes some primary mutual regulation mechanism between ion channels, including PH, membrane potential, and cAMP. These ion channels may be promising targets for clinical application in infertility.
Collapse
Affiliation(s)
- Shengnan Cong
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jingjing Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Feng Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Lianjun Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Aixia Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jiehua Ma
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
20
|
Cooray A, Kim J, Nirujan BR, Jayathilake NJ, Lee KP. Pharmacological Evidence Suggests That Slo3 Channel Is the Principal K + Channel in Boar Spermatozoa. Int J Mol Sci 2023; 24:ijms24097806. [PMID: 37175513 PMCID: PMC10178124 DOI: 10.3390/ijms24097806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Sperm ion channels are associated with the quality and type of flagellar movement, and their differential regulation is crucial for sperm function during specific phases. The principal potassium ion channel is responsible for the majority of K+ ion flux, resulting in membrane hyperpolarization, and is essential for sperm capacitation-related signaling pathways. The molecular identity of the principal K+ channel varies greatly between different species, and there is a lack of information about boar K+ channels. We aimed to determine the channel identity of boar sperm contributing to the primary K+ current using pharmacological dissection. A series of Slo1 and Slo3 channel modulators were used for treatment. Sperm motility and related kinematic parameters were monitored using a computer-assisted sperm analysis system under non-capacitated conditions. Time-lapse flow cytometry with fluorochromes was used to measure changes in different intracellular ionic concentrations, and conventional flow cytometry was used to determine the acrosome reaction. Membrane depolarization, reduction in acrosome reaction, and motility parameters were observed upon the inhibition of the Slo3 channel, suggesting that the Slo3 gene encodes the main K+ channel in boar spermatozoa. The Slo3 channel was localized on the sperm flagellum, and the inhibition of Slo3 did not reduce sperm viability. These results may aid potential animal-model-based extrapolations and help to ameliorate motility and related parameters, leading to improved assisted reproductive methods in industrial livestock production.
Collapse
Affiliation(s)
- Akila Cooray
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeongsook Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Beno Ramesh Nirujan
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nishani Jayanika Jayathilake
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
21
|
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int J Mol Sci 2023; 24:6995. [PMID: 37108159 PMCID: PMC10138380 DOI: 10.3390/ijms24086995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
During the last seventy years, studies on mammalian sperm cells have demonstrated the essential role of capacitation, hyperactivation and the acrosome reaction in the acquisition of fertilization ability. These studies revealed the important biochemical and physiological changes that sperm undergo in their travel throughout the female genital tract, including changes in membrane fluidity, the activation of soluble adenylate cyclase, increases in intracellular pH and Ca2+ and the development of motility. Sperm are highly polarized cells, with a resting membrane potential of about -40 mV, which must rapidly adapt to the ionic changes occurring through the sperm membrane. This review summarizes the current knowledge about the relationship between variations in the sperm potential membrane, including depolarization and hyperpolarization, and their correlation with changes in sperm motility and capacitation to further lead to the acrosome reaction, a calcium-dependent exocytosis process. We also review the functionality of different ion channels that are present in spermatozoa in order to understand their association with human infertility.
Collapse
Affiliation(s)
- Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Ainize Odriozola
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| |
Collapse
|
22
|
Wang Y, Gao T, Shan L, Li K, Liang F, Yu J, Ni Y, Sun P. Iberiotoxin and clofilium regulate hyperactivation, acrosome reaction, and ion homeostasis synergistically during human sperm capacitation. Mol Reprod Dev 2023; 90:129-140. [PMID: 36682071 DOI: 10.1002/mrd.23671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Potassium channels play essential roles in the regulation of male fertility. However, potassium channels mediating K+ currents in human sperm (IKSper ) remain controversial. Besides SLO3, the SLO1 potassium channel is a potential candidate for human sperm KSper. This study intends to elucidate the function of SLO1 potassium channel during human sperm capacitation. Human sperm were treated with iberiotoxin (IbTX, a SLO1 specific inhibitor) and clofilium (SLO3 inhibitor) separately or simultaneously during in vitro capacitation. A computer-assisted sperm analyzer was used to assess sperm motility. The sperm acrosome reaction (AR) was analyzed using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin staining. Sperm protein tyrosine phosphorylation was studied using western blotting. Intracellular Ca2+ , K+ , Cl- , and pH were analyzed using ion fluorescence probes. Independent inhibition with IbTX or clofilium decreased the sperm hyperactivation, AR, and protein tyrosine phosphorylation, and was accompanied by an increase in [K+ ]i , [Cl- ]i , and pHi , but a decrease in [Ca2+ ]i . Simultaneously inhibition with IbTX and clofilium lower sperm hyperactivation and AR more than independent inhibition. The increase in [K+ ]i , [Cl- ]i , and pHi , and the decrease in [Ca2+ ]i were more pronounced. This study suggested that the SLO1 potassium channel may have synergic roles with SLO3 during human sperm capacitation.
Collapse
Affiliation(s)
- Yayan Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Tian Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijun Shan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianmin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Supplementation of Schisandrin B in Semen Extender Improves Quality and Oxidation Resistance of Boar Spermatozoa Stored at 4 °C. Animals (Basel) 2023; 13:ani13050848. [PMID: 36899705 PMCID: PMC10000210 DOI: 10.3390/ani13050848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
During cold storage, boar spermatozoa undergo oxidative stress, which can impair sperm function and fertilizing capacity. The objective of the present study was to assess the effects of Schisandrin B (Sch B) in semen extenders on the quality of boar semen stored at hypothermia. Semen was collected from twelve Duroc boars and diluted in extenders supplemented with different concentrations of Sch B (0 μmol/L, 2.5 μmol/L, 5 μmol/L, 10 μmol/L, 20 μmol/L, and 40 μmol/L). Here, we demonstrated that 10 μmol/L Sch B provided the best effects on motility, plasma membrane integrity, acrosome integrity, sperm normality rate, average movement velocity, wobbility, mitochondrial membrane potential (MMP), and DNA integrity of sperm. The results of Sch B effects on antioxidant factors in boar sperm showed that Sch B significantly elevated the total antioxidant capacity (T-AOC) and markedly decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) content of sperm. The expression of catalase (CAT) and superoxide dismutase (SOD) mRNA was increased, while the expression of glutathione peroxidase (GPx) mRNA demonstrated no change compared to non-treated boar sperm. Compared to the non-treated group, Sch B triggered a decrease in Ca2+/protein kinase A (PKA) and lactic acid content in boar sperm. Similarly, Sch B led to a statistically higher quantitative expression of AWN mRNA and a lower quantitative expression of porcine seminal protein I (PSP-I) and porcine seminal protein II (PSP-II) mRNA. In a further reverse validation test, no significant difference was observed in any of the parameters, including adhesion protein mRNA, calcium content, lactic acid content, PKA, and protein kinase G (PKG) activity after sperm capacitation. In conclusion, the current study indicates the efficient use of Sch B with a 10 μmol/L concentration in the treatment of boar sperm through its anti-apoptosis, antioxidative, and decapacitative mechanisms, suggesting that Sch B is a novel candidate for improving antioxidation and decapacitation factors in sperm in liquid at 4 °C.
