1
|
Sunilkumar S, Yerlikaya EI, Toro AL, Chen H, Zhou Y, Gill DL, Kimball SR, Dennis MD. Podocyte-Specific Expression of the Stress Response Protein REDD1 Is Necessary for Diabetes-Induced Podocytopenia. Diabetes 2025; 74:398-408. [PMID: 39320924 PMCID: PMC11842600 DOI: 10.2337/db24-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and effective treatment modalities that fully address its molecular etiology are lacking. Prior studies support that the stress response protein REDD1 (regulated in development and DNA damage 1) contributes to the development of diabetes complications. This study investigated a potential role for REDD1 expression in podocytes in diabetes-induced podocyte loss and compromised glomerular filtration. Podocyte-specific REDD1 deletion protected against renal injury, as evidenced by reduced albuminuria, glomerular hypertrophy, and mesangial matrix deposition in streptozotocin (STZ)-induced diabetic mice. Podocyte-specific REDD1 expression was required for diabetes-induced reduction in slit diaphragm (SD) proteins podocin and nephrin. Notably, podocyte-specific REDD1 deletion protected against podocytopenia and preserved glomerular basement membrane and foot process architecture in diabetic mice. In the kidneys of diabetic mice and in human podocyte cultures exposed to hyperglycemic conditions, REDD1 was necessary for increased expression of the transient receptor potential canonical 6 (TRPC6) channel. More specifically, REDD1 promoted nuclear factor-κB-dependent transcription of TRPC6, intracellular calcium entry, and cytoskeletal remodeling under hyperglycemic conditions. Overall, the findings provide new insight into the role of podocyte-specific REDD1 expression in renal pathology and support the possibility that therapeutics targeting REDD1 in podocytes could be beneficial for DN. ARTICLE HIGHLIGHTS Diabetes-induced albuminuria and reduced glomerular slit diaphragm proteins were associated with increased kidney REDD1 protein abundance. Podocyte-specific deletion of REDD1 attenuated diabetes-induced slit diaphragm protein reduction and podocyte loss. REDD1 was required for nuclear factor-κB-dependent TRPC6 expression and increased cytoplasmic calcium levels in podocytes. Podocyte-specific expression of REDD1 was necessary for altered glomerular architecture and albuminuria in diabetic mice.
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Esma I. Yerlikaya
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Han Chen
- Transmission Electron Microscopy Core Facility, Penn State College of Medicine, Hershey, PA
| | - Yandong Zhou
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Donald L. Gill
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
2
|
Ma R, Tao Y, Wade ML, Mallet RT. Non-voltage-gated Ca 2+ channel signaling in glomerular cells in kidney health and disease. Am J Physiol Renal Physiol 2024; 327:F249-F264. [PMID: 38867675 PMCID: PMC11460346 DOI: 10.1152/ajprenal.00130.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells, communicate via endocrine- and paracrine-signaling mechanisms to maintain the structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels impacts the functions of all three cell types. The past two decades have witnessed pivotal advances in understanding of non-voltage-gated Ca2+ channel function and regulation in the renal corpuscle in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage-gated Ca2+ channel signaling in mesangial cells, podocytes and glomerular capillary endothelium. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-d-aspartate receptors and purinergic receptors also are discussed. This update of Ca2+ channel functions and their cellular signaling cascades in the renal corpuscle is intended to inform the development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.
Collapse
Affiliation(s)
- Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Michael L Wade
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
3
|
Luo QQ, Cheng L, Wang B, Chen X, Li WT, Chen SL. ZBTB20 mediates stress-induced visceral hypersensitivity via activating the NF-κB/transient receptor potential channel pathway. Neurogastroenterol Motil 2024; 36:e14718. [PMID: 38009899 DOI: 10.1111/nmo.14718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Psychological stress is a major trigger for visceral hypersensitivity (VH) in irritable bowel syndrome. The zinc finger protein ZBTB20 (ZBTB20) is implicated in somatic nociception via modulating transient receptor potential (TRP) channels, but its role in the development of VH is unclear. This study aimed to investigate the role of ZBTB20/TRP channel axis in stress-induced VH. METHODS Rats were subjected to water avoidance stress (WAS) for 10 consecutive days. Small interfering RNA (siRNA) targeting ZBTB20 was intrathecally administered. Inhibitors of TRP channels, stress hormone receptors, and nuclear factor kappa-B (NF-κB) were administered. Visceromotor response to colorectal distension was recorded. Dorsal root ganglia (DRGs) were dissected for Western blot, coimmunoprecipitation, and chromatin immunoprecipitation. The DRG-derived neuron cell line was applied for specific research. KEY RESULTS WAS-induced VH was suppressed by the inhibitor of TRPV1, TRPA1, or TRPM8, with enhanced expression of these channels in L6-S2 DRGs. The inhibitor of glucocorticoid receptor or β2-adrenergic receptor counteracted WAS-induced VH and TRP channel expression. Concurrently, WAS-induced stress hormone-dependent ZBTB20 expression and NF-κB activation in DRGs. Intrathecally injected ZBTB20 siRNA or an NF-κB inhibitor repressed WAS-caused effect. In cultured DRG-derived neurons, stress hormones promoted nuclear translocation of ZBTB20, which preceded p65 nuclear translocation. And, ZBTB20 siRNA suppressed stress hormone-caused NF-κB activation. Finally, WAS enhanced p65 binding to the promoter of TRPV1, TRPA1, or TRPM8 in rat DRGs. CONCLUSIONS AND INFERENCES ZBTB20 mediates stress-induced VH via activating NF-κB/TRP channel pathway in nociceptive sensory neurons.
Collapse
Affiliation(s)
- Qing-Qing Luo
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Cheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bo Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xin Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wen-Ting Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Sheng-Liang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
4
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
5
|
Chen Q, Zhou Y, Zhou L, Fu Z, Yang C, Zhao L, Li S, Chen Y, Wu Y, Ling Z, Wang Y, Huang J, Li J. TRPC6-dependent Ca 2+ signaling mediates airway inflammation in response to oxidative stress via ERK pathway. Cell Death Dis 2020; 11:170. [PMID: 32139669 PMCID: PMC7058000 DOI: 10.1038/s41419-020-2360-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Ozone (O3) plays an extremely important role in airway inflammation by generating reactive oxygen species (ROS) including hydrogen peroxide, then promoting redox actions and causing oxidative stress. Evidences indicate that TRPC6 (canonical transient receptor potential channel 6) is a redox-regulated Ca2+ permeable nonselective cation channel, but its role in the setting of oxidative stress-related airway inflammation remains unknown. Here, we found that both TRPC6-/- mice and mice pretreated with SAR7334, a potent TRPC6 inhibitor, were protected from O3-induced airway inflammatory responses. In vitro, both knockdown of TRPC6 expression with shRNA and TRPC6 blockage markedly attenuated the release of cytokines IL-6 and IL-8 induced by O3 or H2O2 in 16HBE cells (human bronchial epithelial cell line). Treatment with O3 or H2O2 enhanced TRPC6 protein expression in vivo and vitro. We also observed that TRPC6-dependent increase of intracellular Ca2+ concentration ([Ca2+]i) was triggered by H2O2, which consisted of the release from intracellular calcium store and the influx of extracellular Ca2+ and could be further strengthened by 6-h O3 exposure in both 16HBE cells and HBEpiCs (primary human bronchial epithelial cells). Moreover, we confirmed that the activation of MAPK signals (ERK1/2, p38, JNK) was required for the inflammatory response induced by O3 or H2O2 while only the phosphorylation of ERK pathway was diminished in the TRPC6-knockdown situation. These results demonstrate that oxidative stress regulates TRPC6-mediated Ca2+ cascade, which leads to the activation of ERK pathway and inflammation and could become a potential target to treat oxidative stress-associated airway inflammatory diseases.
