1
|
Chia ZJ, Kumarapperuma H, Zhang R, Little PJ, Kamato D. Smad transcription factors as mediators of 7 transmembrane G protein-coupled receptor signalling. Acta Pharmacol Sin 2025; 46:795-804. [PMID: 39506064 PMCID: PMC11950520 DOI: 10.1038/s41401-024-01413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
The Smad transcription factors are well known for their role at the core of transforming growth factor-β (TGF-β) signalling. However, recent evidence shows that the Smad transcription factors play a vital role downstream of other classes of receptors including G protein-coupled receptors (GPCR). The versatility of Smad transcription factors originated from the two regions that can be differently activated by the TGF-β receptor superfamily or through the recruitment of intracellular kinases stimulated by other receptors classes such as GPCRs. The classic GPCR signalling cascade is further expanded to conditional adoption of the Smad transcription factor under the stimulation of Akt, demonstrating the unique involvement of the Smad transcription factor in GPCR signalling pathways in disease environments. In this review, we provide a summary of the signalling pathways of the Smad transcription factors as an important downstream mediator of GPCRs, presenting exciting opportunities for discovering new therapeutic targets for diseases.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hirushi Kumarapperuma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ruizhi Zhang
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
2
|
Lin HH. An Alternative Mode of GPCR Transactivation: Activation of GPCRs by Adhesion GPCRs. Int J Mol Sci 2025; 26:552. [PMID: 39859266 PMCID: PMC11765499 DOI: 10.3390/ijms26020552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
G protein-coupled receptors (GPCRs), critical for cellular communication and signaling, represent the largest cell surface protein family and play important roles in numerous pathophysiological processes. Consequently, GPCRs have become a primary focus in drug discovery efforts. Beyond their traditional G protein-dependent signaling pathways, GPCRs are also capable of activating alternative signaling mechanisms, including G protein-independent signaling, biased signaling, and signaling crosstalk. A particularly novel signaling mode employed by these receptors is GPCR transactivation, which enables cross-communication between GPCRs and other receptor types. Intriguingly, GPCR transactivation by distinct GPCRs has also been identified. In this review, I provide an overview of the known GPCR transactivation mechanisms and explore recently uncovered GPCR transactivation mediated by adhesion-class GPCRs (aGPCRs). These aGPCR-GPCR transactivation processes regulate unique cell type-specific functions, offering an exciting opportunity to develop therapies that precisely modulate specific GPCR-mediated biological effects.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, Graduate School of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-03-2118800-3321
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
| |
Collapse
|
3
|
Kumarapperuma H, Chia ZJ, Malapitan SM, Wight TN, Little PJ, Kamato D. Response to retention hypothesis as a source of targets for arterial wall-directed therapies to prevent atherosclerosis: A critical review. Atherosclerosis 2024; 397:118552. [PMID: 39180958 DOI: 10.1016/j.atherosclerosis.2024.118552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
The subendothelial retention of circulating lipoproteins on extracellular matrix proteins and proteoglycans is one of the earliest events in the development of atherosclerosis. Multiple factors, including the size, type, composition, surrounding pH, and chemical modifications to lipoproteins, influence the electrostatic interactions between relevant moieties of the apolipoproteins on lipoproteins and the glycosaminoglycans of proteoglycans. The length and chemical composition of glycosaminoglycan chains attached to proteoglycan core proteins determine the extent of initial lipoprotein binding and retention in the artery wall. The phenomena of hyperelongation of glycosaminoglycan chains is associated with initial lipid retention and later atherosclerotic plaque formation. This review includes a summary of the current literature surrounding cellular mechanisms leading to GAG chain modification and lipid retention and discusses potential therapeutic strategies to target lipoprotein:proteoglycan interactions to prevent the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Hirushi Kumarapperuma
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Sanchia Marie Malapitan
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Department of Pharmacy, Guangzhou Xinhua University, Tianhe District, Guangzhou, Guangdong Pr., 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia.
| |
Collapse
|
4
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
5
|
Rezaei M, Mehta JL, Zadeh GM, Khedri A, Rezaei HB. Myosin light chain phosphatase is a downstream target of Rho-kinase in endothelin-1-induced transactivation of the TGF-β receptor. Cell Biochem Biophys 2024; 82:1109-1120. [PMID: 38834831 DOI: 10.1007/s12013-024-01262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Rho-kinase (ROCK) regulates actomyosin contraction, coronary vasospasm, and cytoskeleton dynamics. ROCK and of NADPH oxidase (NOX) play an essential role in cardiovascular disease and proteoglycan synthesis, which promotes atherosclerosis by trapping low density lipoprotein. ROCK is activated by endothelin-1 (ET1) and transactivates the transforming growth factor beta receptor (TGFβR1), intensifying Smad signaling and proteoglycan production. This study aimed to identify the role of myosin light chain phosphatase (MLCP) as a downstream target of ROCK in TβR1 transactivation. METHODS Vascular smooth muscle cells were treated with ET1 and inhibitors of ROCK and MLCP were added. The phosphorylation levels of Smad2C, myosin light chain (MLC), and MLCP were monitored by western blot, and the mRNA expression of chondroitin 4-O-sulfotransferase 1 (C4ST1) was assessed by quantitative real-time PCR. RESULTS We examined ROCK's role in ET1-induced TGFβR1 activation. ROCK phosphorylated MLCP at the MYPT1 T853 residue, blocked by the ROCK inhibitor Y27632. ROCK also increased MLC phosphorylation and actomyosin contraction in response to ET1, enhanced by the phosphatase inhibitor Calyculin A. Calyculin A also increased C4ST1 expression, GAG-chain synthesizing enzymes. CONCLUSIONS This work suggests that ROCK is involved in ET1-mediated TβR1 activation through increased MLCP phosphorylation, which leads to Smad2C phosphorylation and stimulates C4ST1 expression.
Collapse
Affiliation(s)
- Maryam Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jawahar Lal Mehta
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ghorban Mohammad Zadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azam Khedri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Weinstein N, Carlsen J, Schulz S, Stapleton T, Henriksen HH, Travnik E, Johansson PI. A Lifelike guided journey through the pathophysiology of pulmonary hypertension-from measured metabolites to the mechanism of action of drugs. Front Cardiovasc Med 2024; 11:1341145. [PMID: 38845688 PMCID: PMC11153715 DOI: 10.3389/fcvm.2024.1341145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/12/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Pulmonary hypertension (PH) is a pathological condition that affects approximately 1% of the population. The prognosis for many patients is poor, even after treatment. Our knowledge about the pathophysiological mechanisms that cause or are involved in the progression of PH is incomplete. Additionally, the mechanism of action of many drugs used to treat pulmonary hypertension, including sotatercept, requires elucidation. Methods Using our graph-powered knowledge mining software Lifelike in combination with a very small patient metabolite data set, we demonstrate how we derive detailed mechanistic hypotheses on the mechanisms of PH pathophysiology and clinical drugs. Results In PH patients, the concentration of hypoxanthine, 12(S)-HETE, glutamic acid, and sphingosine 1 phosphate is significantly higher, while the concentration of L-arginine and L-histidine is lower than in healthy controls. Using the graph-based data analysis, gene ontology, and semantic association capabilities of Lifelike, led us to connect the differentially expressed metabolites with G-protein signaling and SRC. Then, we associated SRC with IL6 signaling. Subsequently, we found associations that connect SRC, and IL6 to activin and BMP signaling. Lastly, we analyzed the mechanisms of action of several existing and novel pharmacological treatments for PH. Lifelike elucidated the interplay between G-protein, IL6, activin, and BMP signaling. Those pathways regulate hallmark pathophysiological processes of PH, including vasoconstriction, endothelial barrier function, cell proliferation, and apoptosis. Discussion The results highlight the importance of SRC, ERK1, AKT, and MLC activity in PH. The molecular pathways affected by existing and novel treatments for PH also converge on these molecules. Importantly, sotatercept affects SRC, ERK1, AKT, and MLC simultaneously. The present study shows the power of mining knowledge graphs using Lifelike's diverse set of data analytics functionalities for developing knowledge-driven hypotheses on PH pathophysiological and drug mechanisms and their interactions. We believe that Lifelike and our presented approach will be valuable for future mechanistic studies of PH, other diseases, and drugs.
Collapse
Affiliation(s)
- Nathan Weinstein
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jørn Carlsen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sebastian Schulz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Timothy Stapleton
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hanne H. Henriksen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Evelyn Travnik
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pär Ingemar Johansson
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Iwakura Y, Kobayashi Y, Namba H, Nawa H, Takei N. Epidermal Growth Factor Suppresses the Development of GABAergic Neurons Via the Modulation of Perineuronal Net Formation in the Neocortex of Developing Rodent Brains. Neurochem Res 2024; 49:1347-1358. [PMID: 38353896 DOI: 10.1007/s11064-024-04122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 04/04/2024]
Abstract
Previously, we reported that epidermal growth factor (EGF) suppresses GABAergic neuronal development in the rodent cortex. Parvalbumin-positive GABAergic neurons (PV neurons) have a unique extracellular structure, perineuronal nets (PNNs). PNNs are formed during the development of PV neurons and are mainly formed from chondroitin sulfate (CS) proteoglycans (CSPGs). We examined the effect of EGF on CSPG production and PNN formation as a potential molecular mechanism for the inhibition of inhibiting GABAergic neuronal development by EGF. In EGF-overexpressing transgenic (EGF-Tg) mice, the number of PNN-positive PV neurons was decreased in the cortex compared with that in wild-type mice, as in our previous report. The amount of CS and neurocan was also lower in the cortex of EGF-Tg mice, with a similar decrease observed in EGF-treated cultured cortical neurons. PD153035, an EGF receptor (ErbB1) kinase inhibitor, prevented those mentioned above excess EGF-induced reduction in PNN. We explored the molecular mechanism underlying the effect of EGF on PNNs using fluorescent substrates for matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). EGF increased the enzyme activity of MMPs and ADAMs in cultured neurons. These enzyme activities were also increased in the EGF-Tg mice cortex. GM6001, a broad inhibitor of MMPs and ADAMs, also blocked EGF-induced PNN reductions. Therefore, EGF/EGF receptor signals may regulate PNN formation in the developing cortex.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan.