Collapse
|
24
|
Lyon M, Li P, Ferreira JJ, Lazarenko RM, Kharade SV, Kramer M, McClenahan SJ, Days E, Bauer JA, Spitznagel BD, Weaver CD, Borrego Alvarez A, Puga Molina LC, Lybaert P, Khambekar S, Liu A, Lindsley CW, Denton J, Santi CM. A selective inhibitor of the sperm-specific potassium channel SLO3 impairs human sperm function. Proc Natl Acad Sci U S A 2023; 120:e2212338120. [PMID: 36649421 PMCID: PMC9942793 DOI: 10.1073/pnas.2212338120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
To fertilize an oocyte, the membrane potential of both mouse and human sperm must hyperpolarize (become more negative inside). Determining the molecular mechanisms underlying this hyperpolarization is vital for developing new contraceptive methods and detecting causes of idiopathic male infertility. In mouse sperm, hyperpolarization is caused by activation of the sperm-specific potassium (K+) channel SLO3 [C. M. Santi et al., FEBS Lett. 584, 1041-1046 (2010)]. In human sperm, it has long been unclear whether hyperpolarization depends on SLO3 or the ubiquitous K+ channel SLO1 [N. Mannowetz, N. M. Naidoo, S. A. S. Choo, J. F. Smith, P. V. Lishko, Elife 2, e01009 (2013), C. Brenker et al., Elife 3, e01438 (2014), and S. A. Mansell, S. J. Publicover, C. L. R. Barratt, S. M. Wilson, Mol. Hum. Reprod. 20, 392-408 (2014)]. In this work, we identified the first selective inhibitor for human SLO3-VU0546110-and showed that it completely blocked heterologous SLO3 currents and endogenous K+ currents in human sperm. This compound also prevented sperm from hyperpolarizing and undergoing hyperactivated motility and induced acrosome reaction, which are necessary to fertilize an egg. We conclude that SLO3 is the sole K+ channel responsible for hyperpolarization and significantly contributes to the fertilizing ability of human sperm. Moreover, SLO3 is a good candidate for contraceptive development, and mutation of this gene is a possible cause of idiopathic male infertility.
Collapse
Affiliation(s)
- Maximilian Lyon
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Ping Li
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Juan J. Ferreira
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Roman M. Lazarenko
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Sujay V. Kharade
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Meghan Kramer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Emily Days
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN37232
| | - Joshua A. Bauer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN37232
| | | | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN37232
| | - Aluet Borrego Alvarez
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Lis C. Puga Molina
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Pascale Lybaert
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
- Laboratoire de recherche en Reproduction humaine, Université Libre de Bruxelles, Bruxelles1050, Belgium
| | - Saayli Khambekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Alicia Liu
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Craig W. Lindsley
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN37232
| | - Jerod Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN37232
| | - Celia M. Santi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
25
|
Luque GM, Schiavi-Ehrenhaus LJ, Jabloñski M, Balestrini PA, Novero AG, Torres NI, Osycka-Salut CE, Darszon A, Krapf D, Buffone MG. High-throughput screening method for discovering CatSper inhibitors using membrane depolarization caused by external calcium chelation and fluorescent cell barcoding. Front Cell Dev Biol 2023; 11:1010306. [PMID: 36743410 PMCID: PMC9892719 DOI: 10.3389/fcell.2023.1010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
The exclusive expression of CatSper in sperm and its critical role in sperm function makes this channel an attractive target for contraception. The strategy of blocking CatSper as a male, non-hormonal contraceptive has not been fully explored due to the lack of robust screening methods to discover novel and specific inhibitors. The reason for this lack of appropriate methodology is the structural and functional complexity of this channel. We have developed a high-throughput method to screen drugs with the capacity to block CatSper in mammalian sperm. The assay is based on removing external free divalent cations by chelation, inducing CatSper to efficiently conduct monovalent cations. Since Na+ is highly concentrated in the extracellular milieu, a sudden influx depolarizes the cell. Using CatSper1 KO sperm we demonstrated that this depolarization depends on CatSper function. A membrane potential (Em) assay was combined with fluorescent cell barcoding (FCB), enabling higher throughput flow cytometry based on unique fluorescent signatures of different sperm samples. These differentially labeled samples incubated in distinct experimental conditions can be combined into one tube for simultaneous acquisition. In this way, acquisition times are highly reduced, which is essential to perform larger screening experiments for drug discovery using live cells. Altogether, a simple strategy for assessing CatSper was validated, and this assay was used to develop a high-throughput drug screening for new CatSper blockers.
Collapse
Affiliation(s)
- Guillermina M. Luque
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina,*Correspondence: Guillermina M. Luque, ; Mariano G. Buffone,
| | | | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Paula A. Balestrini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Analia G. Novero
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Nicolás I. Torres
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Claudia E. Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM-CONICET), Buenos Aires, Argentina
| | | | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina,*Correspondence: Guillermina M. Luque, ; Mariano G. Buffone,
| |
Collapse
|
26
|
Yuan X, Wang Y, Ali MA, Qin Z, Guo Z, Zhang Y, Zhang M, Zhou G, Yang J, Chen L, Shen L, Zhu L, Zeng C. Odorant Receptor OR2C1 Is an Essential Modulator of Boar Sperm Capacitation by Binding with Heparin. Int J Mol Sci 2023; 24:ijms24021664. [PMID: 36675176 PMCID: PMC9861704 DOI: 10.3390/ijms24021664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Heparin, a class of glycosaminoglycans (GAGs), is widely used to induce sperm capacitation and fertilization. How heparin induces sperm capacitation remains unclear. Olfactory receptors (ORs) which are G protein-coupled receptors, have been proposed to be involved in sperm capacitation. However, the interaction between ORs and odor molecules and the molecular mechanism of ORs mediating sperm capacitation are still unclear. The present study aimed to explore the underlying interaction and mechanism between heparin and ORs in carrying out the boar sperm capacitation. The results showed that olfactory receptor 2C1 (OR2C1) is a compulsory unit which regulates the sperm capacitation by recognizing and binding with heparin, as determined by Dual-Glo Luciferase Assay and molecular docking. In addition, molecular dynamics (MD) simulation indicated that OR2C1 binds with heparin via a hydrophobic cavity comprises of Arg3, Ala6, Thr7, Asn171, Arg172, Arg173, and Pro287. Furthermore, we demonstrated that knocking down OR2C1 significantly inhibits sperm capacitation. In conclusion, we highlighted a novel olfactory receptor, OR2C1, in boar sperm and disclosed the potential binding of heparin to Pro287, a conserved residue in the transmembrane helices region 7 (TMH7). Our findings will benefit the further understanding of ORs involved in sperm capacitation and fertilization.
