1
|
Schmidt M, Binder H, Schneider MR. The metabolic underpinnings of sebaceous lipogenesis. Commun Biol 2025; 8:670. [PMID: 40289206 PMCID: PMC12034822 DOI: 10.1038/s42003-025-08105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Sebaceous glands synthesize and secrete sebum, a mélange of lipids and other cellular products that safeguards the mammalian integument. Differentiating sebocytes delaminate from the basal membrane and dislodge towards the gland's middle, where they eventually undergo a poorly understood death mode in which the whole cell becomes a secretion product (holocrine secretion). Supported by recent transcriptomics data, this review examines the idea that peripheral sebocytes have a remarkable ability to draw nutrients from the blood and become committed to unrestrainedly invest all available resources into synthetic processes for accomplishing sebum synthesis, thereby exploiting core metabolic fluxes as glycogen turnover, glutamine-directed anaplerosis, the pentose phosphate pathway and de novo lipogenesis. Finally, we propose that metabolic-driven processes are an important mechanistic component of holocrine secretion. A deeper understanding of these metabolic adaptations could indicate novel strategies for modulating sebum synthesis, a key pathogenic factor in acne and other skin diseases.
Collapse
Affiliation(s)
- Maria Schmidt
- Interdisciplinary Institute for Bioinformatics (IZBI), University of Leipzig, Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Institute for Bioinformatics (IZBI), University of Leipzig, Leipzig, Germany
- Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
| | - Marlon R Schneider
- Institute of Veterinary Physiology, Veterinary Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Wang S, Li Y, Gao J, Lin J, Jin X, Zhang H. Atrophic meibomian gland dysfunction induced by eyelid margin cryotherapy with liquid nitrogen. Sci Rep 2025; 15:754. [PMID: 39755782 PMCID: PMC11700185 DOI: 10.1038/s41598-024-84742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025] Open
Abstract
To develop an atrophic Meibomian Gland Dysfunction (MGD) animal model via liquid nitrogen cryotherapy, the eyelid edges of C57 mice exposure to liquid nitrogen for 30 s. Morphology of MG and ocular surface were assessed using stereomicroscopy and a slit lamp microscope at multiple time points post-injury. Acinar loss and atrophy were observed from day 7, with increased inflammation and apoptosis, and decreased proliferation in acinar cells. Corneal epithelial defects appeared after day 14. Liquid nitrogen induced selective damage to meibomian acinar cells, simulating MGD pathology effectively, with peak effects at day 21, providing a relevant model for atrophic MGD research.
Collapse
Affiliation(s)
- Shu Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Yulin Li
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Jingfan Gao
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Jia Lin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Al-Obaidi AD, Al-Obiade R, Al-Badri SG, Al-Fatlawi N, Al-Obaidi MN, Hashim HT, Al-Zeena A, Al-Musawi M, Sarah D, Al-Awad A. First documented case of ichthyosis prematurity syndrome in Iraq: A case report with literature review. Radiol Case Rep 2024; 19:5770-5774. [PMID: 39308606 PMCID: PMC11416458 DOI: 10.1016/j.radcr.2024.08.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Ichthyosis Prematurity Syndrome (IPS) is a rare autosomal recessive disorder characterized by premature birth, respiratory distress, and distinctive skin abnormalities. Infants with IPS typically present between 30 and 34 weeks of gestation with a thick, caseous, desquamating epidermis resembling vernix caseosa. We report a case of a female neonate born at 30 weeks, weighing 1400 grams, with severe respiratory distress and characteristic skin abnormalities. Immediate intervention, including mechanical ventilation and surfactant therapy, was essential. Histopathological examination revealed hyperkeratosis, parakeratosis, and a thickened stratum corneum, with genetic testing confirming FATP4 gene mutations. Comprehensive care by a multidisciplinary team, including CPAP, emollients, and enteral feeding, led to significant improvement, and the neonate was discharged after 4 weeks. This is the first reported case of IPS in Iraq. This case highlights the importance of early recognition, genetic testing, and a coordinated care approach for managing IPS, emphasizing the need for awareness of its characteristic features to improve patient outcomes.
