1
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
2
|
Sun X, Moreno Caceres S, Yegambaram M, Lu Q, Pokharel MD, Boehme JT, Datar SA, Aggarwal S, Wang T, Fineman JR, Black SM. The mitochondrial redistribution of ENOS is regulated by AKT1 and dimer status. Nitric Oxide 2024; 152:90-100. [PMID: 39332480 PMCID: PMC12068231 DOI: 10.1016/j.niox.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Previously, we have shown that endothelial nitric-oxide synthase (eNOS) dimer levels directly correlate with the interaction of eNOS with hsp90 (heat shock protein 90). Further, the disruption of eNOS dimerization correlates with its redistribution to the mitochondria. However, the causal link between these events has yet to be investigated and was the focus of this study. Our data demonstrates that simvastatin, which decreases the mitochondrial redistribution of eNOS, increased eNOS-hsp90 interactions and enhanced eNOS dimerization in cultured pulmonary arterial endothelial cells (PAEC) from a lamb model of pulmonary hypertension (PH). Our data also show that the dimerization of a monomeric fraction of human recombinant eNOS was stimulated in the presence of hsp90 and ATP. The over-expression of a dominant negative mutant of hsp90 (DNHsp90) decreased eNOS dimer levels and enhanced its mitochondrial redistribution. We also found that the peroxynitrite donor3-morpholinosydnonimine (SIN-1) increased the mitochondrial redistribution of eNOS in PAEC and this was again associated with decreased eNOS dimer levels. Our data also show in COS-7 cells, the SIN-1 mediated mitochondrial redistribution of wildtype eNOS (WT-eNOS) is significantly higher than a dimer stable eNOS mutant protein (C94R/C99R-eNOS). Conversely, the mitochondrial redistribution of a monomeric eNOS mutant protein (C96A-eNOS) was enhanced. Finally, we linked the SIN-1-mediated mitochondrial redistribution of eNOS to the Akt1-mediated phosphorylation of eNOS at Serine(S)617 and showed that the accessibility of this residue to phosphorylation is regulated by dimerization status. Thus, our data reveal a novel mechanism of pulmonary endothelial dysfunction mediated by mitochondrial redistribution of eNOS, regulated by dimerization status and the phosphorylation of S617.
Collapse
Affiliation(s)
- Xutong Sun
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Santiago Moreno Caceres
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Manivannan Yegambaram
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Marissa D Pokharel
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA
| | - Jason T Boehme
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sanjeev A Datar
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Jeffrey R Fineman
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; The Department of Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
3
|
Boehme JT, Sun X, Lu Q, Barton J, Wu X, Gong W, Raff GW, Datar SA, Wang T, Fineman JR, Black SM. Simvastatin restores pulmonary endothelial function in the setting of pulmonary over-circulation. Nitric Oxide 2024; 142:58-68. [PMID: 38061411 PMCID: PMC11045265 DOI: 10.1016/j.niox.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
Statin therapy is a cornerstone in the treatment of systemic vascular diseases. However, statins have failed to translate as therapeutics for pulmonary vascular disease. Early pulmonary vascular disease in the setting of congenital heart disease (CHD) is characterized by endothelial dysfunction, which precedes the more advanced stages of vascular remodeling. These features make CHD an ideal cohort in which to re-evaluate the potential pulmonary vascular benefits of statins, with a focus on endothelial biology. However, it is critical that the full gamut of the pleiotropic effects of statins in the endothelium are uncovered. The purpose of this investigation was to evaluate the therapeutic potential of simvastatin for children with CHD and pulmonary over-circulation, and examine mechanisms of simvastatin action on the endothelium. Our data demonstrate that daily simvastatin treatment preserves endothelial function in our shunt lamb model of pulmonary over-circulation. Further, using pulmonary arterial endothelial cells (PAECs) isolated from Shunt and control lambs, we identified a new mechanism of statin action mediated by increased expression of the endogenous Akt1 inhibitor, C-terminal modifying protein (CTMP). Increases in CTMP were able to decrease the Akt1-mediated mitochondrial redistribution of endothelial nitric oxide synthase (eNOS) which correlated with increased enzymatic coupling, identified by increases in NO generation and decreases in NOS-derived superoxide. Together our data identify a new mechanism by which simvastatin enhances NO signaling in the pulmonary endothelium and identify CTMP as a potential therapeutic target to prevent the endothelial dysfunction that occurs in children born with CHD resulting in pulmonary over-circulation.
Collapse
Affiliation(s)
- Jason T Boehme
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jubilee Barton
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, 85719, USA
| | - Wenhui Gong
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Gary W Raff
- Department of Surgery, University of California Davis, Davis, CA, 95817, USA
| | - Sanjeev A Datar
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
4
|
Wang K, Khoramjoo M, Srinivasan K, Gordon PMK, Mandal R, Jackson D, Sligl W, Grant MB, Penninger JM, Borchers CH, Wishart DS, Prasad V, Oudit GY. Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID. Cell Rep Med 2023; 4:101254. [PMID: 37890487 PMCID: PMC10694626 DOI: 10.1016/j.xcrm.2023.101254] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
The post-acute sequelae of COVID-19 (PASC), also known as long COVID, is often associated with debilitating symptoms and adverse multisystem consequences. We obtain plasma samples from 117 individuals during and 6 months following their acute phase of infection to comprehensively profile and assess changes in cytokines, proteome, and metabolome. Network analysis reveals sustained inflammatory response, platelet degranulation, and cellular activation during convalescence accompanied by dysregulation in arginine biosynthesis, methionine metabolism, taurine metabolism, and tricarboxylic acid (TCA) cycle processes. Furthermore, we develop a prognostic model composed of 20 molecules involved in regulating T cell exhaustion and energy metabolism that can reliably predict adverse clinical outcomes following discharge from acute infection with 83% accuracy and an area under the curve (AUC) of 0.96. Our study reveals pertinent biological processes during convalescence that differ from acute infection, and it supports the development of specific therapies and biomarkers for patients suffering from long COVID.