Collapse
Affiliation(s)
- Xiang Yuan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yihan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Malik Ahsan Ali
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan
| | - Ziyue Qin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihua Guo
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiandong Yang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Changjun Zeng
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-28-8629-1010
| |
Collapse
|
27
|
Çakır Gündoğdu A, Take Kaplanoğlu G, Ören S, Baykal B, Korkmaz C, Gümüşlü S, Karabacak RO. Impact of 5'-AMP-activated protein kinase (AMPK) on Epithelial Sodium Channels (ENaCs) in human sperm. Tissue Cell 2022; 78:101896. [DOI: 10.1016/j.tice.2022.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
28
|
Hernández-Garduño S, Chavez JC, Matamoros-Volante A, Sánchez-Guevara Y, Torres P, Treviño CL, Nishigaki T. Hyperpolarization induces cytosolic alkalization of mouse sperm flagellum probably through sperm Na+/H+ exchanger. Reproduction 2022; 164:125-134. [PMID: 35900329 DOI: 10.1530/rep-22-0101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
The sperm-specific sodium/proton exchanger (sNHE) is an indispensable protein for male fertility in mammals. Nevertheless, it is still unknown how mammalian sNHE is regulated. Evidence obtained from sea urchin sNHE indicates that hyperpolarization of plasma membrane potential (Vm), which is a hallmark of mammalian capacitation, positively regulates the sNHE. Therefore, we explored the activity of sNHE in mouse and human sperm by fluorescence imaging of intracellular pH (pHi) with a ratiometric dye, SNARF-5F. A valinomycin-induced Vm hyperpolarization elevated sperm flagellar pHi of wild-type mouse, but not in sNHE-KO mouse. Moreover, this pHi increase was inhibited in a high K+ (40 mM) medium. These results support the idea that mouse sNHE is activated by Vm hyperpolarization. Interestingly, we observed different types of kinetics derived from valinomycin-induced alkalization, including some (30 %) without any pHi changes. Our quantitative pHi determinations revealed that unresponsive cells had a high resting pHi (> 7.5), suggesting that the activity of mouse sNHE is regulated by the resting pHi. On the other hand, valinomycin did not increase the pHi of human sperm in the head or the flagellum, regardless of their resting pHi values. Our findings suggest that the regulatory mechanisms of mammalian sNHEs are probably distinct depending on the species.
Collapse
Affiliation(s)
- Sandra Hernández-Garduño
- S Hernández-Garduño, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Julio C Chavez
- J Chavez, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Arturo Matamoros-Volante
- A Matamoros-Volante, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Yoloxochitl Sánchez-Guevara
- Y Sánchez-Guevara, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Paulina Torres
- P Torres, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Claudia L Treviño
- C Treviño, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Takuya Nishigaki
- T Nishigaki, Genetica del Desarrollo y Fisiologia Molecular, Instituto de Biotecnologia UNAM, Cuernavaca, 62210, Mexico
| |
Collapse
|
29
|
L Takei G. [Regulation of sperm hyperactivation by transporters involved in Na + homeostasis]. Nihon Yakurigaku Zasshi 2022; 157:176-180. [PMID: 35491113 DOI: 10.1254/fpj.21110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mammalian sperm have to undergo several physiological and biochemical changes to be fertilization-competent. These changes are collectively called "capacitation". Capacitated sperm show frantic whiplash-like flagellar movement called "hyperactivation". Recently, it has been reported that treatments of sperm to enhance hyperactivation improve in vitro fertilization (IVF) and development of the fertilized embryos. This fact indicates that hyperactivation is an attractive target to improve assisted reproductive technologies. However, the detailed mechanisms which regulate hyperactivation have not been fully elucidated. Recently, it was found out that Na+ and K+ concentration of the oviductal fluid considerably differs from those in the medium used for IVF. Thus, the effect of the Na+ and K+ concentration on sperm hyperactivation was investigated using hamsters as a model. The results revealed that hamster sperm hyperactivation was suppressed by extracellular Na+ via an action of Na+/Ca2+ exchanger. Moreover, it was shown that the activity of testis specific isoform of Na+/K+ ATPase (NKA) α subunit, α4, is necessary for the hyperactivation-associated change of the flagellar movement. By contrast, there was no significant effect of raising the K+ concentration up to 20 mM on sperm hyperactivation although it significantly depolarized the membrane potential. These results suggests that transporters involved in primary and secondary active transport which regulates cellular Na+ homeostasis has a crucial role in the regulation of hyperactivation, and these transporters can be an attractive target for the improvement of assisted reproductive technologies.
Collapse
Affiliation(s)
- Gen L Takei
- Department of Pharmacology and Toxicology, Dokkyo Medical University
| |
Collapse
|
30
|
de Prelle B, Lybaert P, Gall D. A Minimal Model Shows that a Positive Feedback Loop Between sNHE and SLO3 can Control Mouse Sperm Capacitation. Front Cell Dev Biol 2022; 10:835594. [PMID: 35399518 PMCID: PMC8990769 DOI: 10.3389/fcell.2022.835594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
When mammalian spermatozoa are released in the female reproductive tract, they are incapable of fertilizing the oocyte. They need a prolonged exposure to the alkaline medium of the female genital tract before their flagellum gets hyperactivated and the acrosome reaction can take place, allowing the sperm to interact with the oocyte. Ionic fluxes across the sperm membrane are involved in two essential aspects of capacitation: the increase in intracellular pH and the membrane hyperpolarization. In particular, it has been shown that the SLO3 potassium channel and the sNHE sodium-proton exchanger, two sperm-specific transmembrane proteins, are necessary for the capacitation process to occur. As the SLO3 channel is activated by an increase in intracellular pH and sNHE is activated by hyperpolarization, they act together as a positive feedback system. Mathematical modeling provides a unique tool to capture the essence of a molecular mechanism and can be used to derive insight from the existing data. We have therefore developed a theoretical model formalizing the positive feedback loop between SLO3 and sHNE in mouse epididymal sperm to see if this non-linear interaction can provide the core mechanism explaining the existence of uncapacited and capacitated states. We show that the proposed model can fully explain the switch between the uncapacitated and capacited states and also predicts the existence of a bistable behaviour. Furthermore, our model indicates that SLO3 inhibition, above a certain threshold, can be effective to completely abolish capacitation.