Collapse
Affiliation(s)
- Ahmed Dheyaa Al-Obaidi
- Department of Internal Medicine, University of Baghdad, College of Medicine, Baghdad, Iraq
| | - Reem Al-Obiade
- Department of Internal Medicine, University of Baghdad, College of Medicine, Baghdad, Iraq
| | - Sajjad Ghanim Al-Badri
- Department of Internal Medicine, University of Baghdad, College of Medicine, Baghdad, Iraq
| | - Nabeel Al-Fatlawi
- Department of Internal Medicine, University of Baghdad, College of Medicine, Baghdad, Iraq
| | | | - Hashim Talib Hashim
- Research Department, University of Warith Al-Anbiyaa, College of Medicine, Karbala, Iraq
| | - Asma Al-Zeena
- Pediatrics Department, University of Al-Mustansiriyah, College Of Medicine, Baghdad, Iraq
| | - Mustafa Al-Musawi
- Department of Internal Medicine, University of Baghdad, College of Medicine, Baghdad, Iraq
| | - Dima Sarah
- Department of Internal Medicine, University of Baghdad, College of Medicine, Baghdad, Iraq
| | - Abdullah Al-Awad
- Department of Internal Medicine, University of Baghdad, College of Medicine, Baghdad, Iraq
| |
Collapse
|
4
|
Blaess M, Csuk R, Schätzl T, Deigner HP. Elongation of Very Long-Chain Fatty Acids (ELOVL) in Atopic Dermatitis and the Cutaneous Adverse Effect AGEP of Drugs. Int J Mol Sci 2024; 25:9344. [PMID: 39273293 PMCID: PMC11395647 DOI: 10.3390/ijms25179344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease, in particular among infants, and is characterized, among other things, by a modification in fatty acid and ceramide composition of the skin's stratum corneum. Palmitic acid and stearic acid, along with C16-ceramide and 2-hydroxy C16-ceramide, occur strikingly in AD. They coincide with a simultaneous decrease in very long-chain ceramides and ultra-long-chain ceramides, which form the outermost lipid barrier. Ceramides originate from cellular sphingolipid/ceramide metabolism, comprising a well-orchestrated network of enzymes involving various ELOVLs and CerSs in the de novo ceramide synthesis and neutral and acid CERase in degradation. Contrasting changes in long-chain ceramides and very long-chain ceramides in AD can be more clearly explained by the compartmentalization of ceramide synthesis. According to our hypothesis, the origin of increased C16-ceramide and 2-hydroxy C16-ceramide is located in the lysosome. Conversely, the decreased ultra-long-chain and very long-chain ceramides are the result of impaired ELOVL fatty acid elongation. The suggested model's key elements include the lysosomal aCERase, which has pH-dependent long-chain C16-ceramide synthase activity (revaCERase); the NADPH-activated step-in enzyme ELOVL6 for fatty acid elongation; and the coincidence of impaired ELOVL fatty acid elongation and an elevated lysosomal pH, which is considered to be the trigger for the altered ceramide biosynthesis in the lysosome. To maintain the ELOVL6 fatty acid elongation and the supply of NADPH and ATP to the cell, the polyunsaturated PPARG activator linoleic acid is considered to be one of the most suitable compounds. In the event that the increase in lysosomal pH is triggered by lysosomotropic compounds, compounds that disrupt the transmembrane proton gradient or force the breakdown of lysosomal proton pumps, non-HLA-classified AGEP may result.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Teresa Schätzl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
- Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, D-18057 Rostock, Germany
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| |
Collapse
|
5
|
Bu J, Guo Y, Wu Y, Zhang R, Zhuang J, Zhao J, Sun L, Quantock AJ, Liu Z, Li W. Models for Meibomian gland dysfunction: In vivo and in vitro. Ocul Surf 2024; 32:154-165. [PMID: 38490475 DOI: 10.1016/j.jtos.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Meibomian gland dysfunction (MGD) is a chronic abnormality of the Meibomian glands (MGs) that is recognized as the leading cause of evaporative dry eye worldwide. Despite its prevalence, however, the pathophysiology of MGD remains elusive, and effective disease management continues to be a challenge. In the past 50 years, different models have been developed to illustrate the pathophysiological nature of MGD and the underlying disease mechanisms. An understanding of these models is crucial if researchers are to select an appropriate model to address specific questions related to MGD and to develop new treatments. Here, we summarize the various models of MGD, discuss their applications and limitations, and provide perspectives for future studies in the field.
