1
|
Runtian Z, Wenqiang H, Zimeng S, Tianyu W, Jingquan Z. AEBP1 or ACLP, which is the key factor in inflammation and fibrosis? Int J Biol Macromol 2025; 310:143554. [PMID: 40294683 DOI: 10.1016/j.ijbiomac.2025.143554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) and Aortic carboxypeptidase-like protein (ACLP) are two protein isoforms produced by the AEBP1 gene. AEBP1, originally discovered in preadipocytes, functions as a transcriptional repressor and is involved in promoting inflammation, proliferation, and migration through various signaling pathways. ACLP is an extracellular matrix protein linked to Ehlers-Danlos syndrome, a genetic disorder characterized by defective connective tissue development. Structurally, AEBP1 and ACLP share many similarities, and both participate in critical physiological or pathological processes, such as cancer and fibrosis, by influencing pathways like NK-κB, WNT, and TGF-β. In recent years, research on AEBP1 and ACLP has expanded to include major organs such as the brain, kidneys, and lungs, with a particular focus on the cardiovascular system, where they show potential as novel drug targets. However, most studies do not clearly distinguish between AEBP1 and ACLP. For instance, AEBP1 is implicated in myocardial fibrosis in hypertrophic cardiomyopathy models, whereas ACLP is associated with fibrosis in other organs. Additionally, literature on the relationship between AEBP1 and fibrosis is often contradictory. Clarifying the distinct roles of AEBP1 and ACLP and their different functions in various cell types would greatly benefit further research. Current research suggests that the AEBP1 gene encodes two proteins, AEBP1 and ACLP, which have been reported to exhibit distinct functions in different studies. However, many studies do not differentiate between these two proteins, potentially leading to misconceptions. Therefore, we have conducted a comprehensive review of the existing literature to elucidate the functions of the AEBP1 gene and its encoded proteins in detail.
Collapse
Affiliation(s)
- Zhang Runtian
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Han Wenqiang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shen Zimeng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wang Tianyu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhong Jingquan
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China.
| |
Collapse
|
2
|
CHEN JIA, JIANG FEI, NIU KAIYI, ZHAO HAODONG, LI LI, YU HONGZHU. A novel Wnt/β-catenin signaling gene signature for progression and metastasis of gastric cancer. Oncol Res 2025; 33:1199-1215. [PMID: 40296906 PMCID: PMC12035655 DOI: 10.32604/or.2024.054366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/13/2024] [Indexed: 04/30/2025] Open
Abstract
Backgrounds As cancer progresses through various stages of malignancy, metastasis, and drug resistance, the Wnt/-catenin signaling is frequently dysregulated. Despite advancements in medical technology and therapeutic strategies, the prognosis for numerous gastric cancer patients remains unfavorable. Methods For the analysis of prognostic signature genes associated with Wnt signaling in GC, we used LASSO (least absolute shrinkage and selection operator) regression. To explore the function, cell specificity, and transcriptional regulation of the signature gene Carboxypeptidase Z (CPZ), we conducted co-expression analysis, single-cell RNA sequencing data analysis, transcription factor prediction, and dual luciferase reporter assay. The knockdown and overexpression experiments were also performed to observe the changes in the downstream gene expression, as well as the influence on the biological functions of GC cells. Results We identified a five-gene signature, including CPZ, Collagen Triple Helix Repeat Containing-1 (CTHRC1), Dickkopf-1 (DKK1), Epidermal Growth Factor (EGF), and Glypican Proteoglycan-3 (GPC3), with risk scores predictive of the prognosis of GC patients. We found that the adipocyte enhancer binding protein 1 (AEBP1) and transcription factor 3 (TCF3) could interact in the nucleus and synergistically enhance the expression of Wnt signaling-associated genes, including WNT2/FZD2 (Wnt family member 2/frizzled class receptor 2) and VIM (vimentin), thus promoting the invasion, migration, and malignant metastasis of GC. Conclusions Our study offers a precise gene-signature prediction method for the prognosis of GC. We discovered the synergistic effect of AEBP1 and TCF3 in the nucleus on GC metastasis. GC may benefit from the identification of this potential therapeutic target.
Collapse
Affiliation(s)
- JIA CHEN
- Department of General Surgery, Fuyang Hospital Affiliated of Anhui Medical University, Fuyang, 236000, China
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - FEI JIANG
- Department of General Surgery, Fuyang Hospital Affiliated of Anhui Medical University, Fuyang, 236000, China
| | - KAIYI NIU
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - HAODONG ZHAO
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - LI LI
- Department of General Surgery, Fuyang Hospital Affiliated of Anhui Medical University, Fuyang, 236000, China
| | - HONGZHU YU
- Department of General Surgery, Fuyang Hospital Affiliated of Anhui Medical University, Fuyang, 236000, China
| |
Collapse
|
3
|
Cao L, Gao W, Yang H, Zeng R, Yin Z. Adipocyte enhancer binding protein 1 knockdown alleviates osteoarthritis through inhibiting NF-κB signaling pathway-mediated inflammation and extracellular matrix degradation. J Cell Commun Signal 2024; 18:e12022. [PMID: 38946719 PMCID: PMC11208125 DOI: 10.1002/ccs3.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 07/02/2024] Open
Abstract
Inflammation promotes the degradation of the extracellular matrix, which contributes to the development of osteoarthritis (OA). Adipocyte enhancer binding protein 1 (AEBP1) participates in multiple pathological processes related to inflammatory diseases. However, the role of AEBP1 in OA development is unknown. We found a higher AEBP1 expression in articular cartilage of OA patients (n = 20) compared to their normal controls (n = 10). Thus, we inferred that AEBP1 might affect OA progression. Then mice with destabilization of the medial meniscus (DMM) surgery and chondrocytes with IL-1β treatment (10 ng/mL) were used to mimic OA. The increased AEBP1 expression was observed in models of OA. AEBP1 knockdown in chondrocytes reversed IL-1β-induced inflammation and extracellular matrix degradation, which was mediated by the inactivation of NF-κB signaling pathway and the increased IκBα activity. Co-immunoprecipitation assay indicated the interaction between AEBP1 and IκBα. Importantly, IκBα knockdown depleted the protective role of AEBP1 knockdown in OA. Moreover, AEBP1 knockdown in mice with OA showed similar results to those in chondrocytes. Collectively, our findings suggest that AEBP1 knockdown alleviates the development of OA, providing a novel strategy for OA treatment.
Collapse
Affiliation(s)
- Le Cao
- Department of OrthopedicsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Department of OrthopedicsFuyang Hospital of Anhui Medical UniversityFuyangAnhuiChina
| | - Weilu Gao
- Department of OrthopedicsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Haitao Yang
- Department of OrthopedicsFuyang Hospital of Anhui Medical UniversityFuyangAnhuiChina
| | - Ran Zeng
- Department of Intensive Care UnitFuyang Hospital of Anhui Medical UniversityFuyangAnhuiChina
| | - Zongsheng Yin
- Department of OrthopedicsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
4
|
Graham ML, Li M, Gong AY, Deng S, Jin K, Wang S, Chen XM. Cryptosporidium parvum hijacks a host's long noncoding RNA U90926 to evade intestinal epithelial cell-autonomous antiparasitic defense. Front Immunol 2023; 14:1205468. [PMID: 37346046 PMCID: PMC10280636 DOI: 10.3389/fimmu.2023.1205468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Cryptosporidium is a zoonotic apicomplexan parasite that infects the gastrointestinal epithelium and other mucosal surfaces in humans. It is an important opportunistic pathogen in AIDS patients and a leading cause of infectious diarrhea and diarrheal-related death in children worldwide. The intestinal epithelial cells provide the first line of defense against Cryptosporidium infection and play a central role in activating and regulating the host's antiparasitic response. Increasing evidence suggests that long noncoding RNAs (lncRNAs) participate in host-pathogen interactions and play a regulatory role in the pathogenesis of diseases but the underlying molecular mechanisms are not fully understood. We previously identified a panel of host lncRNAs that are upregulated in murine intestinal epithelial cells following Cryptosporidium infection, including U90926. We demonstrate here that U90926 is acting in a pro-parasitic manner in regulating intestinal epithelial cell-autonomous antiparasitic defense. Inhibition of U90926 resulted in a decreased infection burden of the parasite while overexpression of U90926 showed an increase in infection burden in cultured murine intestinal epithelial cells. Induction of U90926 suppressed transcription of epithelial defense genes involved in controlling Cryptosporidium infection through epigenetic mechanisms. Specifically, transcription of Aebp1, which encodes the Aebp1 protein, a potent modulator of inflammation and NF-κB signaling, was suppressed by U90926. Gain- or loss-of-function of Aebp1 in the host's epithelial cells caused reciprocal alterations in the infection burden of the parasite. Interestingly, Cryptosporidium carries the Cryptosporidium virus 1 (CSpV1), a double-stranded (ds) RNA virus coding two dsRNA fragments, CSpV1-dsRdRp and CSpV1-dsCA. Both CSpV1-dsRdRp and CSpV1-dsCA can be delivered into infected cells as previously reported. We found that cells transfected with in vitro transcribed CSpV1-dsCA or CSpV1-dsRdRp displayed an increased level of U90926, suggesting that CSpV1 is involved in the upregulation of U90926 during Cryptosporidium infection. Our study highlights a new strategy by Cryptosporidium to hijack a host lncRNA to suppress epithelial cell-autonomous antiparasitic defense and allow for a robust infection.