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan.
| | - Yutaro Kobayashi
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - Nobuyuki Takei
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8122, Japan
| |
Collapse
|
8
|
Kamato D, Gabr M, Kumarapperuma H, Chia ZJ, Zheng W, Xu S, Osman N, Little PJ. Gαq Is the Specific Mediator of PAR-1 Transactivation of Kinase Receptors in Vascular Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms232214425. [PMID: 36430902 PMCID: PMC9692893 DOI: 10.3390/ijms232214425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
AIMS G protein-coupled receptor (GPCR) transactivation of kinase receptors greatly expands the actions attributable to GPCRs. Thrombin, via its cognate GPCR, protease-activated receptor (PAR)-1, transactivates tyrosine and serine/threonine kinase receptors, specifically the epidermal growth factor receptor and transforming growth factor-β receptor, respectively. PAR-1 transactivation-dependent signalling leads to the modification of lipid-binding proteoglycans involved in the retention of lipids and the development of atherosclerosis. The mechanisms of GPCR transactivation of kinase receptors are distinct. We aimed to investigate the role of proximal G proteins in transactivation-dependent signalling. MAIN METHODS Using pharmacological and molecular approaches, we studied the role of the G⍺ subunits, G⍺q and G⍺11, in the context of PAR-1 transactivation-dependent signalling leading to proteoglycan modifications. KEY FINDINGS Pan G⍺q subunit inhibitor UBO-QIC/FR900359 inhibited PAR-1 transactivation of kinase receptors and proteoglycans modification. The G⍺q/11 inhibitor YM254890 did not affect PAR-1 transactivation pathways. Molecular approaches revealed that of the two highly homogenous G⍺q members, G⍺q and G⍺11, only the G⍺q was involved in regulating PAR-1 mediated proteoglycan modification. Although G⍺q and G⍺11 share approximately 90% homology at the protein level, we show that the two isoforms exhibit different functional roles. SIGNIFICANCE Our findings may be extrapolated to other GPCRs involved in vascular pathology and highlight the need for novel pharmacological tools to assess the role of G proteins in GPCR signalling to expand the preeminent position of GPCRs in human therapeutics.
Collapse
Affiliation(s)
- Danielle Kamato
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence:
| | - Mai Gabr
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Hirushi Kumarapperuma
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zheng J. Chia
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Wenhua Zheng
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230052, China
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Peter J. Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou 510520, China
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
| |
Collapse
|
9
|
Hossein BR, Kheirollah A, Seif F. Endothelin-1 Stimulates PAI-1 Protein Expression via Dual Transactivation Pathway Dependent ROCK and Phosphorylation of Smad2L. CELL JOURNAL 2022; 24:465-472. [PMID: 36093806 PMCID: PMC9468725 DOI: 10.22074/cellj.2022.7720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Indexed: 11/04/2022]
Abstract
<strong>Objective:</strong> In addition to the carboxy region, Smad2 transcription factor can be phosphorylated in the linker region as<br />well. Phosphorylation of Smad2 linker region (Smad2L) promotes the expression of plasminogen activator inhibitor type<br />1 (PAI-1) which leads to cardiovascular disorders such as atherosclerosis. The purpose of this study was to evaluate the role of dual transactivation of EGF and TGF-β receptors in phosphorylation of Smad2L and protein expression of PAI-1 induced by endothelin-1 (ET-1) in bovine aortic endothelial cells (BAECs). In addition, as an intermediary of G protein-coupled receptor (GPCR) signaling, the functions of ROCK and PLC were investigated in dual transactivation pathways.<br /><strong>Materials and Methods:</strong> The experimental study is an in vitro study performed on BAECs. Proteins were investigated<br />by western blotting using protein-specific antibodies against phospho-Smad2 linker region residues (Ser245/250/255),<br />phospho-Smad2 carboxy residues (465/467), ERK1/(Thr202/Thr204), and PAI-1.<br /><strong>Results:</strong> TGF (2 ng/ml), EGF (100 ng/ml) and ET-1 (100 nM) induced the phosphorylation of Smad2L. This response was<br />blocked in the presence of AG1478 (EGFR antagonists), SB431542 (TGFR inhibitor), and Y27632 (Rho-associated protein kinase (ROCK antagonist). Moreover, ET-1-increased protein expression of PAI-1 was decreased in the presence of bosentan (ET receptor inhibitor), AG1478, SB431542, and Y27632.<br /><strong>Conclusion:</strong> The results indicated that ET-1 increases the phosphorylation of Smad2L and protein expression of PAI-1<br />via induced the transactivation pathways of EGFR and TGFR. This study is the first attempt to scrutinize the significant role of ROCK in the protein expression of PAI-1.
Collapse
Affiliation(s)
- Babaahmadi-Rezaei Hossein
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Biochemistry, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Faezeh Seif
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran,Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran ,P.O.Box: 159Hyperlipidemia Research CenterDepartment of Clinical BiochemistryFaculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
10
|
Afroz R, Kumarapperuma H, Nguyen QVN, Mohamed R, Little PJ, Kamato D. Lipopolysaccharide acting via toll-like receptor 4 transactivates the TGF-β receptor in vascular smooth muscle cells. Cell Mol Life Sci 2022; 79:121. [PMID: 35122536 PMCID: PMC8817999 DOI: 10.1007/s00018-022-04159-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) recognise pathogen‑associated molecular patterns, which allow the detection of microbial infection by host cells. Bacterial-derived toxin lipopolysaccharide activates TLR4 and leads to the activation of the Smad2 transcription factor. The phosphorylation of the Smad2 transcription factor is the result of the activation of the transforming growth factor-β receptor 1 (TGFBR1). Therefore, we sought to investigate LPS via TLR4-mediated Smad2 carboxy terminal phosphorylation dependent on the transactivation of the TGFBR1. The in vitro model used human aortic vascular smooth muscle cells to assess the implications of TLR4 transactivation of the TGFBR1 in vascular pathophysiology. We show that LPS-mediated Smad2 carboxy terminal phosphorylation is inhibited in the presence of TGFBR1 inhibitor, SB431542. Treatment with MyD88 and TRIF pathway antagonists does not affect LPS-mediated phosphorylation of Smad2 carboxy terminal; however, LPS-mediated Smad2 phosphorylation was inhibited in the presence of MMP inhibitor, GM6001, and unaffected in the presence of ROCK inhibitor Y27632 or ROS/NOX inhibitor DPI. LPS via transactivation of the TGFBR1 stimulates PAI-1 mRNA expression. TLRs are first in line to respond to exogenous invading substances and endogenous molecules; our findings characterise a novel signalling pathway in the context of cell biology. Identifying TLR transactivation of the TGFBR1 may provide future insight into the detrimental implications of pathogens in pathophysiology.
Collapse
Affiliation(s)
- Rizwana Afroz
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD, 4111, Australia
| | - Hirushi Kumarapperuma
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Quang V N Nguyen
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Raafat Mohamed
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Peter J Little
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou, 510520, China.,Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Danielle Kamato
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
11
|
Babaahmadi-Rezaei H, Little PJ, Mohamed R, Zadeh GM, Kheirollah A, Mehr RN, Kamato D, Dayati P. Endothelin-1 mediated glycosaminoglycan synthesizing gene expression involves NOX-dependent transactivation of the transforming growth factor-β receptor. Mol Cell Biochem 2022; 477:981-988. [PMID: 34982346 DOI: 10.1007/s11010-021-04342-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
G protein-coupled receptor (GPCR) agonist endothelin-1 (ET-1) through transactivation of the transforming growth factor (TGF) β receptor (TGFBR1) stimulates glycosaminoglycan (GAG) elongation on proteoglycans. GPCR agonists thrombin and lysophosphatidic acid (LPA) via respective receptors transactivate the TGFBR1 via Rho/ROCK dependent pathways however mechanistic insight for ET-1 transactivation of the TGFBR1 remains unknown. NADPH oxidase (NOX) generates reactive oxygen species (ROS) and is a signalling entity implicated in the pathogenesis of many diseases including atherosclerosis. If implicated in this pathway, NOX/ROS would be a potential therapeutic target. In this study, we investigated the involvement of NOX in ET-1/ET receptor-mediated transactivation of TGFBR1 to stimulate mRNA expression of GAG chain synthesizing enzymes chondroitin 4-O-sulfotransferase 1 (C4ST-1) and chondroitin sulfate synthase 1 (ChSy-1). The invitro model used vascular smooth muscle cells that were treated with pharmacological antagonists in the presence and absence of ET-1 or TGF-β. Proteins and phosphoproteins isolated from treated cells were quantified by western blotting and quantitative real-time PCR was used to assess mRNA expression of GAG synthesizing enzymes. In the presence of diphenyliodonium (DPI) (NOX inhibitor), ET-1 stimulated phospho-Smad2C levels were inhibited. ET-1 mediated mRNA expression of GAG synthesizing enzymes C4ST-1 and ChSy-1 was also blocked by TGBFR1 antagonists, SB431542, broad spectrum ET receptor antagonist bosentan, DPI and ROS scavenger N-acetyl-L-cysteine. This work shows that NOX and ROS play an important role in ET-1 mediated transactivation of the TGFBR1 and downstream gene targets associated with GAG chain elongation. As ROS is involved in GPCR to protein tyrosine kinase receptor transactivation, the NOX/ROS axis presents as the first common biochemical target in all GPCR to kinase receptor transactivation signalling.