Collapse
Affiliation(s)
- Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mobin Khoramjoo
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Karthik Srinivasan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Paul M K Gordon
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rupasri Mandal
- The Metabolomics Innovation Center, University of Alberta, Edmonton, AB, Canada
| | - Dana Jackson
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Josef M Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - David S Wishart
- The Metabolomics Innovation Center, University of Alberta, Edmonton, AB, Canada
| | - Vinay Prasad
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Yegambaram M, Kumar S, Wu X, Lu Q, Sun X, Garcia Flores A, Meadows ML, Barman S, Fulton D, Wang T, Fineman JR, Black SM. Endothelin-1 acutely increases nitric oxide production via the calcineurin mediated dephosphorylation of Caveolin-1. Nitric Oxide 2023; 140-141:50-57. [PMID: 37659679 DOI: 10.1016/j.niox.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Endothelin (ET)-1 is an endothelial-derived peptide that exerts biphasic effects on nitric oxide (NO) levels in endothelial cells such that acute exposure stimulates-while sustained exposure attenuates-NO production. Although the mechanism involved in the decrease in NO generation has been identified but the signaling involved in the acute increase in NO is still unresolved. This was the focus of this study. Our data indicate that exposing pulmonary arterial endothelial cells (PAEC) to ET-1 led to an increase in NO for up to 30min after which levels declined. These effects were attenuated by ET receptor antagonists. The increase in NO correlated with significant increases in pp60Src activity and increases in eNOS phosphorylation at Tyr83 and Ser1177. The ET-1 mediated increase in phosphorylation and NO generation were attenuated by the over-expression of a pp60Src dominant negative mutant. The increase in pp60Src activity correlated with a reduction in the interaction of Caveolin-1 with pp60Src and the calcineurin-mediated dephosphorylation of caveolin-1 at three previously unidentified sites: Thr91, Thr93, and Thr95. The calcineurin inhibitor, Tacrolimus, attenuated the acute increase in pp60Src activity induced by ET-1 and a calcineurin siRNA attenuated the ET-1 mediated increase in eNOS phosphorylation at Tyr83 and Ser1177 as well as the increase in NO. By using a Caveolin-1 celluSpot peptide array, we identified a peptide targeting a sequence located between aa 41-56 as the pp60Src binding region. This peptide fused to the TAT sequence was found to decrease caveolin-pp60Src interaction, increased pp60Src activity, increased eNOS pSer1177 and NO levels in PAEC and induce vasodilation in isolated aortic rings in wildtype but not eNOS knockout mice. Together, our data identify a novel mechanism by which ET-1 acutely increases NO via a calcineurin-mediated dephosphorylation of caveolin-1 and the subsequent stimulation of pp60Src activity, leading to increases in phosphorylation of eNOS at Tyr83 and Ser1177.
Collapse
Affiliation(s)
- Manivannan Yegambaram
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Sanjiv Kumar
- Department of Medicine, Augusta University, Augusta, GA, USA; Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona, Tucson, AZ, 33174, USA
| | - Qing Lu
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Xutong Sun
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Alejandro Garcia Flores
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | | | - Scott Barman
- Department of Pharmacology, Augusta University, Augusta, GA, USA
| | - David Fulton
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Pharmacology, Augusta University, Augusta, GA, USA
| | - Ting Wang
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen M Black
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
6
|
Wang H, Sun X, Lu Q, Zemskov EA, Yegambaram M, Wu X, Wang T, Tang H, Black SM. The mitochondrial redistribution of eNOS is involved in lipopolysaccharide induced inflammasome activation during acute lung injury. Redox Biol 2021; 41:101878. [PMID: 33578126 PMCID: PMC7879038 DOI: 10.1016/j.redox.2021.101878] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 01/03/2023] Open
Abstract
Acute lung injury (ALI) is a devastating clinical syndrome with no effective therapies. Inflammasome activation has been reported to play a critical role in the initiation and progression of ALI. The molecular mechanisms involved in regulating the activation of inflammasome in ALI remains unresolved, although increases in mitochondrial derived reactive oxygen species (mito-ROS) are involved. Our previous work has shown that the mitochondrial redistribution of uncoupled eNOS impairs mitochondrial bioenergetics and increases mito-ROS generation. Thus, the focus of our study was to determine if lipopolysaccharide (LPS)-mediated inflammasome activation involves the mitochondrial redistribution of uncoupled eNOS. Our data show that the increase in mito-ROS involved in LPS-mediated inflammasome activation is associated with the disruption of mitochondrial bioenergetics in human lung microvascular endothelial cells (HLMVEC) and the mitochondrial redistribution of eNOS. These effects are dependent on RhoA-ROCK signaling and are mediated via increased phosphorylation of eNOS at Threonine (T)-495. A derivative of the mitochondrial targeted Szeto-Schiller peptide (SSP) attached to the antioxidant Tiron (T-SSP), significantly attenuated LPS-mediated mito-ROS generation and inflammasome activation in HLMVEC. Further, T-SSP attenuated mitochondrial superoxide production in a mouse model of sepsis induced ALI. This in turn significantly reduced the inflammatory response and attenuated lung injury. Thus, our findings show that the mitochondrial redistribution of uncoupled eNOS is intimately involved in the activation of the inflammatory response in ALI and implicate attenuating mito-ROS as a therapeutic strategy in humans.