Collapse
Affiliation(s)
- Qingzi Chen
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yubo Zhou
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lifen Zhou
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaodi Fu
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chuntao Yang
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lei Zhao
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuni Li
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan Chen
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yousen Wu
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhenwei Ling
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center of Guangzhou Medical University, Guangzhou, China
| | - Yufeng Wang
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jianrong Huang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jianhua Li
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Shotorbani PY, Chaudhari S, Tao Y, Tsiokas L, Ma R. Inhibitor of myogenic differentiation family isoform a, a new positive regulator of fibronectin production by glomerular mesangial cells. Am J Physiol Renal Physiol 2020; 318:F673-F682. [PMID: 31984795 PMCID: PMC7099507 DOI: 10.1152/ajprenal.00508.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Overproduction of extracellular matrix proteins, including fibronectin by mesangial cells (MCs), contributes to diabetic nephropathy. Inhibitor of myogenic differentiation family isoform a (I-mfa) is a multifunctional cytosolic protein functioning as a transcriptional modulator or plasma channel protein regulator. However, its renal effects are unknown. The present study was conducted to determine whether I-mfa regulated fibronectin production by glomerular MCs. In human MCs, overexpression of I-mfa significantly increased fibronectin abundance. Silencing I-mfa significantly reduced the level of fibronectin mRNA and blunted transforming growth factor-β1-stimulated production of fibronectin. We further found that high glucose increased I-mfa protein content in a time course (≥48 h) and concentration (≥25 mM)-dependent manner. Although high glucose exposure increased I-mfa at the protein level, it did not significantly alter transcripts of I-mfa in MCs. Furthermore, the abundance of I-mfa protein was significantly increased in the renal cortex of rats with diabetic nephropathy. The I-mfa protein level was also elevated in the glomerulus of mice with diabetic kidney disease. However, there was no significant difference in glomerular I-mfa mRNA levels between mice with and without diabetic nephropathy. Moreover, H2O2 significantly increased I-mfa protein abundance in a dose-dependent manner in cultured human MCs. The antioxidants polyethylene glycol-catalase, ammonium pyrrolidithiocarbamate, and N-acetylcysteine significantly blocked the high glucose-induced increase of I-mfa protein. Taken together, our results suggest that I-mfa, increased by high glucose/diabetes through the production of reactive oxygen species, stimulates fibronectin production by MCs.
Collapse
Affiliation(s)
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
7
|
Dryer SE, Roshanravan H, Kim EY. TRPC channels: Regulation, dysregulation and contributions to chronic kidney disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1041-1066. [PMID: 30953689 DOI: 10.1016/j.bbadis.2019.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the gene encoding canonical transient receptor potential-6 (TRPC6) channels result in severe nephrotic syndromes that typically lead to end-stage renal disease. Many but not all of these mutations result in a gain in the function of the resulting channel protein. Since those observations were first made, substantial work has supported the hypothesis that TRPC6 channels can also contribute to progression of acquired (non-genetic) glomerular diseases, including primary and secondary FSGS, glomerulosclerosis during autoimmune glomerulonephritis, and possibly in type-1 diabetes. Their regulation has been extensively studied, especially in podocytes, but also in mesangial cells and other cell types present in the kidney. More recent evidence has implicated TRPC6 in renal fibrosis and tubulointerstitial disease caused by urinary obstruction. Consequently TRPC6 is being extensively investigated as a target for drug discovery. Other TRPC family members are present in kidney. TRPC6 can form a functional heteromultimer with TRPC3, and it has been suggested that TRPC5 may also play a role in glomerular disease progression, although the evidence on this is contradictory. Here we review literature on the expression and regulation of TRPC6, TRPC3 and TRPC5 in various cell types of the vertebrate kidney, the evidence that these channels are dysregulated in disease models, and research showing that knock-out or pharmacological inhibition of these channels can reduce the severity of kidney disease. We also summarize several areas that remain controversial, and some of the large gaps of knowledge concerning the fundamental role of these proteins in regulation of renal function.
Collapse
Affiliation(s)
- Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Internal Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
8
|
Li X, Xu L, Hou X, Geng J, Tian J, Liu X, Bai X. Advanced Oxidation Protein Products Aggravate Tubulointerstitial Fibrosis Through Protein Kinase C-Dependent Mitochondrial Injury in Early Diabetic Nephropathy. Antioxid Redox Signal 2019; 30:1162-1185. [PMID: 29482336 DOI: 10.1089/ars.2017.7208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Diabetic nephropathy (DN) is the most common microvascular complications and the principal cause of mortality and morbidity rates in patients with diabetes. The expression of advanced oxidation protein products (AOPPs) has been found in vacuolated renal tubules in DN and correlated with patients' decreased renal function. The accumulation of AOPPs is regarded as an initiating factor in podocyte injuries via the protein kinase C (PKC) signaling, which plays a critical role in triggering oxidative stress and mitochondrial injuries in diseases including DN. Whether AOPPs could induce mitochondrial injuries and fibrosis in renal tubules remains largely unknown. Herein, we tested the hypothesis that the accumulation of AOPPs in diabetes incurs mitochondrial dysfunction and oxidative stress, causing renal tubulointerstitial fibrosis (TIF) via PKC signaling pathway. RESULTS In vivo, intrarenal AOPPs accumulation correlated with oxidative stress, renal fibrosis, proteinuria, and declined renal function in DN patients and diabetic rats. AOPPs-induced mitochondrial injuries, apoptosis, and TIF were significantly mitigated by PKCη inhibition in diabetic rats. In vitro, high glucose (HG) stimulated AOPP expression and augmented PKC-mediated oxidative stress and fibrosis in HK-2 cells. Furthermore, we provide mechanistic evidence that inhibition of PKCη isoform alleviated mitochondrial injuries and function, attenuated apoptosis, and renal fibrosis in HG-cultured AOPPs-induced HK-2 cells. Innovation and Conclusion: We propose a novel mechanism that AOPPs-induced mitochondrial dysfunction and oxidative stress cause TIF in DN via activation of the PKCη isoform.
