1
|
Odell ID. Genetic and molecular drivers of scleroderma pathogenesis. Clin Dermatol 2025; 43:153-159. [PMID: 39675445 PMCID: PMC12009687 DOI: 10.1016/j.clindermatol.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Scleroderma is a heterogeneous disease with various clinical findings involving immune dysregulation, vasculopathy, and fibrosis. Biological and genetic studies over recent decades have elucidated molecular mechanisms of scleroderma pathogenesis. Genetic association studies have identified interferon and other immune regulatory genes as strongly linked to scleroderma risk, highlighting the immune system as a fundamental determinant of disease. Human and murine biological studies have identified growth factor signaling as a central feature linking tissue damage to the clinical phenotype. Growth factors activated in vascular endothelial cells overlap with those of other diseases having vascular abnormalities, such as hereditary hemorrhagic telangiectasia. Activated growth factor receptors in fibroblasts drive excessive collagen expression in the skin and lungs. Because growth factor signaling is overactivated in multiple malignancies, biological insights and therapeutic approaches may be translated from oncology to understand scleroderma better. Enhanced understanding of the molecular drivers of scleroderma pathogenesis has given greater insight into patient phenotypes and new therapeutic approaches, including those that target immune and growth factor signaling.
Collapse
Affiliation(s)
- Ian D Odell
- Departments of Dermatology and Immunology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
2
|
Ma X, Lu T, Yang Y, Qin D, Tang Z, Cui Y, Wang R. DEAD-box helicase family proteins: emerging targets in digestive system cancers and advances in targeted drug development. J Transl Med 2024; 22:1120. [PMID: 39707322 DOI: 10.1186/s12967-024-05930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
Cancer has become one of the major diseases threatening human health in the twenty-first century due to its incurability. In 2022, new cases of esophageal and gastrointestinal cancers accounted for 17.1% of all newly diagnosed cancer cases worldwide. Despite significant improvements in early cancer screening, clinical diagnostics, and treatments in recent years, the overall prognosis of digestive system cancer patients remains poor. The DEAD-box helicase family, a crucial member of the RNA helicase family, participates in almost every aspect of RNA metabolism, including transcription, splicing, translation, and degradation, and plays a key role in the occurrence and progression of various cancers. This article aims to summarize and discuss the role and potential clinical applications of DEAD-box helicase family proteins in digestive system cancers. The discussion includes the latest progress in the occurrence, development, and treatment of esophageal and gastrointestinal tumors; the main functions of DEAD-box helicase family proteins; their roles in digestive system cancers, including their relationships with clinical factors; effects on cancer proliferation, migration, and invasion; and involved signaling pathways; as well as the existing inhibitory strategies targeting DDX family proteins, are discussed. Additionally, outlooks on future research directions are provided.
Collapse
Affiliation(s)
- Xiaochao Ma
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Tianyu Lu
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Yue Yang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Da Qin
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Ze Tang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Youbin Cui
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China.
| | - Rui Wang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| |
Collapse
|
3
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
4
|
Li S, Feng T, Yuan H, Li Q, Zhao G, Li K. DEAD-box RNA helicases in the multistep process of tumor metastasis. Mol Biol Rep 2024; 51:1006. [PMID: 39306810 DOI: 10.1007/s11033-024-09912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
RNA helicases constitute a large family of proteins that share a catalytic core with high structural similarity. DEAD-box (DDX) proteins belong to the largest RNA helicase subfamily, and DDX members have been implicated in all facets of RNA metabolism, from transcription to translation, miRNA maturation, and RNA delay and degradation. Interestingly, an increasing number of studies have suggested a relationship between DDX proteins and cancer initiation and progression. The expression levels of many DDX proteins are elevated in a majority of cancers, and recent studies have demonstrated that some DDX proteins have a potent positive effect on promoting the metastasis of malignant cells. Metastasis is a complex, multistep cascade process that includes local invasion, intravasation and survival in the circulation, arrest at a distant organ site, extravasation and metastatic colonization; here, we review this process and present the suggested functions and mechanisms of DDX family proteins in particular steps of the invasion‒metastasis cascade.
Collapse
Affiliation(s)
- Shan Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Tianyu Feng
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Sichuan Clinical Research Center for Laboratory Medicine, West China Hospital, Sichuan University, Chengdu City, People's Republic of China
| | - Hang Yuan
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Qin Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Gang Zhao
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| | - Kai Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| |
Collapse
|
5
|
Bonet F, Hernandez-Torres F, Ramos-Sánchez M, Quezada-Feijoo M, Bermúdez-García A, Daroca T, Alonso-Villa E, García-Padilla C, Mangas A, Toro R. Unraveling the Etiology of Dilated Cardiomyopathy through Differential miRNA-mRNA Interactome. Biomolecules 2024; 14:524. [PMID: 38785931 PMCID: PMC11117812 DOI: 10.3390/biom14050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Dilated cardiomyopathy (DCM) encompasses various acquired or genetic diseases sharing a common phenotype. The understanding of pathogenetic mechanisms and the determination of the functional effects of each etiology may allow for tailoring different therapeutic strategies. MicroRNAs (miRNAs) have emerged as key regulators in cardiovascular diseases, including DCM. However, their specific roles in different DCM etiologies remain elusive. Here, we applied mRNA-seq and miRNA-seq to identify the gene and miRNA signature from myocardial biopsies from four patients with DCM caused by volume overload (VCM) and four with ischemic DCM (ICM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for differentially expressed genes (DEGs). The miRNA-mRNA interactions were identified by Pearson correlation analysis and miRNA target-prediction programs. mRNA-seq and miRNA-seq were validated by qRT-PCR and miRNA-mRNA interactions were validated by luciferase assays. We found 112 mRNAs and five miRNAs dysregulated in VCM vs. ICM. DEGs were positively enriched for pathways related to the extracellular matrix (ECM), mitochondrial respiration, cardiac muscle contraction, and fatty acid metabolism in VCM vs. ICM and negatively enriched for immune-response-related pathways, JAK-STAT, and NF-kappa B signaling. We identified four pairs of negatively correlated miRNA-mRNA: miR-218-5p-DDX6, miR-218-5p-TTC39C, miR-218-5p-SEMA4A, and miR-494-3p-SGMS2. Our study revealed novel miRNA-mRNA interaction networks and signaling pathways for VCM and ICM, providing novel insights into the development of these DCM etiologies.
Collapse
Affiliation(s)
- Fernando Bonet
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Mónica Ramos-Sánchez
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Aníbal Bermúdez-García
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Tomás Daroca
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Elena Alonso-Villa
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | | | - Alipio Mangas
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Rocio Toro
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| |
Collapse
|
6
|
Jampasri S, Reabroi S, Tungmunnithum D, Parichatikanond W, Pinthong D. Plumbagin Suppresses Breast Cancer Progression by Downregulating HIF-1α Expression via a PI3K/Akt/mTOR Independent Pathway under Hypoxic Condition. Molecules 2022; 27:molecules27175716. [PMID: 36080483 PMCID: PMC9457614 DOI: 10.3390/molecules27175716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional regulator that plays a crucial role in the hypoxic response of rapidly growing tumors. Overexpression of HIF-1α has been associated with breast cancer metastasis and poor clinical prognosis. Plumbagin, the main phytochemical from Plumbago indica, exerts anticancer effects via multiple mechanisms. However, its precise mechanisms on breast cancer cells under hypoxic conditions has never been investigated. This study aims to examine the anticancer effect of plumbagin on MCF-7 cell viability, transcriptional activity, and protein expression of HIF-1α under normoxia and hypoxia-mimicking conditions, as well as reveal the underlying signaling pathways. The results demonstrate that plumbagin decreased MCF-7 cell viability under normoxic conditions, and a greater extent of reduction was observed upon exposure to hypoxic conditions induced by cobalt chloride (CoCl2). Mechanistically, MCF-7 cells upregulated the expression of HIF-1α protein, mRNA, and the VEGF target gene under CoCl2-induced hypoxia, which were abolished by plumbagin treatment. In addition, inhibition of HIF-1α and its downstream targets did not affect the signaling transduction of the PI3K/Akt/mTOR pathway under hypoxic state. This study provides mechanistic insight into the anticancer activity of plumbagin in breast cancer cells under hypoxic conditions by abolishing HIF-1α at transcription and post-translational modifications.