Collapse
Affiliation(s)
- Hossein Babaahmadi-Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou, 510520, Guangdong, China
| | - Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia
| | - Ghorban Mohammad Zadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reyhaneh Niayesh Mehr
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia.
| | - Parisa Dayati
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Hosseinipour M, Rashidi M, Seif F, Babaahmadi-Rezaei H. Endothelin-1 Induced Phosphorylation of Caveolin-1 and Smad2C in Human Vascular Smooth Muscle Cells: Role of NADPH Oxidases, c-Abl, and Caveolae Integrity in TGF-β Receptor Transactivation. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:297-305. [PMID: 37727643 PMCID: PMC10506675 DOI: 10.22088/ijmcm.bums.11.4.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/22/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
Caveolin-1(Cav-1) is one of the most important components of caveolae in the cell membrane, which plays an important role in cell signaling transduction, such as EGFR and TGF-β receptor transactivation. The purpose of this study was to evaluate the effect of c-Abl and NAD(P)H oxidases (NOX) on phosphorylation of Cav-1 and consequently their effect on phosphorylation of Smad2C induced by Endothelin-1 in human vascular smooth muscle cells (VSMCs). In this study, all experiments were performed using human VSMCs. The phosphorylation level of the Caveolin-1 and Smad2C proteins were assessed by western blotting using Phospho-Caveolin-1 (Tyr14) antibody and phospho-Smad2 (Ser465/467) antibody. The data were reported as mean ± SEM. The VSMCs treated with endothelin-1(ET-1) (100 nanomolar (nmol)) demonstrated a time-dependent increase in the pCav-1 level (p<0.05). The inhibitors of NOX (diphenyleneiodonium) (p<0.05), cholesterol depleting agent (beta-cyclodextrin) (p<0.05) and c-Abl inhibitor (PP1) (p<0.01) were able to reduce the level of the phospho-Cav-1 and phospho-Smad2C induced by Et-1 (p<0.05). Our results proposed that caveolae structure, NOX, c-Abl played an important role in the phosphorylation of Cav-1 induced by ET-1 in the human VSMCs. Furthermore, our findings showed that phosphoCav-1 involved in TGFR transactivation. Thus, Et-1 via a transactivation-dependent mechanism can cause phosphorylation of Smad2C.
Collapse
Affiliation(s)
- Mahsa Hosseinipour
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mojtaba Rashidi
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Faezeh Seif
- Department of Basic sciences, Shoushtar Faculty of Medical sciences, Shoushtar, Iran.
| | - Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
13
|
Mohamed R, Shajimoon A, Afroz R, Gabr M, Thomas WG, Little PJ, Kamato D. Akt acts as a switch for GPCR transactivation of the TGF-β receptor type 1. FEBS J 2021; 289:2642-2656. [PMID: 34826189 DOI: 10.1111/febs.16297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/12/2021] [Accepted: 12/25/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor (TGF)-β signalling commences with the engagement of TGF-β ligand to cell surface TGF-β receptors (TGFBR) stimulating Smad2 carboxyl-terminal phosphorylation (phospho-Smad2C) and downstream biological responses. In several cell models, G protein-coupled receptors (GPCRs) transactivate the TGF-β receptors type-1 (TGFBR1) leading to phospho-Smad2C, however, we have recently published that in keratinocytes thrombin did not transactivate the TGFBR1. The bulk of TGFBRs reside in the cytosol and in response to protein kinase B (Akt phosphorylation) can translocate to the cell surface increasing the cell's responsiveness to TGF-β. In this study, we investigate the role of Akt in GPCR transactivation of the TGFBR1. We demonstrate that angiotensin II and thrombin do not phosphorylate Smad2C in human vascular smooth muscle cells and in keratinocytes respectively. We used Akt agonist, SC79 to sensitise the cells to Akt and observed that Ang II and thrombin phosphorylate Smad2C via Akt/AS160-dependent pathways. We show that SC79 rapidly translocates TGFBRs to the cell surface thus increasing the cell's response to the GPCR agonist. These findings highlight novel mechanistic insight for the role of Akt in GPCR transactivation of the TGFBR1.
Collapse
Affiliation(s)
- Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| | - Aravindra Shajimoon
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Rizwana Afroz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| | - Mai Gabr
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| |
Collapse
|
14
|
González-Titos A, Hernández-Camarero P, Barungi S, Marchal JA, Kenyon J, Perán M. Trypsinogen and chymotrypsinogen: potent anti-tumor agents. Expert Opin Biol Ther 2021; 21:1609-1621. [PMID: 33896307 DOI: 10.1080/14712598.2021.1922666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Trypsinogen and chymotrypsinogen have been used clinically in tissue repair due to their ability to resolve inflammatory symptoms. Recently, novel evidence has supported the anti-tumourigenic potential of a mixture of trypsinogen and chymotrypsinogen.Areas covered: First, we analyze the structure of these proteases and the effects of pancreatic proteinases on tissue repair, inflammation and the immune system. Second, we summarize studies that provided evidence of the effects of pancreatic (pro)enzymes on tumor cells both in vitro and in vivo and some successful clinical applications of pancreatic (pro)enzymes. Finally, we study pancreatic (pro)enzymes potential molecular targets, such as the proteinase-activated receptors (PARs).Expert opinion: This novel therapy has been shown to have effective antitumor effects. Treatment with these (pro) enzymes sensitizes Cancer Stem Cells (CSCs) which may allow chemotherapy and radiotherapy to be more effective, which could positively affect the recovery of cancer patients.
Collapse
Affiliation(s)
| | | | - Shivan Barungi
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (Ibs. GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (Mnat), University of Granada, Granada, Spain
| | - Julian Kenyon
- The Dove Clinic for Integrated Medicine, Twyford, UK
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain.,Excellence Research Unit "Modeling Nature" (Mnat), University of Granada, Granada, Spain
| |
Collapse
|
15
|
Zhou Y, Little PJ, Xu S, Kamato D. Curcumin Inhibits Lysophosphatidic Acid Mediated MCP-1 Expression via Blocking ROCK Signalling. Molecules 2021; 26:2320. [PMID: 33923651 PMCID: PMC8073974 DOI: 10.3390/molecules26082320] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Curcumin is a natural compound that has been widely used as a food additive and medicine in Asian countries. Over several decades, diverse biological effects of curcumin have been elucidated, such as anti-inflammatory and anti-oxidative activities. Monocyte chemoattractant protein-1 (MCP-1) is a key inflammatory marker during the development of atherosclerosis, and curcumin blocks MCP-1 expression stimulated by various ligands. Hence, we studied the action of curcumin on lysophosphatidic acid (LPA) mediated MCP-1 expression and explored the specific underlying mechanisms. In human vascular smooth muscle cells, LPA induces Rho-associated protein kinase (ROCK) dependent transforming growth factor receptor (TGFBR1) transactivation, leading to glycosaminoglycan chain elongation. We found that LPA also signals via the TGFBR1 transactivation pathway to regulate MCP-1 expression. Curcumin blocks LPA mediated TGFBR1 transactivation and subsequent MCP-1 expression by blocking the ROCK signalling. In the vasculature, ROCK signalling regulates smooth muscle cell contraction, inflammatory cell recruitment, endothelial dysfunction and vascular remodelling. Therefore, curcumin as a ROCK signalling inhibitor has the potential to prevent atherogenesis via multiple ways.
Collapse
Affiliation(s)
- Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Y.Z.); (D.K.)
| | - Peter J. Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Y.Z.); (D.K.)
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230037, China;
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Y.Z.); (D.K.)
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| |
Collapse
|
16
|
Zhou Y, Little PJ, Cao Y, Ta HT, Kamato D. Lysophosphatidic acid receptor 5 transactivation of TGFBR1 stimulates the mRNA expression of proteoglycan synthesizing genes XYLT1 and CHST3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118848. [PMID: 32920014 DOI: 10.1016/j.bbamcr.2020.118848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022]
Abstract
Lysophosphatidic acid (LPA) via transactivation dependent signalling pathways contributes to a plethora of physiological and pathophysiological responses. In the vasculature, hyperelongation of glycosaminoglycan (GAG) chains on proteoglycans leads to lipid retention in the intima resulting in the early pathogenesis of atherosclerosis. Therefore, we investigated and defined the contribution of transactivation dependent signalling in LPA mediated GAG chain hyperelongation in human vascular smooth muscle cells (VSMCs). LPA acting via the LPA receptor 5 (LPAR5) transactivates the TGFBR1 to stimulate the mRNA expression of GAG initiation and elongation genes xylosyltransferase-1 (XYLT1) and chondroitin 6-sulfotransferase-1 (CHST3), respectively. We found that LPA stimulates ROS and Akt signalling in VSMCs, however they are not associated in LPAR5 transactivation of the TGFBR1. We observed that LPA via ROCK dependent pathways transactivates the TGFBR1 to stimulate genes associated with GAG chain elongation. We demonstrate that GPCR transactivation of the TGFBR1 occurs via a universal biochemical mechanism and the identified effectors represent potential therapeutic targets to inhibit pathophysiological effects of GPCR transactivation of the TGFBR1.