Collapse
Affiliation(s)
- Xiao Li
- 1 Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Liting Xu
- 2 Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyan Hou
- 3 Department of Nephrology, The First Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China
| | - Jian Geng
- 4 Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jianwei Tian
- 2 Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoting Liu
- 5 Department of Pathology, King Medical Diagnostics Center, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyan Bai
- 2 Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Woolaver RA, Wang X, Dollin Y, Xie P, Wang JH, Chen Z. TRAF2 Deficiency in B Cells Impairs CD40-Induced Isotype Switching That Can Be Rescued by Restoring NF-κB1 Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3421-3430. [PMID: 30341187 PMCID: PMC6246814 DOI: 10.4049/jimmunol.1800337] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
Abstract
Effective humoral immunity requires class switch recombination (CSR) catalyzed by activation-induced cytidine deaminase (AID). In response to T cell-dependent (TD) Ags, CSR can be induced by CD40 signaling in B cells. TNFR-associated factors 2 and 3 (TRAF2/TRAF3) function as adaptors of the CD40 signaling pathway. B cell-intrinsic TRAF2 or TRAF3 (B-TRAF2 or B-TRAF3) knockout mice were previously reported to have indistinguishable phenotypes in gene expression, B cell survival and development, and enlarged peripheral lymphoid organs. However, it remains unknown whether deficiency of B-TRAF2 or B-TRAF3 differentially affects TD humoral immune responses and CD40-induced CSR. In this article, we show that B-TRAF2 is essential for optimal isotype switching induced by in vivo TD Ag immunization or by engaging CD40 in vitro. Our data clarify the controversial role of B-TRAF3 and confirm its dispensability in CD40-induced CSR. Mechanistically, CD40-induced AID expression was markedly impaired by B-TRAF2, but not B-TRAF3, deficiency. Moreover, B-TRAF2 deficiency causes defective activation of the NF-κB1 complex in a CD40-autonomous manner, and restoring CD40-induced NF-κB1 activation in TRAF2-deficient B cells rescues AID expression and CSR. We conclude that TRAF2 is essential but TRAF3 is dispensable for TD humoral immunity and CD40-induced CSR. Our studies provide significant biological bases for optimizing treatment of B cell-associated immune disorders by targeting CD40 signaling.
Collapse
Affiliation(s)
- Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Xiaoguang Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Yonatan Dollin
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854; and
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045;
| | - Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
10
|
Jiang H, Zou S, Chaudhari S, Ma R. Short-term high-glucose treatment decreased abundance of Orai1 protein through posttranslational mechanisms in rat mesangial cells. Am J Physiol Renal Physiol 2018; 314:F855-F863. [PMID: 29363325 DOI: 10.1152/ajprenal.00513.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The short-term effect of high-glucose (HG) treatment on store-operated Ca2+ entry in mesangial cells (MCs) is not well-known. The aim of the present study was to determine whether and how HG treatment for a short period altered protein abundance of Orai1, the channel mediating store-operated Ca2+ entry in MCs. Rat and human MCs were exposed to HG (25 mM) for 2, 4, 8, and 24 h, and the abundance of Orai1 protein was significantly decreased at the time points of 8 and 16 h. Consistently, HG treatment for 8 h significantly reduced store-operated Ca2+ entry in rat MCs. However, HG treatment for the same time periods did not alter the levels of Orai1 transcript. Cycloheximide, a protein synthesis inhibitor, did not affect the HG-induced decrease of Orai1 protein, suggesting a posttranslational mechanism was involved. However, the HG effect on Orai1 protein was significantly attenuated by MG132 (a ubiquitin-proteasome inhibitor) and NH4Cl (a lysosomal pathway inhibitor). Furthermore, HG treatment for 8 h stimulated ubiquitination of Orai1 protein. We further found that polyethylene glycol-catalase, an antioxidant, significantly blunted the HG-induced reduction of Orai1 protein. In support of involvement of reactive oxygen species in the HG effects, hydrogen peroxide (H2O2) itself significantly decreased abundance of Orai1 protein and increased the level of ubiquitinated Orai1. Taken together, these results suggest that a short-term HG treatment decreased abundance of Orai1 protein in MCs by promoting the protein degradation through the ubiquitination-proteasome and -lysosome mechanisms. This HG-stimulated posttranslational mechanism was mediated by H2O2.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Department of Pharmacy, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine , Hefei , China
| | - Shubiao Zou
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Department of Laboratory Medicine, the Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Department of Physiology, Anhui Medical University , Hefei , China
| |
Collapse
|
11
|
Bellinger DL, Lorton D. Sympathetic Nerve Hyperactivity in the Spleen: Causal for Nonpathogenic-Driven Chronic Immune-Mediated Inflammatory Diseases (IMIDs)? Int J Mol Sci 2018; 19:ijms19041188. [PMID: 29652832 PMCID: PMC5979464 DOI: 10.3390/ijms19041188] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Immune-Mediated Inflammatory Diseases (IMIDs) is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA), Sjőgren's syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA) axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS). These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs. Using a rodent model of inflammatory arthritis as an IMID model, we report disease-specific maladaptive changes in β₂-adrenergic receptor (AR) signaling from protein kinase A (PKA) to mitogen activated protein kinase (MAPK) pathways in the spleen. Beta₂-AR signal "shutdown" in the spleen and switching from PKA to G-coupled protein receptor kinase (GRK) pathways in lymph node cells drives inflammation and disease advancement. Based on these findings and the existing literature in other IMIDs, we present and discuss relevant literature that support the hypothesis that unresolvable immune stimulation from chronic inflammation leads to a maladaptive disease-inducing and perpetuating sympathetic response in an attempt to maintain allostasis. Since the role of sympathetic dysfunction in IMIDs is best studied in RA and rodent models of RA, this IMID is the primary one used to evaluate data relevant to our hypothesis. Here, we review the relevant literature and discuss sympathetic dysfunction as a significant contributor to the pathophysiology of IMIDs, and then discuss a novel target for treatment. Based on our findings in inflammatory arthritis and our understanding of common inflammatory process that are used by the immune system across all IMIDs, novel strategies to restore SNS homeostasis are expected to provide safe, cost-effective approaches to treat IMIDs, lower comorbidities, and increase longevity.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Dianne Lorton
- College of Arts and Sciences, Kent State University, Kent, OH 44304, USA.