Collapse
Affiliation(s)
- Jinghua Bu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Yuli Guo
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yang Wu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| | - Rongrong Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jingbin Zhuang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jiankai Zhao
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Le Sun
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Wei Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Verma S, Moreno IY, Trapp ME, Ramirez L, Gesteira TF, Coulson-Thomas VJ. Meibomian gland development: Where, when and how? Differentiation 2023; 132:41-50. [PMID: 37202278 PMCID: PMC11259229 DOI: 10.1016/j.diff.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/10/2023] [Accepted: 04/30/2023] [Indexed: 05/20/2023]
Abstract
The Meibomian gland (MG) is an indispensable adnexal structure of eye that produces meibum, an important defensive component for maintaining ocular homeostasis. Normal development and maintenance of the MGs is required for ocular health since atrophic MGs and disturbances in composition and/or secretion of meibum result in major ocular pathologies, collectively termed as Meibomian gland dysfunction (MGD). Currently available therapies for MGD merely provide symptomatic relief and do not treat the underlying deficiency of the MGs. Hence, a thorough understanding of the timeline of MG development, maturation and aging is required for regenerative purposes along with signaling molecules & pathways controlling proper differentiation of MG lineage in mammalian eye. Understanding the factors that contribute to the development of MGs, developmental abnormalities of MGs, and changes in the quality & quantity of meibum with developing phases of MGs are essential for developing potential treatments for MGD. In this review, we compiled a timeline of events and the factors involved in the structural and functional development of MGs and the associated developmental defects of MGs during development, maturation and aging.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, Houston, TX, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Isabel Y Moreno
- College of Optometry, University of Houston, Houston, TX, USA
| | - Morgan E Trapp
- College of Optometry, University of Houston, Houston, TX, USA
| | - Luis Ramirez
- College of Optometry, University of Houston, Houston, TX, USA
| | | | | |
Collapse
|
7
|
The Critical Role of Galectin-12 in Modulating Lipid Metabolism in Sebaceous Glands. J Invest Dermatol 2022; 143:913-924.e4. [PMID: 36535362 DOI: 10.1016/j.jid.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Sebaceous glands play an important role in maintaining the skin barrier function by producing lipids. Dysregulated lipid production in these glands may contribute to the pathogenesis of human skin diseases. Galectin-12, a member of the β-galactoside‒binding lectin family, is preferentially expressed in adipocytes, where it regulates adipogenesis and functions as an intrinsic negative regulator of lipolysis. It is also expressed by sebocytes and contributes to the proliferation of this cell type. In this study, we show the association between galectin-12 expression and sebocyte differentiation. Galectin-12 knockdown in a human sebocyte cell line reduced lipogenesis and decreased the production of cholesteryl esters, triglycerides, free fatty acids, and cholesterol. Metabolomic analysis of skin surface lipids showed that the levels of the lipids mentioned earlier decreased in sebaceous gland‒specific galectin-12‒knockout mice compared with that in wild-type mice. In addition, galectin-12 positively regulated peroxisome proliferator‒activated receptor-γ transcriptional activity in sebocytes stimulated with fatty acids. Downregulating galectin-12 suppressed the expression of peroxisome proliferator‒activated receptor-γ target genes-acetyl-coenzyme A synthetase 2 gene ACS2 and diacylglycerol O-acyltransferase 1 gene DGAT1-that are required for fatty acid activation and cholesterol and triglyceride biosynthesis. In conclusion, galectin-12 is a positive regulator of sebaceous lipid metabolism with a potential role in the maintenance of skin homeostasis.
Collapse
|
8
|
Zahn I, Garreis F, Schicht M, Rötzer V, Waschke J, Liu Y, Altersberger VL, Paulsen F, Dietrich J. A New Organotypic 3D Slice Culture of Mouse Meibomian Glands Reveals Impact of Melanocortins. Int J Mol Sci 2022; 23:ijms232314947. [PMID: 36499274 PMCID: PMC9737810 DOI: 10.3390/ijms232314947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The meibomian glands (MGs) within the eyelids produce a lipid-rich secretion that forms the superficial layer of the tear film. Meibomian gland dysfunction (MGD) results in excessive evaporation of the tear film, which is the leading cause of dry eye disease (DED). To develop a research model similar to the physiological situation of MGs, we established a new 3D organotypic slice culture (OSC) of mouse MGs (mMGs) and investigated the effects of melanocortins on exocrine secretion. Tissue viability, lipid production and morphological changes were analyzed during a 21-day cultivation period. Subsequently, the effects on lipid production and gene expression were examined after stimulation with a melanocortin receptor (MCR) agonist, α-melanocyte-stimulating hormone (α-MSH), and/or an MCR antagonist, JNJ-10229570. The cultivation of mMGs OSCs was possible without impairment for at least seven days. Stimulation with the MCR agonists induced lipid production in a dose-dependent manner, whereas this effect was tapered with the simultaneous incubation of the MCR antagonist. The new 3D OSC model is a promising approach to study the (patho-) physiological properties of MG/MGD while reducing animal studies. Therefore, it may accelerate the search for new treatments for MGD/DED and lead to new insights, such as that melanocortins likely stimulate meibum production.
Collapse
Affiliation(s)
- Ingrid Zahn
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: (I.Z.); (F.P.); Tel.: +49-9131-85-26734 (I.Z.); +49-9131-85-22865 (F.P.)
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Vera Rötzer
- Department of Anatomy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Jens Waschke
- Department of Anatomy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Yuqiuhe Liu
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Valerian L. Altersberger
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Anatomy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: (I.Z.); (F.P.); Tel.: +49-9131-85-26734 (I.Z.); +49-9131-85-22865 (F.P.)