Collapse
Affiliation(s)
- Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia.
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China.
| | - Yingnan Cao
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| | - Hang T Ta
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia; School of Environment and Science, Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia.
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China.
| |
Collapse
|
17
|
Stelcer E, Milecka P, Komarowska H, Jopek K, Tyczewska M, Szyszka M, Lesniczak M, Suchorska W, Bekova K, Szczepaniak B, Ruchala M, Karczewski M, Wierzbicki T, Szaflarski W, Malendowicz LK, Rucinski M. Adropin Stimulates Proliferation and Inhibits Adrenocortical Steroidogenesis in the Human Adrenal Carcinoma (HAC15) Cell Line. Front Endocrinol (Lausanne) 2020; 11:561370. [PMID: 33133015 PMCID: PMC7579427 DOI: 10.3389/fendo.2020.561370] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Adropin is a multifunctional peptide hormone encoded by the ENHO (energy homeostasis associated) gene. It plays a role in mechanisms related to increased adiposity, insulin resistance, as well as glucose, and lipid metabolism. The low adropin levels are strongly associated with obesity independent insulin resistance. On the other hand, overexpression or exogenous administration of adropin improves glucose homeostasis. The multidirectional, adropin-related effects associated with the regulation of metabolism in humans also appear to be attributable to the effects of this peptide on the activity of various elements of the endocrine system including adrenal cortex. Therefore, the main purpose of the present study was to investigate the effect of adropin on proliferation and secretory activity in the human HAC15 adrenal carcinoma cell line. In this study, we obtained several highly interesting findings. First, GPR19, the main candidate sensitizer of adrenocortical cells to adropin, was expressed in HAC15 cells. Moreover, GPR19 expression was relatively stable and not regulated by ACTH, forskolin, or adropin itself. Our findings also suggest that adropin has the capacity to decrease expression levels of steroidogenic genes such as steroidogenic acute regulatory protein (StAR) and CYP11A1, which then led to a statistically significant inhibition in cortisol and aldosterone biosynthesis and secretion. Based on whole transcriptome study and research involving transforming growth factor (TGF)-β type I receptor kinase inhibitor we demonstrated that attenuation of steroidogenesis caused by adropin is mediated by the TGF-β signaling pathway likely to act through transactivation mechanism. We found that HAC15 cells treated with adropin presented significantly higher proliferation levels than untreated cells. Using specific intracellular inhibitors, we showed that adropin stimulate proliferation via ERK1/2 and AKT dependent signaling pathways. We have also demonstrated that expression of GPR19 is elevated in adrenocortical carcinoma in relation to normal adrenal glands. High level of GPR19 expression in adrenocortical carcinoma may constitute a negative prognostic factor of disease progression.
Collapse
Affiliation(s)
- Ewelina Stelcer
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Lab, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Milecka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Hanna Komarowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Lesniczak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiktoria Suchorska
- Radiobiology Lab, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Karlygash Bekova
- West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Beata Szczepaniak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Karczewski
- Department of General and Transplantation Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Wierzbicki
- Department of General, Endocrinological and Gastroenterological Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ludwik K. Malendowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
18
|
Kamato D, Little PJ. Smad2 linker region phosphorylation is an autonomous cell signalling pathway: Implications for multiple disease pathologies. Biomed Pharmacother 2020; 124:109854. [DOI: 10.1016/j.biopha.2020.109854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
|
19
|
Afroz R, Zhou Y, Little PJ, Xu S, Mohamed R, Stow J, Kamato D. Toll-like Receptor 4 Stimulates Gene Expression via Smad2 Linker Region Phosphorylation in Vascular Smooth Muscle Cells. ACS Pharmacol Transl Sci 2020; 3:524-534. [PMID: 32566917 DOI: 10.1021/acsptsci.9b00113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Atherosclerosis begins in the vessel wall with the retention of low density lipoproteins to modified proteoglycans with hyperelongated glycosaminoglycan (GAG) chains. Bacterial infections produce endotoxins such as lipopolysaccharide that exacerbate the outcome of atherosclerosis by generating a heightened state of inflammation. Lipopolysaccharide (LPS) via its toll-like receptor (TLR) is well-known for its role in mediating an inflammatory response in the body. Emerging evidence demonstrates that TLRs are involved in regulating vascular functions. In this study we sought to investigate the role of LPS in proteoglycan modification and GAG chain elongation, and we hypothesize that LPS will signal via Smad2 dependent pathways to regulate GAG chain elongation. The in vitro model used human aortic vascular smooth muscle cells. GAG gene expression was assessed by quantitative real-time polymerase chain reaction. Western blotting was performed using whole-cell protein lysates to assess the signaling pathway. LPS via TLR4 stimulates the expression of GAG synthesizing enzymes to an equal extent to traditional cardiovascular agonists. LPS phosphorylates the Smad2 linker region via TAK-1/MAPK dependent pathways which correlated with genes associated with GAG chain initiation and elongation. The well-characterized role of LPS in inflammation and our data on GAG gene expression demonstrates that GAG chain elongation is the earliest marker of the inflammatory cascade in atherosclerosis development.
Collapse
Affiliation(s)
- Rizwana Afroz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| | - Suowen Xu
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Jennifer Stow
- Institute of Molecular Bioscience, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| |
Collapse
|
20
|
Kamato D, Do BH, Osman N, Ross BP, Mohamed R, Xu S, Little PJ. Smad linker region phosphorylation is a signalling pathway in its own right and not only a modulator of canonical TGF-β signalling. Cell Mol Life Sci 2020; 77:243-251. [PMID: 31407020 PMCID: PMC11104920 DOI: 10.1007/s00018-019-03266-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/16/2019] [Accepted: 08/05/2019] [Indexed: 01/01/2023]
Abstract
Transforming growth factor (TGF)-β signalling pathways are intensively investigated because of their diverse association with physiological and pathophysiological states. Smad transcription factors are the key mediators of TGF-β signalling. Smads can be directly phosphorylated in the carboxy terminal by the TGF-β receptor or in the linker region via multiple intermediate serine/threonine kinases. Growth factors in addition to hormones and TGF-β can activate many of the same kinases which can phosphorylate the Smad linker region. Historically, Smad linker region phosphorylation was shown to prevent nuclear translocation of Smads and inhibit TGF-β signalling pathways; however, it was subsequently shown that Smad linker region phosphorylation can be a driver of gene expression. This review will cover the signalling pathways of Smad linker region phosphorylation that drive the expression of genes involved in pathology and pathophysiology. The role of Smad signalling in cell biology is expanding rapidly beyond its role in TGF-β signalling and many signalling paradigms need to be re-evaluated in terms of Smad involvement.
Collapse
Affiliation(s)
- Danielle Kamato
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
- Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou, 510520, China.
| | - Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Narin Osman
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Benjamin P Ross
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Raafat Mohamed
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
- Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Suowen Xu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
- Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou, 510520, China
| |
Collapse
|
21
|
Mohamed R, Cao Y, Afroz R, Xu S, Ta HT, Barras M, Zheng W, Little PJ, Kamato D. ROS directly activates transforming growth factor β type 1 receptor signalling in human vascular smooth muscle cells. Biochim Biophys Acta Gen Subj 2020; 1864:129463. [DOI: 10.1016/j.bbagen.2019.129463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
|
22
|
Zhou Y, Little PJ, Ta HT, Xu S, Kamato D. Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease. Pharmacol Ther 2019; 204:107404. [DOI: 10.1016/j.pharmthera.2019.107404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
|
23
|
Mohamed R, Janke R, Guo W, Cao Y, Zhou Y, Zheng W, Babaahmadi-Rezaei H, Xu S, Kamato D, Little PJ. GPCR transactivation signalling in vascular smooth muscle cells: role of NADPH oxidases and reactive oxygen species. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:R1-R11. [PMID: 32923966 PMCID: PMC7439842 DOI: 10.1530/vb-18-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 02/02/2023]
Abstract
The discovery and extension of G-protein-coupled receptor (GPCR) transactivation-dependent signalling has enormously broadened the GPCR signalling paradigm. GPCRs can transactivate protein tyrosine kinase receptors (PTKRs) and serine/threonine kinase receptors (S/TKRs), notably the epidermal growth factor receptor (EGFR) and transforming growth factor-β type 1 receptor (TGFBR1), respectively. Initial comprehensive mechanistic studies suggest that these two transactivation pathways are distinct. Currently, there is a focus on GPCR inhibitors as drug targets, and they have proven to be efficacious in vascular diseases. With the broadening of GPCR transactivation signalling, it is therefore important from a therapeutic perspective to find a common transactivation pathway of EGFR and TGFBR1 that can be targeted to inhibit complex pathologies activated by the combined action of these receptors. Reactive oxygen species (ROS) are highly reactive molecules and they act as second messengers, thus modulating cellular signal transduction pathways. ROS are involved in different mechanisms of GPCR transactivation of EGFR. However, the role of ROS in GPCR transactivation of TGFBR1 has not yet been studied. In this review, we will discuss the involvement of ROS in GPCR transactivation-dependent signalling.