Collapse
Affiliation(s)
- Hui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Xutong Sun
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Manivannan Yegambaram
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Xiaomin Wu
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA.
| | - Stephen M Black
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
7
|
Lu Q, Zemskov EA, Sun X, Wang H, Yegambaram M, Wu X, Garcia-Flores A, Song S, Tang H, Kangath A, Cabanillas GZ, Yuan JXJ, Wang T, Fineman JR, Black SM. Activation of the mechanosensitive Ca 2+ channel TRPV4 induces endothelial barrier permeability via the disruption of mitochondrial bioenergetics. Redox Biol 2021; 38:101785. [PMID: 33221570 PMCID: PMC7691184 DOI: 10.1016/j.redox.2020.101785] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/20/2022] Open
Abstract
Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS), a refractory lung disease with an unacceptable high mortality rate. Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The specific mechanisms involved in VILI-induced pulmonary capillary leakage, a key pathologic feature of VILI are still far from resolved. The mechanoreceptor, transient receptor potential cation channel subfamily V member 4, TRPV4 plays a key role in the development of VILI through unresolved mechanism. Endothelial nitric oxide synthase (eNOS) uncoupling plays an important role in sepsis-mediated ARDS so in this study we investigated whether there is a role for eNOS uncoupling in the barrier disruption associated with TRPV4 activation during VILI. Our data indicate that the TRPV4 agonist, 4α-Phorbol 12,13-didecanoate (4αPDD) induces pulmonary arterial endothelial cell (EC) barrier disruption through the disruption of mitochondrial bioenergetics. Mechanistically, this occurs via the mitochondrial redistribution of uncoupled eNOS secondary to a PKC-dependent phosphorylation of eNOS at Threonine 495 (T495). A specific decoy peptide to prevent T495 phosphorylation reduced eNOS uncoupling and mitochondrial redistribution and preserved PAEC barrier function under 4αPDD challenge. Further, our eNOS decoy peptide was able to preserve lung vascular integrity in a mouse model of VILI. Thus, we have revealed a functional link between TRPV4 activation, PKC-dependent eNOS phosphorylation at T495, and EC barrier permeability. Reducing pT495-eNOS could be a new therapeutic approach for the prevention of VILI.
Collapse
Affiliation(s)
- Qing Lu
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Xutong Sun
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Hui Wang
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Manivannan Yegambaram
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Xiaomin Wu
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Alejandro Garcia-Flores
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Shanshan Song
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Haiyang Tang
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Archana Kangath
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Gabriela Zubiate Cabanillas
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA; Department of Chemist-Biological Sciences, Universidad de Sonora, Hermosillo, SON, Mexico
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Stephen M Black
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Sun X, Lu Q, Yegambaram M, Kumar S, Qu N, Srivastava A, Wang T, Fineman JR, Black SM. TGF-β1 attenuates mitochondrial bioenergetics in pulmonary arterial endothelial cells via the disruption of carnitine homeostasis. Redox Biol 2020; 36:101593. [PMID: 32554303 PMCID: PMC7303661 DOI: 10.1016/j.redox.2020.101593] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor beta-1 (TGF-β1) signaling is increased and mitochondrial function is decreased in multiple models of pulmonary hypertension (PH) including lambs with increased pulmonary blood flow (PBF) and pressure (Shunt). However, the potential link between TGF-β1 and the loss of mitochondrial function has not been investigated and was the focus of our investigations. Our data indicate that exposure of pulmonary arterial endothelial cells (PAEC) to TGF-β1 disrupted mitochondrial function as determined by enhanced mitochondrial ROS generation, decreased mitochondrial membrane potential, and disrupted mitochondrial bioenergetics. These events resulted in a decrease in cellular ATP levels, decreased hsp90/eNOS interactions and attenuated shear-mediated NO release. TGF-β1 induced mitochondrial dysfunction was linked to a nitration-mediated activation of Akt1 and the subsequent mitochondrial translocation of endothelial NO synthase (eNOS) resulting in the nitration of carnitine acetyl transferase (CrAT) and the disruption of carnitine homeostasis. The increase in Akt1 nitration correlated with increased NADPH oxidase activity associated with increased levels of p47phox, p67phox, and Rac1. The increase in NADPH oxidase was associated with a decrease in peroxisome proliferator-activated receptor type gamma (PPARγ) and the PPARγ antagonist, GW9662, was able to mimic the disruptive effect of TGF-β1 on mitochondrial bioenergetics. Together, our studies reveal for the first time, that TGF-β1 can disrupt mitochondrial function through the disruption of cellular carnitine homeostasis and suggest that stimulating carinitine homeostasis may be an avenue to treat pulmonary vascular disease.