Collapse
Affiliation(s)
- Marion L. Graham
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Min Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Ai-Yu Gong
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Kehua Jin
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Shuhong Wang
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
5
|
Liu N, Liu D, Cao S, Lei J. Silencing of adipocyte enhancer-binding protein 1 (AEBP1) alleviates renal fibrosis in vivo and in vitro via inhibition of the β-catenin signaling pathway. Hum Cell 2023; 36:972-986. [PMID: 36738398 DOI: 10.1007/s13577-023-00859-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Renal fibrosis is the common final pathway in many renal diseases regardless of the underlying etiology. Adipocyte enhancer-binding protein 1 (AEBP1) was reported to play a vital role in the development of organ fibrosis, but its role in renal fibrosis has not been reported. Thus, the aim of this study was to investigate the possible function of AEBP1 in renal fibrosis and the mechanism associated with the β-catenin signaling pathway. A total of 83 genes upregulated after unilateral ureteral obstruction (UUO) were screened from two Gene Expression Omnibus (GEO) datasets and subjected to Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Among them, AEBP1 was enriched in collagen binding and the regulation of collagen fibril organization and was confirmed to be upregulated in UUO kidneys and TGF-β1-induced cells. Knockdown of AEBP1 ameliorated renal fibrosis via reducing collagen accumulation, inhibiting epithelial-mesenchymal transition and fibroblast transformation, as evidenced by decreases in the expression of collagen I and III, Col1a1, Col3a1, fibronectin, Snail, α-SMA, as well as collagen-specific staining of kidney tissues, whereas the E-cadherin was increased. Besides, AEBP1 silencing inhibited the expression of β-catenin in nucleus and β-catenin downstream proteins (Axin2, Myc, and Ccnd1). Continuously active β-catenin-S33Y further restored the inhibitory effect of AEBP1 silencing on renal fibrosis. These findings indicate that knockdown of AEBP1 could potentially slow down renal fibrosis by blocking the β-catenin signaling pathway, highlighting the potential of AEBP1 as a therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Naiquan Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China
| | - Dajun Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China.
| | - Shiyu Cao
- Department of Clinical Medicine, Class of 2018, China Medical University, Shenyang, China
| | - Jing Lei
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China
| |
Collapse
|
6
|
Hu Y, Li K, Swahn H, Ordoukhanian P, Head SR, Natarajan P, Woods AK, Joseph SB, Johnson KA, Lotz MK. Transcriptomic analyses of joint tissues during osteoarthritis development in a rat model reveal dysregulated mechanotransduction and extracellular matrix pathways. Osteoarthritis Cartilage 2023; 31:199-212. [PMID: 36354073 PMCID: PMC9892293 DOI: 10.1016/j.joca.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Transcriptomic changes in joint tissues during the development of osteoarthritis (OA) are of interest for the discovery of biomarkers and mechanisms of disease. The objective of this study was to use the rat medial meniscus transection (MMT) model to discover stage and tissue-specific transcriptomic changes. DESIGN Sham or MMT surgeries were performed in mature rats. Cartilage, menisci and synovium were scored for histopathological changes at 2, 4 and 6 weeks post-surgery and processed for RNA-sequencing. Differentially expressed genes (DEG) were used to identify pathways and mechanisms. Published transcriptomic datasets from animal models and human OA were used to confirm and extend present findings. RESULTS The total number of DEGs was already high at 2 weeks (723 in meniscus), followed by cartilage (259) and synovium (42) and declined to varying degrees in meniscus and synovium but increased in cartilage at 6 weeks. The most upregulated genes included tenascins. The 'response to mechanical stimulus' and extracellular matrix-related pathways were enriched in both cartilage and meniscus. Pathways that were enriched in synovium at 4 weeks indicate processes related to synovial hyperplasia and fibrosis. Synovium also showed upregulation of IL-11 and several MMPs. The mechanical stimulus pathway included upregulation of the mechanoreceptors PIEZO1, PIEZO2 and TRPV4 and nerve growth factor. Analysis of data from prior RNA-sequencing studies of animal models and human OA support these findings. CONCLUSION These results indicate several shared pathways that are affected during OA in cartilage and meniscus and support the role of mechanotransduction and other pathways in OA pathogenesis.
Collapse
Affiliation(s)
- Y Hu
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA; Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - K Li
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - H Swahn
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - P Ordoukhanian
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, CA, 92037, USA
| | - S R Head
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, CA, 92037, USA
| | - P Natarajan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, CA, 92037, USA
| | - A K Woods
- Calibr, a Division of Scripps Research, La Jolla, CA, 92037, USA
| | - S B Joseph
- Calibr, a Division of Scripps Research, La Jolla, CA, 92037, USA
| | - K A Johnson
- Calibr, a Division of Scripps Research, La Jolla, CA, 92037, USA
| | - M K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Geng R, Huang X, Li L, Guo X, Wang Q, Zheng Y, Guo X. Gene expression analysis in endometriosis: Immunopathology insights, transcription factors and therapeutic targets. Front Immunol 2022; 13:1037504. [PMID: 36532015 PMCID: PMC9748153 DOI: 10.3389/fimmu.2022.1037504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background Endometriosis is recognized as an estrogen-dependent inflammation disorder, estimated to affect 8%-15% of women of childbearing age. Currently, the etiology and pathogenesis of endometriosis are not completely clear. Underlying mechanism for endometriosis is still under debate and needs further exploration. The involvement of transcription factors and immune mediations may be involved in the pathophysiological process of endometriosis, but the specific mechanism remains to be explored. This study aims to investigate the underlying molecular mechanisms in endometriosis. Methods The gene expression profile of endometriosis was obtained from the gene expression omnibus (GEO) database. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were applied to the endometriosis GSE7305 datasets. Cibersort and MCP-counter were used to explore the immune response gene sets, immune response pathway, and immune environment. Differentially expressed genes (DEGs) were identified and screened. Common biological pathways were being investigated using the kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Transcription factors were from The Human Transcription Factors. The least absolute shrinkage and selection operator (Lasso) model identified four differential expressions of transcription factors (AEBP1, HOXB6, KLF2, and RORB). Their diagnostic value was calculated by receiver operating characteristic (ROC) curve analysis and validated in the validation cohort (GSE11691, GSE23339). By constructing the interaction network of crucial transcription factors, weighted gene coexpression network analysis (WGCNA) was used to search for key module genes. Metascape was used for enrichment analysis of essential module genes and obtained HOXB6, KLF2. The HOXB6 and KLF2 were further verified as the only two intersection genes according to Support Vector Machine Recursive Feature Elimination (SVM-RFE) and random forest models. We constructed ceRNA (lncRNA-miRNA-mRNA) networks with four potential transcription factors. Finally, we performed molecular docking for goserelin and dienogest with four transcription factors (AEBP1, HOXB6, KLF2, and RORB) to screen potential drug targets. Results Immune and metabolic pathways were enriched in GSVA and GSEA. In single sample gene set enrichment analysis (ssGSEA), most immune infiltrating cells, immune response gene sets, and immune response pathways are differentially expressed between endometriosis and non-endometriosis. Twenty-seven transcription factors were screened from differentially expressed genes. Most of the twenty-seven transcription factors were correlated with immune infiltrating cells, immune response gene sets and immune response pathways. Furthermore, Adipocyte enhancer binding protein 1 (AEBP1), Homeobox B6 (HOXB6), Kruppel Like Factor 2 (KLF2) and RAR Related Orphan Receptor B (RORB) were selected out from twenty-seven transcription factors. ROC analysis showed that the four genes had a high diagnostic value for endometriosis. In addition, KLF2 and HOXB6 were found to play particularly important roles in multiple modules (String, WGCNA, SVM-RFE, random forest) on the gene interaction network. Using the ceRNA network, we found that NEAT1 may regulate the expressions of AEBP1, HOXB6 and RORB, while X Inactive Specific Transcript (XIST) may control the expressions of HOXB6, RORB and KLF2. Finally, we found that goserelin and dienogest may be potential drugs to regulate AEBP1, HOXB6, KLF2 and RORB through molecular docking. Conclusions AEBP1, HOXB6, KLF2, and RORB may be potential biomarkers for endometriosis. Two of them, KLF2 and HOXB6, are critical molecules in the gene interaction network of endometriosis. Discovered by molecular docking, AEBP1, HOXB6, KLF2, and RORB are targets for goserelin and dienogest.