Collapse
Affiliation(s)
- Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Reearna Janke
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Wanru Guo
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Yingnan Cao
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Hossein Babaahmadi-Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Atherosclerosis Research Center, Ahvaz, Iran
| | - Suowen Xu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Kamato D, Ta H, Afroz R, Xu S, Osman N, Little PJ. Mechanisms of PAR-1 mediated kinase receptor transactivation: Smad linker region phosphorylation. J Cell Commun Signal 2019; 13:539-548. [PMID: 31290007 DOI: 10.1007/s12079-019-00527-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023] Open
Abstract
Protease activated receptors (PARs) transactivate both epidermal growth factor receptors (EGFR) and transforming growth factor (TGF)-β receptors (TGFBR1) in vascular smooth muscle leading to the increased expression of genes (CHST11 and CHSY1) which are rate limiting for the enzymes that mediate hyperelongation of glycosaminoglycan (GAG) chains on the lipid-binding proteoglycan, biglycan. This is an excellent model to investigate mechanisms of transactivation as the processes are biochemically distinct. EGFR transactivation is dependent on the classical matrix metalloprotease (MMP) based triple membrane bypass mechanism and TGFBR1 transactivation is dependent on Rho/ROCK signalling and integrins. We have shown that all kinase receptor signalling is targeted towards phosphorylation of the linker region of the transcription factor, Smad2. We investigated the mechanisms of thrombin mediated kinase receptor transactivation signalling using anti-phospho antibodies and Western blotting and gene expression by RT-PCR. Thrombin stimulation of phospho-Smad2 (Ser 245/250/255) and of phospho-Smad2(Thr220) via EGFR transactivation commences quickly and extends out to at least 4 h whereas transactivation via TGFBR1 is delayed for 120 min but also persists for at least 4 h. Signalling of thrombin stimulated Smad linker region phosphorylation is approximately equally inhibited by the MMP inhibitor, GM6001 and the ROCK inhibitor, Y27632, and similarly expression of CHST11 and CHSY1 is approximately equally inhibited by GM6001 and Y27632. The data establishes Smad linker region phosphorylation as a central target of all transactivation signalling of GAG gene expression and thus an upstream kinase may be a target to prevent all transactivation signalling and its pathophysiological consequences.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia. .,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China.
| | - Hang Ta
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Rizwana Afroz
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, 3004, Australia
| | - Peter J Little
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China
| |
Collapse
|
25
|
Seif F, Little PJ, Niayesh-Mehr R, Zamanpour M, Babaahmadi-Rezaei H. Endothelin-1 increases CHSY-1 expression in aortic endothelial cells via transactivation of transforming growth factor β type I receptor induced by type B receptor endothelin-1. J Pharm Pharmacol 2019; 71:988-995. [DOI: 10.1111/jphp.13081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/12/2019] [Indexed: 12/29/2022]
Abstract
Abstract
Objectives
TGF-β through hyperelongation of glycosaminoglycan (GAG) chains leads to binding of low-density lipoproteins to the proteoglycans. The vasoactive peptide, endothelin-1 (ET-1), plays a key role in the development of atherosclerosis. This study addressed the question whether ET-1 by activating the Rho kinase and cytoskeletal rearrangement can transactivate the TGF-β receptor leading to phosphorylation of the transcription factor Smad2 and increased expression of the GAG chain synthesizing enzyme such as chondroitin synthase-1 (CHSY-1) in bovine aortic endothelial cells (BAECs).
Methods
In this study, intermediates in ET-1-induced Smad2C phosphorylation and the protein level of CHSY-1 were identified and quantified by Western blotting.
Key findings
Endothelin-1 caused time-dependent phosphorylation of Smad2C which was inhibited in the presence of the endothelin B receptor antagonist, BQ788. The response to ET-1 was inhibited by the Rho/ROCK kinase antagonist, Y27632 and by cytochalasin D, an inhibitor of actin polymerization but the ET-1-mediated pSmad2C was not inhibited by the matrix metalloproteinase (MMP) inhibitor, GM6001. ET-1 increased CHSY-1 protein level, which was inhibited in the presence of BQ788, cytochalasin D and Y27632.
Conclusions
Endothelin-1 signalling via the ETB receptor utilizes cytoskeletal rearrangement and Rho kinase but not MMPs leading to TβRI transactivation signalling and phosphorylation of Smad2C and through this pathway increased the level of CHSY-1.
Collapse
Affiliation(s)
- Faezeh Seif
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Reyhaneh Niayesh-Mehr
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoumeh Zamanpour
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Kamato D, Burch M, Zhou Y, Mohamed R, Stow JL, Osman N, Zheng W, Little PJ. Individual Smad2 linker region phosphorylation sites determine the expression of proteoglycan and glycosaminoglycan synthesizing genes. Cell Signal 2018; 53:365-373. [PMID: 30423352 DOI: 10.1016/j.cellsig.2018.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/04/2023]
Abstract
Growth factors such as thrombin and transforming growth factor (TGF)-β facilitate glycosaminoglycan (GAG) chain hyperelongation on proteoglycans, a phenomenon that increases lipoprotein binding in the vessel wall and the development of atherosclerosis. TGF-β signals via canonical carboxy terminal phosphorylation of R-Smads and also non-canonical linker region phosphorylation of R-Smads. The G protein coupled receptor agonist, thrombin, can transactivate the TGF-β receptor leading to both canonical and non-canonical Smad signalling. Linker region phosphorylation drives the expression of genes for the synthesis of the proteoglycan, biglycan. Proteoglycan synthesis involves core protein synthesis, the initiation of GAG chains and the subsequent elongation of GAG chains. We have explored the relationship between the thrombin stimulated phosphorylation of individual serine and threonine sites in the linker region of Smad2 and the expression of GAG initiation xylosyltransferase-1 (XT-1) and GAG elongation chondroitin 4-sulfotransferase-1 (C4ST-1) and chondroitin synthase-1 (CHSY-1) genes. Thrombin stimulated the phosphorylation of all four target residues (Thr220, Ser245, Ser250 and Ser255 residues) with a similar temporal pattern - phosphorylation was maximal at 15 min (the earliest time point studied) and the level of the phospho-proteins declined thereafter over the following 4 h. Jnk, p38 and PI3K, selectively mediated the phosphorylation of the Thr220 residue whereas the serine residues were variously phosphorylated by multiple kinases. Thrombin stimulated the expression of all three genes - XT-1, C4ST-1 and CHSY-1. The three pathways mediating Thr220 phosphorylation were also involved in the expression of XT-1. The target pathways (excluding Jnk) were involved in the expression of the GAG elongation genes (C4ST-1 and CHSY-1). These findings support the contention that individual Smad linker region phosphorylation sites are linked to the expression of genes for the initiation and elongation of GAG chains on proteoglycans. The context of this work is that a specific inhibitor of GAG elongation represents a potential therapeutic agent for preventing GAG elongation and lipid binding and the results indicate that the specificity of the pathways is such that it might be therapeutically feasible to specifically target GAG elongation without interfering with other physiological processes with which proteoglycans are involved.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China.
| | - Micah Burch
- Department of Cardiovascular Medicine, Brigham and Harvard Medical School, Boston, MA 02115, USA
| | - Ying Zhou
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia
| | - Raafat Mohamed
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4067, Australia
| | - Narin Osman
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Wenhua Zheng
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; Faculty of Health Sciences, University of Macau, Taipa, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| |
Collapse
|
27
|
Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. ACTA ACUST UNITED AC 2018; 2. [PMID: 31380505 PMCID: PMC6677404 DOI: 10.20517/2574-1209.2018.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets. We overview GPCRs function in vasoconstriction, vasodilation, vascular inflammation-driven remodeling and describe signaling cross talk between GPCR, inflammatory cytokines, and growth factors. Overall, the goal of this review is to emphasize the importance of GPCRs as critical signal transducers and targets for drug development in PH.
Collapse
Affiliation(s)
- Derek Strassheim
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vijaya Karoor
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.,Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
28
|
Afroz R, Cao Y, Rostam MA, Ta H, Xu S, Zheng W, Osman N, Kamato D, Little PJ. Signalling pathways regulating galactosaminoglycan synthesis and structure in vascular smooth muscle: Implications for lipoprotein binding and atherosclerosis. Pharmacol Ther 2018; 187:88-97. [DOI: 10.1016/j.pharmthera.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
G protein coupled receptors can transduce signals through carboxy terminal and linker region phosphorylation of Smad transcription factors. Life Sci 2018; 199:10-15. [DOI: 10.1016/j.lfs.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 11/22/2022]
|
30
|
Talati N, Kamato D, Piva TJ, Little PJ, Osman N. Thrombin promotes PAI-1 expression and migration in keratinocytes via ERK dependent Smad linker region phosphorylation. Cell Signal 2018; 47:37-43. [PMID: 29577978 DOI: 10.1016/j.cellsig.2018.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/19/2018] [Accepted: 03/20/2018] [Indexed: 01/18/2023]
Abstract
Keratinocyte proliferation and migration is essential during re-epithelialisation for the restoration of the epithelial barrier during skin wound healing. Numerous growth factors are involved in the stimulation of keratinocyte proliferation and migration. The signalling pathways that drive these processes during wound healing are not well defined. This study investigated thrombin-mediated signalling in keratinocytes. The thrombin receptor, protease-activated receptor 1 (PAR-1) is a seven transmembrane G-protein coupled receptor that is known to transactivate the epidermal growth factor receptor (EGFR). Immortalized human keratinocytes (HaCaT cells) were treated with thrombin and selective inhibitors to EGFR and MAP kinases. Whole cell lysates were separated on SDS-PAGE and analysed by Western blot using antibodies against transcription factor Smad2. Quantitative real-time polymerase chain reaction was used to measure the mRNA expression of PAI-1 while scratch wound assays were used to measure keratinocyte migration. Western blot data showed that thrombin mediates PAR-1 transactivation of EGFR and the downstream phosphorylation of the transcription factor Smad2 linker (Smad2L) region. ERK1/2 inhibition by UO126 caused a decrease in Smad2L phosphorylation while the p38 inhibitor SB202190 and JNK inhibitor SP600125 did not. Smad2L Ser250 was specifically phosphorylated by this thrombin mediated pathway while Ser245 and Ser255 were not. Thrombin increased PAI-1 mRNA expression and keratinocyte migration and this was reduced when either EGFR or ERK1/2 were blocked. Taken together these results show that thrombin mediated mRNA expression of PAI-1 in keratinocytes and migration occurs via EGFR transactivation and involves signalling intermediates ERK1/2 and Smad2 and may be a key pathway in skin wound healing.