Collapse
Affiliation(s)
- Supawan Jampasri
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Somrudee Reabroi
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Center of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Darawan Pinthong
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
7
|
Tu J, Jin J, Chen X, Sun L, Cai Z. Altered Cellular Immunity and Differentially Expressed Immune-Related Genes in Patients With Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Front Immunol 2022; 13:868983. [PMID: 35663995 PMCID: PMC9159786 DOI: 10.3389/fimmu.2022.868983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is the most common connective tissue disease causing pulmonary hypertension (PAH). However, the cause and potential immune molecular events associated with PAH are still unclear. Therefore, it is particularly essential to analyze the changes in SSc-PAH–related immune cells and their immune-related genes. Three microarray datasets (GSE22356, GSE33463, and GSE19617) were obtained by the Gene Expression Omnibus (GEO). Compared with SSc, we found neutrophils have a statistically higher abundance, while T-cell CD4 naive and T-cell CD4 memory resting have a statistically lower abundance in peripheral blood mononuclear cells (PBMCs). Moreover, the results of Gene Set Enrichment Analysis (GSEA) showed there is a differential enrichment of multiple pathways between SSc and SSc-PAH. By combining differentiated expressed genes (DEGs) and immune-related genes (IRGs), fifteen IRGs were selected. In addition, we also analyzed the first five rich Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and the most abundant Gene Ontology (GO)-molecular functional terms. Furthermore, interleukin-7 receptor (IL-7R), tyrosine–protein kinase (LCK), histone deacetylase 1 (HDAC1), and epidermal growth factor receptor (EGFR) genes were identified as hub genes via protein–protein interaction (PPI) network analysis. The Comparative Toxic Genomics Database (CTD) analysis result showed that LCK, HDAC1, and EGFR have a higher score with SSc. Coexpression network analysis confirmed that IL-7R, LCK, and HDAC1 are key genes related to immune regulation in SSc without PAH and are involved in T-cell immune regulation. Subsequently, using GSE22356 and GSE33463 as the test sets and GSE19617 as the verification set, it was verified that the mRNA expression levels of the three central genes of SSc-PAH were significantly lower than those of the SSc without PAH samples. Consistent with previous predictions, the expressions of IL-7R, LCK, and HDAC1 are positively correlated with the numbers of T-cell CD4 naive and T-cell CD4 memory, while the expressions of IL-7R and LCK are negatively correlated with the numbers of neutrophils in the peripheral blood. Therefore, this evidence may suggest that these three immune-related genes: IL-7R, LCK, and HDAC1, may be highly related to the immunological changes in SSc-PAH. These three molecules can reduce T cells in SSc-PAH PBMCs through the regulation of T-cell activation, which suggests that these three molecules may be involved in the development of SSc-PAH. Meanwhile, the low expression of IL-7R, LCK, and HDAC1 detected in the peripheral blood of SSc may indicate the possibility of PAH and hopefully become a biomarker for the early detection of SSc-PAH. Finally, 49 target miRNAs of 3 specifically expressed hub genes were obtained, and 49 mRNA–miRNA pairs were identified, which provided directions for our further research.
Collapse
Affiliation(s)
- Jianxin Tu
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Rheumatology, The First Affiliated Hospital of Wenzhou University, Wenzhou, China
| | - Jinji Jin
- Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou University, Wenzhou, China
| | - Xiaowei Chen
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou University, Wenzhou, China
| | - Li Sun
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou University, Wenzhou, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Kobayashi S, Nagafuchi Y, Shoda H, Fujio K. The Pathophysiological Roles of Regulatory T Cells in the Early Phase of Systemic Sclerosis. Front Immunol 2022; 13:900638. [PMID: 35686127 PMCID: PMC9172592 DOI: 10.3389/fimmu.2022.900638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease that is characterized by vascular damage and fibrosis. Both clinical manifestations and immunological disturbances are diverse according to the disease duration. Particularly, changes in immunological processes are prominent in the early phase of SSc. The orchestration of several subsets of immune cells promotes autoimmune responses and inflammation, and eventually stimulates pro-fibrotic processes. Many reports have indicated that CD4+ T cells play pivotal roles in pathogenesis in the early phase of SSc. In particular, the pathogenic roles of regulatory T (Treg) cells have been investigated. Although the results were controversial, recent reports suggested an increase of Treg cells in the early phase of SSc patients. Treg cells secrete transforming growth factor-β (TGF-β), which promotes myofibroblast activation and fibrosis. In addition, the dysfunction of Treg cells in the early phase of SSc was reported, which results in the development of autoimmunity and inflammation. Notably, Treg cells have the plasticity to convert to T-helper17 (Th17) cells under pro-inflammatory conditions. Th17 cells secrete IL-17A, which could also promote myofibroblast transformation and fibrosis and contributes to vasculopathy, although the issue is still controversial. Our recent transcriptomic comparison between the early and late phases of SSc revealed a clear difference of gene expression patterns only in Treg cells. The gene signature of an activated Treg cell subpopulation was expanded in the early phase of SSc and the oxidative phosphorylation pathway was enhanced, which can promote Th17 differentiation. And this result was accompanied by the increase in Th17 cells frequency. Therefore, an imbalance between Treg and Th17 cells could also have an important role in the pathogenesis of the early phase of SSc. In this review, we outlined the roles of Treg cells in the early phase of SSc, summarizing the data of both human and mouse models. The contributions of Treg cells to autoimmunity, vasculopathy, and fibrosis were revealed, based on the dysfunction and imbalance of Treg cells. We also referred to the potential development in treatment strategies in SSc.
Collapse
Affiliation(s)
- Satomi Kobayashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Medicine and Rheumatology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
9
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Chalkiadaki K, Statoulla E, Markou M, Bellou S, Bagli E, Fotsis T, Murphy C, Gkogkas CG. Translational control in neurovascular brain development. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211088. [PMID: 34659781 PMCID: PMC8511748 DOI: 10.1098/rsos.211088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The human brain carries out complex tasks and higher functions and is crucial for organismal survival, as it senses both intrinsic and extrinsic environments. Proper brain development relies on the orchestrated development of different precursor cells, which will give rise to the plethora of mature brain cell-types. Within this process, neuronal cells develop closely to and in coordination with vascular cells (endothelial cells (ECs), pericytes) in a bilateral communication process that relies on neuronal activity, attractive or repulsive guidance cues for both cell types and on tight-regulation of gene expression. Translational control is a master regulator of the gene-expression pathway and in particular for neuronal and ECs, it can be localized in developmentally relevant (axon growth cone, endothelial tip cell) and mature compartments (synapses, axons). Herein, we will review mechanisms of translational control relevant to brain development in neurons and ECs in health and disease.
Collapse
Affiliation(s)
- Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Elpida Statoulla
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Maria Markou
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Sofia Bellou
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Eleni Bagli
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Theodore Fotsis
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Carol Murphy
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Christos G. Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| |
Collapse
|
11
|
Specific Interaction of DDX6 with an RNA Hairpin in the 3' UTR of the Dengue Virus Genome Mediates G 1 Phase Arrest. J Virol 2021; 95:e0051021. [PMID: 34132569 DOI: 10.1128/jvi.00510-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extent to which viral genomic RNAs interact with host factors and contribute to host response and disease pathogenesis is not well known. Here, we report that the human RNA helicase DDX6 specifically binds to the viral most conserved RNA hairpin in the A3 element in the dengue 3' UTR, with nanomolar affinities. DDX6 CLIP confirmed the interaction in HuH-7 cells infected by dengue virus serotype 2. This interaction requires three conserved residues-Lys307, Lys367, and Arg369-as well as the unstructured extension in the C-terminal domain of DDX6. Interestingly, alanine substitution of these three basic residues resulted in RNA-independent ATPase activity, suggesting a mechanism by which RNA-binding and ATPase activities are coupled in DEAD box helicases. Furthermore, we applied a cross-omics gene enrichment approach to suggest that DDX6 is functionally related to cell cycle regulation and viral pathogenicity. Indeed, infected cells exhibited cell cycle arrest in G1 phase and a decrease in the early S phase. Exogenous expression of intact DDX6, but not A3-binding-deficient mutants, alleviated these effects by rescue of the DNA preinitiation complex expression. Disruption of the DDX6-binding site was found in dengue and Zika live-attenuated vaccine strains. Our results suggested that dengue virus has evolved an RNA aptamer against DDX6 to alter host cell states and defined DDX6 as a new regulator of G1/S transition. IMPORTANCE Dengue virus (DENV) is transmitted by mosquitoes to humans, infecting 390 million individuals per year globally. About 20% of infected patients shows a spectrum of clinical manifestation, ranging from a mild flu-like syndrome, to dengue fever, to life-threatening severe dengue diseases, including dengue hemorrhagic fever and dengue shock syndrome. There is currently no specific treatment for dengue diseases, and the molecular mechanism underlying dengue pathogenesis remains poorly understood. In this study, we combined biochemical, bioinformatics, high-content analysis and RNA sequencing approaches to characterize a highly conserved interface of the RNA genome of DENV with a human factor named DDX6 in infected cells. The significance of our research is in identifying the mechanism for a viral strategy to alter host cell fates, which conceivably allows us to generate a model for live-attenuated vaccine and the design of new therapeutic reagent for dengue diseases.
Collapse
|
12
|
Zhao Z, Wu C, He X, Zhao E, Hu S, Han Y, Wang T, Chen Y, Liu T, Huang S. miR-152-3p aggravates vascular endothelial cell dysfunction by targeting DEAD-box helicase 6 (DDX6) under hypoxia. Bioengineered 2021; 12:4899-4910. [PMID: 34374627 PMCID: PMC8806655 DOI: 10.1080/21655979.2021.1959864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stroke is a main cause of disability and death worldwide, and ischemic stroke accounts for most stroke cases. Recently, microRNAs (miRNAs) have been verified to play critical roles in the development of stroke. Herein, we explored effects of miR-152-3p on vascular endothelial cell functions under hypoxia. Human umbilical vein endothelial cells (HUVECs) were treated with hypoxia to mimic cell injury in vitro. Reverse transcription quantitative polymerase chain reaction revealed that miR-152-3p exhibited high expression in HUVECs treated with hypoxia. The inhibition of miR-152-3p reversed hypoxia-induced decrease in cell viability and the increase in angiogenesis, according to the results of cell counting kit-8 assays and tube formation assays. miR-152-3p inhibition reversed the increase in endothelial cell permeability mediated by hypoxia, as shown by endothelial cell permeability in vitro assays. In addition, the increase in protein levels of angiogenetic markers and the decrease in levels of tight junction proteins induced by hypoxia were reversed by miR-152-3p inhibition. Mechanistically, miR-152-3p directly targets 3ʹ-untranslated region of DEAD-box helicase 6 (DDX6), which was confirmed by luciferase reporter assays. DDX6 is lowly expressed in HUVECs under hypoxic condition, and mRNA expression and protein level of DDX6 were upregulated in HUVECs due to miR-152-3p inhibition. Rescue assays showed that DDX6 knockdown reversed effects of miR-152-3p on cell viability, angiogenesis and endothelial permeability. The results demonstrated that miR-152-3p aggravates vascular endothelial cell dysfunction by targeting DDX6 under hypoxia.