Collapse
Affiliation(s)
- Bertrand de Prelle
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université libre de Bruxelles, Brussels, Belgium
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université libre de Bruxelles, Brussels, Belgium
| | - David Gall
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
31
|
Cohen R, Mukai C, Nelson JL, Zenilman SS, Sosnicki DM, Travis AJ. A genetically targeted sensor reveals spatial and temporal dynamics of acrosomal calcium and sperm acrosome exocytosis. J Biol Chem 2022; 298:101868. [PMID: 35346690 PMCID: PMC9046242 DOI: 10.1016/j.jbc.2022.101868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
Secretion of the acrosome, a single vesicle located rostrally in the head of a mammalian sperm, through a process known as "acrosome exocytosis" (AE), is essential for fertilization. However, the mechanisms leading to and regulating this complex process are controversial. In particular, poor understanding of Ca2+ dynamics between sperm subcellular compartments and regulation of membrane fusion mechanisms have led to competing models of AE. Here, we developed a transgenic mouse expressing an Acrosome-targeted Sensor for Exocytosis (AcroSensE) to investigate the spatial and temporal Ca2+ dynamics in AE in live sperm. AcroSensE combines a genetically encoded Ca2+ indicator (GCaMP) fused with an mCherry indicator to spatiotemporally resolve acrosomal Ca2+ rise (ACR) and membrane fusion events, enabling real-time study of AE. We found that ACR is dependent on extracellular Ca2+ and that ACR precedes AE. In addition, we show that there are intermediate steps in ACR and that AE correlates better with the ACR rate rather than absolute Ca2+ amount. Finally, we demonstrate that ACR and membrane fusion progression kinetics and spatial patterns differ with different stimuli and that sites of initiation of ACR and sites of membrane fusion do not always correspond. These findings support a model involving functionally redundant pathways that enable a highly regulated, multistep AE in heterogeneous sperm populations, unlike the previously proposed "acrosome reaction" model.
Collapse
Affiliation(s)
- Roy Cohen
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jacquelyn L Nelson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Shoshana S Zenilman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Danielle M Sosnicki
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
32
|
Perfluorooctane sulfonate and perfluorooctanoic acid induce plasma membrane dysfunction in boar spermatozoa during in vitro capacitation. Reprod Toxicol 2022; 110:85-96. [DOI: 10.1016/j.reprotox.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
|
33
|
Lv M, Liu C, Ma C, Yu H, Shao Z, Gao Y, Liu Y, Wu H, Tang D, Tan Q, Zhang J, Li K, Xu C, Geng H, Zhang J, Li H, Mao X, Ge L, Fu F, Zhong K, Xu Y, Tao F, Zhou P, Wei Z, He X, Zhang F, Cao Y. Homozygous mutation in SLO3 leads to severe asthenoteratozoospermia due to acrosome hypoplasia and mitochondrial sheath malformations. Reprod Biol Endocrinol 2022; 20:5. [PMID: 34980136 PMCID: PMC8722334 DOI: 10.1186/s12958-021-00880-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Potassium channels are important for the structure and function of the spermatozoa. As a potassium transporter, the mSlo3 is essential for male fertility as Slo3 knockout male mice were infertile with the series of functional defects in sperm cells. However, no pathogenic variant has been detected in human SLO3 to date. Here we reported a human case with homozygous SLO3 mutation. The function of SLO3 in human sperm and the corresponding assisted reproductive strategy are also investigated. METHODS We performed whole-exome sequencing analysis from a large cohort of 105 patients with asthenoteratozoospermia. The effects of the variant were investigated by quantitative RT-PCR, western blotting, and immunofluorescence assays using the patient spermatozoa. Sperm morphological and ultrastructural studies were conducted using haematoxylin and eosin staining, scanning and transmission electron microscopy. RESULTS We identified a homozygous missense variant (c.1237A > T: p.Ile413Phe) in the sperm-specific SLO3 in one Chinese patient with male infertility. This SLO3 variant was rare in human control populations and predicted to be deleterious by multiple bioinformatic tools. Sperm from the individual harbouring the homozygous SLO3 variant exhibited severe morphological abnormalities, such as acrosome hypoplasia, disruption of the mitochondrial sheath, coiled tails, and motility defects. The levels of SLO3 mRNA and protein in spermatozoa from the affected individual were reduced. Furthermore, the acrosome reaction, mitochondrial membrane potential, and membrane potential during capacitation were also afflicted. The levels of acrosome marker glycoproteins and PLCζ1 as well as the mitochondrial sheath protein HSP60 and SLO3 auxiliary subunit LRRC52, were significantly reduced in the spermatozoa from the affected individual. The affected man was sterile due to acrosome and mitochondrial dysfunction; however, intra-cytoplasmic sperm injection successfully rescued this infertile condition. CONCLUSIONS SLO3 deficiency seriously impact acrosome formation, mitochondrial sheath assembly, and the function of K+ channels. Our findings provided clinical implications for the genetic and reproductive counselling of affected families.
Collapse
Affiliation(s)
- Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200011, China
| | - Chunjie Ma
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, 510600, China
| | - Hui Yu
- Department of Obstetrics and Gynecology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Zhongmei Shao
- Department of Obstetrics and Gynecology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Yang Gao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Yiyuan Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junqiang Zhang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Jingjing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Hang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohong Mao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Ge
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feifei Fu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kaixin Zhong
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, 510600, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Fangbiao Tao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China.
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200011, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| |
Collapse
|
34
|
Ferreira JJ, Lybaert P, Puga-Molina LC, Santi CM. Conserved Mechanism of Bicarbonate-Induced Sensitization of CatSper Channels in Human and Mouse Sperm. Front Cell Dev Biol 2021; 9:733653. [PMID: 34650979 PMCID: PMC8505895 DOI: 10.3389/fcell.2021.733653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
To fertilize an egg, mammalian sperm must undergo capacitation in the female genital tract. A key contributor to capacitation is the calcium (Ca2+) channel CatSper, which is activated by membrane depolarization and intracellular alkalinization. In mouse epididymal sperm, membrane depolarization by exposure to high KCl triggers Ca2+ entry through CatSper only in alkaline conditions (pH 8.6) or after in vitro incubation with bicarbonate (HCO3–) and bovine serum albumin (capacitating conditions). However, in ejaculated human sperm, membrane depolarization triggers Ca2+ entry through CatSper in non-capacitating conditions and at lower pH (< pH 7.4) than is required in mouse sperm. Here, we aimed to determine the mechanism(s) by which CatSper is activated in mouse and human sperm. We exposed ejaculated mouse and human sperm to high KCl to depolarize the membrane and found that intracellular Ca2+ concentration increased at pH 7.4 in sperm from both species. Conversely, intracellular Ca2+ concentration did not increase under these conditions in mouse epididymal or human epididymal sperm. Furthermore, pre-incubation with HCO3– triggered an intracellular Ca2+ concentration increase in response to KCl in human epididymal sperm. Treatment with protein kinase A (PKA) inhibitors during exposure to HCO3– inhibited Ca2+ concentration increases in mouse epididymal sperm and in both mouse and human ejaculated sperm. Finally, we show that soluble adenylyl cyclase and increased intracellular pH are required for the intracellular Ca2+ concentration increase in both human and mouse sperm. In summary, our results suggest that a conserved mechanism of activation of CatSper channels is present in both human and mouse sperm. In this mechanism, HCO3– in semen activates the soluble adenylyl cyclase/protein kinase A pathway, which leads to increased intracellular pH and sensitizes CatSper channels to respond to membrane depolarization to allow Ca2+ influx. This indirect mechanism of CatSper sensitization might be an early event capacitation that occurs as soon as the sperm contact the semen.