Collapse
Affiliation(s)
- Xutong Sun
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Qing Lu
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Manivannan Yegambaram
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Sanjiv Kumar
- Center for Blood Disorders, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ning Qu
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Anup Srivastava
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Ting Wang
- Department of Internal Medicine University of Arizona, Phoenix, AZ, 85004, The Department of Pediatrics and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jeffrey R Fineman
- Department of Internal Medicine University of Arizona, Phoenix, AZ, 85004, The Department of Pediatrics and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
9
|
Antioxidant-Conjugated Peptide Attenuated Metabolic Reprogramming in Pulmonary Hypertension. Antioxidants (Basel) 2020; 9:antiox9020104. [PMID: 31991719 PMCID: PMC7071131 DOI: 10.3390/antiox9020104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic cardiopulmonary disorder instigated by pulmonary vascular cell proliferation. Activation of Akt was previously reported to promote vascular remodeling. Also, the irreversible nitration of Y350 residue in Akt results in its activation. NitroAkt was increased in PAH patients and the SU5416/Hypoxia (SU/Hx) PAH model. This study investigated whether the prevention of Akt nitration in PAH by Akt targeted nitroxide-conjugated peptide (NP) could reverse vascular remodeling and metabolic reprogramming. Treatment of the SU/Hx model with NP significantly decreased nitration of Akt in lungs, attenuated right ventricle (RV) hypertrophy, and reduced RV systolic pressure. In the PAH model, Akt-nitration induces glycolysis by activation of the glucose transporter Glut4 and lactate dehydrogenase-A (LDHA). Decreased G6PD and increased GSK3β in SU/Hx additionally shunted intracellular glucose via glycolysis. The increased glycolytic rate upregulated anaplerosis due to activation of pyruvate carboxylase in a nitroAkt-dependent manner. NP treatment resolved glycolytic switch and activated collateral pentose phosphate and glycogenesis pathways. Prevention of Akt-nitration significantly controlled pyruvate in oxidative phosphorylation by decreasing lactate and increasing pyruvate dehydrogenases activities. Histopathological studies showed significantly reduced pulmonary vascular proliferation. Based on our current observation, preventing Akt-nitration by using an Akt-targeted nitroxide-conjugated peptide could be a useful treatment option for controlling vascular proliferation in PAH.
Collapse
|
10
|
Rafikova O, Al Ghouleh I, Rafikov R. Focus on Early Events: Pathogenesis of Pulmonary Arterial Hypertension Development. Antioxid Redox Signal 2019; 31:933-953. [PMID: 31169021 PMCID: PMC6765063 DOI: 10.1089/ars.2018.7673] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Significance: Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature characterized by the proliferation of all vascular wall cell types, including endothelial, smooth muscle, and fibroblasts. The disease rapidly advances into a form with extensive pulmonary vascular remodeling, leading to a rapid increase in pulmonary vascular resistance, which results in right heart failure. Recent Advances: Most current research in the PAH field has been focused on the late stage of the disease, largely due to an urgent need for patient treatment options in clinics. Further, the pathobiology of PAH is multifaceted in the advanced disease, and there has been promising recent progress in identifying various pathological pathways related to the late clinical picture. Critical Issues: Early stage PAH still requires additional attention from the scientific community, and although the survival of patients with early diagnosis is comparatively higher, the disease develops in patients asymptomatically, making it difficult to identify and treat early. Future Directions: There are several reasons to focus on the early stage of PAH. First, the complexity of late stage disease, owing to multiple pathways being activated in a complex system with intra- and intercellular signaling, leads to an unclear picture of the key contributors to the pathobiology. Second, an understanding of early pathophysiological events can increase the ability to identify PAH patients earlier than what is currently possible. Third, the prompt diagnosis of PAH would allow for the therapy to start earlier, which has proved to be a more successful strategy, and it ensures better survival in PAH patients.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Imad Al Ghouleh
- Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
11
|
Zemskov EA, Lu Q, Ornatowski W, Klinger CN, Desai AA, Maltepe E, Yuan JXJ, Wang T, Fineman JR, Black SM. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid Redox Signal 2019; 31:819-842. [PMID: 30623676 PMCID: PMC6751394 DOI: 10.1089/ars.2018.7720] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christina N Klinger
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, Arizona
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
12
|
Role of Gender in Regulation of Redox Homeostasis in Pulmonary Arterial Hypertension. Antioxidants (Basel) 2019; 8:antiox8050135. [PMID: 31100969 PMCID: PMC6562572 DOI: 10.3390/antiox8050135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is one of the diseases with a well-established gender dimorphism. The prevalence of PAH is increased in females with a ratio of 4:1, while poor survival prognosis is associated with the male gender. Nevertheless, the specific contribution of gender in disease development and progression is unclear due to the complex nature of the PAH. Oxidative and nitrosative stresses are important contributors in PAH pathogenesis; however, the role of gender in redox homeostasis has been understudied. This review is aimed to overview the possible sex-specific mechanisms responsible for the regulation of the balance between oxidants and antioxidants in relation to PAH pathobiology.