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Widjaja-Adhi MAK, Chao K, Golczak M. Mouse models in studies on the etiology of evaporative dry eye disease. Exp Eye Res 2022; 219:109072. [DOI: 10.1016/j.exer.2022.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
|
10
|
Zhu J, Inomata T, Shih KC, Okumura Y, Fujio K, Huang T, Nagino K, Akasaki Y, Fujimoto K, Yanagawa A, Miura M, Midorikawa-Inomata A, Hirosawa K, Kuwahara M, Shokirova H, Eguchi A, Morooka Y, Chen F, Murakami A. Application of Animal Models in Interpreting Dry Eye Disease. Front Med (Lausanne) 2022; 9:830592. [PMID: 35178415 PMCID: PMC8844459 DOI: 10.3389/fmed.2022.830592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
Different pathophysiologic mechanisms are involved in the initiation, development, and outcome of dry eye disease (DED). Animal models have proven valuable and efficient in establishing ocular surface microenvironments that mimic humans, thus enabling better understanding of the pathogenesis. Several dry eye animal models, including lacrimal secretion insufficiency, evaporation, neuronal dysfunction, and environmental stress models, are related to different etiological factors. Other models may be categorized as having a multifactorial DED. In addition, there are variations in the methodological classification, including surgical lacrimal gland removal, drug-induced models, irradiation impairment, autoimmune antibody-induced models, and transgenic animals. The aforementioned models may manifest varying degrees of severity or specific pathophysiological mechanisms that contribute to the complexity of DED. This review aimed to summarize various dry eye animal models and evaluate their respective characteristics to improve our understanding of the underlying mechanism and identify therapeutic prospects for clinical purposes.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tianxiang Huang
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Nagino
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Morooka
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fang Chen
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Abstract
Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Lin MH, Hsu FF, Crumrine D, Meyer J, Elias PM, Miner JH. Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols. Sci Rep 2019; 9:13254. [PMID: 31519952 PMCID: PMC6744566 DOI: 10.1038/s41598-019-49684-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023] Open
Abstract
Fatty acid transport protein 4 (FATP4) is an acyl-CoA synthetase that is required for normal permeability barrier in mammalian skin. FATP4 (SLC27A4) mutations cause ichthyosis prematurity syndrome, a nonlethal disorder. In contrast, Fatp4-/- mice die neonatally from a defective barrier. Here we used electron microscopy and lipidomics to characterize defects in Fatp4-/- mice. Mutants showed lamellar body, corneocyte lipid envelope, and cornified envelope abnormalities. Lipidomics identified two lipids previously speculated to be present in mouse epidermis, sphingosine β-hydroxyceramide and monoacylglycerol; mutants displayed decreased proportions of these and the two ceramide classes that carry ultralong-chain, amide-linked fatty acids (FAs) thought to be critical for barrier function, unbound ω-O-acylceramide and bound ω-hydroxyceramide, the latter constituting the major component of the corneocyte lipid envelope. Other abnormalities included elevated amounts of sphingosine α-hydroxyceramide, phytosphingosine non-hydroxyceramide, and 1-O-acylceramide. Acyl chain length alterations in ceramides also suggested roles for FATP4 in esterifying saturated non-hydroxy and β-hydroxy FAs with at least 25 carbons and saturated or unsaturated ω-hydroxy FAs with at least 30 carbons to CoA. Our lipidomic analysis is the most thorough such study of the Fatp4-/- mouse skin barrier to date, providing information about how FATP4 can contribute to barrier function by regulating fatty acyl moieties in various barrier lipids.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Debra Crumrine
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jason Meyer
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Peter M Elias
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Department of Cell Biology and Physiology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
| |
Collapse
|
13
|
Ocular mucins in dry eye disease. Exp Eye Res 2019; 186:107724. [PMID: 31325452 DOI: 10.1016/j.exer.2019.107724] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
Dry eye disease is a common and multifactorial disease with a high prevalence worldwide. Water loss, reduced expression of glycocalyx mucins, and loss of goblet cells secreting gel-forming mucins are hallmarks of dry eye disease. Mucins are large and complex heavily glycosylated proteins. Their organization in the tear film remains unclear, but they play a key role to protect and maintain integrity of the ocular surface. Mice have been extremely valuable mammalian models with which to study ocular physiology and disease, and to evaluate eye therapies. Genetically modified mice and spontaneously occurring mutants with eye defects have proven to be powerful tools for the pharmaceutical industry, clinicians, and basic researchers investigating dry eye disease. However, ocular mucins remain relatively under-studied and inadequately characterized. This review aims to summarize current knowledge about mucin production at the ocular surface in healthy individuals and in dry eye disease, and to compile an overview of mouse models available for the study of mucins in dry eye disease.