Collapse
Affiliation(s)
- Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Lis C Puga-Molina
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
35
|
Mata-Martínez E, Sánchez-Cárdenas C, Chávez JC, Guerrero A, Treviño CL, Corkidi G, Montoya F, Hernandez-Herrera P, Buffone MG, Balestrini PA, Darszon A. Role of calcium oscillations in sperm physiology. Biosystems 2021; 209:104524. [PMID: 34453988 DOI: 10.1016/j.biosystems.2021.104524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM) Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, IBT, UNAM, Mexico.
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Gabriel Corkidi
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Fernando Montoya
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Paul Hernandez-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
36
|
Balestrini PA, Sanchez-Cardenas C, Luque GM, Baro Graf C, Sierra JM, Hernández-Cruz A, Visconti PE, Krapf D, Darszon A, Buffone MG. Membrane hyperpolarization abolishes calcium oscillations that prevent induced acrosomal exocytosis in human sperm. FASEB J 2021; 35:e21478. [PMID: 33991146 DOI: 10.1096/fj.202002333rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Sperm capacitation is essential to gain fertilizing capacity. During this process, a series of biochemical and physiological modifications occur that allow sperm to undergo acrosomal exocytosis (AE). At the molecular level, hyperpolarization of the sperm membrane potential (Em) takes place during capacitation. This study shows that human sperm incubated under conditions that do not support capacitation (NC) can become ready for an agonist stimulated AE by pharmacologically inducing Em hyperpolarization with Valinomycin or Amiloride. To investigate how Em hyperpolarization promotes human sperm's ability to undergo AE, live single-cell imaging experiments were performed to simultaneously monitor changes in [Ca2+ ]i and the occurrence of AE. Em hyperpolarization turned [Ca2+ ]i dynamics in NC sperm from spontaneously oscillating into a sustained slow [Ca2+ ]i increase. The addition of progesterone (P4) or K+ to Valinomycin-treated sperm promoted that a significant number of cells displayed a transitory rise in [Ca2+ ]i which then underwent AE. Altogether, our results demonstrate that Em hyperpolarization is necessary and sufficient to prepare human sperm for the AE. Furthermore, this Em change decreased Ca2+ oscillations that block the occurrence of AE, providing strong experimental evidence of the molecular mechanism that drives the acquisition of acrosomal responsiveness.
Collapse
Affiliation(s)
- Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia Sanchez-Cardenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Baro Graf
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM) Ciudad Universitaria, Ciudad de México, México
| | - Jessica M Sierra
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Arturo Hernández-Cruz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM) Ciudad Universitaria, Ciudad de México, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, MA, USA
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Argentina
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
37
|
Aldana A, Carneiro J, Martínez-Mekler G, Darszon A. Discrete Dynamic Model of the Mammalian Sperm Acrosome Reaction: The Influence of Acrosomal pH and Physiological Heterogeneity. Front Physiol 2021; 12:682790. [PMID: 34349664 PMCID: PMC8328089 DOI: 10.3389/fphys.2021.682790] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/28/2021] [Indexed: 01/31/2023] Open
Abstract
The acrosome reaction (AR) is an exocytotic process essential for mammalian fertilization. It involves diverse physiological changes (biochemical, biophysical, and morphological) that culminate in the release of the acrosomal content to the extracellular medium as well as a reorganization of the plasma membrane (PM) that allows sperm to interact and fuse with the egg. In spite of many efforts, there are still important pending questions regarding the molecular mechanism regulating the AR. Particularly, the contribution of acrosomal alkalinization to AR triggering physiological conditions is not well understood. Also, the dependence of the proportion of sperm capable of undergoing AR on the physiological heterogeneity within a sperm population has not been studied. Here, we present a discrete mathematical model for the human sperm AR based on the physiological interactions among some of the main components of this complex exocytotic process. We show that this model can qualitatively reproduce diverse experimental results, and that it can be used to analyze how acrosomal pH (pH a ) and cell heterogeneity regulate AR. Our results confirm that a pH a increase can on its own trigger AR in a subpopulation of sperm, and furthermore, it indicates that this is a necessary step to trigger acrosomal exocytosis through progesterone, a known natural inducer of AR. Most importantly, we show that the proportion of sperm undergoing AR is directly related to the detailed structure of the population physiological heterogeneity.
Collapse
Affiliation(s)
- Andrés Aldana
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Carneiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova, Oeiras, Portugal
| | - Gustavo Martínez-Mekler
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
38
|
Sánchez-Cárdenas C, Romarowski A, Orta G, De la Vega-Beltrán JL, Martín-Hidalgo D, Hernández-Cruz A, Visconti PE, Darszon A. Starvation induces an increase in intracellular calcium and potentiates the progesterone-induced mouse sperm acrosome reaction. FASEB J 2021; 35:e21528. [PMID: 33742713 DOI: 10.1096/fj.202100122r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022]
Abstract
We have recently reported two different methodologies that improve sperm functionality. The first method involved transient exposure to the Ca2+ ionophore A23187 , and the second required sperm incubation in the absence of energy nutrients (starvation). Both methods were associated with an initial loss of motility followed by a rescue step involving ionophore removal or addition of energy metabolites, respectively. In this work, we show that starvation is accompanied by an increase in intracellular Ca2+ ([Ca2+ ]i ). Additionally, the starved cells acquire a significantly enhanced capacity to undergo a progesterone-induced acrosome reaction. Electrophysiological measurements show that CatSper channel remains active in starvation conditions. However, the increase in [Ca2+ ]i was also observed in sperm from CatSper null mice. Upon starvation, addition of energy nutrients reversed the effects on [Ca2+ ]i and decreased the effect of progesterone on the acrosome reaction to control levels. These data indicate that both methods have common molecular features.
Collapse
Affiliation(s)
- Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, México
| | - Ana Romarowski
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Gerardo Orta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, México
| | - José Luis De la Vega-Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, México
| | - David Martín-Hidalgo
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.,Research Group of Intracellular Signalling and Technology of Reproduction (Research Institute INBIO G+C), University of Extremadura, Cáceres, Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva and Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, UNAM, Ciudad Universitaria, México, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, México
| |
Collapse
|
39
|
Noto F, Recuero S, Valencia J, Saporito B, Robbe D, Bonet S, Carluccio A, Yeste M. Inhibition of Potassium Channels Affects the Ability of Pig Spermatozoa to Elicit Capacitation and Trigger the Acrosome Exocytosis Induced by Progesterone. Int J Mol Sci 2021; 22:ijms22041992. [PMID: 33671466 PMCID: PMC7922121 DOI: 10.3390/ijms22041992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 01/02/2023] Open
Abstract
During capacitation, sperm undergo a myriad of changes, including remodeling of plasma membrane, modification of sperm motility and kinematic parameters, membrane hyperpolarization, increase in intracellular calcium levels, and tyrosine phosphorylation of certain sperm proteins. While potassium channels have been reported to be crucial for capacitation of mouse and human sperm, their role in pigs has not been investigated. With this purpose, sperm samples from 15 boars were incubated in capacitation medium for 300 min with quinine, a general blocker of potassium channels (including voltage-gated potassium channels, calcium-activated potassium channels, and tandem pore domain potassium channels), and paxilline (PAX), a specific inhibitor of calcium-activated potassium channels. In all samples, acrosome exocytosis was induced after 240 min of incubation with progesterone. Plasma membrane and acrosome integrity, membrane lipid disorder, intracellular calcium levels, mitochondrial membrane potential, and total and progressive sperm motility were evaluated after 0, 120, and 240 min of incubation, and after 5, 30, and 60 min of progesterone addition. Although blocking potassium channels with quinine and PAX prevented sperm to elicit in vitro capacitation by impairing motility and mitochondrial function, as well as reducing intracellular calcium levels, the extent of that inhibition was larger with quinine than with PAX. Therefore, while our data support that calcium-activated potassium channels are essential for sperm capacitation in pigs, they also suggest that other potassium channels, such as the voltage-gated, tandem pore domain, and mitochondrial ATP-regulated ones, are involved in that process. Thus, further research is needed to elucidate the specific functions of these channels and the mechanisms underlying its regulation during sperm capacitation.