Collapse
|
13
|
Rafikov R, McBride ML, Zemskova M, Kurdyukov S, McClain N, Niihori M, Langlais PR, Rafikova O. Inositol monophosphatase 1 as a novel interacting partner of RAGE in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2019; 316:L428-L444. [PMID: 30604625 DOI: 10.1152/ajplung.00393.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by progressive pulmonary vascular remodeling. The receptor for advanced glycation end products (RAGE) plays an important role in PAH by promoting proliferation of pulmonary vascular cells. RAGE is also known to mediate activation of Akt signaling, although the particular molecular mechanism remains unknown. This study aimed to identify the interacting partner of RAGE that could facilitate RAGE-mediated Akt activation and vascular remodeling in PAH. The progressive angioproliferative PAH was induced in 24 female Sprague-Dawley rats ( n = 8/group) that were randomly assigned to develop PAH for 1, 2, or 5 wk [right ventricle systolic pressure (RVSP) 56.5 ± 3.2, 63.6 ± 1.6, and 111.1 ± 4.5 mmHg, respectively, vs. 22.9 ± 1.1 mmHg in controls]. PAH triggered early and late episodes of apoptosis in rat lungs accompanied by RAGE activation. Mass spectrometry analysis has identified IMPA1 as a novel PAH-specific interacting partner of RAGE. The proximity ligation assay (PLA) confirmed the formation of RAGE/IMPA1 complex in the pulmonary artery wall. Activation of IMPA1 in response to increased glucose 6-phosphate (G6P) is known to play a critical role in inositol synthesis and recycling. Indeed, we confirmed a threefold increase in G6P ( P = 0.0005) levels in lungs of PAH rats starting from week 1 that correlated with accumulation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), membrane translocation of PI3K, and a threefold increase in membrane Akt levels ( P = 0.02) and Akt phosphorylation. We conclude that the formation of the newly discovered RAGE-IMPA1 complex could be responsible for the stimulation of inositol pathways and activation of Akt signaling in PAH.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Matthew L McBride
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Marina Zemskova
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Sergey Kurdyukov
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Nolan McClain
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Maki Niihori
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
14
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 340] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Recurrent inhibition of mitochondrial complex III induces chronic pulmonary vasoconstriction and glycolytic switch in the rat lung. Respir Res 2018; 19:69. [PMID: 29685148 PMCID: PMC5914012 DOI: 10.1186/s12931-018-0776-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/12/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease; however, the mechanisms directly involved in triggering and the progression of PAH are not clear. Based on previous studies that demonstrated a possible role of mitochondrial dysfunction in the pathogenesis of PAH, we investigated the effects of chronic inhibition of mitochondrial function in vivo in healthy rodents. METHODS Right ventricle systolic pressure (RVSP) was measured in female rats at baseline and up to 24 days after inhibition of mitochondrial respiratory Complex III, induced by Antimycin A (AA, 0.35 mg/kg, given three times starting at baseline and then days 3 and 6 as a bolus injection into the right atrial chamber). RESULTS Rodents exposed to AA demonstrated sustained increases in RVSP from days 6 through 24. AA-exposed rodents also possessed a progressive increase in RV end-diastolic pressure but not RV hypertrophy, which may be attributed to either early stages of PAH development or to reduced RV contractility due to inhibition of myocardial respiration. Protein nitration levels in plasma were positively correlated with PAH development in AA-treated rats. This finding was strongly supported by results obtained from PAH humans where plasma protein nitration levels were correlated with markers of PAH severity in female but not male PAH patients. Based on previously reported associations between increased nitric oxide production levels with female gender, we speculate that in females with PAH mitochondrial dysfunction may represent a more deleterious form, in part, due to an increased nitrosative stress development. Indeed, the histological analysis of AA treated rats revealed a strong perivascular edema, a marker of pulmonary endothelial damage. Finally, AA treatment was accompanied by a severe metabolic shift toward glycolysis, a hallmark of PAH pathology. CONCLUSIONS Chronic mitochondrial dysfunction induces the combination of vascular damage and metabolic reprogramming that may be responsible for PAH development. This mechanism may be especially important in females, perhaps due to an increased NO production and nitrosative stress development.
Collapse
|
16
|
An Official American Thoracic Society Workshop Report: Obesity and Metabolism. An Emerging Frontier in Lung Health and Disease. Ann Am Thorac Soc 2018; 14:1050-1059. [PMID: 28570148 DOI: 10.1513/annalsats.201703-263ws] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The world is in the midst of an unprecedented epidemic of obesity. This epidemic has changed the presentation and etiology of common diseases. For example, steatohepatitis, directly attributable to obesity, is now the most common cause of cirrhosis in the United States. Type 2 diabetes is increasingly being diagnosed in children. Pulmonary researchers and clinicians are just beginning to appreciate the impact of obesity and altered metabolism on common pulmonary diseases. Obesity has recently been identified as a major risk factor for the development of asthma and for acute respiratory distress syndrome. Obesity is associated with profound changes in pulmonary physiology, the development of pulmonary hypertension, sleep-disordered breathing, and altered susceptibility to pulmonary infection. In short, obesity is leading to dramatic changes in lung health and disease. Simultaneously, the rapidly developing field of metabolism, including mitochondrial function, is shifting the paradigms by which the pathophysiology of many pulmonary diseases is understood. Altered metabolism can lead to profound changes in both innate and adaptive immunity, as well as the function of structural cells. To address this emerging field, a 3-day meeting on obesity, metabolism, and lung disease was convened in October 2015 to discuss recent findings, foster research initiatives, and ultimately guide clinical care. The major findings arising from this meeting are reported in this document.