Collapse
|
14
|
Rossiter H, Stübiger G, Gröger M, König U, Gruber F, Sukseree S, Mlitz V, Buchberger M, Oskolkova O, Bochkov V, Eckhart L, Tschachler E. Inactivation of autophagy leads to changes in sebaceous gland morphology and function. Exp Dermatol 2018; 27:1142-1151. [PMID: 30033522 DOI: 10.1111/exd.13752] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
Abstract
We have reported recently that inactivation of the essential autophagy-related gene 7 (Atg7) in keratinocytes has little or no impact on morphology and function of the epidermal barrier in experimental animals. When these mice aged, mutant males, (Atg7 ΔKC), developed an oily coat. As the keratin 14 promoter driven cre/LoxP system inactivates floxed Atg7 in all keratin 14 (K14) expressing cells, including sebocytes, we investigated whether the oily hair phenotype was the consequence of changes in function of the skin sebaceous glands. Using an antibody to the GFP-LC3 fusion protein, autophagosomes were detected at the border of sebocyte disintegration in control but not in mutant animals, suggesting that autophagy was (a) active in normal sebaceous glands and (b) was inactivated in the mutant mice. Detailed analysis established that dorsal sebaceous glands were about twice as large in all Atg7 ΔKC mice compared to those of controls (Atg7 F/F), and their rate of sebocyte proliferation was increased. In addition, male mutant mice yielded twice as much lipid per unit hair as age-matched controls. Analysis of sebum lipids by thin layer chromatography revealed a 40% reduction in the proportion of free fatty acids (FFA) and cholesterol, and a 5-fold increase in the proportion of fatty acid methyl esters (FAME). In addition, the most common diester wax species (58-60 carbon atoms) were increased, while shorter species (54-55 carbon atoms) were under-represented in mutant sebum. Our data show that autophagy contributes to sebaceous gland function and to the control of sebum composition.
Collapse
Affiliation(s)
- Heidemarie Rossiter
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Gerald Stübiger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marion Gröger
- Core Facility Imaging, Medical University of Vienna, Vienna, Austria
| | - Ulrich König
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Supawadee Sukseree
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Maria Buchberger
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Olga Oskolkova
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Valery Bochkov
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
|
16
|
Yu D, Saini Y, Chen G, Ghio AJ, Dang H, Burns KA, Wang Y, Davis RM, Randell SH, Esther CR, Paulsen F, Boucher RC. Loss of β Epithelial Sodium Channel Function in Meibomian Glands Produces Pseudohypoaldosteronism 1-Like Ocular Disease in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:95-110. [PMID: 29107074 PMCID: PMC5745530 DOI: 10.1016/j.ajpath.2017.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 01/14/2023]
Abstract
Human subjects with pseudohypoaldosteronism-1 because of loss-of-function mutations in epithelial sodium channel (ENaC) subunits exhibit meibomian gland (MG) dysfunction. A conditional βENaC MG knockout (KO) mouse model was generated to elucidate the pathogenesis of absent ENaC function in the MG and associated ocular surface disease. βENaC MG KO mice exhibited a striking age-dependent, female-predominant MG dysfunction phenotype, with white toothpaste-like secretions observed obstructing MG orifices at 7 weeks of age. There were compensatory increases in tear production but higher tear sodium and indexes of mucin concentration in βENaC MG KO mice. Histologically, MG acinar atrophy was observed with ductal enlargement and ductal epithelial hyperstratification. Inflammatory cell infiltration was observed in both MG and conjunctiva of βENaC MG KO mice. In older βENaC MG KO mice (5 to 11 months), significant ocular surface pathologies were noted, including corneal opacification, ulceration, neovascularization, and ectasia. Inflammation in MG and conjunctiva was confirmed by increased cytokine gene and protein expression and positive Ly-6B.2 immunostaining. Cell proliferation assays revealed lower proliferation rates of MG cells derived from βENaC MG KO than control mice, suggesting that βENaC plays a role in cell renewal of mouse MG. Loss of βENaC function resulted in MG disease and severe ocular surface damage that phenocopied aspects of human pseudohypoaldosteronism-1 MG disease and was sex dependent.
Collapse
Affiliation(s)
- Dongfang Yu
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, Chapel Hill, North Carolina; Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Gang Chen
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, Chapel Hill, North Carolina
| | - Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, Chapel Hill, North Carolina
| | - Kimberlie A Burns
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, Chapel Hill, North Carolina
| | - Yang Wang
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, Chapel Hill, North Carolina
| | - Richard M Davis
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott H Randell
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, Chapel Hill, North Carolina
| | - Charles R Esther
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Friedrich Paulsen
- Department of Anatomy II, Friedrich Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Richard C Boucher
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
17
|
Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, Uchino Y, Yokoi N, Zoukhri D, Sullivan DA. TFOS DEWS II pathophysiology report. Ocul Surf 2017; 15:438-510. [PMID: 28736340 DOI: 10.1016/j.jtos.2017.05.011] [Citation(s) in RCA: 1141] [Impact Index Per Article: 142.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjögren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation.