Collapse
Affiliation(s)
- Zhongyan Zhao
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Chanji Wu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Xiangying He
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Eryi Zhao
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Shijun Hu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Yeguang Han
- Department of Central Laboratory, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Ting Wang
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Yanquan Chen
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Tao Liu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Shixiong Huang
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| |
Collapse
|
13
|
de Vries S, Benes V, Naarmann-de Vries IS, Rücklé C, Zarnack K, Marx G, Ostareck DH, Ostareck-Lederer A. P23 Acts as Functional RBP in the Macrophage Inflammation Response. Front Mol Biosci 2021; 8:625608. [PMID: 34179071 PMCID: PMC8226254 DOI: 10.3389/fmolb.2021.625608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages exert the primary cellular immune response. Pathogen components like bacterial lipopolysaccharides (LPS) stimulate macrophage migration, phagocytotic activity and cytokine expression. Previously, we identified the poly(A)+ RNA interactome of RAW 264.7 macrophages. Of the 402 RNA-binding proteins (RBPs), 32 were classified as unique in macrophages, including nineteen not reported to interact with nucleic acids before. Remarkably, P23 a HSP90 co-chaperone, also known as cytosolic prostaglandin E2 synthase (PTGES3), exhibited differential poly(A)+ RNA binding in untreated and LPS-induced macrophages. To identify mRNAs bound by P23 and to elucidate potential regulatory RBP functions in macrophages, we immunoprecipitated P23 from cytoplasmic extracts of cross-linked untreated and LPS-induced cells. RNAseq revealed that enrichment of 44 mRNAs was reduced in response to LPS. Kif15 mRNA, which encodes kinesin family member 15 (KIF15), a motor protein implicated in cytoskeletal reorganization and cell mobility was selected for further analysis. Noteworthy, phagocytic activity of LPS-induced macrophages was enhanced by P23 depletion. Specifically, in untreated RAW 264.7 macrophages, decreased P23 results in Kif15 mRNA destabilization, diminished KIF15 expression and accelerated macrophage migration. We show that the unexpected RBP function of P23 contributes to the regulation of macrophage phagocytotic activity and migration.
Collapse
Affiliation(s)
- Sebastian de Vries
- Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Cornelia Rücklé
- Buchmann Institute of Molecular Life Science, Goethe University Frankfurt, Frankfurt, Germany
| | - Katharina Zarnack
- Buchmann Institute of Molecular Life Science, Goethe University Frankfurt, Frankfurt, Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | |
Collapse
|
14
|
Naarmann-de Vries IS, Senatore R, Moritz B, Marx G, Urlaub H, Niessing D, Ostareck DH, Ostareck-Lederer A. Methylated HNRNPK acts on RPS19 to regulate ALOX15 synthesis in erythropoiesis. Nucleic Acids Res 2021; 49:3507-3523. [PMID: 33660773 PMCID: PMC8034617 DOI: 10.1093/nar/gkab116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Post-transcriptional control is essential to safeguard structural and metabolic changes in enucleated reticulocytes during their terminal maturation to functional erythrocytes. The timely synthesis of arachidonate 15-lipoxygenase (ALOX15), which initiates mitochondria degradation at the final stage of reticulocyte maturation is regulated by the multifunctional protein HNRNPK. It constitutes a silencing complex at the ALOX15 mRNA 3′ untranslated region that inhibits translation initiation at the AUG by impeding the joining of ribosomal 60S subunits to 40S subunits. To elucidate how HNRNPK interferes with 80S ribosome assembly, three independent screens were applied. They consistently demonstrated a differential interaction of HNRNPK with RPS19, which is localized at the head of the 40S subunit and extends into its functional center. During induced erythroid maturation of K562 cells, decreasing arginine dimethylation of HNRNPK is linked to a reduced interaction with RPS19 in vitro and in vivo. Dimethylation of residues R256, R258 and R268 in HNRNPK affects its interaction with RPS19. In noninduced K562 cells, RPS19 depletion results in the induction of ALOX15 synthesis and mitochondria degradation. Interestingly, residue W52 in RPS19, which is frequently mutated in Diamond-Blackfan Anemia (DBA), participates in specific HNRNPK binding and is an integral part of a putative aromatic cage.
Collapse
Affiliation(s)
| | - Roberta Senatore
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Bodo Moritz
- Institute of Pharmacy, Faculty of Natural Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Göttingen, Germany.,Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| |
Collapse
|
15
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW To review susceptibility genes and how they could integrate in systemic sclerosis (SSc) pathophysiology providing insight and perspectives for innovative therapies. RECENT FINDINGS SSc is a rare disease characterized by vasculopathy, dysregulated immunity and fibrosis. Genome-Wide association studies and ImmunoChip studies performed in recent years revealed associated genetic variants mainly localized in noncoding regions and mostly affecting the immune system of SSc patients. Gene variants were described in innate immunity (IRF5, IRF7 and TLR2), T and B cells activation (CD247, TNFAIP3, STAT4 and BLK) and NF-κB pathway (TNFAIP3 and TNIP1) confirming previous biological data. In addition to impacting immune response, CSK, DDX6, DNASE1L3 and GSDMA/B could also act in the vascular and fibrotic components of SSc. SUMMARY Although genetic studies highlighted the dysregulated immune response in SSc, future research must focus on a deeper characterization of these variants with determination of their functional effects. Moreover, the role of these genes or others on specific vasculopathy and fibrosis would provide insight. Establishment of polygenic score or integrated genome approaches could identify new targets specific of SSc clinical features. This will allow physicians to propose new therapies to SSc patients.
Collapse
|
17
|
Sergeeva O, Zatsepin T. RNA Helicases as Shadow Modulators of Cell Cycle Progression. Int J Mol Sci 2021; 22:2984. [PMID: 33804185 PMCID: PMC8001981 DOI: 10.3390/ijms22062984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
The progress of the cell cycle is directly regulated by modulation of cyclins and cyclin-dependent kinases. However, many proteins that control DNA replication, RNA transcription and the synthesis and degradation of proteins can manage the activity or levels of master cell cycle regulators. Among them, RNA helicases are key participants in RNA metabolism involved in the global or specific tuning of cell cycle regulators at the level of transcription and translation. Several RNA helicases have been recently evaluated as promising therapeutic targets, including eIF4A, DDX3 and DDX5. However, targeting RNA helicases can result in side effects due to the influence on the cell cycle. In this review, we discuss direct and indirect participation of RNA helicases in the regulation of the cell cycle in order to draw attention to downstream events that may occur after suppression or inhibition of RNA helicases.
Collapse
Affiliation(s)
- Olga Sergeeva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30b1, 121205 Moscow, Russia;
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30b1, 121205 Moscow, Russia;
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
18
|
Guduric-Fuchs J, Pedrini E, Lechner J, Chambers SE, O’Neill CL, Mendes Lopes de Melo J, Pathak V, Church RH, McKeown S, Bojdo J, Mcloughlin KJ, Stitt AW, Medina RJ. miR-130a activates the VEGFR2/STAT3/HIF1α axis to potentiate the vasoregenerative capacity of endothelial colony-forming cells in hypoxia. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:968-981. [PMID: 33614244 PMCID: PMC7869000 DOI: 10.1016/j.omtn.2021.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
Hypoxia modulates reparative angiogenesis, which is a tightly regulated pathophysiological process. MicroRNAs (miRNAs) are important regulators of gene expression in hypoxia and angiogenesis. However, we do not yet have a clear understanding of how hypoxia-induced miRNAs fine-tune vasoreparative processes. Here, we identify miR-130a as a mediator of the hypoxic response in human primary endothelial colony-forming cells (ECFCs), a well-characterized subtype of endothelial progenitors. Under hypoxic conditions of 1% O2, miR-130a gain-of-function enhances ECFC pro-angiogenic capacity in vitro and potentiates their vasoreparative properties in vivo. Mechanistically, miR-130a orchestrates upregulation of VEGFR2, activation of STAT3, and accumulation of HIF1α via translational inhibition of Ddx6. These findings unveil a new role for miR-130a in hypoxia, whereby it activates the VEGFR2/STAT3/HIF1α axis to enhance the vasoregenerative capacity of ECFCs.