Collapse
|
17
|
Sun X, Kellner M, Desai AA, Wang T, Lu Q, Kangath A, Qu N, Klinger C, Fratz S, Yuan JXJ, Jacobson JR, Garcia JGN, Rafikov R, Fineman JR, Black SM. Asymmetric Dimethylarginine Stimulates Akt1 Phosphorylation via Heat Shock Protein 70-Facilitated Carboxyl-Terminal Modulator Protein Degradation in Pulmonary Arterial Endothelial Cells. Am J Respir Cell Mol Biol 2017; 55:275-87. [PMID: 26959555 DOI: 10.1165/rcmb.2015-0185oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA) induces the mitochondrial translocation of endothelial nitric oxide synthase (eNOS) through the nitration-mediated activation of Akt1. However, it is recognized that the activation of Akt1 requires phosphorylation events at threonine (T) 308 and serine (S) 473. Thus, the current study was performed to elucidate the potential effect of ADMA on Akt1 phosphorylation and the mechanisms that are involved. Exposure of pulmonary arterial endothelial cells to ADMA enhanced Akt1 phosphorylation at both threonine 308 and Ser473 without altering Akt1 protein levels, phosphatase and tensin homolog activity, or membrane Akt1 levels. Heat shock protein (Hsp) 90 plays a pivotal role in maintaining Akt1 activity, and our results demonstrate that ADMA decreased Hsp90-Akt1 interactions, but, surprisingly, overexpression of a dominant-negative Hsp90 mutant increased Akt1 phosphorylation. ADMA exposure or overexpression of dominant-negative Hsp90 increased Hsp70 levels, and depletion of Hsp70 abolished ADMA-induced Akt1 phosphorylation. ADMA decreased the interaction of Akt1 with its endogenous inhibitor, carboxyl-terminal modulator protein (CTMP). This was mediated by the proteasomal-dependent degradation of CTMP. The overexpression of CTMP attenuated ADMA-induced Akt1 phosphorylation at Ser473, eNOS phosphorylation at Ser617, and eNOS mitochondrial translocation. Finally, we found that the mitochondrial translocation of eNOS in our lamb model of pulmonary hypertension is associated with increased Akt1 and eNOS phosphorylation and reduced Akt1-CTMP protein interactions. In conclusion, our data suggest that CTMP is directly involved in ADMA-induced Akt1 phosphorylation in vitro and in vivo, and that increasing CTMP levels may be an avenue to treat pulmonary hypertension.
Collapse
Affiliation(s)
- Xutong Sun
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Manuela Kellner
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Ankit A Desai
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Ting Wang
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Qing Lu
- 2 Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia
| | - Archana Kangath
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Ning Qu
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Christina Klinger
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Sohrab Fratz
- 3 Pediatric Cardiology and Congenital Heart Disease, German Heart Center at the Technical University of Munich, Munich, Germany
| | - Jason X-J Yuan
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Jeffrey R Jacobson
- 4 Department of Medicine, University of Illinois Chicago, Chicago, Illinois; and
| | - Joe G N Garcia
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Ruslan Rafikov
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Jeffrey R Fineman
- 5 Department of Pediatrics and.,6 Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Stephen M Black
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| |
Collapse
|
18
|
Resveratrol rescues hyperglycemia-induced endothelial dysfunction via activation of Akt. Acta Pharmacol Sin 2017; 38:182-191. [PMID: 27941804 DOI: 10.1038/aps.2016.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022]
Abstract
Resveratrol (RSV), a phytoalexin, has shown to prevent endothelial dysfunction and reduce diabetic vascular complications and the risk of cardiovascular diseases. The aim of this study was to investigate the signaling mechanisms underlying the protecting effects of RSV against endothelial dysfunction during hyperglycemia in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) were treated with RSV, and then exposed to high glucose (HG, 30 mmol/L). Akt-Ser473 phosphorylation, eNOS-Ser1177 phosphorylation, and PTEN protein levels in the cells were detected using Western blot. For in vivo studies, WT and Akt-/- mice were fed a normal diet containing RSV (400 mg·kg-1·d-1) for 2 weeks, then followed by injection of STZ to induce hyperglycemia (300 mg/dL). Endothelial function was evaluated using aortic rings by assessing ACh-induced vasorelaxation. RSV (5-20 μmol/L) dose-dependently increased Akt-Ser473 phosphorylation, accompanied by increased eNOS-Ser1177 phosphorylation in HUVECs; these effects were more prominent under HG stimulation. Transfection with Akt siRNA abolished RSV-enhanced eNOS phosphorylation and NO release. Furthermore, RSV (5-20 μmol/L) dose-dependently decreased the levels of PTEN, which was significantly increased under HG stimulation, and PTEN overexpression abolished RSV-stimulated Akt phosphorylation in HG-treated HUVECs. Moreover, RSV dramatically increased 26S proteasome activity, which induced degradation of PTEN. In in vivo studies, pretreatment with RSV significantly increased Akt and eNOS phosphorylation in aortic tissues and ACh-induced vasorelaxation, and improved diabetes-induced endothelial dysfunction in wild-type mice but not in Akt-/- mice. RSV attenuates endothelial function during hyperglycemia via activating proteasome-dependent degradation of PTEN, which increases Akt phosphorylation, and consequentially upregulation of eNOS-derived NO production.