| |
Collapse
|
12
|
Lu R, Wang J, Tao R, Wang J, Zhu T, Guo W, Sun Y, Li H, Gao Y, Zhang W, Fowler CJ, Li Q, Chen S, Wu Z, Masters CL, Zhong C, Jing N, Wang Y, Wang Y. Reduced TRPC6 mRNA levels in the blood cells of patients with Alzheimer's disease and mild cognitive impairment. Mol Psychiatry 2018; 23:767-776. [PMID: 28696436 DOI: 10.1038/mp.2017.136] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 02/01/2023]
Abstract
Transient receptor potential canonical 6 (TRPC6) inhibits β-amyloid (Aβ) production. Hyperforin, the TRPC6 agonist, reduces Aβ levels and improves cognitive performance in Alzheimer's disease (AD) models. However, it's unknown whether TRPC6 expression is changed in AD patients. In this case-control study, we measured TRPC6 expression levels in the peripheral blood cells of four independent AD sets from five hospitals and one mild cognitive impairment (MCI) set from a local community (229 AD, 70 MCI, 40 Parkinson disease and 359 controls from China, total n=698) using quantitative real-time PCR assay. We found a specific reduction of TRPC6 mRNA levels in four AD sets and one MCI set. The median TRPC6 mRNA levels were lower in the following: (1) combined AD patients than in age-matched controls (0.78 vs 1.73, P<0.001); (2) mild-to-moderate AD patients than in age-matched controls (0.81 vs 1.73, P<0.001); and (3) MCI patients than in age-matched controls (0.76 vs 1.72, P<0.001). In the receiver-operating characteristic curve analysis, the area under curve was 0.85 for combined AD, 0.84 for mild-to-moderate AD and 0.79 for MCI. In a subgroup of AD patients with brain Aβ examination, TRPC6 was associated with standardized uptake value ratio of Pittsburgh Compound B (Spearman's r=-0.49, P=0.04) and cerebrospinal fluid Aβ42 (Spearman's r=0.43, P=0.04). The TRPC6 reduction in AD patients was further confirmed in blood RNA samples from The Australian Imaging, Biomarkers and Lifestyle Flagship Study of Aging, in post-mortem brain tissues from The Netherlands Brain Bank and in induced pluripotent stem cells-derived neurons from Chinese donors. We conclude that TRPC6 mRNA levels in the blood cells are specifically reduced in AD and MCI patients, and TRPC6 might be a biomarker for the early diagnosis of AD.
Collapse
Affiliation(s)
- R Lu
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China.,Graduate School of Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Beijing Institute of Medical Sciences, Beijing, China
| | - J Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - R Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - J Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - T Zhu
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - W Guo
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Y Sun
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - H Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Y Gao
- Department of Neurology and Institute of Neurology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Zhang
- Department of Geriatrics, Tiantan Hospital, Capital Medical University, Beijing, China
| | - C J Fowler
- The Florey Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Q Li
- The Florey Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - S Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - C L Masters
- The Florey Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - C Zhong
- Department of Neurology, Zhongshan Hospital and Shanghai Medical College, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Fudan University, Shanghai, China
| | - N Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Y Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Y Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China.,Beijing Institute of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Chueakula N, Jaikumkao K, Arjinajarn P, Pongchaidecha A, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Diacerein alleviates kidney injury through attenuating inflammation and oxidative stress in obese insulin-resistant rats. Free Radic Biol Med 2018; 115:146-155. [PMID: 29195834 DOI: 10.1016/j.freeradbiomed.2017.11.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
A link between inflammation with obesity and metabolic syndrome has been found in patients with chronic kidney disease (CKD). Diacerein is an anthraquinone used to treat osteoarthritis that exerts anti-inflammatory action by inhibiting the synthesis and activity of proinflammatory cytokines. This study aimed to investigate the protective effect of diacerein on renal function and renal organic anion transporter 3 (Oat3) function in obese insulin-resistant condition. Obese insulin-resistant rats were induced by feeding a high-fat diet in male Wistar rats for 16 weeks. Diacerein or metformin (positive control) (30mg/kg/day) was administered orally for 4 weeks after insulin resistance had been confirmed. Obese insulin-resistant rats showed an impaired renal function as indicated by the increased serum creatinine and microalbuminuria along with the decreased renal Oat3 function and expression. Importantly, diacerein treatment not only improved insulin resistance but also restored renal function. The decreased renal malondialdehyde level, expressions of PKCα, angiotensin 1 receptor (AT1R), Nrf2, and HO-1, and increased expression of SOD2 were observed in diacerein treatment group, indicating the attenuation of renal oxidative stress condition. Moreover, renal inflammation and renal damage were also alleviated in diacerein-treated rats. Our results demonstrated for the first time that diacerein was effective to improve renal function and renal Oat3 function in obese insulin-resistance condition mediated by suppressing renal oxidative stress and inflammation. These findings suggest that anti-inflammatory agents can be used therapeutically to improve metabolic disorder and prevent organ dysfunctions in pre-diabetic condition.
Collapse
Affiliation(s)
- Nuttawud Chueakula
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krit Jaikumkao
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phatchawan Arjinajarn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
14
|
Zhou HS, Li M, Sui BD, Wei L, Hou R, Chen WS, Li Q, Bi SH, Zhang JZ, Yi DH. Lipopolysaccharide impairs permeability of pulmonary microvascular endothelial cells via Connexin40. Microvasc Res 2018; 115:58-67. [PMID: 28870649 DOI: 10.1016/j.mvr.2017.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 12/27/2022]
Abstract
The endotoxin lipopolysaccharide (LPS)-induced pulmonary endothelial barrier disruption is a key pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, the molecular mechanisms underlying LPS-impaired permeability of pulmonary microvascular endothelial cells (PMVECs) are not fully understood. Gap junctions, particularly Connexin40 (Cx40), are necessary for the maintenance of normal vascular function. In this study, we for the first time investigated the role of Cx40 in LPS-impaired permeability of PMVECs and provided potential therapeutic approaches based on mechanistic findings of Cx40 regulation by LPS stimuli. Rat PMVECs were isolated, cultured and identified with cell morphology, specific markers, ultrastructural characteristics and functional tests. Western blot analysis demonstrated that Cx40 is the major connexin highly expressed in PMVECs. Furthermore, by inhibiting Cx40 in a time-dependent manner, LPS impaired gap junction function and induced permeability injury of PMVECs. The key role of Cx40 decline in mediating detrimental effects of LPS was further confirmed in rescue experiments through Cx40 overexpression. Mechanistically, LPS stress on PMVECs inhibited the protein kinase C (PKC) pathway, which may synergize with the inflammatory nuclear factor kappaB (NFκB) signaling activation in suppressing Cx40 expression level and phosphorylation. Moreover, through pharmacological PKC activation or NFκB inhibition, Cx40 activity in PMVECs could be restored, leading to maintained barrier function under LPS stress. Our findings uncover a previously unrecognized role of Cx40 and its regulatory mechanisms in impaired endothelial integrity under endotoxin and inflammation, shedding light on intervention approaches to improve pulmonary endothelial barrier function in ALI and ARDS.