Collapse
Affiliation(s)
- Anthony J Bron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Department of Ophthalmology, University Campus Biomedico, Rome, Italy
| | - Eric E Gabison
- Department of Ophthalmology, Fondation Ophtalmologique Rothschild & Hôpital Bichat Claude Bernard, Paris, France
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erich Knop
- Departments of Cell and Neurobiology and Ocular Surface Center Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Victor Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Yuichi Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Driss Zoukhri
- Tufts University School of Dental Medicine, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Lin MH, Miner JH, Turk J, Hsu FF. Linear ion-trap MS n with high-resolution MS reveals structural diversity of 1-O-acylceramide family in mouse epidermis. J Lipid Res 2017; 58:772-782. [PMID: 28154204 DOI: 10.1194/jlr.d071647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 01/27/2017] [Indexed: 12/30/2022] Open
Abstract
1-O-acylceramide is a new class of epidermal cer-amide (Cer) found in humans and mice. Here, we report an ESI linear ion-trap (LIT) multiple-stage MS (MSn) approach with high resolution toward structural characterization of this lipid family isolated from mice. Molecular species desorbed as the [M + H]+ ions were subjected to LIT MS2 to yield predominately the [M + H - H2O]+ ions, followed by MS3 to cleave the 1-O-acyl residue to yield the [M + H - H2O - (1-O-FA)]+ ions. The structures of the N-acyl chain and long-chain base (LCB) of the molecule were determined by MS4 on [M + H - H2O - (1-O-FA)]+ ions that yielded multiple sets of specific ions. Using this approach, isomers varied in the 1-O-acyl (from 14:0- to 30:0-O-acyl) and N-acyl chains (from 14:0- to 34:1-N-acyl) with 18:1-sphingosine as the major LCB were found for the entire family. Minor isomers consisting of 16:1-, 17:1-, 18:2-, and 19:1-sphingosine LCBs with odd fatty acyl chain or with monounsaturated N- or O-fatty acyl substituents were also identified. An estimation of more than 700 1-O-acylceramide species, largely isobaric isomers, are present, underscoring the complexity of this Cer family.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Division of Nephrology Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey H Miner
- Division of Nephrology Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John Turk
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
19
|
Ehrmann C, Schneider MR. Genetically modified laboratory mice with sebaceous glands abnormalities. Cell Mol Life Sci 2016; 73:4623-4642. [PMID: 27457558 PMCID: PMC11108334 DOI: 10.1007/s00018-016-2312-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
Sebaceous glands (SG) are exocrine glands that release their product by holocrine secretion, meaning that the whole cell becomes a secretion following disruption of the membrane. SG may be found in association with a hair follicle, forming the pilosebaceous unit, or as modified SG at different body sites such as the eyelids (Meibomian glands) or the preputial glands. Depending on their location, SG fulfill a number of functions, including protection of the skin and fur, thermoregulation, formation of the tear lipid film, and pheromone-based communication. Accordingly, SG abnormalities are associated with several diseases such as acne, cicatricial alopecia, and dry eye disease. An increasing number of genetically modified laboratory mouse lines develop SG abnormalities, and their study may provide important clues regarding the molecular pathways regulating SG development, physiology, and pathology. Here, we summarize in tabulated form the available mouse lines with SG abnormalities and, focusing on selected examples, discuss the insights they provide into SG biology and pathology. We hope this survey will become a helpful information source for researchers with a primary interest in SG but also as for researchers from unrelated fields that are unexpectedly confronted with a SG phenotype in newly generated mouse lines.
Collapse
Affiliation(s)
- Carmen Ehrmann
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
| |
Collapse
|
20
|
Abstract
Evaporative dry eye has gained increasing interest in recent years in academia, pharmaceutical, and medical device industries. The main cause of this type of dry eye is attributed to meibomian gland dysfunction (MGD). MGD is a diffuse abnormality of the meibomian glands characterised by terminal duct obstruction and eventually leading to signs and symptoms of dry eye. There have been only a few reported animal models of MGD, but recent advances are likely to lead to new models and better ways to assess the pathology in these animals. Recent models reported include one based on cautery of the meibomian glands in mice and another based on aggravated allergy in mice. These developments will enable better pre-clinical assessment of novel therapies in the future.
Collapse
Affiliation(s)
- Louis Tong
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore.
- Corneal and External Eye Disease Service, Singapore National Eye Center, Singapore, Singapore.
- Eye-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Preeya K Gupta
- Duke Department of Ophthalmology, Duke University School of Medicine, Durham, USA
| |
Collapse
|
21
|
Zheng M, Lee S, Tsuzuki S, Inoue K, Masuda D, Yamashita S, Iwanaga T. Immunohistochemical localization of fatty acid transporters and MCT1 in the sebaceous glands of mouse skin. Biomed Res 2016; 37:265-70. [PMID: 27545003 DOI: 10.2220/biomedres.37.265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The sebaceous glands secrete sebum to protect the epidermis and hairs by the oily products. The glands express several transporters and binding proteins for the production of fatty acids and uptake of their sources. The present immunohistochemical study examined the expression and localization of CD36, MCT1, FATP4, and E-FABP in the sebaceous glands, including the meibomian and preputial glands of mice. CD36 and MCT1 in sebaceous glands were largely co-localized along the plasma membrane of secretory cells, while they were separately expressed in the glandular portion of meibomian and preputial glands. Immunoreactivities for FATP4 and E-FABP appeared diffusely in the cytoplasm of secretory cells. Genetic deletion of CD36 did not affect the immunolocalization of the three other molecules. The sebaceous glands were judged to be useful for analyzing the functions and relation of fatty acid transporters and binding proteins.