Collapse
Affiliation(s)
- Jasenka Guduric-Fuchs
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Edoardo Pedrini
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Sarah E.J. Chambers
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Christina L. O’Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Joana Mendes Lopes de Melo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Varun Pathak
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rachel H. Church
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Stuart McKeown
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - James Bojdo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Kiran J. Mcloughlin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Alan W. Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Reinhold J. Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
19
|
General and Target-Specific DExD/H RNA Helicases in Eukaryotic Translation Initiation. Int J Mol Sci 2020; 21:ijms21124402. [PMID: 32575790 PMCID: PMC7352612 DOI: 10.3390/ijms21124402] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
DExD (DDX)- and DExH (DHX)-box RNA helicases, named after their Asp-Glu-x-Asp/His motifs, are integral to almost all RNA metabolic processes in eukaryotic cells. They play myriad roles in processes ranging from transcription and mRNA-protein complex remodeling, to RNA decay and translation. This last facet, translation, is an intricate process that involves DDX/DHX helicases and presents a regulatory node that is highly targetable. Studies aimed at better understanding this family of conserved proteins have revealed insights into their structures, catalytic mechanisms, and biological roles. They have also led to the development of chemical modulators that seek to exploit their essential roles in diseases. Herein, we review the most recent insights on several general and target-specific DDX/DHX helicases in eukaryotic translation initiation.
Collapse
|
20
|
López-Isac E, Acosta-Herrera M, Kerick M, Assassi S, Satpathy AT, Granja J, Mumbach MR, Beretta L, Simeón CP, Carreira P, Ortego-Centeno N, Castellvi I, Bossini-Castillo L, Carmona FD, Orozco G, Hunzelmann N, Distler JHW, Franke A, Lunardi C, Moroncini G, Gabrielli A, de Vries-Bouwstra J, Wijmenga C, Koeleman BPC, Nordin A, Padyukov L, Hoffmann-Vold AM, Lie B, Proudman S, Stevens W, Nikpour M, Vyse T, Herrick AL, Worthington J, Denton CP, Allanore Y, Brown MA, Radstake TRDJ, Fonseca C, Chang HY, Mayes MD, Martin J. GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nat Commun 2019; 10:4955. [PMID: 31672989 PMCID: PMC6823490 DOI: 10.1038/s41467-019-12760-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.
Collapse
Affiliation(s)
- Elena López-Isac
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain.
| | | | - Martin Kerick
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain
| | - Shervin Assassi
- The University of Texas Health Science Center-Houston, Houston, USA
| | - Ansuman T Satpathy
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jeffrey Granja
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Maxwell R Mumbach
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Carmen P Simeón
- Department of Internal Medicine, Valle de Hebrón Hospital, Barcelona, Spain
| | - Patricia Carreira
- Department of Rheumatology, 12 de Octubre University Hospital, Madrid, Spain
| | | | - Ivan Castellvi
- Department of Rheumatology, Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | | | - F David Carmona
- Department of Genetics and Institute of Biotechnology, University of Granada, Granada, Spain
| | - Gisela Orozco
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
| | | | - Jörg H W Distler
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Claudio Lunardi
- Department of Medicine, Università degli Studi di Verona, Verona, Italy
| | - Gianluca Moroncini
- Clinica Medica, Department of Clinical and Molecular Science, Università Politecnica delle Marche and Ospedali Riuniti, Ancona, Italy
| | - Armando Gabrielli
- Clinica Medica, Department of Clinical and Molecular Science, Università Politecnica delle Marche and Ospedali Riuniti, Ancona, Italy
| | | | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Annika Nordin
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | | | - Benedicte Lie
- Department of Medical Genetics, and the Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Susanna Proudman
- Royal Adelaide Hospital and University of Adelaide, Adelaide, SA, Australia
| | | | - Mandana Nikpour
- The University of Melbourne at St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Timothy Vyse
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Ariane L Herrick
- Centre for Musculoskeletal Research, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
| | - Christopher P Denton
- Centre for Rheumatology, Royal Free and University College Medical School, London, United Kingdom
| | - Yannick Allanore
- Department of Rheumatology A, Cochin Hospital, INSERM U1016, Paris Descartes University, Paris, France
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Timothy R D J Radstake
- Department of Rheumatology & Clinical Immunology, Laboratory of Translational Immunology, department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carmen Fonseca
- Centre for Rheumatology, Royal Free and University College Medical School, London, United Kingdom
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Maureen D Mayes
- The University of Texas Health Science Center-Houston, Houston, USA
| | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain.
| |
Collapse
|
21
|
On the optimal design of metabolic RNA labeling experiments. PLoS Comput Biol 2019; 15:e1007252. [PMID: 31390362 PMCID: PMC6699717 DOI: 10.1371/journal.pcbi.1007252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/19/2019] [Accepted: 07/08/2019] [Indexed: 01/16/2023] Open
Abstract
Massively parallel RNA sequencing (RNA-seq) in combination with metabolic labeling has become the de facto standard approach to study alterations in RNA transcription, processing or decay. Regardless of advances in the experimental protocols and techniques, every experimentalist needs to specify the key aspects of experimental design: For example, which protocol should be used (biochemical separation vs. nucleotide conversion) and what is the optimal labeling time? In this work, we provide approximate answers to these questions using the asymptotic theory of optimal design. Specifically, we investigate, how the variance of degradation rate estimates depends on the time and derive the optimal time for any given degradation rate. Subsequently, we show that an increase in sample numbers should be preferred over an increase in sequencing depth. Lastly, we provide some guidance on use cases when laborious biochemical separation outcompetes recent nucleotide conversion based methods (such as SLAMseq) and show, how inefficient conversion influences the precision of estimates. Code and documentation can be found at https://github.com/dieterich-lab/DesignMetabolicRNAlabeling. Massively parallel RNA sequencing (RNA-seq) in combination with metabolic labeling has become the de facto standard approach to study alterations in RNA transcription, processing or decay. In our manuscript, we address several key aspects of experimental design: 1) The optimal labeling time, 2) the number of replicate samples over sequencing depth and 3) the choice of experimental protocol. We provide approximate answers to these questions using asymptotic theory of optimal design.
Collapse
|
22
|
He Y, Chang Y, Bao L, Yu M, Li R, Niu J, Fan G, Song W, Seim I, Qin Y, Li X, Liu J, Kong X, Peng M, Sun M, Wang M, Qu J, Wang X, Liu X, Wu X, Zhao X, Wang X, Zhang Y, Guo J, Liu Y, Liu K, Wang Y, Zhang H, Liu L, Wang M, Yu H, Wang X, Cheng J, Wang Z, Xu X, Wang J, Yang H, Lee SMY, Liu X, Zhang Q, Qi J. A chromosome-level genome of black rockfish, Sebastes schlegelii, provides insights into the evolution of live birth. Mol Ecol Resour 2019; 19:1309-1321. [PMID: 31077549 DOI: 10.1111/1755-0998.13034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022]
Abstract
The black rockfish (Sebastes schlegelii) is a teleost in which eggs are fertilized internally and retained in the maternal reproductive system, where they undergo development until live birth (viviparity). In the present study, we report a chromosome-level black rockfish genome assembly. High-throughput transcriptome analysis (RNA-seq and ATAC-seq) coupled with in situ hybridization (ISH) and immunofluorescence reveal several candidate genes for maternal preparation, sperm storage and release, and hatching. We propose that zona pellucida (ZP) proteins retain sperm at the oocyte envelope, while genes in two distinct astacin metalloproteinase subfamilies serve to release sperm from the ZP and free the embryo from chorion at prehatching stage. We present a model of black rockfish reproduction, and propose that the rockfish ovarian wall has a similar function to the uterus of mammals. Together, these genomic data reveal unprecedented insights into the evolution of an unusual teleost life history strategy, and provide a sound foundation for studying viviparity in nonmammalian vertebrates and an invaluable resource for rockfish ecological and evolutionary research.
Collapse
Affiliation(s)
- Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yue Chang
- BGI-Shenzhen, Shenzhen, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Lisui Bao
- The University of Chicago, Chicago, Illinois
| | - Mengjun Yu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Yating Qin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xuemei Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jinxiang Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiangfu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiting Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Minmin Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jiangbo Qu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuangang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaobing Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolong Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xi Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuliang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jiao Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yang Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Kaiqiang Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yilin Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - He Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Mingyue Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Haiyang Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xubo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jie Cheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhigang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,BGI-Fuyang, BGI-Shenzhen, Fuyang, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
23
|
Comparative analysis of peripheral blood reveals transcriptomic adaptations to extreme environments on the Qinghai-Tibetan Plateau in the gray wolf (Canis lupus chanco). ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-019-00405-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Hillert EK, Brnjic S, Zhang X, Mazurkiewicz M, Saei AA, Mofers A, Selvaraju K, Zubarev R, Linder S, D'Arcy P. Proteasome inhibitor b-AP15 induces enhanced proteotoxicity by inhibiting cytoprotective aggresome formation. Cancer Lett 2019; 448:70-83. [PMID: 30768956 DOI: 10.1016/j.canlet.2019.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/28/2018] [Accepted: 02/01/2019] [Indexed: 01/26/2023]
Abstract
Proteasome inhibitors have been shown to induce cell death in cancer cells by triggering an acute proteotoxic stress response characterized by accumulation of poly-ubiquitinated proteins, ER stress and the production of reactive oxygen species. The aggresome pathway has been described as an escape mechanism from proteotoxicity by sequestering toxic cellular aggregates. Here we show that b-AP15, a small-molecule inhibitor of proteasomal deubiquitinase activity, induces poly-ubiquitin accumulation in absence of aggresome formation. b-AP15 was found to affect organelle transport in treated cells, raising the possibility that microtubule-transport of toxic protein aggregates is inhibited, leading to enhanced cytotoxicity. In contrast to the antiproliferative effects of the clinically used proteasome inhibitor bortezomib, the effects of b-AP15 are not further enhanced by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Our results suggest an inhibitory effect of b-AP15 on the transport of misfolded proteins, resulting in a lack of aggresome formation, and a strong proteotoxic stress response.