Collapse
Affiliation(s)
- Federico Noto
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (F.N.); (S.R.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain;
- Faculty of Veterinary Medicine, University of Teramo, Località Piano D’Accio, IT-64100 Teramo, Italy; (B.S.); (D.R.); (A.C.)
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (F.N.); (S.R.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain;
| | - Julián Valencia
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain;
- University Antonio Nariño, Calle 53 #9-35, Popayán CO-190002, Colombia
| | - Beatrice Saporito
- Faculty of Veterinary Medicine, University of Teramo, Località Piano D’Accio, IT-64100 Teramo, Italy; (B.S.); (D.R.); (A.C.)
| | - Domenico Robbe
- Faculty of Veterinary Medicine, University of Teramo, Località Piano D’Accio, IT-64100 Teramo, Italy; (B.S.); (D.R.); (A.C.)
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (F.N.); (S.R.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain;
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Località Piano D’Accio, IT-64100 Teramo, Italy; (B.S.); (D.R.); (A.C.)
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (F.N.); (S.R.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain;
- Correspondence:
| |
Collapse
|
40
|
Delgado-Bermúdez A, Mateo-Otero Y, Llavanera M, Bonet S, Yeste M, Pinart E. HVCN1 but Not Potassium Channels Are Related to Mammalian Sperm Cryotolerance. Int J Mol Sci 2021; 22:ijms22041646. [PMID: 33562049 PMCID: PMC7914938 DOI: 10.3390/ijms22041646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Little data exist about the physiological role of ion channels during the freeze–thaw process in mammalian sperm. Herein, we determined the relevance of potassium channels, including SLO1, and of voltage-gated proton channels (HVCN1) during mammalian sperm cryopreservation, using the pig as a model and through the addition of specific blockers (TEA: tetraethyl ammonium chloride, PAX: paxilline or 2-GBI: 2-guanidino benzimidazole) to the cryoprotective media at either 15 °C or 5 °C. Sperm quality of the control and blocked samples was performed at 30- and 240-min post-thaw, by assessing sperm motility and kinematics, plasma and acrosome membrane integrity, membrane lipid disorder, intracellular calcium levels, mitochondrial membrane potential, and intracellular O2−⁻ and H2O2 levels. General blockade of K+ channels by TEA and specific blockade of SLO1 channels by PAX did not result in alterations in sperm quality after thawing as compared to control samples. In contrast, HVCN1-blocking with 2-GBI led to a significant decrease in post-thaw sperm quality as compared to the control, despite intracellular O2−⁻ and H2O2 levels in 2-GBI blocked samples being lower than in the control and in TEA- and PAX-blocked samples. We can thus conclude that HVCN1 channels are related to mammalian sperm cryotolerance and have an essential role during cryopreservation. In contrast, potassium channels do not seem to play such an instrumental role.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
41
|
Polyamines Influence Mouse Sperm Channels Activity. Int J Mol Sci 2021; 22:ijms22010441. [PMID: 33406808 PMCID: PMC7795802 DOI: 10.3390/ijms22010441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/15/2023] Open
Abstract
Polyamines are ubiquitous polycationic compounds that are highly charged at physiological pH. While passing through the epididymis, sperm lose their capacity to synthesize the polyamines and, upon ejaculation, again come into contact with the polyamines contained in the seminal fluid, unleashing physiological events that improve sperm motility and capacitation. In the present work, we hypothesize about the influence of polyamines, namely, spermine, spermidine, and putrescine, on the activity of sperm channels, evaluating the intracellular concentrations of chloride [Cl−]i, calcium [Ca2+]i, sodium [Na+]i, potassium [K+]i, the membrane Vm, and pHi. The aim of this is to identify the possible regulatory mechanisms mediated by the polyamines on sperm-specific channels under capacitation and non-capacitation conditions. The results showed that the presence of polyamines did not directly influence the activity of calcium and chloride channels. However, the results suggested an interaction of polyamines with sodium and potassium channels, which may contribute to the membrane Vm during capacitation. In addition, alkalization of the pHi revealed the possible activation of sperm-specific Na+/H+ exchangers (NHEs) by the increased levels of cyclic AMP (cAMP), which were produced by soluble adenylate cyclase (sAC) and interact with the polyamines, evidence that is supported by in silico analysis.
Collapse
|
42
|
Baro Graf C, Ritagliati C, Stival C, Luque GM, Gentile I, Buffone MG, Krapf D. Everything you ever wanted to know about PKA regulation and its involvement in mammalian sperm capacitation. Mol Cell Endocrinol 2020; 518:110992. [PMID: 32853743 DOI: 10.1016/j.mce.2020.110992] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022]
Abstract
The 3', 5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) is a tetrameric holoenzyme comprising a set of two regulatory subunits (PKA-R) and two catalytic (PKA-C) subunits. The PKA-R subunits act as sensors of cAMP and allow PKA-C activity. One of the first signaling events observed during mammalian sperm capacitation is PKA activation. Thus, understanding how PKA activity is restricted in space and time is crucial to decipher the critical steps of sperm capacitation. It is widely accepted that PKA specificity depends on several levels of regulation. Anchoring proteins play a pivotal role in achieving proper localization signaling, subcellular targeting and cAMP microdomains. These multi-factorial regulation steps are necessary for a precise spatio-temporal activation of PKA. Here we discuss recent understanding of regulatory mechanisms of PKA in mammalian sperm, such as post-translational modifications, in the context of its role as the master orchestrator of molecular events conducive to capacitation.