Collapse
Affiliation(s)
- Nirali Talati
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia
| | - Terrence J Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Immunology, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
31
|
Yao ZH, Xie HJ, Yuan YL, Huo YT, Cao J, Lai WY, Cai RJ, Cheng YX. Contraction-dependent TGF-β1 activation is required for thrombin-induced remodeling in human airway smooth muscle cells. Life Sci 2018; 197:130-139. [PMID: 29428600 DOI: 10.1016/j.lfs.2018.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/08/2023]
Abstract
AIMS Thrombin is a serine proteinase that is not only involved in coagulation cascade, but also mediates a number of biological responses relevant to tissues repair, and induces bronchoconstriction. TGF-β plays a pivotal role in airway remodeling due to its effects on airway smooth muscle proliferation and extracellular matrix (ECM) deposition. Recently, bronchoconstriction itself is found to constitute a form of strain and is highly relevant to asthmatic airway remodeling. However, the underlying mechanisms remain unknown. Here, we investigated the role of contraction- dependent TGF-β activation in thrombin-induced remodeling in human airway smooth muscle (HASM) cells. MATERIALS AND METHODS Primary HASM cells were treated with or without thrombin in the absence or presence of anti-TGF-β antibody, cytochalasin D and formoterol. CFSE labeling index or CCK-8 assay were performed to test cell proliferation. RT-PCR and Western blotting were used to examined ECM mRNA level and collagen Iα1, α-actin protein expression, respectively. Immunofluorescence was also used to confirm contraction induced by thrombin in HASM cells. KEY FINDING Thrombin stimulation enhanced HASM cells proliferation and activated TGF-β signaling. Thrombin induced ECM mRNA and collagen Iα1 protein expression, and these effects are mediated by TGF-β. Abrogation of TGF-β activation by contraction inhibitors cytochalasin D and formoterol prevents the thrombin-induced effects. SIGNIFICANCE These findings suggest that contraction-dependent TGF-β activation could be a mechanism by which thrombin leads to the development of asthmatic airway remodeling. Blocking physical forces with bronchodilator would be an intriguing way in reducing airway remodeling in asthma.
Collapse
Affiliation(s)
- Zhi-Hui Yao
- Department of Respiratory Disease, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Department of Respiratory Disease, Hengyang NO.1 Peoples Hospital, Hengyang, Hunan, China
| | - Hao-Jun Xie
- Department of Respiratory Disease, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ya-Lu Yuan
- Department of Respiratory Disease, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Department of Critical Care Medicine, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Ya-Ting Huo
- Department of Respiratory Disease, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jing Cao
- Department of Respiratory Disease, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wen-Yan Lai
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui-Jun Cai
- Department of Thoracic Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan-Xiong Cheng
- Department of Respiratory Disease, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Yu S, Sun L, Jiao Y, Lee LTO. The Role of G Protein-coupled Receptor Kinases in Cancer. Int J Biol Sci 2018; 14:189-203. [PMID: 29483837 PMCID: PMC5821040 DOI: 10.7150/ijbs.22896] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/17/2017] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of plasma membrane receptors. Emerging evidence demonstrates that signaling through GPCRs affects numerous aspects of cancer biology such as vascular remolding, invasion, and migration. Therefore, development of GPCR-targeted drugs could provide a new therapeutic strategy to treating a variety of cancers. G protein-coupled receptor kinases (GRKs) modulate GPCR signaling by interacting with the ligand-activated GPCR and phosphorylating its intracellular domain. This phosphorylation initiates receptor desensitization and internalization, which inhibits downstream signaling pathways related to cancer progression. GRKs can also regulate non-GPCR substrates, resulting in the modulation of a different set of pathophysiological pathways. In this review, we will discuss the role of GRKs in modulating cell signaling and cancer progression, as well as the therapeutic potential of targeting GRKs.
Collapse
Affiliation(s)
- Shan Yu
- Centre of Reproduction Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Litao Sun
- Department of Ultrasound, The Secondary Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yufei Jiao
- Department of Pathology, The Secondary Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Leo Tsz On Lee
- Centre of Reproduction Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
33
|
Kamato D, Bhaskarala VV, Mantri N, Oh TG, Ling D, Janke R, Zheng W, Little PJ, Osman N. RNA sequencing to determine the contribution of kinase receptor transactivation to G protein coupled receptor signalling in vascular smooth muscle cells. PLoS One 2017; 12:e0180842. [PMID: 28719611 PMCID: PMC5515425 DOI: 10.1371/journal.pone.0180842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/22/2017] [Indexed: 02/02/2023] Open
Abstract
G protein coupled receptor (GPCR) signalling covers three major mechanisms. GPCR agonist engagement allows for the G proteins to bind to the receptor leading to a classical downstream signalling cascade. The second mechanism is via the utilization of the β-arrestin signalling molecule and thirdly via transactivation dependent signalling. GPCRs can transactivate protein tyrosine kinase receptors (PTKR) to activate respective downstream signalling intermediates. In the past decade GPCR transactivation dependent signalling was expanded to show transactivation of serine/threonine kinase receptors (S/TKR). Kinase receptor transactivation enormously broadens the GPCR signalling paradigm. This work utilizes next generation RNA-sequencing to study the contribution of transactivation dependent signalling to total protease activated receptor (PAR)-1 signalling. Transactivation, assessed as gene expression, accounted for 50 percent of the total genes regulated by thrombin acting through PAR-1 in human coronary artery smooth muscle cells. GPCR transactivation of PTKRs is approximately equally important as the transactivation of the S/TKR with 209 and 177 genes regulated respectively, via either signalling pathway. This work shows that genome wide studies can provide powerful insights into GPCR mediated signalling pathways.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- * E-mail:
| | - Venkata Vijayanand Bhaskarala
- Department of Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| | - Nitin Mantri
- Department of Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| | - Tae Gyu Oh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld, Australia
| | - Dora Ling
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Reearna Janke
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, China
| | - Narin Osman
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- Diabetes Complications Group, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Monash University, Departments of Medicine and Immunology, Central and Eastern Clinical School, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Kamato D, Mitra P, Davis F, Osman N, Chaplin R, Cabot PJ, Afroz R, Thomas W, Zheng W, Kaur H, Brimble M, Little PJ. Ga q proteins: molecular pharmacology and therapeutic potential. Cell Mol Life Sci 2017; 74:1379-1390. [PMID: 27815595 PMCID: PMC11107756 DOI: 10.1007/s00018-016-2405-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Abstract
Seven transmembrane G protein-coupled receptors (GPCRs) have gained much interest in recent years as it is the largest class among cell surface receptors. G proteins lie in the heart of GPCRs signalling and therefore can be therapeutically targeted to overcome complexities in GPCR responses and signalling. G proteins are classified into four families (Gi, Gs, G12/13 and Gq); Gq is further subdivided into four classes. Among them Gαq and Gαq/11 isoforms are most crucial and ubiquitously expressed; these isoforms are almost 88% similar at their amino acid sequence but may exhibit functional divergences. However, uncertainties often arise about Gαq and Gαq/11 inhibitors, these G proteins might also have suitability to the invention of novel-specific inhibitors for each isoforms. YM-254890 and UBO-QIC are discovered as potent inhibitors of Gαq functions and also investigated in thrombin protease-activated receptor (PAR)-1 inhibitors and platelet aggregation inhibition. The most likely G protein involved in PAR-1 stimulates responses is one of the Gαq family isoforms. In this review, we highlight the molecular structures and pharmacological responses of Gαq family which may reflect the biochemical and molecular role of Gαq and Gαq/11. The advanced understanding of Gαq and Gαq/11 role in GPCR signalling may shed light on our understanding on cell biology, cellular physiology and pathophysiology and also lead to the development of novel therapeutic agents for a number of diseases.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Partha Mitra
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Felicity Davis
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Narin Osman
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
- Department of Immunology, Monash University, Melbounre, VIC, 3004, Australia
| | - Rebecca Chaplin
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Rizwana Afroz
- Department of Biochemistry, Primeasia University, Banani, 1213, Bangladesh
| | - Walter Thomas
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4102, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Harveen Kaur
- Department of Chemistry, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret Brimble
- Department of Chemistry, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
- Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
35
|
Insights into cellular signalling by G protein coupled receptor transactivation of cell surface protein kinase receptors. J Cell Commun Signal 2017; 11:117-125. [PMID: 28168348 DOI: 10.1007/s12079-017-0375-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
G protein coupled receptor (GPCR) signalling is mediated by transactivation independent and transactivation dependent pathways. GPCRs transactivate protein tyrosine kinase receptors (PTKRs) and protein serine/threonine kinase receptors (PS/TKR). Since the initial observations of transactivation dependent signalling, there has been an effort to understand the mechanisms behind this phenomena. GPCR signalling has evolved to include biased signalling. Biased signalling, whereby selected ligands can activate the same GPCR that can generate multiple signals, but drive only a unique response. To date, there has been no focus on the ability of biased agonists to activate the PTKR and PS/TKR transactivation pathways differentially. As such, this represents a novel direction for future research. This review will discuss the main mechanisms of GPCR mediated receptor transactivation and the pathways involved in intracellular responses.