Collapse
Affiliation(s)
| | - Slavica Brnjic
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Xiaonan Zhang
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Arjan Mofers
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Karthik Selvaraju
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Padraig D'Arcy
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
25
|
Verma P, Sharma A, Sodhi M, Thakur K, Kataria RS, Niranjan SK, Bharti VK, Kumar P, Giri A, Kalia S, Mukesh M. Transcriptome Analysis of Circulating PBMCs to Understand Mechanism of High Altitude Adaptation in Native Cattle of Ladakh Region. Sci Rep 2018; 8:7681. [PMID: 29769561 PMCID: PMC5955995 DOI: 10.1038/s41598-018-25736-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Ladakhi cattle is native population of Leh and Ladakh region and constantly exposed to hypobaric hypoxia over many generations. In present study, transcriptome signatures of cattle from Ladakh region (~5500 m) and Sahiwal cattle from tropical regions were evaluated using Agilent 44 K microarray chip. The top up-regulated genes in Ladakhi cows were INHBC, ITPRI, HECA, ABI3, GPR171, and HIF-1α involved in hypoxia and stress response. In Sahiwal cows, the top up-regulated genes eEF1A1, GRO1, CXCL2, DEFB3 and BOLA-DQA3 were associated with immune function and inflammatory response indicating their strong immune potential to combat the pathogens prevalent in the tropical conditions. The molecular pathways highly impacted were MAPK signaling, ETC, apoptosis, TLR signaling and NF- kB signaling pathway indicating signatures of adaptive evolution of these two cattle types in response to diverse environments. Further, qPCR analysis revealed increased expression of DEGs such as HIF-1, EPAS-1, VEGFA, NOS2, and GLUT-1/SLC2A1 in cattle types from high altitude suggesting their pivotal role in association with high altitude adaptation. Based on data generated, native cattle of Ladakh region was found to be genetically distinct from native cattle adapted to the tropical region of India.
Collapse
Affiliation(s)
- Preeti Verma
- Singhania University, Jhunjhunu, Rajasthan, India
| | - Ankita Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Monika Sodhi
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Kiran Thakur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Ranjit S Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Saket K Niranjan
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | | | - Prabhat Kumar
- Defence Institute of High Altitude Research, Leh, India
| | - Arup Giri
- Defence Institute of High Altitude Research, Leh, India
| | - Sahil Kalia
- Defence Institute of High Altitude Research, Leh, India
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
| |
Collapse
|
26
|
Taniguchi K, Iwatsuki A, Sugito N, Shinohara H, Kuranaga Y, Oshikawa Y, Tajirika T, Futamura M, Yoshida K, Uchiyama K, Akao Y. Oncogene RNA helicase DDX6 promotes the process of c-Myc expression in gastric cancer cells. Mol Carcinog 2018; 57:579-589. [PMID: 29314290 DOI: 10.1002/mc.22781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/06/2017] [Accepted: 01/02/2018] [Indexed: 11/08/2022]
Abstract
Human DEAD-box RNA helicase gene DDX6 was cloned from B-cell lymphoma cell line RC-K8. Previously, we reported that DDX6 acts as oncogene in several cancers such as colorectal cancer and hepatocellular carcinoma. However, the detailed mechanism of DDX6 action in carcinogenesis is largely unknown. In this study, we examined the functions of DDX6 in clinical gastric cancer (GC) samples and GC cells. DDX6 protein expression levels of cancer samples were higher than those of the adjacent normal tissues in 25 clinical GC samples (median value: 1.4 times higher). Also, the results of an RNA immunoprecipitation-assay (RIP-assay) showed that DDX6 associated with c-Myc mRNA. Moreover, enforced overexpression of DDX6 promoted both mRNA and protein expression of c-Myc in GC cells. On the other hand, the gene silencing of DDX6 induced growth suppression through down-regulation of c-Myc in GC cells grown in either two or three dimensions. Furthermore, c-Myc mRNA expression levels of cancer samples were higher than those of the adjacent normal tissues in DDX6 up-regulated-GC clinical samples. Our findings in this study suggested that DDX6 acted as oncogene in GC cells through promotion of c-Myc expression by association with the mRNA of c-Myc.
Collapse
Affiliation(s)
- Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka, Takatsuki, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Ayako Iwatsuki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yuki Oshikawa
- Department of Oncological Surgery, Gifu University School of Medicine, Gifu, Japan
| | - Toshihiro Tajirika
- Department of Oncological Surgery, Gifu University School of Medicine, Gifu, Japan
| | - Manabu Futamura
- Department of Oncological Surgery, Gifu University School of Medicine, Gifu, Japan
| | - Kazuhiro Yoshida
- Department of Oncological Surgery, Gifu University School of Medicine, Gifu, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka, Takatsuki, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
27
|
Bradford JR, Wappett M, Beran G, Logie A, Delpuech O, Brown H, Boros J, Camp NJ, McEwen R, Mazzola AM, D'Cruz C, Barry ST. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers. Oncotarget 2018; 7:20773-87. [PMID: 26980748 PMCID: PMC4991491 DOI: 10.18632/oncotarget.8014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.
Collapse
Affiliation(s)
- James R Bradford
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Mark Wappett
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Garry Beran
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Armelle Logie
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Oona Delpuech
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Henry Brown
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Joanna Boros
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Robert McEwen
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - Anne Marie Mazzola
- Oncology iMED, AstraZeneca Pharmaceuticals, Gatehouse Park, Massachusetts, USA
| | - Celina D'Cruz
- Oncology iMED, AstraZeneca Pharmaceuticals, Gatehouse Park, Massachusetts, USA
| | - Simon T Barry
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| |
Collapse
|
28
|
Heerma van Voss MR, van Diest PJ, Raman V. Targeting RNA helicases in cancer: The translation trap. Biochim Biophys Acta Rev Cancer 2017; 1868:510-520. [PMID: 28965870 DOI: 10.1016/j.bbcan.2017.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
Abstract
Cancer cells are reliant on the cellular translational machinery for both global elevation of protein synthesis and the translation of specific mRNAs that promote tumor cell survival. Targeting translational control in cancer is therefore increasingly recognized as a promising therapeutic strategy. In this regard, DEAD/H box RNA helicases are a very interesting group of proteins, with several family members regulating mRNA translation in cancer cells. In this review, we delineate the mechanisms by which DEAD/H box proteins modulate oncogenic translation and how inhibition of these RNA helicases can be exploited for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Marise R Heerma van Voss
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University, School of Medicine, MD, USA
| | - Venu Raman
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Oncology, Johns Hopkins University, School of Medicine, MD, USA.
| |
Collapse
|
29
|
DEAD-box helicase 6 (DDX6) is a new negative regulator for milk synthesis and proliferation of bovine mammary epithelial cells. In Vitro Cell Dev Biol Anim 2017; 54:52-60. [DOI: 10.1007/s11626-017-0195-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022]
|
30
|
Huang JH, Ku WC, Chen YC, Chang YL, Chu CY. Dual mechanisms regulate the nucleocytoplasmic localization of human DDX6. Sci Rep 2017; 7:42853. [PMID: 28216671 PMCID: PMC5316971 DOI: 10.1038/srep42853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
DDX6 is a conserved DEAD-box protein (DBP) that plays central roles in cytoplasmic RNA regulation, including processing body (P-body) assembly, mRNA decapping, and translational repression. Beyond its cytoplasmic functions, DDX6 may also have nuclear functions because its orthologues are known to localize to nuclei in several biological contexts. However, it is unclear whether DDX6 is generally present in human cell nuclei, and the molecular mechanism underlying DDX6 subcellular distribution remains elusive. In this study, we showed that DDX6 is commonly present in the nuclei of human-derived cells. Our structural and molecular analyses deviate from the current model that the shuttling of DDX6 is directly mediated by the canonical nuclear localization signal (NLS) and nuclear export signal (NES), which are recognized and transported by Importin-α/β and CRM1, respectively. Instead, we show that DDX6 can be transported by 4E-T in a piggyback manner. Furthermore, we provide evidence for a novel nuclear targeting mechanism in which DDX6 enters the newly formed nuclei by "hitch-hiking" on mitotic chromosomes with its C-terminal domain during M phase progression. Together, our results indicate that the nucleocytoplasmic localization of DDX6 is regulated by these dual mechanisms.