Collapse
Affiliation(s)
- Hua-Song Zhou
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Meng Li
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Lei Wei
- Xi'an Satellite Control Centre Clinic, Xi'an, Shaanxi 710043, China
| | - Rui Hou
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wen-Sheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qiang Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sheng-Hui Bi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin-Zhou Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Ding-Hua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
15
|
Zhang D, Han S, Wang S, Luo Y, Zhao L, Li J. cPKCγ-mediated down-regulation of UCHL1 alleviates ischaemic neuronal injuries by decreasing autophagy via ERK-mTOR pathway. J Cell Mol Med 2017; 21:3641-3657. [PMID: 28726275 PMCID: PMC5706506 DOI: 10.1111/jcmm.13275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/14/2017] [Indexed: 02/06/2023] Open
Abstract
Stroke is one of the leading causes of death in the world, but its underlying mechanisms remain unclear. Both conventional protein kinase C (cPKC)γ and ubiquitin C-terminal hydrolase L1 (UCHL1) are neuron-specific proteins. In the models of 1-hr middle cerebral artery occlusion (MCAO)/24-hr reperfusion in mice and 1-hr oxygen-glucose deprivation (OGD)/24-hr reoxygenation in cortical neurons, we found that cPKCγ gene knockout remarkably aggravated ischaemic injuries and simultaneously increased the levels of cleaved (Cl)-caspase-3 and LC3-I proteolysis product LC3-II, and the ratio of TUNEL-positive cells to total neurons. Moreover, cPKCγ gene knockout could increase UCHL1 protein expression via elevating its mRNA level regulated by the nuclear factor κB inhibitor alpha (IκB-α)/nuclear factor κB (NF-κB) pathway in cortical neurons. Both inhibitor and shRNA of UCHL1 significantly reduced the ratio of LC3-II/total LC3, which contributed to neuronal survival after ischaemic stroke, but did not alter the level of Cl-caspase-3. In addition, UCHL1 shRNA reversed the effect of cPKCγ on the phosphorylation levels of mTOR and ERK rather than that of AMPK and GSK-3β. In conclusion, our results suggest that cPKCγ activation alleviates ischaemic injuries of mice and cortical neurons through inhibiting UCHL1 expression, which may negatively regulate autophagy through ERK-mTOR pathway.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Neurobiology and Center of StrokeBeijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Song Han
- Department of Neurobiology and Center of StrokeBeijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Shizun Wang
- Department of Neurobiology and Center of StrokeBeijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yanlin Luo
- Department of Neurobiology and Center of StrokeBeijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Li Zhao
- Department of Neurobiology and Center of StrokeBeijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Junfa Li
- Department of Neurobiology and Center of StrokeBeijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
16
|
Rogacka D, Audzeyenka I, Rachubik P, Rychłowski M, Kasztan M, Jankowski M, Angielski S, Piwkowska A. Insulin increases filtration barrier permeability via TRPC6-dependent activation of PKGIα signaling pathways. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1312-1325. [DOI: 10.1016/j.bbadis.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/04/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022]
|
17
|
miR-706 inhibits the oxidative stress-induced activation of PKCα/TAOK1 in liver fibrogenesis. Sci Rep 2016; 6:37509. [PMID: 27876854 PMCID: PMC5120320 DOI: 10.1038/srep37509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress induces the activation of liver fibrogenic cells (myofibroblasts), thus promoting the expression of fibrosis-related genes, leading to hepatic fibrogenesis. MicroRNAs (miRNAs) are a new class of small RNAs ~18–25 nucleotides in length involved in post-transcriptional regulation of gene expression. Wound-healing and remodeling processes in liver fibrosis have been associated with changes in hepatic miRNA expression. However, the role of miR-706 in liver fibrogenesis is currently unknown. In the present study, we show that miR-706 is abundantly expressed in hepatocytes. Moreover, oxidative stress leads to a significant downregulation of miR-706, and the further reintroduction of miR-706 inhibits oxidative stress-induced expression of fibrosis-related markers such as α-SMA. Subsequent studies revealed that miR-706 directly inhibits PKCα and TAOK1 expression via binding to the 3′-untranslated region, preventing epithelial mesenchymal transition. In vivo studies showed that intravenous injection of miR-706 agomir successfully increases hepatic miR-706 and decreases α-SMA, PKCα, and TAOK1 protein levels in livers of carbon tetrachloride (CCl4)-treated mice. In summary, this study reveals a protective role for miR-706 by blocking the oxidative stress-induced activation of PKCα/TAOK1. Our results further identify a major implication for miR-706 in preventing hepatic fibrogenesis and suggest that miR-706 may be a suitable molecular target for anti-fibrosis therapy.
Collapse
|
18
|
Ma R, Chaudhari S, Li W. Canonical Transient Receptor Potential 6 Channel: A New Target of Reactive Oxygen Species in Renal Physiology and Pathology. Antioxid Redox Signal 2016; 25:732-748. [PMID: 26937558 PMCID: PMC5079416 DOI: 10.1089/ars.2016.6661] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
Abstract
SIGNIFICANCE Regulation of Ca2+ signaling cascade by reactive oxygen species (ROS) is becoming increasingly evident and this regulation represents a key mechanism for control of many fundamental cellular functions. Canonical transient receptor potential (TRPC) 6, a member of Ca2+-conductive channel in the TRPC family, is widely expressed in kidney cells, including glomerular mesangial cells, podocytes, tubular epithelial cells, and vascular myocytes in renal microvasculature. Both overproduction of ROS and dysfunction of TRPC6 channel are involved in renal injury in animal models and human subjects. Although regulation of TRPC channel function by ROS has been well described in other tissues and cell types, such as vascular smooth muscle, this important cell regulatory mechanism has not been fully reviewed in kidney cells. Recent Advances: Accumulating evidence has shown that TRPC6 is a redox-sensitive channel, and modulation of TRPC6 Ca2+ signaling by altering TRPC6 protein expression or TRPC6 channel activity in kidney cells is a downstream mechanism by which ROS induce renal damage. CRITICAL ISSUES This review highlights how recent studies analyzing function and expression of TRPC6 channels in the kidney and their response to ROS improve our mechanistic understanding of oxidative stress-related kidney diseases. FUTURE DIRECTIONS Although it is evident that ROS regulate TRPC6-mediated Ca2+ signaling in several types of kidney cells, further study is needed to identify the underlying molecular mechanism. We hope that the newly identified ROS/TRPC6 pathway will pave the way to new, promising therapeutic strategies to target kidney diseases such as diabetic nephropathy. Antioxid. Redox Signal. 25, 732-748.
Collapse
Affiliation(s)
- Rong Ma
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Sarika Chaudhari
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Weizu Li
- Department of Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
19
|
Xiong C, Li Q, Chen C, Chen Z, Huang W. Neuroprotective effect of crude polysaccharide isolated from the fruiting bodies of Morchella importuna against H2O2-induced PC12 cell cytotoxicity by reducing oxidative stress. Biomed Pharmacother 2016; 83:569-576. [DOI: 10.1016/j.biopha.2016.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022] Open
|
20
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
21
|
The inflammatory cytokine TWEAK decreases PGC-1α expression and mitochondrial function in acute kidney injury. Kidney Int 2016; 89:399-410. [DOI: 10.1038/ki.2015.332] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/03/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022]
|
22
|
Bouron A, Chauvet S, Dryer S, Rosado JA. Second Messenger-Operated Calcium Entry Through TRPC6. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:201-49. [PMID: 27161231 DOI: 10.1007/978-3-319-26974-0_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Canonical transient receptor potential 6 (TRPC6) proteins assemble into heteromultimeric structures forming non-selective cation channels. In addition, many TRPC6-interacting proteins have been identified like some enzymes, channels, pumps, cytoskeleton-associated proteins, immunophilins, or cholesterol-binding proteins, indicating that TRPC6 are engaged into macromolecular complexes. Depending on the cell type and the experimental conditions used, TRPC6 activity has been reported to be controlled by diverse modalities. For instance, the second messenger diacylglycerol, store-depletion, the plant extract hyperforin or H2O2 have all been shown to trigger the opening of TRPC6 channels. A well-characterized consequence of TRPC6 activation is the elevation of the cytosolic concentration of Ca(2+). This latter response can reflect the entry of Ca(2+) through open TRPC6 channels but it can also be due to the Na(+)/Ca(2+) exchanger (operating in its reverse mode) or voltage-gated Ca(2+) channels (recruited in response to a TRPC6-mediated depolarization). Although TRPC6 controls a diverse array of biological functions in many tissues and cell types, its pathophysiological functions are far from being fully understood. This chapter covers some key features of TRPC6, with a special emphasis on their biological significance in kidney and blood cells.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, 38000, Grenoble, France.