Collapse
|
36
|
Sharifat N, Mohammad Zadeh G, Ghaffari MA, Dayati P, Kamato D, Little PJ, Babaahmadi-Rezaei H. Endothelin-1 (ET-1) stimulates carboxy terminal Smad2 phosphorylation in vascular endothelial cells by a mechanism dependent on ET receptors and de novo protein synthesis. ACTA ACUST UNITED AC 2016; 69:66-72. [PMID: 27905105 DOI: 10.1111/jphp.12654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/18/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE G protein-coupled receptor (GPCR) agonists through their receptors can transactivate protein tyrosine kinase receptors such as epidermal growth factor receptor and serine/threonine kinase receptors most notably transforming growth factor (TGF)-β receptor (TβRI). This signalling mechanism represents a major expansion in the cellular outcomes attributable to GPCR signalling. This study addressed the role and mechanisms involved in GPCR agonist, endothelin-1 (ET-1)-mediated transactivation of the TβRI in bovine aortic endothelial cells (BAECs). METHOD The in-vitro model used BAECs. Signalling intermediate phospho-Smad2 in the carboxy terminal was detected and quantified by Western blotting. KEY FINDING ET-1 treatment of BAECs resulted in a time and concentration-dependent increase in pSmad2C. Peak phosphorylation was evident with 100 nm treatment of ET-1 at 4-6 h. TβRI antagonist, SB431542 inhibited ET-1-mediated pSmad2C. In the presence of bosentan, a mixed ETA and ETB receptor antagonist ET-1-mediated pSmad2C levels were inhibited. The ET-mediated pSmad2C was blocked by the protein synthesis inhibitor, cycloheximide. CONCLUSION In BAECs, ET-1 via the ETB receptor is involved in transactivation of the TβRI. The transactivation-dependent response is dependent upon de novo protein synthesis.
Collapse
Affiliation(s)
- Narges Sharifat
- Student Research Committee, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghorban Mohammad Zadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Ali Ghaffari
- Cellular and Molecular Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Parisa Dayati
- Student Research Committee, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Danielle Kamato
- Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia
| | - Hossein Babaahmadi-Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Atherosclerosis Research Center, Ahvaz, Iran
| |
Collapse
|
37
|
Al Gwairi O, Osman N, Getachew R, Zheng W, Liang XL, Kamato D, Thach L, Little PJ. Multiple Growth Factors, But Not VEGF, Stimulate Glycosaminoglycan Hyperelongation in Retinal Choroidal Endothelial Cells. Int J Biol Sci 2016; 12:1041-51. [PMID: 27570478 PMCID: PMC4997048 DOI: 10.7150/ijbs.16134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023] Open
Abstract
A major feature of early age-related macular degeneration (AMD) is the thickening of Bruch's membrane in the retina and an alteration in its composition with increased lipid deposition. In certain pathological conditions proteoglycans are responsible for lipid retention in tissues. Growth factors are known to increase the length of glycosaminoglycan chains and this can lead to a large increase in the interaction between proteoglycans and lipids. Using choroidal endothelial cells, we investigated the effects of a number of AMD relevant growth factors TGFβ, thrombin, PDGF, IGF and VEGF on proteoglycan synthesis. Cells were characterized as of endothelial origin using the specific cell markers endothelial nitric oxide synthesis and von Willebrand factor and imaged using confocal microscopy. Cells were treated with growth factors in the presence and absence of the appropriate inhibitors and were radiolabeled with [35S]-SO4. Proteoglycans were isolated by ion exchange chromatography and sized using SDS-PAGE. Radiosulfate incorporation was determined by the cetylpyridinium chloride (CPC) precipitation technique. To measure cellular glycosaminoglycan synthesizing capacity we added xyloside and assessed the xyloside-GAGs by SDS-PAGE. TGFβ, thrombin, PDGF & IGF dose-dependently stimulated radiosulfate incorporation and GAG elongation as well as xyloside-GAG synthesis, however VEGF treatment did not stimulate any changes in proteoglycan synthesis. VEGF did not increase pAKT but caused a large increase in pERK relative to the response to PDGF. Thus, AMD relevant agonists cause glycosaminoglycan hyperelongation of proteoglycans synthesised and secreted by retinal choroidal endothelial cells. The absence of a response to VEGF is intriguing and identifies proteoglycans as a novel potential target in AMD. Future studies will examine the relevance of these changes to enhanced lipid binding and the development of AMD.
Collapse
Affiliation(s)
- Othman Al Gwairi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia;; Department of Immunology, Monash University, Melbourne 3004 VIC, Australia
| | - Robel Getachew
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China;; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510006, China
| | - X-L Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Danielle Kamato
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Lyna Thach
- School of Pharmacy. The University of Queensland, Wooloongabba, QLD 4102, Australia
| | - Peter J Little
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia;; School of Pharmacy. The University of Queensland, Wooloongabba, QLD 4102, Australia
| |
Collapse
|
38
|
The role of specific Smad linker region phosphorylation in TGF-β mediated expression of glycosaminoglycan synthesizing enzymes in vascular smooth muscle. Cell Signal 2016; 28:956-66. [PMID: 27153775 DOI: 10.1016/j.cellsig.2016.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 01/15/2023]
Abstract
Hyperelongation of glycosaminoglycan chains on proteoglycans facilitates increased lipoprotein binding in the blood vessel wall and the development of atherosclerosis. Increased mRNA expression of glycosaminoglycan chain synthesizing enzymes in vivo is associated with the development of atherosclerosis. In human vascular smooth muscle, transforming growth factor-β (TGF-β) regulates glycosaminoglycan chain hyperelongation via ERK and p38 as well as Smad2 linker region (Smad2L) phosphorylation. In this study, we identified the involvement of TGF-β receptor, intracellular serine/threonine kinases and specific residues on transcription factor Smad2L that regulate glycosaminoglycan synthesizing enzymes. Of six glycosaminoglycan synthesizing enzymes, xylosyltransferase-1, chondroitin sulfate synthase-1, and chondroitin sulfotransferase-1 were regulated by TGF-β. In addition ERK, p38, PI3K and CDK were found to differentially regulate mRNA expression of each enzyme. Four individual residues in the TGF-β receptor mediator Smad2L can be phosphorylated by these kinases and in turn regulate the synthesis and activity of glycosaminoglycan synthesizing enzymes. Smad2L Thr220 was phosphorylated by CDKs and Smad2L Ser250 by ERK. p38 selectively signalled via Smad2L Ser245. Phosphorylation of Smad2L serine residues induced glycosaminoglycan synthesizing enzymes associated with glycosaminoglycan chain elongation. Phosphorylation of Smad2L Thr220 was associated with XT-1 enzyme regulation, a critical enzyme in chain initiation. These findings provide a deeper understanding of the complex signalling pathways that contribute to glycosaminoglycan chain modification that could be targeted using pharmacological agents to inhibit the development of atherosclerosis.
Collapse
|
39
|
Yang WH, Deng YT, Hsieh YP, Wu KJ, Kuo MYP. Thrombin Activates Latent TGFβ1 via Integrin αvβ1 in Gingival Fibroblasts. J Dent Res 2016; 95:939-45. [PMID: 26912222 DOI: 10.1177/0022034516634288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transforming growth factor β (TGFβ) regulates cell proliferation, differentiation, migration, apoptosis, and extracellular matrix production. It also plays a pivotal role in the pathogenesis of gingival overgrowth. Thrombin is a key player in tissue repair, remodeling, and fibrosis after an injury, and it exerts profibrotic effects by activating protease-activated receptors. Connective tissue growth factor (CTGF or CCN2) modulates cell adhesion, migration, proliferation, matrix production, and wound healing. It is overexpressed in many fibrotic disorders, including gingival overgrowth, and it is positively associated with the degree of fibrosis in gingival overgrowth. In human gingival fibroblasts, we previously found that TGFβ1 induced CCN2 protein synthesis through c-jun N-terminal kinase and Smad3 activation. Thrombin stimulates CCN2 synthesis through protease-activated receptor 1 and c-jun N-terminal kinase signaling. Curcumin inhibited TGFβ1- and thrombin-induced CCN2 synthesis. In this study, we demonstrated that thrombin and protease-activated receptor 1 agonist SFLLRN induced latent TGFβ1 activation and Smad3 phosphorylation in human gingival fibroblasts. Pretreatment with a TGFβ-neutralizing antibody, TGFβ type I receptor inhibitor SB431542, and Smad3 inhibitor SIS3 inhibited approximately 86%, 94%, and 100% of thrombin-induced CCN2 synthesis, respectively. Furthermore, blocking integrin subunits αv and β1 with antibodies effectively inhibited SFLLRN-induced Smad3 phosphorylation and CCN2 synthesis and increased activated TGFβ1 levels; however, similar effects were not observed for integrins αvβ3 and αvβ5. These results suggest that protease-activated receptor 1-induced CCN2 synthesis in human gingival fibroblasts is mediated through integrin αvβ1-induced latent TGFβ1 activation and subsequent TGFβ1 signaling. Moreover, curcumin dose dependently decreased thrombin-induced activated TGFβ1 levels. Curcumin-inhibited thrombin-induced CCN2 synthesis in human gingival fibroblasts is caused by the suppression of latent TGFβ1 activation.