Collapse
|
19
|
Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JXJ, Garcia JGN, Black SM. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2016; 312:L452-L476. [PMID: 27979857 DOI: 10.1152/ajplung.00231.2016] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS). Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The pathobiology of VILI and ARDS shares many inflammatory features including increases in lung vascular permeability due to loss of endothelial cell barrier integrity resulting in alveolar flooding. While there have been advances in the understanding of certain elements of VILI and ARDS pathobiology, such as defining the importance of lung inflammatory leukocyte infiltration and highly induced cytokine expression, a deep understanding of the initiating and regulatory pathways involved in these inflammatory responses remains poorly understood. Prevailing evidence indicates that loss of endothelial barrier function plays a primary role in the development of VILI and ARDS. Thus this review will focus on the latest knowledge related to 1) the key role of the endothelium in the pathogenesis of VILI; 2) the transcription factors that relay the effects of excessive mechanical stress in the endothelium; 3) the mechanical stress-induced posttranslational modifications that influence key signaling pathways involved in VILI responses in the endothelium; 4) the genetic and epigenetic regulation of key target genes in the endothelium that are involved in VILI responses; and 5) the need for novel therapeutic strategies for VILI that can preserve endothelial barrier function.
Collapse
Affiliation(s)
- Ting Wang
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christine Gross
- Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Ankit A Desai
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Evgeny Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaomin Wu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Alexander N Garcia
- Department of Pharmacology University of Illinois at Chicago, Chicago, Illinois; and
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona;
| |
Collapse
|
20
|
Xu BC, Long HB, Luo KQ. Tert-butylhydroquinone lowers blood pressure in AngII-induced hypertension in mice via proteasome-PTEN-Akt-eNOS pathway. Sci Rep 2016; 6:29589. [PMID: 27435826 PMCID: PMC4951646 DOI: 10.1038/srep29589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/22/2016] [Indexed: 12/30/2022] Open
Abstract
Tert-butylhydroquinone (tBHQ), as an antioxidant, has been widely used for many years to prevent oxidization of food products. The aim of this study was to investigate whether tBHQ activates endothelial nitric oxide synthase (eNOS) to prevent endothelial dysfunction and lower blood pressure. The role of Akt in tBHQ-induced eNOS phosphorylation was examined in human umbilical vein endothelial cells (HUVEC) or in mice. tBHQ treatment of HUVEC increased both Akt-Ser473 phosphorylation, accompanied with increased eNOS-Ser1177 phosphorylation and NO release. Mechanically, pharmacologic or genetic inhibition of Akt abolished tBHQ-enhanced NO release and eNOS phosphorylation in HUVEC. Gain-function of PTEN or inhibition of 26S proteasome abolished tBHQ-enhanced Akt phosphorylation in HUVEC. Ex vivo analysis indicated that tBHQ improved Ach-induced endothelium-dependent relaxation in LPC-treated mice aortic arteries, which were abolished by inhibition of Akt or eNOS. In animal study, administration of tBHQ significantly increased eNOS-Ser1177 phosphorylation and acetylcholine-induced vasorelaxation, and lowered AngII-induced hypertension in wildtype mice, but not in mice deficient of Akt or eNOS. In conclusion, tBHQ via proteasome-dependent degradation of PTEN increases Akt phosphorylation, resulting in upregulation of eNOS-derived NO production and consequent improvement of endothelial function in vivo. In this way, tBHQ lowers blood pressure in hypertensive mice.
Collapse
Affiliation(s)
- Bing-Can Xu
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Bao Long
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke-Qin Luo
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Kovacs L, Han W, Rafikov R, Bagi Z, Offermanns S, Saido TC, Black SM, Su Y. Activation of Calpain-2 by Mediators in Pulmonary Vascular Remodeling of Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2016; 54:384-93. [PMID: 26248159 PMCID: PMC4821035 DOI: 10.1165/rcmb.2015-0151oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/30/2015] [Indexed: 12/27/2022] Open
Abstract
Calpain mediates collagen synthesis and cell proliferation and plays an important role in pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). In the present study, we investigated whether and how calpain is activated by PAH mediators in pulmonary artery smooth muscle cells (PASMCs). These data show that smooth muscle-specific knockout of calpain attenuated and knockout of calpastatin potentiated pulmonary vascular remodeling and pulmonary hypertension. Treatment of PASMCs with the PAH mediators platelet-derived growth factor (PDGF), serotonin, H2O2, endothelin-1, and IL-6 caused significant increases in calpain activity, cell proliferation, and collagen-I protein level without changes in protein levels of calpain-1 and -2. The calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA/AM) did not affect calpain activation, but the extracellular signal-regulated kinase (ERK) 1/2 inhibitor PD98059 and knocking down of calpain-2 prevented calpain activation in PAH mediator-treated PASMCs. Mass spectrometry data showed that the phosphorylation of calpain-2 at serine (Ser) 50 was increased and the phosphorylation of calpain-2 at Ser369 was decreased in PDGF-treated PASMCs. The PDGF-induced increase in Ser50 phosphorylation of calpain-2 was prevented by PD98059, whereas dephosphorylation of calpain-2 at Ser369 was blocked by the protein phosphatase 2A inhibitor fostriecin. Furthermore, smooth muscle of pulmonary arteries in PAH animal models and patients with PAH showed higher levels of phospho-Ser50-calpain-2 (P-Ser50) and lower levels of phospho-Ser369-calpain-2 (P-Ser369). These data support that calpain modulates pulmonary vascular remodeling in PAH. PAH mediator-induced activation of calpain is caused by ERK1/2-dependent phosphorylation of calpain-2 at Ser50 and protein phosphatase 2A-dependent dephosphorylation of calpain-2 at Ser369 in pulmonary vascular remodeling of PAH.