Collapse
Affiliation(s)
- Rong Geng
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
- Department of gynecology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaobin Huang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
- Department of gynecology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Linxi Li
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
- Department of gynecology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xin Guo
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
- Department of gynecology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qingru Wang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
- Department of gynecology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuhua Zheng
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
- Department of gynecology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoling Guo
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
- Department of gynecology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Wu P, Pan X, Lu K, Gu N. Screening prognostic genes related to leucovorin, fluorouracil, and irinotecan treatment sensitivity by performing co-expression network analysis for colon cancer. Front Genet 2022; 13:928356. [DOI: 10.3389/fgene.2022.928356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Colon cancer is one of the most common malignant tumors in the world. FOLFIRI (leucovorin, fluorouracil, and irinotecan) is a common combination in chemotherapy regimens. However, insensitivity to FOLFIRI is an important factor in the effectiveness of the treatment for advanced colon cancer. Our study aimed to explore precise molecular targets associated with chemotherapy responses in colon cancer.Methods: Gene expression profiles of 21 patients with advanced colorectal cancer who received chemotherapy based on FOLFIRI were obtained from the Gene Expression Omnibus (GEO) database. The gene co-expression network was constructed by the weighted gene co-expression network analysis (WGCNA) and functional gene modules were screened out. Clinical phenotypic correlation analysis was used to identify key gene modules. Gene Ontology and pathway enrichment analysis were used to screen enriched genes in key modules. Protein–protein interaction (PPI) analysis was used to screen out key node genes. Based on the Gene Expression Profiling Interactive Analysis (GEPIA) database, the correlation between the expression levels of these genes and the overall survival (OS) and disease-free survival (DFS) of colon cancer patients was investigated, and the hub genes were screened out. Immunohistochemistry of candidate hub genes was identified using the Human Protein Atlas database. Finally, clinical information and RNA sequencing data of colon cancer were obtained from The Cancer Genome Atlas project database (TCGA), the GEPIA, and the Human Atlas databases for validation.Results: The WGCNA revealed that three hub genes were closely related to chemotherapy insensitivity of colon cancer: AEBP1, BGN, and TAGLN. The protein expression levels of AEBP1, BGN, and TAGLN in tumor tissues were higher than those in normal tissues. In addition, the gene expression levels of AEBP1, BGN, and TAGLN were negatively correlated with OS and DFS in colon cancer patients. Therefore, AEBP1, BGN, and TAGLN have been identified as potential biomarkers related to the response to FOLFIRI treatment of colon cancer.Conclusion: We found that AEBP1, BGN, and TAGLN, as potential predictive biomarkers, may play an important role in the response to FOLFIRI treatment of colon cancer and as a precise molecular target associated with chemotherapy response in colon cancer.
Collapse
|
9
|
Abstract
We characterized the proteome profile of mid-lactation small-tailed Han (STH) and DairyMeade (DM) ovine milk in order to explore physiological variation and differences in milk traits between the two breeds. Methodology combined a tandem mass tag (TMT) proteomic approach with LC-MS/MS technology. A total of 656 proteins were identified in STH and DM ovine milk, of which 17and 29 proteins were significantly upregulated (P < 0.05) in STH and DM, respectively. Immune-related proteins and disease-related proteins were highly expressed in STH milk, whereas S100A2 and AEBP1 were highly expressed in DM milk, which had beneficial effects on mammary gland development and milk yield. Our results provide a theoretical basis for future breeding of dairy sheep.
Collapse
|
10
|
Zheng H, Liu H, Li H, Dou W, Wang X. Weighted Gene Co-expression Network Analysis Identifies a Cancer-Associated Fibroblast Signature for Predicting Prognosis and Therapeutic Responses in Gastric Cancer. Front Mol Biosci 2021; 8:744677. [PMID: 34692770 PMCID: PMC8531434 DOI: 10.3389/fmolb.2021.744677] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are the most prominent cellular components in gastric cancer (GC) stroma that contribute to GC progression, treatment resistance, and immunosuppression. This study aimed at exploring stromal CAF-related factors and developing a CAF-related classifier for predicting prognosis and therapeutic effects in GC. Methods: We downloaded mRNA expression and clinical information of 431 GC samples from Gene Expression Omnibus (GEO) and 330 GC samples from The Cancer Genome Atlas (TCGA) databases. CAF infiltrations were quantified by the estimate the proportion of immune and cancer cells (EPIC) method, and stromal scores were calculated via the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Stromal CAF-related genes were identified by weighted gene co-expression network analysis (WGCNA). A CAF risk signature was then developed using the univariate and least absolute shrinkage and selection operator method (LASSO) Cox regression model. We applied the Spearman test to determine the correlation among CAF risk score, CAF markers, and CAF infiltrations (estimated via EPIC, xCell, microenvironment cell populations-counter (MCP-counter), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms). The TIDE algorithm was further used to assess immunotherapy response. Gene set enrichment analysis (GSEA) was applied to clarify the molecular mechanisms. Results: The 4-gene (COL8A1, SPOCK1, AEBP1, and TIMP2) prognostic CAF model was constructed. GC patients were classified into high– and low–CAF-risk groups in accordance with their median CAF risk score, and patients in the high–CAF-risk group had significant worse prognosis. Spearman correlation analyses revealed the CAF risk score was strongly and positively correlated with stromal and CAF infiltrations, and the four model genes also exhibited positive correlations with CAF markers. Furthermore, TIDE analysis revealed high–CAF-risk patients were less likely to respond to immunotherapy. GSEA revealed that epithelial–mesenchymal transition (EMT), TGF-β signaling, hypoxia, and angiogenesis gene sets were significantly enriched in high–CAF-risk group patients. Conclusion: The present four-gene prognostic CAF signature was not only reliable for predicting prognosis but also competent to estimate clinical immunotherapy response for GC patients, which might provide significant clinical implications for guiding tailored anti-CAF therapy in combination with immunotherapy for GC patients.