Collapse
Affiliation(s)
- Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina; Laboratorio de Medicina Reproductiva (LMR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Guillermina M Luque
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Iñaki Gentile
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Mariano G Buffone
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina; Laboratorio de Medicina Reproductiva (LMR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
43
|
Priyadarshana C, Setiawan R, Tajima A, Asano A. Src family kinases-mediated negative regulation of sperm acrosome reaction in chickens (Gallus gallus domesticus). PLoS One 2020; 15:e0241181. [PMID: 33180820 PMCID: PMC7660528 DOI: 10.1371/journal.pone.0241181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
The acrosome reaction (AR) is a strictly-regulated, synchronous exocytosis that is required for sperm to penetrate ova. This all-or-nothing process occurs only once in the sperm lifecycle through a sequence of signaling pathways. Spontaneous, premature AR therefore compromises fertilization potential. Although protein kinase A (PKA) pathways play a central role in AR across species, the signaling network used for AR induction is poorly understood in birds. Mechanistic studies of mammalian sperm AR demonstrate that PKA activity is downstreamly regulated by Src family kinases (SFKs). Using SFK inhibitors, our study shows that in chicken sperm, SFKs play a role in the regulation of PKA activity and spontaneous AR without affecting motility. Furthermore, we examined the nature of SFK phosphorylation using PKA and protein tyrosine phosphatase inhibitors, which demonstrated that unlike in mammals, SFK phosphorylation in birds does not occur downstream of PKA and is primarily regulated by calcium-dependent tyrosine phosphatase activity. Functional characterization of SFKs in chicken sperm showed that SFK activation modulates the membrane potential and plays a role in inhibiting spontaneous AR. Employing biochemical isolation, we also found that membrane rafts are involved in the regulation of SFK phosphorylation. This study demonstrates a unique mechanism for regulating AR induction inherent to avian sperm that ensure fertilization potential despite prolonged storage.
Collapse
Affiliation(s)
- Chathura Priyadarshana
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rangga Setiawan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
44
|
Balestrini PA, Jabloñski M, Schiavi-Ehrenhaus LJ, Marín-Briggiler CI, Sánchez-Cárdenas C, Darszon A, Krapf D, Buffone MG. Seeing is believing: Current methods to observe sperm acrosomal exocytosis in real time. Mol Reprod Dev 2020; 87:1188-1198. [PMID: 33118273 DOI: 10.1002/mrd.23431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
Abstract
Acrosomal exocytosis (AR) is a critical process that sperm need to undergo to fertilize an egg. The evaluation of the presence or absence of the acrosome is usually performed by using lectins or dyes in fixed cells. With this approach, it is neither possible to monitor the dynamic process of exocytosis and related molecular events while discriminating between live and dead cells, nor to evaluate the acrosomal status while sperm reside in the female reproductive tract. However, over the last two decades, several new methodologies have been used to assess the occurrence of AR in living cells allowing different groups to obtain information that was not possible in the past. These techniques have revolutionized the whole study of this process. This review summarizes current methods available to analyze AR in living cells as well as the important information that emerged from studies using these approaches.
Collapse
Affiliation(s)
- Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
45
|
Zalazar L, Stival C, Nicolli AR, De Blas GA, Krapf D, Cesari A. Male Decapacitation Factor SPINK3 Blocks Membrane Hyperpolarization and Calcium Entry in Mouse Sperm. Front Cell Dev Biol 2020; 8:575126. [PMID: 33102481 PMCID: PMC7554638 DOI: 10.3389/fcell.2020.575126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023] Open
Abstract
Mammalian sperm acquire ability to fertilize through a process called capacitation, occurring after ejaculation and regulated by both female molecules and male decapacitation factors. Bicarbonate and calcium present in the female reproductive tract trigger capacitation in sperm, leading to acrosomal responsiveness and hyperactivated motility. Male decapacitating factors present in the semen avert premature capacitation, until detached from the sperm surface. However, their mechanism of action remains elusive. Here we describe for the first time the molecular basis for the decapacitating action of the seminal protein SPINK3 in mouse sperm. When present in the capacitating medium, SPINK3 inhibited Src kinase, a modulator of the potassium channel responsible for plasma membrane hyperpolarization. Lack of hyperpolarization affected calcium channels activity, impairing the acquisition of acrosomal responsiveness and blocking hyperactivation. Interestingly, SPINK3 acted only on non-capacitated sperm, as it did not bind to capacitated cells. Binding selectivity allows its decapacitating action only in non-capacitated sperm, without affecting capacitated cells.
Collapse
Affiliation(s)
- Lucia Zalazar
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biologia Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabella R Nicolli
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Gerardo A De Blas
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, National Scientific and Technical Research Council, Mendoza, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biologia Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Andreina Cesari
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.,Escuela Superior de Medicina, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
46
|
Oviductal high concentration of K + suppresses hyperpolarization but does not prevent hyperactivation, acrosome reaction and in vitro fertilization in hamsters. ZYGOTE 2020; 29:66-74. [PMID: 33012301 DOI: 10.1017/s0967199420000532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian sperm have to undergo capacitation to be fertilization competent. Capacitated sperm in vitro show hyperpolarization of the membrane potential. It has been reported that in mouse membrane hyperpolarization is necessary for the acrosome reaction. We recently found that the fluid of the hamster oviduct, where fertilization occurs, contained a high potassium (K+) concentration (~20 mEq/l). This high K+ concentration could depolarize the membrane potential and prevent the acrosome reaction/fertilization. Conversely, some beneficial effects on capacitation of high K+ concentration or a high K/Na ratio were also reported. In the present study, we investigated the effects of oviduct high K+ concentration on hamster sperm capacitation-associated events and fertilization. The present study confirmed that, in hamster sperm, membrane potential was hyperpolarized upon in vitro capacitation, indicating that capacitation-associated hyperpolarization is a universal phenomenon among mammalian species. An increase in KCl concentration in the medium to 20 mM significantly depolarized the membrane potential and suppressed hyperpolarization when in the presence of >101 mM NaCl. However, an increase in the KCl concentration to 20 mM did not significantly affect the percentage of motile sperm, hyperactivation or the acrosome reaction. No effect of 20 mM KCl on in vitro fertilization was observed. In addition, no correlative changes in hyperactivation and the acrosome reaction with K/Na ratio were observed. These results suggested that in hamsters the oviduct K+ concentration suppressed hyperpolarization but had no effect on capacitation and in vitro fertilization. Our results raised a question over the physiological significance of capacitation-associated hyperpolarization.