Collapse
Affiliation(s)
- Jo-Hsi Huang
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Yen-Chun Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ling Chang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
31
|
Hypoxia and ER stress promote Staufen1 expression through an alternative translation mechanism. Biochem Biophys Res Commun 2016; 479:365-371. [PMID: 27644878 DOI: 10.1016/j.bbrc.2016.09.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022]
Abstract
Under physiological stress conditions the cell protects itself through a global blockade on cap-dependent translation of mRNA. This allows cap-independent mechanisms such as internal ribosome entry site (IRES)-mediated translation to take over and initiate the translation of a specific pool of mRNAs that encode proteins involved in protecting the cell from stress. Staufen 1 (Stau1) is an RNA-binding protein that has been previously implicated in the regulation of stress granule formation and therefore could play a key role in protecting the cell against stress stimuli such as oxidative and endoplasmic reticulum (ER) stress. We hypothesized that Stau1 mRNA could, like many stress response genes, contain an IRES in its 5'UTR. Here we describe that a bona fide IRES element is present in the 5'UTR of Stau1 mRNA, which is activated under hypoxic and ER stress conditions. Further, we show that the activity of PERK kinase, a major effector of the ER stress response, is required for Stau1 IRES-mediated translation during ER stress. These results suggest that Stau1 is a stress response gene that remains efficiently translated during hypoxia and ER stress despite the substantial global inhibition of cap-dependent protein translation, promoting cell recovery following stress.
Collapse
|
32
|
Liepelt A, Naarmann-de Vries IS, Simons N, Eichelbaum K, Föhr S, Archer SK, Castello A, Usadel B, Krijgsveld J, Preiss T, Marx G, Hentze MW, Ostareck DH, Ostareck-Lederer A. Identification of RNA-binding Proteins in Macrophages by Interactome Capture. Mol Cell Proteomics 2016; 15:2699-714. [PMID: 27281784 DOI: 10.1074/mcp.m115.056564] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
Pathogen components, such as lipopolysaccharides of Gram-negative bacteria that activate Toll-like receptor 4, induce mitogen activated protein kinases and NFκB through different downstream pathways to stimulate pro- and anti-inflammatory cytokine expression. Importantly, post-transcriptional control of the expression of Toll-like receptor 4 downstream signaling molecules contributes to the tight regulation of inflammatory cytokine synthesis in macrophages. Emerging evidence highlights the role of RNA-binding proteins (RBPs) in the post-transcriptional control of the innate immune response. To systematically identify macrophage RBPs and their response to LPS stimulation, we employed RNA interactome capture in LPS-induced and untreated murine RAW 264.7 macrophages. This combines RBP-crosslinking to RNA, cell lysis, oligo(dT) capture of polyadenylated RNAs and mass spectrometry analysis of associated proteins. Our data revealed 402 proteins of the macrophage RNA interactome including 91 previously not annotated as RBPs. A comparison with published RNA interactomes classified 32 RBPs uniquely identified in RAW 264.7 macrophages. Of these, 19 proteins are linked to biochemical activities not directly related to RNA. From this group, we validated the HSP90 cochaperone P23 that was demonstrated to exhibit cytosolic prostaglandin E2 synthase 3 (PTGES3) activity, and the hematopoietic cell-specific LYN substrate 1 (HCLS1 or HS1), a hematopoietic cell-specific adapter molecule, as novel macrophage RBPs. Our study expands the mammalian RBP repertoire, and identifies macrophage RBPs that respond to LPS. These RBPs are prime candidates for the post-transcriptional regulation and execution of LPS-induced signaling pathways and the innate immune response. Macrophage RBP data have been deposited to ProteomeXchange with identifier PXD002890.
Collapse
Affiliation(s)
- Anke Liepelt
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Isabel S Naarmann-de Vries
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Nadine Simons
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Katrin Eichelbaum
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Sophia Föhr
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Stuart K Archer
- ¶EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Garran Rd, Acton (Canberra) ACT 2601, Australia
| | - Alfredo Castello
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Björn Usadel
- ‖Institute of Biology I, RWTH Aachen, Worringer Weg 2, 52074 Aachen, Germany
| | - Jeroen Krijgsveld
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Thomas Preiss
- ¶EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Garran Rd, Acton (Canberra) ACT 2601, Australia; **Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia
| | - Gernot Marx
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Matthias W Hentze
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Dirk H Ostareck
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany;
| | - Antje Ostareck-Lederer
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany;
| |
Collapse
|
33
|
Philippe C, Dubrac A, Quelen C, Desquesnes A, Van Den Berghe L, Ségura C, Filleron T, Pyronnet S, Prats H, Brousset P, Touriol C. PERK mediates the IRES-dependent translational activation of mRNAs encoding angiogenic growth factors after ischemic stress. Sci Signal 2016; 9:ra44. [PMID: 27141928 DOI: 10.1126/scisignal.aaf2753] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiogenesis is induced by various conditions, including hypoxia. Although cap-dependent translation is globally inhibited during ischemia, the mRNAs encoding two important proangiogenic growth factors, vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2), are translated at early time points in ischemic muscle. The translation of these mRNAs can occur through internal ribosome entry sites (IRESs), rather than through cap-dependent translation. Hypoxic conditions also induce the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, leading us to assess the interplay between hypoxia, ER stress, and IRES-mediated translation of FGF-2 and VEGF We found that unlike cap-dependent translation, translation through FGF-2 and VEGF IRESs was efficient in cells and transgenic mice subjected to ER stress-inducing stimuli. We identified PERK, a kinase that is activated by ER stress, as the driver of VEGF and FGF-2 IRES-mediated translation in cells and in mice expressing IRES-driven reporter genes and exposed to hypoxic stress. These results demonstrate the role of IRES-dependent translation in the induction of the proangiogenic factors VEGF and FGF-2 in response to acute hypoxic stress. Furthermore, the PERK pathway could be a viable pharmacological target to improve physiological responses to ischemic situations.
Collapse
Affiliation(s)
- Céline Philippe
- INSERM, UMR 1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France. Université Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Alexandre Dubrac
- INSERM, UMR 1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France. Université Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Cathy Quelen
- INSERM, UMR 1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France. Université Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Aurore Desquesnes
- INSERM US006, CREFRE (Centre régional d'exploration fonctionnelle et de ressources expérimentales), F-31000 Toulouse, France
| | - Loic Van Den Berghe
- INSERM, UMR 1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France. Université Toulouse III Paul Sabatier, F-31000 Toulouse, France. Vectorology Platform, CRCT Technological Pole, F-31037 Toulouse, France
| | - Christèle Ségura
- INSERM, UMR 1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France. Université Toulouse III Paul Sabatier, F-31000 Toulouse, France. Vectorology Platform, CRCT Technological Pole, F-31037 Toulouse, France
| | - Thomas Filleron
- Clinical Trial Office, Department of Statistics, IUCT (Institut Universitaire du Cancer de Toulouse)-Oncopole, F-31100 Toulouse, France
| | - Stéphane Pyronnet
- INSERM, UMR 1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France. Université Toulouse III Paul Sabatier, F-31000 Toulouse, France. Laboratoire d'Excellence Toulouse Cancer (TOUCAN), F-31037 Toulouse, France
| | - Hervé Prats
- INSERM, UMR 1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France. Université Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Pierre Brousset
- INSERM, UMR 1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France. Université Toulouse III Paul Sabatier, F-31000 Toulouse, France. Laboratoire d'Excellence Toulouse Cancer (TOUCAN), F-31037 Toulouse, France. Department of Pathology, IUCT-Oncopole, F-31100 Toulouse, France
| | - Christian Touriol
- INSERM, UMR 1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France. Université Toulouse III Paul Sabatier, F-31000 Toulouse, France.
| |
Collapse
|
34
|
Naarmann-de Vries IS, Brendle A, Bähr-Ivacevic T, Benes V, Ostareck DH, Ostareck-Lederer A. Translational control mediated by hnRNP K links NMHC IIA to erythroid enucleation. J Cell Sci 2016; 129:1141-54. [PMID: 26823606 DOI: 10.1242/jcs.174995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional regulation is crucial for structural and functional alterations in erythropoiesis. Enucleation of erythroid progenitors precedes reticulocyte release into circulation. In enucleated cells, reticulocyte 15-lipoxygenase (r15-LOX, also known as ALOX15) initiates mitochondria degradation. Regulation of r15-LOX mRNA translation by hnRNP K determines timely r15-LOX synthesis in terminal maturation. K562 cells induced for erythroid maturation recapitulate enucleation and mitochondria degradation. HnRNP K depletion from maturing K562 cells results in enhanced enucleation, which even occurs independently of maturation. We performed RIP-Chip analysis to identify hnRNP K-interacting RNAs comprehensively. Non-muscle myosin heavy chain (NMHC) IIA (also known as MYH9) mRNA co-purified with hnRNP K from non-induced K562 cells, but not from mature cells. NMHC IIA protein increase in erythroid maturation at constant NMHC IIA mRNA levels indicates post-transcriptional regulation. We demonstrate that binding of hnRNP K KH domain 3 to a specific sequence element in the NMHC IIA mRNA 3'UTR mediates translation regulation in vitro Importantly, elevated NMHC IIA expression results in erythroid-maturation-independent enucleation as shown for hnRNP K depletion. Our data provide evidence that hnRNP-K-mediated regulation of NMHC IIA mRNA translation contributes to the control of enucleation in erythropoiesis.