Collapse
Affiliation(s)
- Hang Zheng
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Heshu Liu
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huayu Li
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Weidong Dou
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
11
|
Tao Y, Wei X, Yue Y, Wang J, Li J, Shen L, Lu G, He Y, Zhao S, Zhao F, Weng Z, Shen X, Zhou L. Extracellular vesicle-derived AEBP1 mRNA as a novel candidate biomarker for diabetic kidney disease. J Transl Med 2021; 19:326. [PMID: 34332599 PMCID: PMC8325821 DOI: 10.1186/s12967-021-03000-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A novel and improved methodology is still required for the diagnosis of diabetic kidney disease (DKD). The aim of the present study was to identify novel biomarkers using extracellular vesicle (EV)-derived mRNA based on kidney tissue microarray data. METHODS Candidate genes were identified by intersecting the differentially expressed genes (DEGs) and eGFR-correlated genes using the GEO datasets GSE30528 and GSE96804, followed by clinical parameter correlation and diagnostic efficacy assessment. RESULTS Fifteen intersecting genes, including 8 positively correlated genes, B3GALT2, CDH10, MIR3916, NELL1, OCLM, PRKAR2B, TREM1 and USP46, and 7 negatively correlated genes, AEBP1, CDH6, HSD17B2, LUM, MS4A4A, PTN and RASSF9, were confirmed. The expression level assessment results revealed significantly increased levels of AEBP1 in DKD-derived EVs compared to those in T2DM and control EVs. Correlation analysis revealed that AEBP1 levels were positively correlated with Cr, 24-h urine protein and serum CYC and negatively correlated with eGFR and LDL, and good diagnostic efficacy for DKD was also found using AEBP1 levels to differentiate DKD patients from T2DM patients or controls. CONCLUSIONS Our results confirmed that the AEBP1 level from plasma EVs could differentiate DKD patients from T2DM patients and control subjects and was a good indication of the function of multiple critical clinical parameters. The AEBP1 level of EVs may serve as a novel and efficacious biomarker for DKD diagnosis.
Collapse
Affiliation(s)
- Yiying Tao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xing Wei
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yue Yue
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jiaxin Wang
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lei Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 215123, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Shidi Zhao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Fan Zhao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhen Weng
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 215123, China
- Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Xiahong Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
12
|
Leonel ECR, Ruiz TFR, Bedolo CM, Campos SGP, Taboga SR. Inflammatory repercussions in female steroid responsive glands after perinatal exposure to bisphenol A and 17-β estradiol. Cell Biol Int 2021; 45:2264-2274. [PMID: 34288236 DOI: 10.1002/cbin.11665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
The mammary gland (MG) and female prostate are plastic reproductive organs which are highly responsive to hormones. Thus, endocrine disruptors, such as bisphenol A (BPA) and exogenous estrogens, negatively affect glandular homeostasis. In addition to previously described alterations, changes in inflammatory markers expression also trigger the development of a microenvironment that contributes to tumor progression. The current work aimed to evaluate the inflammatory responses of the MG and prostate gland to BPA (50 µg/kg) and 17-β estradiol (35 µg/kg) exposure during the perinatal window of susceptibility. The results showed that at 6 months of age there was an increase in the number of phospho-STAT3 (P-STAT3) positive cells in the female prostate from animals perinatally exposed to 50 µg/kg BPA daily. In addition, the number of macrophages increased in these animals in comparison with nonexposed animals, as shown by the F4/80 marker. Despite an increase in the incidence of lobuloalveolar and intraductal hyperplasia, the MG did not show any difference in the expression of the four inflammatory markers evaluated: tumor necrosis factor-α, COX-2, P-STAT3, and F4/80. Analysis of both glands from the same animal led to the conclusion that exposure to endocrine disruptors during the perinatal window of susceptibility leads to different inflammatory responses in different reproductive organs. As the prostate is more susceptible to these inflammatory mechanisms, it is reasonable to affirm that possible neoplastic alterations in this organ are related to changes in the inflammatory pattern of the stroma, a characteristic that is not evident in the MG.
Collapse
Affiliation(s)
- Ellen Cristina Rivas Leonel
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.,Department of Histology, Embriology, and Cell Biology, Institute of Biological Sciences (ICB III), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Thalles Fernando Rocha Ruiz
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Hou Y, Sun B, Liu W, Yu B, Shi Q, Luo F, Bai Y, Feng H. Targeting of glioma stem-like cells with a parthenolide derivative ACT001 through inhibition of AEBP1/PI3K/AKT signaling. Am J Cancer Res 2021; 11:555-566. [PMID: 33391492 PMCID: PMC7738851 DOI: 10.7150/thno.49250] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor in adults with a median survival of around 15 months. A potential treatment strategy involves targeting glioma stem-like cells (GSCs) that are able to initiate, maintain, and repopulate the tumor mass. Here, we identify ACT001, a parthenolide derivative, targeting GSCs through regulation of adipocyte enhancer binding protein 1 (AEBP1) signaling. Methods: The effects of ACT001 on cell survival of normal human astrocytes (NHA) and patient-derived glioma stem-like cells (GSCs) were evaluated. RNA-Seq were performed to detect differentially expressed genes. ACT001 efficacy as a single agent or in combination with SHP-2 inhibitor SHP099 was assessed using a GSC orthotopic xenograft model. Results: GSCs exhibit high response to ACT001 in compared with normal human astrocytes. AEBP1 is a putative target of ACT001 by RNA-Seq analysis, which expression associates with prognosis of GBM patients. Knockdown of AEBP1 inhibits GSC proliferation and glioma sphere formation. Treatment with ACT001 or PI3K inhibitor or AEBP1 depletion would impair AKT phosphorylation and GSC proliferation, whereas constitutive AKT activation rescues ACT001 treatment or AEBP1 depletion-inhibited cell proliferation. Moreover, ACT001 blocks TGF-β-activated AEBP1/AKT signaling in GSCs. ACT001 exhibits antitumor activity either as a single agent or in combination with SHP099, which provides significant survival benefits for GSC tumor xenograft-bearing animals. Conclusions: Our data demonstrate AEBP1 as a new druggable target in GBM and ACT001 as a potential therapeutic option for improving the clinical treatment of GBM in combination with SHP099.
Collapse
|
14
|
Meng Z, Li C, Ding G, Cao W, Xu X, Heng Y, Deng Y, Li Y, Zhang X, Li D, Wang W, Wang Y, Xing W, Hou H. Glycomics: Immunoglobulin G N-Glycosylation Associated with Mammary Gland Hyperplasia in Women. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:551-558. [PMID: 32833579 DOI: 10.1089/omi.2020.0091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammary gland hyperplasia (MGH) is very common, especially among young and middle-aged women. New diagnostics and biomarkers for MGH are needed for rational clinical management and precision medicine. We report, in this study, new findings using a glycomics approach, with a focus on immunoglobulin G (IgG) N-glycosylation. A cross-sectional study was conducted in a community-based population sample in Beijing, China. A total of 387 participants 40-65 years of age were enrolled in this study, including 194 women with MGH (cases) and 193 women who had no MGH (controls). IgG N-glycans were characterized in the serum by ultra-performance liquid chromatography. The levels of the glycan peaks (GPs) GP2, GP5, GP6, and GP7 were lower in the MGH group compared with the control group, whereas GP14 was significantly higher in the MGH group (p < 0.05). A predictive model using GP5, GP21, and age was established and a receiver operating characteristic curve analysis was performed. The sensitivity and specificity of the model for MGH was 61.3% and 63.2%, respectively, likely owing to receptor mechanisms and/or inflammation regulation. To the best of our knowledge, this is the first study reporting on an association between IgG N-glycosylation and MGH. We suggest person-to-person variations in IgG N-glycans and their combination with multiomics biomarker strategies offer a promising avenue to identify novel diagnostics and individuals at increased risk of MGH.