Collapse
Affiliation(s)
- Miao Zheng
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine
| | | | | | | | | | | | | |
Collapse
|
22
|
Dahlhoff M, Camera E, Schäfer M, Emrich D, Riethmacher D, Foster A, Paus R, Schneider MR. Sebaceous lipids are essential for water repulsion, protection against UVB-induced apoptosis and ocular integrity in mice. Development 2016; 143:1823-31. [PMID: 26989175 DOI: 10.1242/dev.132753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/09/2016] [Indexed: 12/28/2022]
Abstract
Sebocytes, which are characterized by lipid accumulation that leads to cell disruption, can be found in hair follicle-associated sebaceous glands (SGs) or in free SGs such as the Meibomian glands in the eyelids. Because genetic tools that allow targeting of sebocytes while maintaining intact epidermal lipids are lacking, the relevance of sebaceous lipids in health and disease remains poorly understood. Using Scd3, which is expressed exclusively in mature sebocytes, we established a mouse line with sebocyte-specific expression of Cre recombinase. Both RT-PCR analysis and crossing into Rosa26-lacZ reporter mice and Kras(G12D) mice confirmed Cre activity specifically in SGs, with no activity in other skin compartments. Importantly, loss of SCD3 function did not cause detectable phenotypical alterations, endorsing the usefulness of Scd3-Cre mice for further functional studies. Scd3-Cre-induced, diphtheria chain A toxin-mediated depletion of sebaceous lipids resulted in impaired water repulsion and thermoregulation, increased rates of UVB-induced epidermal apoptosis and caused a severe pathology of the ocular surface resembling Meibomian gland dysfunction. This novel mouse line will be useful for further investigating the roles of sebaceous lipids in skin and eye integrity.
Collapse
Affiliation(s)
- Maik Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, Rome 00144, Italy
| | - Matthias Schäfer
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniela Emrich
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich 80539, Germany
| | - Dieter Riethmacher
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - April Foster
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PT, UK
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PT, UK
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
| |
Collapse
|
23
|
Meibomian Gland Absence Related Dry Eye in Ectodysplasin A Mutant Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:32-42. [DOI: 10.1016/j.ajpath.2015.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/19/2022]
|
24
|
Fatty acid transport proteins in disease: New insights from invertebrate models. Prog Lipid Res 2015; 60:30-40. [PMID: 26416577 DOI: 10.1016/j.plipres.2015.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022]
Abstract
The dysregulation of lipid metabolism has been implicated in various diseases, including diabetes, cardiopathies, dermopathies, retinal and neurodegenerative diseases. Mouse models have provided insights into lipid metabolism. However, progress in the understanding of these pathologies is hampered by the multiplicity of essential cellular processes and genes that modulate lipid metabolism. Drosophila and Caenorhabditis elegans have emerged as simple genetic models to improve our understanding of these metabolic diseases. Recent studies have characterized fatty acid transport protein (fatp) mutants in Drosophila and C. elegans, establishing new models of cardiomyopathy, retinal degeneration, fat storage disease and dermopathies. These models have generated novel insights into the physiological role of the Fatp protein family in vivo in multicellular organisms, and are likely to contribute substantially to progress in understanding the etiology of various metabolic disorders. Here, we describe and discuss the mechanisms underlying invertebrate fatp mutant models in the light of the current knowledge relating to FATPs and lipid disorders in vertebrates.
Collapse
|
25
|
Chen L, Faas GC, Ferando I, Mody I. Novel insights into the behavioral analysis of mice subjected to the forced-swim test. Transl Psychiatry 2015; 5:e551. [PMID: 25871976 PMCID: PMC4462607 DOI: 10.1038/tp.2015.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/19/2022] Open
Abstract
The forced-swim test (FST) is one of the most widely used rodent behavioral assays, in which the immobility of animals is used to assess the effectiveness of antidepressant drugs. However, the existing, and mostly arbitrary, criteria used for quantification could lead to biased results. Here we believe we uncovered new confounding factors, revealed new indices to interpret the behavior of mice and propose an unbiased means for quantification of the FST.