- CNRS, iRTSV-LCBM, 38000, Grenoble, France.
| | - Sylvain Chauvet
- Université Grenoble Alpes, 38000, Grenoble, France
- CNRS, iRTSV-LCBM, 38000, Grenoble, France
| | - Stuart Dryer
- University of Houston, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain
| |
Collapse
|
23
|
Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
24
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
25
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
26
|
Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
27
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II-dependent activation of TRPC channels. Sci Rep 2015; 5:17637. [PMID: 26656101 PMCID: PMC4674698 DOI: 10.1038/srep17637] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/03/2015] [Indexed: 01/05/2023] Open
Abstract
Injury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats, and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Andrea Lowing
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Leonid S Shuyskiy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
28
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
29
|
Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
30
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
31
|
NADPH oxidases—do they play a role in TRPC regulation under hypoxia? Pflugers Arch 2015; 468:23-41. [DOI: 10.1007/s00424-015-1731-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022]
|
32
|
Ambrus L, Oláh A, Oláh T, Balla G, Saleem MA, Orosz P, Zsuga J, Bíró K, Csernoch L, Bíró T, Szabó T. Inhibition of TRPC6 by protein kinase C isoforms in cultured human podocytes. J Cell Mol Med 2015; 19:2771-9. [PMID: 26404773 PMCID: PMC4687697 DOI: 10.1111/jcmm.12660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential canonical‐6 (TRPC6) ion channels, expressed at high levels in podocytes of the filtration barrier, are recently implicated in the pathogenesis of various forms of proteinuric kidney diseases. Indeed, inherited or acquired up‐regulation of TRPC6 activities are suggested to play a role in podocytopathies. Yet, we possess limited information about the regulation of TRPC6 in human podocytes. Therefore, in this study, we aimed at defining how the protein kinase C (PKC) system, one of the key intracellular signalling pathways, regulates TRPC6 function and expression. On human differentiated podocytes, we identified the molecular expressions of both TRPC6 and several PKC isoforms. We also showed that TRPC6 channels are functional since the TRPC6 activator 1‐oleoyl‐2‐acetyl‐sn‐glycerol (OAG) induced Ca2+‐influx to the cells. By assessing the regulatory roles of the PKCs, we found that inhibitors of the endogenous activities of classical and novel PKC isoforms markedly augmented TRPC6 activities. In contrast, activation of the PKC system by phorbol 12‐myristate 13‐acetate (PMA) exerted inhibitory actions on TRPC6 and suppressed its expression. Importantly, PMA treatment markedly down‐regulated the expression levels of PKCα, PKCβ, and PKCη reflecting their activation. Taken together, these results indicate that the PKC system exhibits a ‘tonic’ inhibition on TRPC6 activity in human podocytes suggesting that pathological conditions altering the expression and/or activation patterns of podocyte‐expressed PKCs may influence TRPC6 activity and hence podocyte functions. Therefore, it is proposed that targeted manipulation of certain PKC isoforms might be beneficial in certain proteinuric kidney diseases with altered TRPC6 functions.
Collapse
Affiliation(s)
- Lídia Ambrus
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - György Balla
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Moin A Saleem
- Renal Academic Unit, University of Bristol, Bristol, UK
| | - Petronella Orosz
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Judit Zsuga
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Klára Bíró
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary.,Department of Immunology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Szabó
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
33
|
Nakao K, Kishi H, Imai F, Suwa H, Hirakawa T, Minegishi T. TNF-α Suppressed FSH-Induced LH Receptor Expression Through Transcriptional Regulation in Rat Granulosa Cells. Endocrinology 2015; 156:3192-202. [PMID: 26125466 DOI: 10.1210/en.2015-1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several inflammatory cytokines regulate ovarian function. TNF-α is produced in granulosa cells under physiological conditions and has a reciprocal action on follicle development. In contrast, in pelvic inflammatory diseases, TNF-α is excessively produced in the pelvic cavity and has an adverse effect on reproductive functions. The objective of this study was to elucidate the mechanism of action of TNF-α on the expression of LH receptor (LHR) in immature rat granulosa cells. TNF-α suppressed FSH-induced LHR mRNA and protein expression and was not associated with cAMP accumulation. By using a luciferase assay, the construct containing base pairs -1389 to -1 of the rat Lhcgr promoter revealed that TNF-α decreased FSH-induced promoter activity. In response to TNF-α, nuclear factor (NF)-κB p65 was translocated to the nucleus, and the suppressive effect of TNF-α on LHR mRNA expression was abrogated by an NF-κB inhibitor. In a chromatin immunoprecipitation assay, TNF-α induced the association of NF-κB p65 with the rat Lhcgr transcriptional promoter region. NF-κB p65 and histone deacetylase (HDAC) interact to mediate expression of several genes at a transcriptional level. HDAC activity is thought to induce tight connections within local chromatin structures and repress gene transcription. Furthermore, the TNF-α-induced suppression of LHR mRNA expression was blocked by an HDAC inhibitor. Taken together, these results suggest that the interaction of NF-κB p65 with HDAC in the promoter region of rat Lhcgr might be responsible for TNF-α action on the regulation of LHR.