Collapse
Affiliation(s)
- Zixiu Meng
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Cancan Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Guoyong Ding
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Weijie Cao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xizhu Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yuanyuan Heng
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yang Deng
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yuejin Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Xiaoyu Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Dong Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Wei Wang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Youxin Wang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.,School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
15
|
AEBP1 is a Novel Oncogene: Mechanisms of Action and Signaling Pathways. JOURNAL OF ONCOLOGY 2020; 2020:8097872. [PMID: 32565808 PMCID: PMC7273425 DOI: 10.1155/2020/8097872] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) is a transcriptional repressor involved in the regulation of critical biological processes including adipogenesis, mammary gland development, inflammation, macrophage cholesterol homeostasis, and atherogenesis. Several years ago, we first reported the ability of AEBP1 to exert a positive control over the canonical NF-κB pathway. Indeed, AEBP1 positively regulates NF-κB activity via its direct interaction with IκBα, a key NF-κB inhibitor. AEBP1 overexpression results in uncontrollable activation of NF-κB, which may have severe pathogenic outcomes. Recently, the regulatory relationship between AEBP1 and NF-κB pathway has been of great interest to many researchers primarily due to the implication of NF-κB signaling in critical cellular processes such as inflammation and cancer. Since constitutive activation of NF-κB is widely implicated in carcinogenesis, AEBP1 overexpression is associated with tumor development and progression. Recent studies sought to explore the effects of the overexpression of AEBP1, as a potential oncogene, in different types of cancer. In this review, we analyze the effects of AEBP1 overexpression in a variety of malignancies (e.g., breast cancer, glioblastoma, bladder cancer, gastric cancer, colorectal cancer, ovarian cancer, and skin cancer), with a specific focus on the AEBP1-mediated control over the canonical NF-κB pathway. We also underscore the ability of AEBP1 to regulate crucial cancer-related events like cell proliferation and apoptosis in light of other key pathways (e.g., PI3K-Akt, sonic hedgehog (Shh), p53, parthanatos (PARP-1), and PTEN). Identifying AEBP1 as a potential biomarker for cancer prognosis may lead to a novel therapeutic target for the prevention and/or treatment of various types of cancer.
Collapse
|
16
|
Yorozu A, Yamamoto E, Niinuma T, Tsuyada A, Maruyama R, Kitajima H, Numata Y, Kai M, Sudo G, Kubo T, Nishidate T, Okita K, Takemasa I, Nakase H, Sugai T, Takano K, Suzuki H. Upregulation of adipocyte enhancer-binding protein 1 in endothelial cells promotes tumor angiogenesis in colorectal cancer. Cancer Sci 2020; 111:1631-1644. [PMID: 32086986 PMCID: PMC7226196 DOI: 10.1111/cas.14360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor angiogenesis is an important therapeutic target in colorectal cancer (CRC). We aimed to identify novel genes associated with angiogenesis in CRC. Using RNA sequencing analysis in normal and tumor endothelial cells (TECs) isolated from primary CRC tissues, we detected frequent upregulation of adipocyte enhancer‐binding protein 1 (AEBP1) in TECs. Immunohistochemical analysis revealed that AEBP1 is upregulated in TECs and stromal cells in CRC tissues. Quantitative RT‐PCR analysis showed that there is little or no AEBP1 expression in CRC cell lines, but that AEBP1 is well expressed in vascular endothelial cells. Levels of AEBP1 expression in Human umbilical vein endothelial cells (HUVECs) were upregulated by tumor conditioned medium derived from CRC cells or by direct coculture with CRC cells. Knockdown of AEBP1 suppressed proliferation, migration, and in vitro tube formation by HUVECs. In xenograft experiments, AEBP1 knockdown suppressed tumorigenesis and microvessel formation. Depletion of AEBP1 in HUVECs downregulated a series of genes associated with angiogenesis or endothelial function, including aquaporin 1 (AQP1) and periostin (POSTN), suggesting that AEBP1 might promote angiogenesis through regulation of those genes. These results suggest that upregulation of AEBP1 contributes to tumor angiogenesis in CRC, which makes AEBP1 a potentially useful therapeutic target.
Collapse
Affiliation(s)
- Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Tsuyada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuto Numata
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gota Sudo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Kubo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Nishidate
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenji Okita
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
17
|
Ren J, Han Y, Ren T, Fang H, Xu X, Lun Y, Jiang H, Xin S, Zhang J. AEBP1 Promotes the Occurrence and Development of Abdominal Aortic Aneurysm by Modulating Inflammation via the NF-κB Pathway. J Atheroscler Thromb 2020; 27:255-270. [PMID: 31462616 PMCID: PMC7113137 DOI: 10.5551/jat.49106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/13/2019] [Indexed: 01/03/2023] Open
Abstract
AIM Inflammation plays a significant role in the pathogenesis of human abdominal aortic aneurysm (AAA). AEBP1 can promote activation of the NF-κB pathway, subsequently affecting the expression of NF-κB target genes, including inflammatory cytokines and matrix metalloproteinases (MMPs). Our objective was to examine the role of AEBP1 in the development of AAA and characterize the underlying mechanism. METHODS ITRAQ, RT-PCR, western blot, immunohistochemistry, and ELISA were used to compare different experimental groups with the controls and to determine the differentially expressed genes. We generated an AAA model using porcine pancreatic elastase in Sprague-Dawley rats and silenced their AEBP1 in vivo by adenoviruses injected intra-adventitially. We also silenced or overexpressed AEBP1 in human vascular smooth muscle cells in vitro in the presence and in the absence of NF-κB inhibitor BAY 11-7082. RESULTS Proteome iTRAQ revealed a high expression of AEBP1 in AAA patients, which was verified by qRT-PCR, western blot, immunohistochemistry, and ELISA. The mean expression level of AEBP1 in AAA patients was higher than that in controls. Along with AEBP1 upregulation, we also verified mis-activation of NF-κB in human AAA samples. The in vivo studies indicated that AEBP1 knockdown suppressed AAA progression. Finally, the in vitro studies illustrated that AEBP1 promotes activation of the NF-κB pathway, subsequently upregulating pro-inflammatory factors and MMPs. CONCLUSIONS Our results indicate a role of AEBP1 in the pathogenesis of AAA and provide a novel insight into how AEBP1 causes the development of AAA by activating the NF-κB pathway.
Collapse
Affiliation(s)
- Jiancong Ren
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Yanshuo Han
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Tongming Ren
- Department of Anatomy Laboratory, Xinxiang Medical College, Xinxiang, China
| | - Hong Fang
- Department of Pancreatic Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Xiaohan Xu
- Department of Anesthesiology, the First Hospital, China Medical University, Shenyang, China
| | - Yu Lun
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Han Jiang
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Shijie Xin
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Jian Zhang
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Sinha S, Renganathan A, Nagendra PB, Bhat V, Mathew BS, Rao MRS. AEBP1 down regulation induced cell death pathway depends on PTEN status of glioma cells. Sci Rep 2019; 9:14577. [PMID: 31601918 PMCID: PMC6787275 DOI: 10.1038/s41598-019-51068-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common aggressive form of brain cancer with overall dismal prognosis (10–12 months) despite all current multimodal treatments. Previously we identified adipocyte enhancer binding protein 1 (AEBP1) as a differentially regulated gene in GBM. On probing the role of AEBP1 over expression in glioblastoma, we found that both cellular proliferation and survival were affected upon AEBP1 silencing in glioma cells, resulting in cell death. In the present study we report that the classical caspase pathway components are not activated in cell death induced by AEBP1 down regulation in PTEN-deficient (U87MG and U138MG) cells. PARP-1 was not cleaved but over-activated under AEBP1 down regulation which leads to the synthesis of PAR in the nucleus triggering the release of AIF from the mitochondria. Subsequently, AIF translocates to the nucleus along with MIF causing chromatinolysis. AEBP1 positively regulates PI3KinaseCβ by the binding to AE-1 binding element in the PI3KinaseCβ promoter. Loss of PI3KinaseCβ expression under AEBP1 depleted condition leads to excessive DNA damage and activation of PARP-1. Furthermore, over expression of PIK3CB (in trans) in U138MG cells prevents DNA damage in these AEBP1 depleted cells. On the contrary, AEBP1 down regulation induces caspase-dependent cell death in PTEN-proficient (LN18 and LN229) cells. Ectopic expression of wild-type PTEN in PTEN-deficient U138MG cells results in the activation of canonical caspase and Akt dependent cell death. Collectively, our findings define AEBP1 as a potential oncogenic driver in glioma, with potential implications for therapeutic intervention.