Collapse
Affiliation(s)
- L Chen
- Molecular, Cellular and Integrative Physiology Interdepartmental Ph.D. Program, University of California Los Angeles, Los Angeles, CA, USA,Department of Neurology, The David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - G C Faas
- Department of Neurology, The David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA,Department of Neurology, The David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles Young Drive S, NRB1 575D, Los Angeles, CA 90095, USA. E-mail: or
| | - I Ferando
- Department of Neurology, The David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - I Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA,Department of Physiology, The David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA,Department of Neurology, The David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles Young Drive S, NRB1 575D, Los Angeles, CA 90095, USA. E-mail: or
| |
Collapse
|
26
|
Lin MH, Miner JH. Fatty acid transport protein 1 can compensate for fatty acid transport protein 4 in the developing mouse epidermis. J Invest Dermatol 2014; 135:462-470. [PMID: 25184958 PMCID: PMC4289464 DOI: 10.1038/jid.2014.378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/18/2022]
Abstract
Fatty acid transport protein (FATP) 4 is one of a family of six FATPs that facilitate long- and very long-chain fatty acid uptake. Mice lacking FATP4 are born with tight, thick skin and a defective barrier; they die neonatally due to dehydration and restricted movements. Mutations in SLC27A4, the gene encoding FATP4, cause ichthyosis prematurity syndrome (IPS), characterized by premature birth, respiratory distress, and edematous skin with severe ichthyotic scaling. Symptoms of surviving patients become mild, though atopic manifestations are common. We previously showed that suprabasal keratinocyte expression of a Fatp4 transgene in Fatp4 mutant skin rescues the lethality and ameliorates the skin phenotype. Here we tested the hypothesis that FATP1, the closest FATP4 homolog, can compensate for the lack of FATP4 in our mouse model of IPS, as it might do postnatally in IPS patients. Transgenic expression of FATP1 in suprabasal keratinocytes rescued the phenotype of Fatp4 mutants, and FATP1 sorted to the same intracellular organelles as endogenous FATP4. Thus, FATP1 and FATP4 likely have overlapping substrate specificities, enzymatic activities, and biological functions. These results suggest that increasing expression of FATP1 in suprabasal keratinocytes could normalize the skin of IPS patients and perhaps prevent the atopic manifestations.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey H Miner
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
27
|
Abstract
Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis.
Collapse
|
28
|
Butovich IA, Lu H, McMahon A, Ketelson H, Senchyna M, Meadows D, Campbell E, Molai M, Linsenbardt E. Biophysical and morphological evaluation of human normal and dry eye meibum using hot stage polarized light microscopy. Invest Ophthalmol Vis Sci 2014; 55:87-101. [PMID: 24282231 DOI: 10.1167/iovs.13-13355] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To study melting characteristics and the morphology of human and mouse meibum. METHODS Hot stage cross-polarized light microscopy (HSPM) and immunohistochemical approaches were used. RESULTS Isolated human meibum, and meibum of mice (either isolated or within the meibomian ducts of mice), were found to be in liquid-crystal state at physiological temperatures. Melting of both types of meibum started at approximately 10°C and was completed at approximately 40°C. Melting curves of isolated meibum and meibum inside the meibomian ducts were multiphasic with at least two or three clearly defined phase transition temperatures, typically at approximately 12 ± 2°C (minor transition), 21 ± 3°C, and 32 ± 3°C, regardless the source of meibum. Melting was highly cooperative in nature. Samples of abnormal human meibum collected from dry eye patients with meibomian gland dysfunction often showed an increased presence of nonlipid, nonmelting, nonbirefringent, chloroform-insoluble inclusions of a protein nature. The inclusions were positively stained for cytokeratins. The presence of these inclusions was semiquantitatively characterized using a newly proposed 0 to 4 scale. In the presence of large amounts of these inclusions, melting characteristics of meibum and its structural integrity were altered. CONCLUSIONS HSPM is an effective tool that is suitable for biophysical and morphological evaluation of meibum. Morphological properties and melting characteristics of human meibum were found to be similar to those of mice. Abnormal meibum of many dry eye patients contained large quantities of nonlipid, protein-like inclusions, which were routinely absent in meibum of normal controls.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fatty acid transporters in skin development, function and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:362-8. [PMID: 24120574 DOI: 10.1016/j.bbalip.2013.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Fatty acids in the epidermis can be incorporated into complex lipids or exist in a free form, and they are crucial to proper functions of the epidermis and its appendages, such as sebaceous glands. Epidermal fatty acids can be synthesized de novo by keratinocytes or taken up from extracutaneous sources in a process that likely involves protein transporters. Several proteins that are expressed in the epidermis have been proposed to facilitate the uptake of long-chain fatty acids (LCFA) in mammalian cells, including fatty acid translocase/CD36, fatty acid binding protein, and fatty acid transport protein (FATP)/very long-chain acyl-CoA synthetase. In this review, we will discuss the mechanisms by which these candidate transporters facilitate the uptake of fatty acids. We will then discuss the clinical implications of defects in these transporters and relevant animal models, including the FATP4 animal models and ichthyosis prematurity syndrome, a congenital ichthyosis caused by FATP4 deficiency. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
|