Collapse
Affiliation(s)
- Kohshiro Nakao
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Kishi
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Fumiharu Imai
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroto Suwa
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takashi Hirakawa
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takashi Minegishi
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
34
|
Gorąca A, Kleniewska P, Skibska B. ET-1 mediates the release of reactive oxygen species and TNF-α in lung tissue by protein kinase C α and β1. Pharmacol Rep 2015; 68:121-6. [PMID: 26721363 DOI: 10.1016/j.pharep.2015.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The aim of this study was to determine the involvement of protein kinase C (PKC) in the ET-1 induced generation of reactive oxygen species and TNF-α in rat lungs. METHODS Experiments were performed on 6 groups of rats: Group I: saline-treated control; Group II: saline followed by endothelin-1 (ET-1) (3μg/kg); Group III: saline followed by selective PKC αβ1 inhibitor (Gö6976) (2μg/kg); Group IV: Gö6976 (2μg/kg) administered 30min before ET-1 (3μg/kg); Group V: saline followed by the PKC activator phorbol 12-myristate 13-acetate (PMA) (50μg/kg); Group VI: Gö6976 (2μg/kg) administered 30min before PMA (50μg/kg). After 5h, the animals were euthanized and their lungs were isolated for measurements. RESULTS ET-1 resulted in increase in thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels and lung edema, as well as a decrease in GSH/GSSG ratio compared to the controls. The level of TNF-α also was elevated in the presence of ET-1. Administration of Gö6976 30min before ET-1 injection significantly decreased lung edema, as well as the concentrations of TBARS, H2O2 and TNF-α, but increased the GSH/GSSG redox ratio compared to ET-1. Conversely, PMA elevated lung edema and TBARS, H2O2 and TNF-α concentrations, but decreased the GSH/GSSG redox ratio compared to the control group. Treatment with Gö6976 significantly ameliorated the PMA-induced oxidative stress parameters, decreased tissue TNF-α level, and lung edema. CONCLUSION Endothelin-1 induces ROS generation, increases TNF-α level and lung edema via activation of PKC αβ1.
Collapse
Affiliation(s)
- Anna Gorąca
- Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Lodz, Łódź, Poland.
| | - Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Łódź, Poland
| | - Beata Skibska
- Department of Applied Pharmacy, Department of Pharmacy, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
35
|
Wang Y, Chaudhari S, Ren Y, Ma R. Impairment of hepatic nuclear factor-4α binding to the Stim1 promoter contributes to high glucose-induced upregulation of STIM1 expression in glomerular mesangial cells. Am J Physiol Renal Physiol 2015; 308:F1135-45. [PMID: 25786776 PMCID: PMC4437002 DOI: 10.1152/ajprenal.00563.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/16/2015] [Indexed: 11/22/2022] Open
Abstract
The present study was carried out to investigate if hepatic nuclear factor (HNF)4α contributed to the high glucose-induced increase in stromal interacting molecule (STIM)1 protein abundance in glomerular mesangial cells (MCs). Western blot and immunofluorescence experiments showed HNF4α expression in MCs. Knockdown of HNF4α using a small interfering RNA approach significantly increased mRNA expression levels of both STIM1 and Orai1 and protein expression levels of STIM1 in cultured human MCs. Consistently, overexpression of HNF4α reduced expressed STIM1 protein expression in human embryonic kidney-293 cells. Furthermore, high glucose treatment did not significantly change the abundance of HNF4α protein in MCs but significantly attenuated HNF4α binding activity to the Stim1 promoter. Moreover, knockdown of HNF4α significantly augmented store-operated Ca(2+) entry, which is known to be gated by STIM1 and has recently been found to be antifibrotic in MCs. In agreement with those results, knockdown of HNF4α significantly attenuated the fibrotic response of high glucose. These results suggest that HNF4α negatively regulates STIM1 transcription in MCs. High glucose increases STIM1 expression levels by impairing HNF4α binding activity to the Stim1 promoter, which subsequently releases Stim1 transcription from HNF4α repression. Since the STIM1-gated store-operated Ca(2+) entry pathway in MCs has an antifibrotic effect, inhibition of HNF4α in MCs might be a potential therapeutic option for diabetic kidney disease.
Collapse
Affiliation(s)
- Yanxia Wang
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Sarika Chaudhari
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Yuezhong Ren
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Rong Ma
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| |
Collapse
|
36
|
Wu P, Wang Y, Davis ME, Zuckerman JE, Chaudhari S, Begg M, Ma R. Store-Operated Ca2+ Channels in Mesangial Cells Inhibit Matrix Protein Expression. J Am Soc Nephrol 2015; 26:2691-702. [PMID: 25788524 DOI: 10.1681/asn.2014090853] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/22/2014] [Indexed: 11/03/2022] Open
Abstract
Accumulation of extracellular matrix derived from glomerular mesangial cells is an early feature of diabetic nephropathy. Ca(2+) signals mediated by store-operated Ca(2+) channels regulate protein production in a variety of cell types. The aim of this study was to determine the effect of store-operated Ca(2+) channels in mesangial cells on extracellular matrix protein expression. In cultured human mesangial cells, activation of store-operated Ca(2+) channels by thapsigargin significantly decreased fibronectin protein expression and collagen IV mRNA expression in a dose-dependent manner. Conversely, inhibition of the channels by 2-aminoethyl diphenylborinate significantly increased the expression of fibronectin and collagen IV. Similarly, overexpression of stromal interacting molecule 1 reduced, but knockdown of calcium release-activated calcium channel protein 1 (Orai1) increased fibronectin protein expression. Furthermore, 2-aminoethyl diphenylborinate significantly augmented angiotensin II-induced fibronectin protein expression, whereas thapsigargin abrogated high glucose- and TGF-β1-stimulated matrix protein expression. In vivo knockdown of Orai1 in mesangial cells of mice using a targeted nanoparticle siRNA delivery system resulted in increased expression of glomerular fibronectin and collagen IV, and mice showed significant mesangial expansion compared with controls. Similarly, in vivo knockdown of stromal interacting molecule 1 in mesangial cells by recombinant adeno-associated virus-encoded shRNA markedly increased collagen IV protein expression in renal cortex and caused mesangial expansion in rats. These results suggest that store-operated Ca(2+) channels in mesangial cells negatively regulate extracellular matrix protein expression in the kidney, which may serve as an endogenous renoprotective mechanism in diabetes.
Collapse
Affiliation(s)
- Peiwen Wu
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yanxia Wang
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California; and
| | - Jonathan E Zuckerman
- Chemical Engineering, California Institute of Technology, Pasadena, California; and
| | - Sarika Chaudhari
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Malcolm Begg
- Respiratory Therapy Area Unit, Medicines Research Center, GlaxoSmithKline, Stevenage, United Kingdom
| | - Rong Ma
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas;
| |
Collapse
|
37
|
Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells. Int J Mol Sci 2015; 16:5635-65. [PMID: 25768345 PMCID: PMC4394497 DOI: 10.3390/ijms16035635] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 01/01/2023] Open
Abstract
Cross-talk between the sympathetic nervous system (SNS) and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE) in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs) in immune cells activates the cAMP-protein kinase A (PKA) intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune-SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP-PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP-PKA to mitogen-activated protein kinase (MAPK) pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for "signal switching" in immune cells.