Collapse
Affiliation(s)
- Isabel S Naarmann-de Vries
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Annika Brendle
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Tomi Bähr-Ivacevic
- Genomics Core Facility, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Dirk H Ostareck
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| |
Collapse
|
35
|
Bish R, Cuevas-Polo N, Cheng Z, Hambardzumyan D, Munschauer M, Landthaler M, Vogel C. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins. Biomolecules 2015; 5:1441-66. [PMID: 26184334 PMCID: PMC4598758 DOI: 10.3390/biom5031441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/15/2015] [Indexed: 12/24/2022] Open
Abstract
DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58) of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2) and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2). We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6's multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6's interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions-many of which are likely conserved across eukaryotes.
Collapse
Affiliation(s)
- Rebecca Bish
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Nerea Cuevas-Polo
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Zhe Cheng
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Dolores Hambardzumyan
- The Cleveland Clinic, Department of Neurosciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Mathias Munschauer
- RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany.
| | - Markus Landthaler
- RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany.
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
36
|
Valli A, Harris AL, Kessler BM. Hypoxia metabolism in ageing. Aging (Albany NY) 2015; 7:465-6. [PMID: 26187134 PMCID: PMC4543034 DOI: 10.18632/aging.100782] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Alessandro Valli
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adrian L Harris
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Staudacher JJ, Naarmann-de Vries IS, Ujvari SJ, Klinger B, Kasim M, Benko E, Ostareck-Lederer A, Ostareck DH, Bondke Persson A, Lorenzen S, Meier JC, Blüthgen N, Persson PB, Henrion-Caude A, Mrowka R, Fähling M. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum. Nucleic Acids Res 2015; 43:3219-36. [PMID: 25753659 PMCID: PMC4381074 DOI: 10.1093/nar/gkv167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/21/2015] [Indexed: 01/01/2023] Open
Abstract
Protein synthesis is a primary energy-consuming process in the cell. Therefore, under hypoxic conditions, rapid inhibition of global mRNA translation represents a major protective strategy to maintain energy metabolism. How some mRNAs, especially those that encode crucial survival factors, continue to be efficiently translated in hypoxia is not completely understood. By comparing specific transcript levels in ribonucleoprotein complexes, cytoplasmic polysomes and endoplasmic reticulum (ER)-bound ribosomes, we show that the synthesis of proteins encoded by hypoxia marker genes is favoured at the ER in hypoxia. Gene expression profiling revealed that transcripts particularly increased by the HIF-1 transcription factor network show hypoxia-induced enrichment at the ER. We found that mRNAs favourably translated at the ER have higher conservation scores for both the 5'- and 3'-untranslated regions (UTRs) and contain less upstream initiation codons (uAUGs), indicating the significance of these sequence elements for sustained mRNA translation under hypoxic conditions. Furthermore, we found enrichment of specific cis-elements in mRNA 5'- as well as 3'-UTRs that mediate transcript localization to the ER in hypoxia. We conclude that transcriptome partitioning between the cytoplasm and the ER permits selective mRNA translation under conditions of energy shortage.
Collapse
Affiliation(s)
- Jonas J Staudacher
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Isabel S Naarmann-de Vries
- University Hospital Aachen, RWTH Aachen University, Department of Intensive and Intermediate Care, Experimental Research Unit, D-52074 Aachen, Germany
| | - Stefanie J Ujvari
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Bertram Klinger
- Humboldt Universität zu Berlin, Institut für Theoretische Biologie, D-10115 Berlin, Germany Charité - Universitätsmedizin Berlin, Institut für Pathologie, D-10117 Berlin, Germany
| | - Mumtaz Kasim
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Edgar Benko
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Antje Ostareck-Lederer
- University Hospital Aachen, RWTH Aachen University, Department of Intensive and Intermediate Care, Experimental Research Unit, D-52074 Aachen, Germany
| | - Dirk H Ostareck
- University Hospital Aachen, RWTH Aachen University, Department of Intensive and Intermediate Care, Experimental Research Unit, D-52074 Aachen, Germany
| | - Anja Bondke Persson
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Stephan Lorenzen
- Universitätsklinikum Jena, Klinik für Innere Medizin III, AG Experimentelle Nephrologie, D-07743 Jena, Germany
| | - Jochen C Meier
- Max Delbrück Center for Molecular Medicine, RNA Editing and Hyperexcitability Disorders Helmholtz Group, D-13125 Berlin, Germany TU Braunschweig, Zoological Institute, Division of Cell Physiology, D-38106 Braunschweig, Germany
| | - Nils Blüthgen
- Humboldt Universität zu Berlin, Institut für Theoretische Biologie, D-10115 Berlin, Germany Charité - Universitätsmedizin Berlin, Institut für Pathologie, D-10117 Berlin, Germany
| | - Pontus B Persson
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Alexandra Henrion-Caude
- Hôpital Necker-Enfants Malades, Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1163 and Imagine Foundation, 75015 Paris, France
| | - Ralf Mrowka
- Universitätsklinikum Jena, Klinik für Innere Medizin III, AG Experimentelle Nephrologie, D-07743 Jena, Germany
| | - Michael Fähling
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
38
|
Yuan Y, Zhang Y, Yao S, Shi H, Huang X, Li Y, Wei Y, Lin S. The translation initiation factor eIF3i up-regulates vascular endothelial growth factor A, accelerates cell proliferation, and promotes angiogenesis in embryonic development and tumorigenesis. J Biol Chem 2014; 289:28310-23. [PMID: 25147179 DOI: 10.1074/jbc.m114.571356] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) is a critical proangiogenic factor that is activated by hypoxia at both the transcriptional and post-transcriptional levels. In hypoxia conditions, stabilized hypoxia-inducible factor 1α (HIF1A) is the key regulator for transcriptional activation of VEGFA. However, the post-transcriptional control of VEGFA expression remains poorly understood. Here, we report that the eukaryotic translation initiation factor 3i (eIF3i) is required for VEGFA protein expression in both normal embryonic and tumorigenic angiogenesis. eIF3i is dynamically expressed in the early stages of zebrafish embryogenesis and in human hepatocellular carcinoma tissues. eIF3i homozygous mutant zebrafish embryos show severe angiogenesis defects and human hepatocellular cancer cells with depletion of eIF3i to induce less angiogenesis in tumor models. Under hypoxia, the HIF1A protein can interact with its binding sequence in the eIF3i promoter and activate eIF3i transcription. The expression of VEGFA, which should rise in hypoxia, is significantly inhibited by eIF3i siRNA treatment. Moreover, eIF3i knockdown did not cause a general translation repression but specifically reduced the translation efficiency of the VEGFA mRNAs. Taken together, our results suggest that eIF3i is induced by HIF1A under hypoxia and controls normal and tumorigenic angiogenesis through regulating VEGFA protein translation.
Collapse
Affiliation(s)
- Yike Yuan
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shaohua Yao
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China,
| | - Huashan Shi
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China, the Department of Head and Neck Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xi Huang
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuhao Li
- the Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China, and
| | - Yuquan Wei
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuo Lin
- From the State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China, the Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California 90095-1606
| |
Collapse
|
39
|
Liepelt A, Mossanen JC, Denecke B, Heymann F, De Santis R, Tacke F, Marx G, Ostareck DH, Ostareck-Lederer A. Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation. RNA (NEW YORK, N.Y.) 2014; 20:899-911. [PMID: 24751651 PMCID: PMC4024643 DOI: 10.1261/rna.042788.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/14/2014] [Indexed: 05/22/2023]
Abstract
Macrophage activation by bacterial lipopolysaccharides (LPS) is induced through Toll-like receptor 4 (TLR4). The synthesis and activity of TLR4 downstream signaling molecules modulates the expression of pro- and anti-inflammatory cytokines. To address the impact of post-transcriptional regulation on that process, we performed RIP-Chip analysis. Differential association of mRNAs with heterogeneous nuclear ribonucleoprotein K (hnRNP K), an mRNA-specific translational regulator in differentiating hematopoietic cells, was studied in noninduced and LPS-activated macrophages. Analysis of interactions affected by LPS revealed several mRNAs encoding TLR4 downstream kinases and their modulators. We focused on transforming growth factor-β-activated kinase 1 (TAK1) a central player in TLR4 signaling. HnRNP K interacts specifically with a sequence in the TAK1 mRNA 3' UTR in vitro. Silencing of hnRNP K does not affect TAK1 mRNA synthesis or stability but enhances TAK1 mRNA translation, resulting in elevated TNF-α, IL-1β, and IL-10 mRNA expression. Our data suggest that the hnRNP K-3' UTR complex inhibits TAK1 mRNA translation in noninduced macrophages. LPS-dependent TLR4 activation abrogates translational repression and newly synthesized TAK1 boosts macrophage inflammatory response.
Collapse
Affiliation(s)
- Anke Liepelt
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Jana C. Mossanen
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Bernd Denecke
- Chip Facility, IZKF Aachen, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Felix Heymann
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Rebecca De Santis
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Dirk H. Ostareck
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Corresponding authorsE-mail E-mail
| | - Antje Ostareck-Lederer
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Corresponding authorsE-mail E-mail
| |
Collapse
|
40
|
Human DExD/H RNA helicases: emerging roles in stress survival regulation. Clin Chim Acta 2014; 436:45-58. [PMID: 24835919 DOI: 10.1016/j.cca.2014.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
Environmental stresses threatening cell homeostasis trigger various cellular responses ranging from the activation of survival pathways to eliciting programmed cell death. Cellular stress response highly depends on the nature and level of the insult as well as the cell type. Notably, the interplay among all these responses will ultimately determine the fate of the stressed cell. Human DExD/H RNA helicases are ubiquitous molecular motors rearranging RNA secondary structure in an ATP-dependent fashion. These highly conserved enzymes participate in nearly all aspects of cellular process involving RNA metabolism. Although numerous functions of DExD/H RNA helicases are well documented, their importance in stress response is only just becoming evident. This review outlines our current knowledge on major mechanistic themes of human DExD/H RNA helicases in response to stressful stimuli, especially on emerging molecular models for the functional roles of these enzymes in the stress survival regulation.