Collapse
|
47
|
Balbach M, Hamzeh H, Jikeli JF, Brenker C, Schiffer C, Hansen JN, Neugebauer P, Trötschel C, Jovine L, Han L, Florman HM, Kaupp UB, Strünker T, Wachten D. Molecular Mechanism Underlying the Action of Zona-pellucida Glycoproteins on Mouse Sperm. Front Cell Dev Biol 2020; 8:572735. [PMID: 32984353 PMCID: PMC7487327 DOI: 10.3389/fcell.2020.572735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Mammalian oocytes are enveloped by the zona pellucida (ZP), an extracellular matrix of glycoproteins. In sperm, stimulation with ZP proteins evokes a rapid Ca2+ influx via the sperm-specific, pH-sensitive Ca2+ channel CatSper. However, the physiological role and molecular mechanisms underlying ZP-dependent activation of CatSper are unknown. Here, we delineate the sequence of ZP-signaling events in mouse sperm. We show that ZP proteins evoke a rapid intracellular pHi increase that rests predominantly on Na+/H+ exchange by NHA1 and requires cAMP synthesis by the soluble adenylyl cyclase sAC as well as a sufficiently negative membrane potential set by the spem-specific K+ channel Slo3. The alkaline-activated CatSper channel translates the ZP-induced pHi increase into a Ca2+ response. Our findings reveal the molecular components underlying ZP action on mouse sperm, opening up new avenues for understanding the basic principles of sperm function and, thereby, mammalian fertilization.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany
| | - Hussein Hamzeh
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany
| | - Jan F Jikeli
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christoph Brenker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christian Schiffer
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Pia Neugebauer
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Harvey M Florman
- Department of Obstetrics and Gynecology, University of Massachusetts Medical School Worcester, Worcester, MA, United States
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany.,Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Timo Strünker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
48
|
Yeste M, Llavanera M, Mateo-Otero Y, Catalán J, Bonet S, Pinart E. HVCN1 Channels Are Relevant for the Maintenance of Sperm Motility During In Vitro Capacitation of Pig Spermatozoa. Int J Mol Sci 2020; 21:ijms21093255. [PMID: 32375375 PMCID: PMC7246839 DOI: 10.3390/ijms21093255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
The objective of the present study was to determine the physiological role of voltage-gated hydrogen channels 1 (HVCN1 channels) during in vitro capacitation of pig spermatozoa. Sperm samples from 20 boars were incubated in capacitating medium for 300 minutes (min) in the presence of 2-guanidino benzimidazole (2-GBI), a specific HVCN1-channel blocker, added either at 0 min or after 240 min of incubation. Control samples were incubated in capacitating medium without the inhibitor. In all samples, acrosomal exocytosis was triggered with progesterone after 240 min of incubation. Sperm viability, sperm motility and kinematics, acrosomal exocytosis, membrane lipid disorder, intracellular calcium levels and mitochondrial membrane potential were evaluated after 0, 60, 120, 180, 240, 250, 270 and 300 min of incubation. While HVCN1-blockage resulted in altered sperm viability, sperm motility and kinematics and reduced mitochondrial membrane potential as compared to control samples, at any blocker concentration and incubation time, it had a non-significant effect on intracellular Ca2+ levels determined through Fluo3-staining. The effects on acrosomal exocytosis were only significant in blocked samples at 0 min, and were associated with increased membrane lipid disorder and Ca2+ levels of the sperm head determined through Rhod5-staining. In conclusion, HVCN1 channels play a crucial role in the modulation of sperm motility and kinematics, and in Ca2+ entrance to the sperm head.
Collapse
Affiliation(s)
- Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Jaime Catalán
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain;
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
49
|
Molina LCP, Gunderson S, Riley J, Lybaert P, Borrego-Alvarez A, Jungheim ES, Santi CM. Membrane Potential Determined by Flow Cytometry Predicts Fertilizing Ability of Human Sperm. Front Cell Dev Biol 2020; 7:387. [PMID: 32039203 PMCID: PMC6985285 DOI: 10.3389/fcell.2019.00387] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/20/2019] [Indexed: 11/26/2022] Open
Abstract
Infertility affects 10 to 15% of couples worldwide, with a male factor contributing up to 50% of these cases. The primary tool for diagnosing male infertility is traditional semen analysis, which reveals sperm concentration, morphology, and motility. However, 25% of infertile men are diagnosed as normozoospermic, meaning that, in many cases, normal-appearing sperm fail to fertilize an egg. Thus, new information regarding the mechanisms by which sperm acquire fertilizing ability is needed to develop a clinically feasible test that can predict sperm function failure. An important feature of sperm fertilization capability in many species is plasma membrane hyperpolarization (membrane potential becoming more negative inside) in response to signals from the egg or female genital tract. In mice, this hyperpolarization is necessary for sperm to undergo the changes in motility (hyperactivation) and acrosomal exocytosis required to fertilize an egg. Human sperm also hyperpolarize during capacitation, but the physiological relevance of this event has not been determined. Here, we used flow cytometry combined with a voltage-sensitive fluorescent probe to measure absolute values of human sperm membrane potential. We found that hyperpolarization of human sperm plasma membrane correlated positively with fertilizing ability. Hyperpolarized human sperm had higher in vitro fertilization (IVF) ratios and higher percentages of acrosomal exocytosis and hyperactivated motility than depolarized sperm. We propose that measurements of human sperm membrane potential could be used to diagnose men with idiopathic infertility and predict IVF success in normozoospermic infertile patients. Patients with depolarized values could be guided toward intracytoplasmic sperm injection, preventing unnecessary cycles of intrauterine insemination or IVF. Conversely, patients with hyperpolarized values of sperm membrane potential could undergo only conventional IVF, avoiding the risks and costs associated with intracytoplasmic sperm injection.
Collapse
Affiliation(s)
- Lis C. Puga Molina
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St Louis, MO, United States
| | - Stephanie Gunderson
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St Louis, MO, United States
| | - Joan Riley
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St Louis, MO, United States
| | - Pascal Lybaert
- Laboratory of Experimental Hormonology, School of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Aluet Borrego-Alvarez
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St Louis, MO, United States
| | - Emily S. Jungheim
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St Louis, MO, United States
| | - Celia M. Santi
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St Louis, MO, United States
| |
Collapse
|
50
|
Baro Graf C, Ritagliati C, Torres-Monserrat V, Stival C, Carizza C, Buffone MG, Krapf D. Membrane Potential Assessment by Fluorimetry as a Predictor Tool of Human Sperm Fertilizing Capacity. Front Cell Dev Biol 2020; 7:383. [PMID: 32010695 PMCID: PMC6979052 DOI: 10.3389/fcell.2019.00383] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Mammalian sperm acquire the ability to fertilize eggs by undergoing a process known as capacitation. Capacitation is triggered as the sperm travels through the female reproductive tract. This process involves specific physiological changes such as rearrangement of the cell plasma membrane, post-translational modifications of certain proteins, and changes in the cellular permeability to ions - with the subsequent impact on the plasma membrane potential (Em). Capacitation-associated Em hyperpolarization has been well studied in mouse sperm, and shown to be both necessary and sufficient to promote the acrosome reaction (AR) and fertilize the egg. However, the relevance of the sperm Em upon capacitation on human fertility has not been thoroughly characterized. Here, we performed an extensive study of the Em change during capacitation in human sperm samples using a potentiometric dye in a fluorimetric assay. Normospermic donors showed significant Em hyperpolarization after capacitation. Em values from capacitated samples correlated significantly with the sperm ability to undergo induced AR, highlighting the role of hyperpolarization in acrosomal responsiveness, and with successful in vitro fertilization (IVF) rates. These results show that Em hyperpolarization could be an indicator of human sperm fertilizing capacity, setting the basis for the use of Em values as a robust predictor of the success rate of IVF.
Collapse
Affiliation(s)
- Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | | | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | | | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|