Collapse
|
38
|
Mahesh Kumar KB, Prabha S, Ramprasad E, Bhaskar LVKS, Soundararajan P. TRPC6 gene promoter polymorphisms in steroid resistant nephrotic syndrome children. J Nephropharmacol 2015; 4:52-56. [PMID: 28197477 PMCID: PMC5297484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/26/2015] [Indexed: 11/28/2022] Open
Abstract
Introduction: Nephrotic syndrome (NS) is the most frequent cause of proteinuria in children and is emerging as a leading cause of uremia. Among idiopathic NS, 10% of children do not respond to steroids or to any other immunosuppressive therapy, and progress to end-stage renal disease (ESRD). Several studies have investigated the mutations in genes encoding podocyte proteins and their possible associations with several forms of hereditary NS. Objectives: The present study aimed to determine the distribution of the TRPC6 gene promoter polymorphisms in subjects with features of steroid resistant nephrotic syndrome (SRNS) and controls. Patients and Methods: About 49 unrelated patients with SRNS and 45 age matched controls no renal or other disorders were included in the study. PCR-RFLP was used for genotyping rs3824934 (-254C>G) and rs56134796 (-218C>T) polymorphisms located in TRPC6 gene promoter region. Results: Both -254C>G and -218C>T are polymorphic in both SRNS patients and controls. No statistically significant differences in genotypes or allele frequencies between SRNS patients and controls were observed. Linkage disequilibrium was not strong and significant and haplotypes were not associated with SRNS. Interaction analysis by multifactor dimensionality reduction (MDR) revealed a significant interaction between -254G>C and -218C>T in <10 years age group. Conclusion: The results demonstrate that the TRPC6 polymorphisms do not affect susceptibility of SRNS in Indian population. Further replications, preferably a systematic search for TRPC6 functional variants that affect gene expression are desirable for validation of our findings.
Collapse
Affiliation(s)
| | | | | | - Lakkakula VKS Bhaskar
- 2Department of Biomedical Sciences, Sri Ramachandra University, Chennai, India
,3Sickle Cell Institute Chhattisgarh, Raipur, India
,Corresponding author: Bhaskar VKS Lakkakula,
| | | |
Collapse
|
39
|
Hu W, Wang G, Li P, Wang Y, Si CL, He J, Long W, Bai Y, Feng Z, Wang X. Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-κB activation. Chem Biol Interact 2014; 224:108-16. [PMID: 25451577 DOI: 10.1016/j.cbi.2014.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/15/2014] [Accepted: 10/10/2014] [Indexed: 01/12/2023]
Abstract
Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer and Parkinson diseases. The scavenging of reactive oxygen species (ROS) mediated by antioxidants may be a potential strategy for retarding the disease's progression. Macranthoin G (MCG), isolated from Eucommia ulmoides, is a derivative from chlorogenic acid methyl ester and caffeic acid. This study is aimed to investigate the protective role of MCG against the cytotoxicity induced by hydrogen peroxide (H2O2) and to elucidate potential protective mechanisms in rat pheochromocytoma (PC12) cells. The results showed that the treatment of PC12 cells with MCG prior to H2O2 exposure effectively increased the cell viability, and stabilized the mitochondria membrane potential (MMP); furthermore, it enhanced the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and the levels of intracellular glutathione (GSH); it also decreased the malondialdehyde (MDA) content, intracellular ROS, caspase-3 activation, as well as cell apoptosis. In addition, the MCG treatment minimized the cell injury by H2O2 via down-regulation of the NF-κB pathway as well as activation of phosphorylation of IκBα, p38, and the extracellular signal-regulated kinase (ERK). These results showed that that MCG is promising as a potential therapeutic agent for neurodegenerative diseases induced by oxidative damage and should be encouraged for further research.
Collapse
Affiliation(s)
- Weicheng Hu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Gongcheng Wang
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, China
| | - Pengxia Li
- Institute of Agro-food Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuning Wang
- Institute of Agro-food Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chuan-Ling Si
- Tianjin Key Laboratory of Pulp & Paper, College of Material Science & Chemical Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jing He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yujia Bai
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Zuoshan Feng
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Xinfeng Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Sciences, Huaiyin Normal University, Huaian 223300, China.
| |
Collapse
|
40
|
Zhang X, Song Z, Guo Y, Zhou M. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Mol Cell Biochem 2014; 399:155-65. [DOI: 10.1007/s11010-014-2242-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/01/2014] [Indexed: 01/19/2023]
|
41
|
Chaudhari S, Wu P, Wang Y, Ding Y, Yuan J, Begg M, Ma R. High glucose and diabetes enhanced store-operated Ca(2+) entry and increased expression of its signaling proteins in mesangial cells. Am J Physiol Renal Physiol 2014; 306:F1069-80. [PMID: 24623143 DOI: 10.1152/ajprenal.00463.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was conducted to determine whether and how store-operated Ca(2+) entry (SOCE) in glomerular mesangial cells (MCs) was altered by high glucose (HG) and diabetes. Human MCs were treated with either normal glucose or HG for different time periods. Cyclopiazonic acid-induced SOCE was significantly greater in the MCs with 7-day HG treatment and the response was completely abolished by GSK-7975A, a selective inhibitor of store-operated Ca(2+) channels. Similarly, the inositol 1,4,5-trisphosphate-induced store-operated Ca(2+) currents were significantly enhanced in the MCs treated with HG for 7 days, and the enhanced response was abolished by both GSK-7975A and La(3+). In contrast, receptor-operated Ca(2+) entry in MCs was significantly reduced by HG treatment. Western blotting showed that HG increased the expression levels of STIM1 and Orai1 in cultured MCs. A significant HG effect occurred at a concentration as low as 10 mM, but required a minimum of 7 days. The HG effect in cultured MCs was recapitulated in renal glomeruli/cortex of both type I and II diabetic rats. Furthermore, quantitative real-time RT-PCR revealed that a 6-day HG treatment significantly increased the mRNA expression level of STIM1. However, the expressions of STIM2 and Orai1 transcripts were not affected by HG. Taken together, these results suggest that HG/diabetes enhanced SOCE in MCs by increasing STIM1/Orai1 protein expressions. HG upregulates STIM1 by promoting its transcription but increases Orai1 protein through a posttranscriptional mechanism.
Collapse
Affiliation(s)
- Sarika Chaudhari
- 3500 Camp Bowie Blvd., Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, Fort Worth, TX 76107.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
TRPC6 is a non-selective cation channel 6 times more permeable to Ca(2+) than to Na(+). Channel homotetramers heterologously expressed have a characteristic doubly rectifying current-voltage relationship and are directly activated by the second messenger diacylglycerol (DAG). TRPC6 proteins are also regulated by specific tyrosine or serine phosphorylation and phosphoinositides. Given its specific expression pattern, TRPC6 is likely to play a number of physiological roles which are confirmed by the analysis of a Trpc6 (-/-) mouse model. In smooth muscle Na(+) influx through TRPC6 channels and activation of voltage-gated Ca(2+) channels by membrane depolarisation is the driving force for contraction. Permeability of pulmonary endothelial cells depends on TRPC6 and induces ischaemia-reperfusion oedema formation in the lungs. TRPC6 was also identified as an essential component of the slit diaphragm architecture of kidney podocytes and plays an important role in the protection of neurons after cerebral ischaemia. Other functions especially in immune and blood cells remain elusive. Recently identified TRPC6 blockers may be helpful for therapeutic approaches in diseases with highly activated TRPC6 channel activity.
Collapse
Affiliation(s)
- Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, School of Medicine, LM-University of Munich, 80336, Munich, Germany,
| | | |
Collapse
|