Collapse
Affiliation(s)
- W H Yang
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Y T Deng
- Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Y P Hsieh
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - K J Wu
- Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - M Y P Kuo
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Little PJ, Hollenberg MD, Kamato D, Thomas W, Chen J, Wang T, Zheng W, Osman N. Integrating the GPCR transactivation-dependent and biased signalling paradigms in the context of PAR1 signalling. Br J Pharmacol 2016; 173:2992-3000. [PMID: 26624252 DOI: 10.1111/bph.13398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/07/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022] Open
Abstract
Classically, receptor-mediated signalling was conceived as a linear process involving one agonist, a variety of potential targets within a receptor family (e.g. α- and β-adrenoceptors) and a second messenger (e.g. cAMP)-triggered response. If distinct responses were stimulated by the same receptor in different tissues (e.g. lipolysis in adipocytes vs. increased beating rate in the heart caused by adrenaline), the differences were attributed to different second messenger targets in the different tissues. It is now realized that an individual receptor can couple to multiple effectors (different G proteins and different β-arrestins), even in the same cell, to drive very distinct responses. Furthermore, tailored agonists can mould the receptor conformation to activate one signal pathway versus another by a process termed 'biased signalling'. Complicating issues further, we now know that activating one receptor can rapidly trigger the local release of agonists for a second receptor via a process termed 'transactivation'. Thus, the end response can represent a cooperative signalling process involving two or more receptors linked by transactivation. This overview, with a focus on the GPCR, protease-activated receptor-1, integrates both of these processes to predict the complex array of responses that can arise when biased receptor signalling also involves the receptor transactivation process. The therapeutic implications of this signalling matrix are also briefly discussed. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- P J Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia. .,School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia. .,Xinhua College of Sun Yat-sen University, Guangzhou, China.
| | - M D Hollenberg
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - D Kamato
- School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
| | - W Thomas
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - J Chen
- Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - T Wang
- Xinhua College of Sun Yat-sen University, Guangzhou, China.,Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - W Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China
| | - N Osman
- School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia.,Department of Immunology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Protease activated receptor-1 mediated dual kinase receptor transactivation stimulates the expression of glycosaminoglycan synthesizing genes. Cell Signal 2016; 28:110-9. [DOI: 10.1016/j.cellsig.2015.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/04/2015] [Indexed: 11/21/2022]
|
42
|
Kamato D, Thach L, Bernard R, Chan V, Zheng W, Kaur H, Brimble M, Osman N, Little PJ. Structure, Function, Pharmacology, and Therapeutic Potential of the G Protein, Gα/q,11. Front Cardiovasc Med 2015; 2:14. [PMID: 26664886 PMCID: PMC4671355 DOI: 10.3389/fcvm.2015.00014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
G protein coupled receptors (GPCRs) are one of the major classes of cell surface receptors and are associated with a group of G proteins consisting of three subunits termed alpha, beta, and gamma. G proteins are classified into four families according to their α subunit; Gαi, Gαs, Gα12/13, and Gαq. There are several downstream pathways of Gαq of which the best known is upon activation via guanosine triphosphate (GTP), Gαq activates phospholipase Cβ, hydrolyzing phosphatidylinositol 4,5-biphosphate into diacylglycerol and inositol triphosphate and activating protein kinase C and increasing calcium efflux from the endoplasmic reticulum. Although G proteins, in particular, the Gαq/11 are central elements in GPCR signaling, their actual roles have not yet been thoroughly investigated. The lack of research of the role on Gαq/11 in cell biology is partially due to the obscure nature of the available pharmacological agents. YM-254890 is the most useful Gαq-selective inhibitor with antiplatelet, antithrombotic, and thrombolytic effects. YM-254890 inhibits Gαq signaling pathways by preventing the exchange of guanosine diphosphate for GTP. UBO-QIC is a structurally similar compound to YM-254890, which can inhibit platelet aggregation and cause vasorelaxation in rats. Many agents are available for the study of signaling downstream of Gαq/11. The role of G proteins could potentially represent a novel therapeutic target. This review will explore the range of pharmacological and molecular tools available for the study of the role of Gαq/11 in GPCR signaling.
Collapse
Affiliation(s)
- Danielle Kamato
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Lyna Thach
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Rebekah Bernard
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Vincent Chan
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Wenhua Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre , Guangzhou , China ; Faculty of Health Sciences, University of Macau , Macau , China
| | - Harveen Kaur
- Department of Chemistry, University of Auckland , Auckland , New Zealand
| | - Margaret Brimble
- Department of Chemistry, University of Auckland , Auckland , New Zealand
| | - Narin Osman
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Peter J Little
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| |
Collapse
|
43
|
Kamato D, Rostam MA, Bernard R, Piva TJ, Mantri N, Guidone D, Zheng W, Osman N, Little PJ. The expansion of GPCR transactivation-dependent signalling to include serine/threonine kinase receptors represents a new cell signalling frontier. Cell Mol Life Sci 2015; 72:799-808. [PMID: 25384733 PMCID: PMC11113717 DOI: 10.1007/s00018-014-1775-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptor (GPCR) signalling is mediated through transactivation-independent signalling pathways or the transactivation of protein tyrosine kinase receptors and the recently reported activation of the serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Since the original observation of GPCR transactivation of protein tyrosine kinase receptors, there has been considerable work on the mechanism of transactivation and several pathways are prominent. These pathways include the "triple membrane bypass" pathway and the generation of reactive oxygen species. The recent recognition of GPCR transactivation of serine/threonine kinase receptors enormously broadens the GPCR signalling paradigm. It may be predicted that the transactivation of serine/threonine kinase receptors would have mechanistic similarities with transactivation of tyrosine kinase pathways; however, initial studies suggest that these two transactivation pathways are mechanistically distinct. Important questions are the relative importance of tyrosine and serine/threonine transactivation pathways, the contribution of transactivation to overall GPCR signalling, mechanisms of transactivation and the range of cell types in which this phenomenon occurs. The ultimate significance of transactivation-dependent signalling remains to be defined but it appears to be prominent and if so will represent a new cell signalling frontier.
Collapse
Affiliation(s)
- Danielle Kamato
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Muhamad Ashraf Rostam
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Rebekah Bernard
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- Discipline of Cell Biology and Anatomy, School of Medical Sciences and Health Innovations Research Institute, Bundoora, VIC 3083 Australia
| | - Nitin Mantri
- School of Applied Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Daniel Guidone
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Wenhua Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Narin Osman
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
- Department of Medicine, Nursing and Health Sciences and Immunology, Monash University School of Medicine (Central and Eastern Clinical School, Alfred Health), Prahran, VIC 3004 Australia
| | - Peter J. Little
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
- Department of Medicine, Nursing and Health Sciences and Immunology, Monash University School of Medicine (Central and Eastern Clinical School, Alfred Health), Prahran, VIC 3004 Australia
| |
Collapse
|
44
|
Cattaneo F, Guerra G, Parisi M, De Marinis M, Tafuri D, Cinelli M, Ammendola R. Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int J Mol Sci 2014; 15:19700-28. [PMID: 25356505 PMCID: PMC4264134 DOI: 10.3390/ijms151119700] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we discuss the main mechanisms of GPCR-mediated cell-surface receptors transactivation and the pathways involved in intracellular responses induced by GPCR agonists. These studies may suggest the design of novel strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy.
| | - Melania Parisi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Marta De Marinis
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Domenico Tafuri
- Department of Sport Science and Wellness, University of Naples Parthenope, Naples 80133, Italy.
| | - Mariapia Cinelli
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| |
Collapse
|
45
|
Chapman NA, Dupré DJ, Rainey JK. The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. Biochem Cell Biol 2014; 92:431-40. [PMID: 25275559 DOI: 10.1139/bcb-2014-0072] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The apelin receptor (AR or APJ) is a class A (rhodopsin-like) G-protein-coupled receptor with wide distribution throughout the human body. Activation of the AR by its cognate peptide ligand, apelin, induces diverse physiological effects including vasoconstriction and dilation, strengthening of heart muscle contractility, angiogenesis, and regulation of energy metabolism and fluid homeostasis. Recently, another endogenous peptidic activator of the AR, Toddler/ELABELA, was identified as having a crucial role in zebrafish (Danio rerio) embryonic development. The AR is also implicated in pathologies including cardiovascular disease, diabetes, obesity, and cancer, making it a promising therapeutic target. Despite its established importance, the precise roles of AR signalling remain poorly understood. Moreover, little is known about the mechanisms of peptide-AR activation. Additional complexity arises from modulation of the AR by 2 endogenous peptide ligands, both with multiple bioactive isoforms of variable length and distribution. The various apelin and Toddler/ELABELA isoforms may also produce distinct cellular effects. Further complexity arises through formation of functionally distinct heterodimers between the AR and other G-protein-coupled receptors. This minireview outlines key (patho)physiological actions of the AR, addresses what is known about signal transduction downstream of AR activation, and concludes by discussing unique properties of the endogenous peptidic ligands of the AR.
Collapse
Affiliation(s)
- Nigel A Chapman
- a Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | | |
Collapse
|
46
|
GPCR responses in vascular smooth muscle can occur predominantly through dual transactivation of kinase receptors and not classical Gαq protein signalling pathways. Life Sci 2013; 92:951-6. [DOI: 10.1016/j.lfs.2013.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 11/23/2022]
|