Collapse
Affiliation(s)
- Swati Sinha
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India
| | - Arun Renganathan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India.,Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Prathima B Nagendra
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India.,Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Vasudeva Bhat
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India.,Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian Steve Mathew
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India
| | | |
Collapse
|
19
|
Xing Y, Zhang Z, Chi F, Zhou Y, Ren S, Zhao Z, Zhu Y, Piao D. AEBP1, a prognostic indicator, promotes colon adenocarcinoma cell growth and metastasis through the NF-κB pathway. Mol Carcinog 2019; 58:1795-1808. [PMID: 31219650 DOI: 10.1002/mc.23066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/06/2019] [Accepted: 05/23/2019] [Indexed: 01/25/2023]
Abstract
The abnormal expression of adipocyte enhancer binding protein 1 (AEBP1) has been implicated in the carcinogenesis and progression of various types of human tumors. However, the role of AEBP1 in colon adenocarcinoma (COAD) remains largely unelucidated. In this study, we explored the clinical significance and biological function of AEBP1 in COAD. We observed that AEBP1 was overexpressed in COAD tissues and cells and that the expression of AEBP1 was correlated with tumor size, the level of histologic differentiation, lymph node metastasis, and cancer stage in COAD patients. In addition, univariate and multivariate Cox regression analyses revealed that high AEBP1 expression suggested poor prognosis in COAD. Moreover, AEBP1 silencing suppressed COAD cell proliferation, migration, and invasion, whereas the upregulation of AEBP1 promoted these behaviors. Additionally, mechanistic studies further demonstrated that AEBP1 promoted COAD cell proliferation, migration, and invasion by upregulating the expression of matrix metalloproteinase-2, vimentin, and TWIST whereas downregulating that of E-cadherin through the nuclear factor-κB pathway. Collectively, these data indicated that AEBP1 may be a new prognostic factor and a potential gene therapy target in COAD.
Collapse
Affiliation(s)
- Yanwei Xing
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhiqiang Zhang
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Fengxu Chi
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yang Zhou
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shuo Ren
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhiwei Zhao
- Department of General Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Yuekun Zhu
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Daxun Piao
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
20
|
Li S, Li C, Fang Z. MicroRNA 214 inhibits adipocyte enhancer-binding protein 1 activity and increases the sensitivity of chemotherapy in colorectal cancer. Oncol Lett 2018; 17:55-62. [PMID: 30655737 PMCID: PMC6313171 DOI: 10.3892/ol.2018.9623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2018] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to analyze adipocyte enhancer-binding protein 1 (AEBP1) expression in colorectal cancer (CRC), with a focus on its possible molecular mechanisms, in order to provide novel insight into the clinical treatment of CRC. Immunohistochemistry (IHC) was used to detect AEBP1 expression in 62 CRC tissues. Kaplan-Meier survival curves were used to analyze AEBP1 expression and the postoperative disease-free survival (DFS) and overall survival (OS) rates of CRC patients. HT-29 cells were treated with oxaliplatin to detect cell proliferation and apoptosis following a Cell Counting kit-8. Through bioinformatics prediction, microRNA 214 (miR214) was identified as an upstream microRNA of AEBP1 that regulates its expression. IHC revealed that the expression of AEBP1 in CRC tissues was significantly higher than that in adjacent healthy tissues, and that it is associated with Tumor-Node-Metastasis stage, recurrence and metastasis. The DFS and OS rates of patients with a low AEBP1 expression were significantly higher than those in patients with a high expression (P<0.05). Following depletion of AEBP1 and treatment with oxaliplatin, the HT-29 cell proliferation was lower than that of the blank control and the negative control groups. However, the cell apoptosis rate was higher than that of the control group at 72 h (P<0.05). Bioinformatics prediction revealed that miR-214 is negatively associated with AEBP1 expression, and co-transfection and luciferase report gene tests revealed that AEBP1 is a target gene of miR-214. Therefore, AEBP1 may become a novel treatment for CRC patients with chemoresistance and may act through the upstream miR-214 to participate in the progression of a tumor.
Collapse
Affiliation(s)
- Shouchao Li
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Chengren Li
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Zhiming Fang
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
21
|
Holloway RW, Thomas ML, Cohen AM, Bharadwaj AG, Rahman M, Marcato P, Marignani PA, Waisman DM. Regulation of cell surface protease receptor S100A10 by retinoic acid therapy in acute promyelocytic leukemia (APL) ☆. Cell Death Dis 2018; 9:920. [PMID: 30206209 PMCID: PMC6134137 DOI: 10.1038/s41419-018-0954-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/31/2018] [Indexed: 01/18/2023]
Abstract
S100A10 (p11), a member of the S100 family of small dimeric EF-hand-type Ca2+-binding proteins, plays a role in a variety of both intracellular and extracellular processes. Previous studies have suggested that p11 is intrinsically unstable and requires binding to annexin A2 (p36) to prevent its rapid ubiquitylation and degradation. Our laboratory has shown that p11 levels are stimulated by the expression of the oncoprotein, PML/RARα. Furthermore, treatment of the APL cell line, NB4 with all-trans retinoic acid (ATRA) causes the rapid loss of p36 and p11 protein. However, the mechanism by which ATRA regulates p11 levels has not been established. Here, we show that the proteasomal inhibitor, lactacystin reversed the ATRA-dependent loss of p11, but did not cause an accumulation of ubiquitylated forms of p11, suggesting that ATRA promotes the proteasomal degradation of p11 in an ubiquitin-independent manner. ATRA treatment of MCF-7 breast cancer cells reduced p11 but not p36 transcript and protein levels, thus indicating that ATRA can regulate p11 levels independently of PML/RARα and p36. Overexpression of p36 upregulated p11 protein but not mRNA levels, indicating that p36 affects p11 post translationally. The forced expression of ubiquitin and p11 in 293 T cells resulted in ubiquitylation of p11 that was blocked by mutagenesis of lysine 57. This study highlights the complex regulation of p11 by retinoid signaling and challenges the hypothesis that ubiquitin-mediated proteasomal degradation of p11 represents a universal mechanism of regulation of this protein.
Collapse
Affiliation(s)
- Ryan W Holloway
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | - Margaret L Thomas
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | - Alejandro M Cohen
- Proteomic Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | | | - Mushfiqur Rahman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 1X5, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | - Paola A Marignani
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 1X5, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | - David M Waisman
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 1X5, Canada. .,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 1X5, Canada.
| |
Collapse
|
22
|
Sugai T, Uesugi N, Kitada Y, Yamada N, Osakabe M, Eizuka M, Sugimoto R, Fujita Y, Kawasaki K, Yamamoto E, Yamano H, Suzuki H, Matsumoto T. Analysis of the expression of cancer-associated fibroblast- and EMT-related proteins in submucosal invasive colorectal cancer. J Cancer 2018; 9:2702-2712. [PMID: 30087711 PMCID: PMC6072811 DOI: 10.7150/jca.25646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: Recent studies have shown that cancer-associated fibroblasts (CAFs) and the epithelial-mesenchymal transition (EMT) play important roles in the progression and metastasis of CRC. Although prediction of lymph node metastasis in submucosal invasive colorectal cancer (SiCRC) is important, the relationships of CAF and EMT with lymph node metastasis of SiCRC have not yet been examined. Here, we aimed to analyze the expression patterns of CAF- and EMT-related proteins in SiCRC. Materials and Methods: The expression of CAF-related markers, including α-smooth muscle actin, CD10, podoplanin, fibroblast specific protein 1, and adipocyte enhancer-binding protein 1, and EMT-related proteins [zinc finger protein SNAI2 (ZEB1) and twist-related protein 1 (TWIST1) in SiCRC with (n = 29) or without (n = 80) lymph node metastasis was examined by immunohistochemistry. We examined the expression patterns of biomarkers using hierarchical cluster analysis. Consequently, four subgroups were established based on the expression patterns of CAF- and EMT-related markers, and the associations of these subgroups with clinicopathological variables. Results: In multivariate analysis, subgroup 2, which was characterized by high expression of all markers, was correlated with lymph node metastasis (p < 0.01). Next, we examined the associations of individual biomarkers with lymph node metastasis. Multivariate analysis showed that moderately differentiated adenocarcinoma was significantly associated with lymph node metastasis (p < 0.05). Conclusions: Our findings showed that expression patterns of CAF markers and EMT-related proteins may allow for stratification of patients into risk categories for lymph node metastasis in SiCRC.