Collapse
|
41
|
Ostareck DH, Naarmann-de Vries IS, Ostareck-Lederer A. DDX6 and its orthologs as modulators of cellular and viral RNA expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:659-78. [PMID: 24788243 DOI: 10.1002/wrna.1237] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 12/21/2022]
Abstract
DDX6 (Rck/p54), a member of the DEAD-box family of helicases, is highly conserved from unicellular eukaryotes to vertebrates. Functions of DDX6 and its orthologs in dynamic ribonucleoproteins contribute to global and transcript-specific messenger RNA (mRNA) storage, translational repression, and decay during development and differentiation in the germline and somatic cells. Its role in pathways that promote mRNA-specific alternative translation initiation has been shown to be linked to cellular homeostasis, deregulated tissue development, and the control of gene expression in RNA viruses. Recently, DDX6 was found to participate in mRNA regulation mediated by miRNA-mediated silencing. DDX6 and its orthologs have versatile functions in mRNA metabolism, which characterize them as important post-transcriptional regulators of gene expression.
Collapse
Affiliation(s)
- Dirk H Ostareck
- Experimental Research Unit, Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
42
|
Mayes M, Bossini-Castillo L, Gorlova O, Martin J, Zhou X, Chen W, Assassi S, Ying J, Tan F, Arnett F, Reveille J, Guerra S, Teruel M, Carmona F, Gregersen P, Lee A, López-Isac E, Ochoa E, Carreira P, Simeón C, Castellví I, González-Gay M, Zhernakova A, Padyukov L, Alarcón-Riquelme M, Wijmenga C, Brown M, Beretta L, Riemekasten G, Witte T, Hunzelmann N, Kreuter A, Distler JH, Voskuyl AE, Schuerwegh AJ, Hesselstrand R, Nordin A, Airó P, Lunardi C, Shiels P, van Laar JM, Herrick A, Worthington J, Denton C, Wigley FM, Hummers LK, Varga J, Hinchcliff ME, Baron M, Hudson M, Pope JE, Furst DE, Khanna D, Phillips K, Schiopu E, Segal BM, Molitor JA, Silver RM, Steen VD, Simms RW, Lafyatis RA, Fessler BJ, Frech TM, AlKassab F, Docherty P, Kaminska E, Khalidi N, Jones HN, Markland J, Robinson D, Broen J, Radstake TR, Fonseca C, Koeleman BP, Martin J, Ortego-Centeno N, Ríos R, Callejas J, Navarrete N, García Portales R, Camps M, Fernández-Nebro A, González-Escribano M, Sánchez-Román J, García-Hernández F, Castillo M, Aguirre M, Gómez-Gracia I, Fernández-Gutiérrez B, Rodríguez-Rodríguez L, Vicente E, Andreu J, Fernández de Castro M, García de la Peña P, López-Longo F, Martínez L, Fonollosa V, Espinosa G, Tolosa C, Pros A, et alMayes M, Bossini-Castillo L, Gorlova O, Martin J, Zhou X, Chen W, Assassi S, Ying J, Tan F, Arnett F, Reveille J, Guerra S, Teruel M, Carmona F, Gregersen P, Lee A, López-Isac E, Ochoa E, Carreira P, Simeón C, Castellví I, González-Gay M, Zhernakova A, Padyukov L, Alarcón-Riquelme M, Wijmenga C, Brown M, Beretta L, Riemekasten G, Witte T, Hunzelmann N, Kreuter A, Distler JH, Voskuyl AE, Schuerwegh AJ, Hesselstrand R, Nordin A, Airó P, Lunardi C, Shiels P, van Laar JM, Herrick A, Worthington J, Denton C, Wigley FM, Hummers LK, Varga J, Hinchcliff ME, Baron M, Hudson M, Pope JE, Furst DE, Khanna D, Phillips K, Schiopu E, Segal BM, Molitor JA, Silver RM, Steen VD, Simms RW, Lafyatis RA, Fessler BJ, Frech TM, AlKassab F, Docherty P, Kaminska E, Khalidi N, Jones HN, Markland J, Robinson D, Broen J, Radstake TR, Fonseca C, Koeleman BP, Martin J, Ortego-Centeno N, Ríos R, Callejas J, Navarrete N, García Portales R, Camps M, Fernández-Nebro A, González-Escribano M, Sánchez-Román J, García-Hernández F, Castillo M, Aguirre M, Gómez-Gracia I, Fernández-Gutiérrez B, Rodríguez-Rodríguez L, Vicente E, Andreu J, Fernández de Castro M, García de la Peña P, López-Longo F, Martínez L, Fonollosa V, Espinosa G, Tolosa C, Pros A, Rodríguez Carballeira M, Narváez F, Rubio Rivas M, Ortiz Santamaría V, Díaz B, Trapiella L, Freire M, Sousa A, Egurbide M, Fanlo Mateo P, Sáez-Comet L, Díaz F, Hernández V, Beltrán E, Román-Ivorra J, Grau E, Alegre Sancho J, Blanco García F, Oreiro N, Fernández Sueiro L. Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am J Hum Genet 2014; 94:47-61. [PMID: 24387989 DOI: 10.1016/j.ajhg.2013.12.002] [Show More Authors] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022] Open
Abstract
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.
Collapse
|
43
|
Martínez-Salas E, Lozano G, Fernandez-Chamorro J, Francisco-Velilla R, Galan A, Diaz R. RNA-binding proteins impacting on internal initiation of translation. Int J Mol Sci 2013; 14:21705-26. [PMID: 24189219 PMCID: PMC3856030 DOI: 10.3390/ijms141121705] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 12/20/2022] Open
Abstract
RNA-binding proteins (RBPs) are pivotal regulators of all the steps of gene expression. RBPs govern gene regulation at the post-transcriptional level by virtue of their capacity to assemble ribonucleoprotein complexes on certain RNA structural elements, both in normal cells and in response to various environmental stresses. A rapid cellular response to stress conditions is triggered at the step of translation initiation. Two basic mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism that operates in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism activated under conditions that compromise the general translation pathway. IRES elements are cis-acting RNA sequences that recruit the translation machinery using a cap-independent mechanism often assisted by a subset of translation initiation factors and various RBPs. IRES-dependent initiation appears to use different strategies to recruit the translation machinery depending on the RNA organization of the region and the network of RBPs interacting with the element. In this review we discuss recent advances in understanding the implications of RBPs on IRES-dependent translation initiation.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | | | |
Collapse
|
44
|
Arcondéguy T, Lacazette E, Millevoi S, Prats H, Touriol C. VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res 2013; 41:7997-8010. [PMID: 23851566 PMCID: PMC3783158 DOI: 10.1093/nar/gkt539] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular Endothelial Growth Factor A (VEGF-A) is a potent secreted mitogen crucial for physiological and pathological angiogenesis. Post-transcriptional regulation of VEGF-A occurs at multiple levels. Firstly, alternative splicing gives rise to different transcript variants encoding diverse isoforms that exhibit distinct biological properties with regard to receptor binding and extra-cellular localization. Secondly, VEGF-A mRNA stability is regulated by effectors such as hypoxia or growth factors through the binding of stabilizing and destabilizing proteins at AU-rich elements located in the 3′-untranslated region. Thirdly, translation of VEGF-A mRNA is a controlled process involving alternative initiation codons, internal ribosome entry sites (IRESs), an upstream open reading frame (uORF), miRNA targeting and a riboswitch in the 3′ untranslated region. These different levels of regulation cooperate for the crucial fine-tuning of the expression of VEGF-A variants. This review will be focused on our current knowledge of the complex post-transcriptional regulatory switches that modulate the cellular VEGF-A level, a paradigmatic model of post-transcriptional regulation.
Collapse
Affiliation(s)
- Tania Arcondéguy
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse Cedex 4, France and Université Toulouse III Paul-Sabatier, 118 Route de Narbonne, 31400 Toulouse, France
| | | | | | | | | |
Collapse
|
45
|
Robert F, Pelletier J. Perturbations of RNA helicases in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:333-49. [PMID: 23658027 DOI: 10.1002/wrna.1163] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helicases are implicated in most stages of the gene expression pathway, ranging from DNA replication, RNA transcription, splicing, RNA transport, ribosome biogenesis, mRNA translation, RNA storage and decay. These enzymes utilize energy derived from nucleotide triphosphate hydrolysis to remodel ribonucleoprotein complexes, RNA, or DNA and in this manner affect the information content or output of RNA. Several RNA helicases have been implicated in the oncogenic process--either through altered expression levels, mutations, or due to their role in pathways required for tumor initiation, progression, maintenance, or chemosensitivity. The purpose of this review is to highlight those RNA helicases for which there is significant evidence implicating them in cancer biology.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|