Collapse
Affiliation(s)
- Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 19-1, Morioka 020-8505, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 19-1, Morioka 020-8505, Japan
| | - Yuriko Kitada
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 19-1, Morioka 020-8505, Japan
| | - Noriyuki Yamada
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 19-1, Morioka 020-8505, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 19-1, Morioka 020-8505, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 19-1, Morioka 020-8505, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 19-1, Morioka 020-8505, Japan
| | - Yasuko Fujita
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 19-1, Morioka 020-8505, Japan
| | - Keisuke Kawasaki
- Division of Gastroenterology, Department of Internal Medicine, 19-1, Morioka 020-8505, Japan
| | - Eiichiro Yamamoto
- Department of Gastroenterology, Sapporo Medical University, School of Medicine, Cyuuouku, Sapporo 060-0061, Japan
| | - Hiroo Yamano
- Department of Gastroenterology, Sapporo Medical University, School of Medicine, Cyuuouku, Sapporo 060-0061, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, School of Medicine, Cyuuouku, Sapporo 060-0061, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, 19-1, Morioka 020-8505, Japan
| |
Collapse
|
23
|
Wei S, Qian L, Niu M, Liu H, Yang Y, Wang Y, Zhang L, Zhou X, Li H, Wang R, Li K, Zhao Y. The Modulatory Properties of Li-Ru-Kang Treatment on Hyperplasia of Mammary Glands Using an Integrated Approach. Front Pharmacol 2018; 9:651. [PMID: 29971006 PMCID: PMC6018463 DOI: 10.3389/fphar.2018.00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Li-Ru-Kang (LRK) has been used in the treatment of hyperplasia of mammary glands (HMG) for several decades and can effectively improve clinical symptoms. This study aims to investigate the mechanism by which LRK intervenes in HMG based on an integrated approach that combines metabolomics and network pharmacology analyses. Methods: The effects of LRK on HMG induced by estrogen-progesterone in rats were evaluated by analyzing the morphological and pathological characteristics of breast tissues. Moreover, UPLC-QTOF/MS was performed to explore specific metabolites potentially affecting the pathological process of HMG and the effects of LRK. Pathway analysis was conducted with a combination of metabolomics and network pharmacology analyses to illustrate the pathways and network of LRK-treated HMG. Results: Li-Ru-Kang significantly improved the morphological and pathological characteristics of breast tissues. Metabolomics analyses showed that the therapeutic effect of LRK was mainly associated with the regulation of 10 metabolites, including prostaglandin E2, phosphatidylcholine, leukotriene B4, and phosphatidylserine. Pathway analysis indicated that the metabolites were related to arachidonic acid metabolism, glycerophospholipid metabolism and linoleic acid metabolism. Moreover, principal component analysis showed that the metabolites in the model group were clearly classified, whereas the metabolites in the LRK group were between those in the normal and model groups but closer to those in the normal group. This finding indicated that these metabolites may be responsible for the effects of LRK. The therapeutic effect of LRK on HMG was possibly related to the regulation of 10 specific metabolites. In addition, we further verified the expression of protein kinase C alpha (PKCα), a key target predicted by network pharmacology analysis, and showed that LRK could significantly improve the expression of PKCα. Conclusion: Our study successfully explained the modulatory properties of LRK treatment on HMG using metabolomics and network pharmacology analyses. This systematic method can provide methodological support for further understanding the complex mechanism underlying HMG and possible traditional Chinese medicine (TCM) active ingredients for the treatment of HMG.
Collapse
Affiliation(s)
- Shizhang Wei
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Liqi Qian
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Honghong Liu
- Department of Integrative Medical Center, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Yuxue Yang
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Yingying Wang
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Lu Zhang
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Haotian Li
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Ruilin Wang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Kun Li
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| |
Collapse
|
24
|
Riku M, Inaguma S, Ito H, Tsunoda T, Ikeda H, Kasai K. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis. Oncotarget 2016; 7:5690-701. [PMID: 26744317 PMCID: PMC4868714 DOI: 10.18632/oncotarget.6788] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/24/2015] [Indexed: 12/21/2022] Open
Abstract
Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1.
Collapse
Affiliation(s)
- Miho Riku
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Shingo Inaguma
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Takumi Tsunoda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroshi Ikeda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
25
|
Sundarrajan S, Arumugam M. Weighted gene co-expression based biomarker discovery for psoriasis detection. Gene 2016; 593:225-234. [PMID: 27523473 DOI: 10.1016/j.gene.2016.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 02/08/2023]
Abstract
Psoriasis is a chronic inflammatory disease of the skin with an unknown aetiology. The disease manifests itself as red and silvery scaly plaques distributed over the scalp, lower back and extensor aspects of the limbs. After receiving scant consideration for quite a few years, psoriasis has now become a prominent focus for new drug development. A group of closely connected and differentially co-expressed genes may act in a network and may serve as molecular signatures for an underlying phenotype. A weighted gene coexpression network analysis (WGCNA), a system biology approach has been utilized for identification of new molecular targets for psoriasis. Gene coexpression relationships were investigated in 58 psoriatic lesional samples resulting in five gene modules, clustered based on the gene coexpression patterns. The coexpression pattern was validated using three psoriatic datasets. 10 highly connected and informative genes from each module was selected and termed as psoriasis specific hub signatures. A random forest based binary classifier built using the expression profiles of signature genes robustly distinguished psoriatic samples from the normal samples in the validation set with an accuracy of 0.95 to 1. These signature genes may serve as potential candidates for biomarker discovery leading to new therapeutic targets. WGCNA, the network based approach has provided an alternative path to mine out key controllers and drivers of psoriasis. The study principle from the current work can be extended to other pathological conditions.
Collapse
Affiliation(s)
- Sudharsana Sundarrajan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, India.
| |
Collapse
|
26
|
Wlochowitz D, Haubrock M, Arackal J, Bleckmann A, Wolff A, Beißbarth T, Wingender E, Gültas M. Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines. Front Genet 2016; 7:42. [PMID: 27092172 PMCID: PMC4820448 DOI: 10.3389/fgene.2016.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) are gene regulatory proteins that are essential for an effective regulation of the transcriptional machinery. Today, it is known that their expression plays an important role in several types of cancer. Computational identification of key players in specific cancer cell lines is still an open challenge in cancer research. In this study, we present a systematic approach which combines colorectal cancer (CRC) cell lines, namely 1638N-T1 and CMT-93, and well-established computational methods in order to compare these cell lines on the level of transcriptional regulation as well as on a pathway level, i.e., the cancer cell-intrinsic pathway repertoire. For this purpose, we firstly applied the Trinity platform to detect signature genes, and then applied analyses of the geneXplain platform to these for detection of upstream transcriptional regulators and their regulatory networks. We created a CRC-specific position weight matrix (PWM) library based on the TRANSFAC database (release 2014.1) to minimize the rate of false predictions in the promoter analyses. Using our proposed workflow, we specifically focused on revealing the similarities and differences in transcriptional regulation between the two CRC cell lines, and report a number of well-known, cancer-associated TFs with significantly enriched binding sites in the promoter regions of the signature genes. We show that, although the signature genes of both cell lines show no overlap, they may still be regulated by common TFs in CRC. Based on our findings, we suggest that canonical Wnt signaling is activated in 1638N-T1, but inhibited in CMT-93 through cross-talks of Wnt signaling with the VDR signaling pathway and/or LXR-related pathways. Furthermore, our findings provide indication of several master regulators being present such as MLK3 and Mapk1 (ERK2) which might be important in cell proliferation, migration, and invasion of 1638N-T1 and CMT-93, respectively. Taken together, we provide new insights into the invasive potential of these cell lines, which can be used for development of effective cancer therapy.
Collapse
Affiliation(s)
- Darius Wlochowitz
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Martin Haubrock
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Jetcy Arackal
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Alexander Wolff
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Edgar Wingender
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Mehmet Gültas
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
27
|
Chaudhary SC, Tang X, Arumugam A, Li C, Srivastava RK, Weng Z, Xu J, Zhang X, Kim AL, McKay K, Elmets CA, Kopelovich L, Bickers DR, Athar M. Shh and p50/Bcl3 signaling crosstalk drives pathogenesis of BCCs in Gorlin syndrome. Oncotarget 2015; 6:36789-814. [PMID: 26413810 PMCID: PMC4742211 DOI: 10.18632/oncotarget.5103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder that is due, in large measure, to aberrant Shh signaling driven by mutations in the tumor suppressor gene Ptch1. Here, we describe the development of Ptch1+/-/ SKH-1 mice as a novel model of this disease. These animals manifest many features of NBCCS, including developmental anomalies and are remarkably sensitive to both ultraviolet (UVB) and ionizing radiation that drive the development of multiple BCCs. Just as in patients with NBCCS, Ptch1+/-/SKH-1 also spontaneously develops BCCs and other neoplasms such as rhabdomyomas/rhabdomyosarcomas. Administration of smoothened inhibitors (vismodegib/itraconazole/cyclopamine) or non-steroidal anti-inflammatory drug (sulindac/sulfasalazine) each result in partial resolution of BCCs in these animals. However, combined administration of these agents inhibits the growth of UVB-induced BCCs by >90%. Employing small molecule- and decoy-peptide-based approaches we further affirm that complete remission of BCCs could only be achieved by combined inhibition of p50-NFκB/Bcl3 and Shh signaling. We posit that Ptch1+/-/SKH-1 mice are a novel and relevant animal model for NBCCS. Understanding mechanisms that govern genetic predisposition to BCCs should facilitate our ability to identify and treat NBCCS gene carriers, including those at risk for sporadic BCCs while accelerating development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Sandeep C. Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiuwei Tang
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Ritesh K. Srivastava
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Jianmin Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiao Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Present address: Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Arianna L. Kim
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Kristopher McKay
- Division of Dermatopathology, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-4550, USA
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David R. Bickers
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| |
Collapse
|
28
|
Identification of osteoblast stimulating factor 5 as a negative regulator in the B-lymphopoietic niche. Exp Hematol 2015. [DOI: 10.1016/j.exphem.2015.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Barham W, Chen L, Tikhomirov O, Onishko H, Gleaves L, Stricker TP, Blackwell TS, Yull FE. Aberrant activation of NF-κB signaling in mammary epithelium leads to abnormal growth and ductal carcinoma in situ. BMC Cancer 2015; 15:647. [PMID: 26424146 PMCID: PMC4590702 DOI: 10.1186/s12885-015-1652-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Approximately 1 in 5 women diagnosed with breast cancer are considered to have in situ disease, most often termed ductal carcinoma in situ (DCIS). Though recognized as a risk factor for the development of more invasive cancer, it remains unclear what factors contribute to DCIS development. It has been shown that inflammation contributes to the progression of a variety of tumor types, and nuclear factor kappa B (NF-κB) is recognized as a master-regulator of inflammatory signaling. However, the contributions of NF-κB signaling to tumor initiation are less well understood. Aberrant up-regulation of NF-κB activity, either systemically or locally within the breast, could occur due to a variety of commonly experienced stimuli such as acute infection, obesity, or psychological stress. In this study, we seek to determine if activation of NF-κB in mammary epithelium could play a role in the formation of hyperplastic ductal lesions. METHODS Our studies utilize a doxycycline-inducible transgenic mouse model in which constitutively active IKKβ is expressed specifically in mammary epithelium. All previously published models of NF-κB modulation in the virgin mammary gland have been constitutive models, with transgene or knock-out present throughout the life and development of the animal. For the first time, we will induce activation at later time points after normal ducts have formed, thus being able to determine if NF-κB activation can promote pre-malignant changes in previously normal mammary epithelium. RESULTS We found that even a short pulse of NF-κB activation could induce profound remodeling of mammary ductal structures. Short-term activation created hyperproliferative, enlarged ducts with filled lumens. Increased expression of inflammatory markers was concurrent with the down-regulation of hormone receptors and markers of epithelial differentiation. Furthermore, the oncoprotein mucin 1, known to be up-regulated in human and mouse DCIS, was over-expressed and mislocalized in the activated ductal tissue. CONCLUSIONS These results indicate that aberrant NF-κB activation within mammary epithelium can lead to molecular and morphological changes consistent with the earliest stages of breast cancer. Thus, inhibition of NF-κB signaling following acute inflammation or the initial signs of hyperplastic ductal growth could represent an important opportunity for breast cancer prevention.
Collapse
Affiliation(s)
- Whitney Barham
- Department of Cancer Biology, Vanderbilt University Medical Center, 23rd Ave S and Pierce PRB 325, Nashville, TN, 37232, USA.
| | - Lianyi Chen
- Department of Cancer Biology, Vanderbilt University Medical Center, 23rd Ave S and Pierce PRB 325, Nashville, TN, 37232, USA.
| | - Oleg Tikhomirov
- Department of Cancer Biology, Vanderbilt University Medical Center, 23rd Ave S and Pierce PRB 325, Nashville, TN, 37232, USA.
| | - Halina Onishko
- Department of Cancer Biology, Vanderbilt University Medical Center, 23rd Ave S and Pierce PRB 325, Nashville, TN, 37232, USA.
| | - Linda Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave, Nashville, TN, 37232, USA.
| | - Thomas P Stricker
- Department of Pathology, Vanderbilt University Medical Center, 1161 21st Ave, Nashville, TN, 37232, USA.
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave, Nashville, TN, 37232, USA. .,Vanderbilt-Ingram Cancer Center, 691 Preston Building, 2220 Pierce Ave, Nashville, TN, 37232, USA.
| | - Fiona E Yull
- Department of Cancer Biology, Vanderbilt University Medical Center, 23rd Ave S and Pierce PRB 325, Nashville, TN, 37232, USA. .,Vanderbilt-Ingram Cancer Center, 691 Preston Building, 2220 Pierce Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
30
|
Madera L, Greenshields A, Coombs MRP, Hoskin DW. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses. PLoS One 2015; 10:e0133385. [PMID: 26177198 PMCID: PMC4503418 DOI: 10.1371/journal.pone.0133385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022] Open
Abstract
Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM) were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS) while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.
Collapse
Affiliation(s)
- Laurence Madera
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Anna Greenshields
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - David W. Hoskin
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
31
|
Cheng Q, Chang JT, Gwin WR, Zhu J, Ambs S, Geradts J, Lyerly HK. A signature of epithelial-mesenchymal plasticity and stromal activation in primary tumor modulates late recurrence in breast cancer independent of disease subtype. Breast Cancer Res 2014; 16:407. [PMID: 25060555 PMCID: PMC4187325 DOI: 10.1186/s13058-014-0407-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/04/2014] [Indexed: 01/08/2023] Open
Abstract
Introduction Despite improvements in adjuvant therapy, late systemic recurrences remain a lethal consequence of both early- and late-stage breast cancer. A delayed recurrence is thought to arise from a state of tumor dormancy, but the mechanisms that govern tumor dormancy remain poorly understood. Methods To address the features of breast tumors associated with late recurrence, but not confounded by variations in systemic treatment, we compiled breast tumor gene expression data from 4,767 patients and established a discovery cohort consisting of 743 lymph node-negative patients who did not receive systemic neoadjuvant or adjuvant therapy. We interrogated the gene expression profiles of the 743 tumors and identified gene expression patterns that were associated with early and late disease recurrence among these patients. We applied this classification to a subset of 46 patients for whom expression data from microdissected tumor epithelium and stroma was available, and identified a distinct gene signature in the stroma and also a corresponding tumor epithelium signature that predicted disease recurrence in the discovery cohort. This tumor epithelium signature was then validated as a predictor for late disease recurrence in the entire cohort of 4,767 patients. Results We identified a novel 51-gene signature from microdissected tumor epithelium associated with late disease recurrence in breast cancer independent of the molecular disease subtype. This signature correlated with gene expression alterations in the adjacent tumor stroma and describes a process of epithelial to mesenchymal transition (EMT) and tumor-stroma interactions. Conclusions Our findings suggest that an EMT-related gene signature in the tumor epithelium is related to both stromal activation and escape from disease dormancy in breast cancer. The presence of a late recurrence gene signature in the primary tumor also suggests that intrinsic features of this tumor regulate the transition of disseminated tumor cells into a dormant phenotype with the ability to outgrowth as recurrent disease. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0407-9) contains supplementary material, which is available to authorized users.
Collapse
|