Collapse
MESH Headings
- Animals
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Calpain/genetics
- Calpain/metabolism
- Disease Models, Animal
- Enzyme Activation
- Enzyme Activators/pharmacology
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- HEK293 Cells
- Humans
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Protein Phosphatase 2/antagonists & inhibitors
- Protein Phosphatase 2/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- RNA Interference
- Signal Transduction
- Transfection
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
| | | | - Ruslan Rafikov
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Zsolt Bagi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Goethe University, Frankfurt, Germany; and
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Stephen M. Black
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Yunchao Su
- Departments of Pharmacology and Toxicology
- Medicine, and
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
22
|
Gaupels F, Furch ACU, Zimmermann MR, Chen F, Kaever V, Buhtz A, Kehr J, Sarioglu H, Kogel KH, Durner J. Systemic Induction of NO-, Redox-, and cGMP Signaling in the Pumpkin Extrafascicular Phloem upon Local Leaf Wounding. FRONTIERS IN PLANT SCIENCE 2016; 7:154. [PMID: 26904092 PMCID: PMC4751408 DOI: 10.3389/fpls.2016.00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/29/2016] [Indexed: 05/29/2023]
Abstract
Cucurbits developed the unique extrafascicular phloem (EFP) as a defensive structure against herbivorous animals. Mechanical leaf injury was previously shown to induce a systemic wound response in the EFP of pumpkin (Cucurbita maxima). Here, we demonstrate that the phloem antioxidant system and protein modifications by NO are strongly regulated during this process. Activities of the central antioxidant enzymes dehydroascorbate reductase, glutathione reductase and ascorbate reductase were rapidly down-regulated at 30 min with a second minimum at 24 h after wounding. As a consequence levels of total ascorbate and glutathione also decreased with similar bi-phasic kinetics. These results hint toward a wound-induced shift in the redox status of the EFP. Nitric oxide (NO) is another important player in stress-induced redox signaling in plants. Therefore, we analyzed NO-dependent protein modifications in the EFP. Six to forty eight hours after leaf damage total S-nitrosothiol content and protein S-nitrosylation were clearly reduced, which was contrasted by a pronounced increase in protein tyrosine nitration. Collectively, these findings suggest that NO-dependent S-nitrosylation turned into peroxynitrite-mediated protein nitration upon a stress-induced redox shift probably involving the accumulation of reactive oxygen species within the EFP. Using the biotin switch assay and anti-nitrotyrosine antibodies we identified 9 candidate S-nitrosylated and 6 candidate tyrosine-nitrated phloem proteins. The wound-responsive Phloem Protein 16-1 (PP16-1) and Cyclophilin 18 (CYP18) as well as the 26.5 kD isoform of Phloem Protein 2 (PP2) were amenable to both NO modifications and could represent important redox-sensors within the cucurbit EFP. We also found that leaf injury triggered the systemic accumulation of cyclic guanosine monophosphate (cGMP) in the EFP and discuss the possible function of this second messenger in systemic NO and redox signaling within the EFP.
Collapse
Affiliation(s)
- Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Alexandra C. U. Furch
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-UniversityJena, Germany
| | - Matthias R. Zimmermann
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-UniversityJena, Germany
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical SchoolHannover, Germany
| | - Anja Buhtz
- Department Lothar Willmitzer, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Julia Kehr
- Biocenter Klein Flottbek, University HamburgHamburg, Germany
| | - Hakan Sarioglu
- Department of Protein Science, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Karl-Heinz Kogel
- Research Center for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University GiessenGiessen, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| |
Collapse
|
23
|
Lai L, Ghebremariam YT. Modulating DDAH/NOS Pathway to Discover Vasoprotective Insulin Sensitizers. J Diabetes Res 2015; 2016:1982096. [PMID: 26770984 PMCID: PMC4684877 DOI: 10.1155/2016/1982096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/29/2022] Open
Abstract
Insulin resistance syndrome (IRS) is a configuration of cardiovascular risk factors involved in the development of metabolic disorders including type 2 diabetes mellitus. In addition to diet, age, socioeconomic, and environmental factors, genetic factors that impair insulin signaling are centrally involved in the development and exacerbation of IRS. Genetic and pharmacological studies have demonstrated that the nitric oxide (NO) synthase (NOS) genes are critically involved in the regulation of insulin-mediated glucose disposal. The generation of NO by the NOS enzymes is known to contribute to vascular homeostasis including insulin-mediated skeletal muscle vasodilation and insulin sensitivity. By contrast, excessive inhibition of NOS enzymes by exogenous or endogenous factors is associated with insulin resistance (IR). Asymmetric dimethylarginine (ADMA) is an endogenous molecule that competitively inhibits all the NOS enzymes and contributes to metabolic perturbations including IR. The concentration of ADMA in plasma and tissue is enzymatically regulated by dimethylarginine dimethylaminohydrolase (DDAH), a widely expressed enzyme in the cardiovascular system. In preclinical studies, overexpression of DDAH has been shown to reduce ADMA levels, improve vascular compliance, and increase insulin sensitivity. This review discusses the feasibility of the NOS/DDAH pathway as a novel target to develop vasoprotective insulin sensitizers.
Collapse
Affiliation(s)
- Li Lai
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Yohannes T. Ghebremariam
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
24
|
Rafikov R, Sun X, Rafikova O, Louise Meadows M, Desai AA, Khalpey Z, Yuan JXJ, Fineman JR, Black SM. Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells. Redox Biol 2015; 6:278-286. [PMID: 26298201 PMCID: PMC4556771 DOI: 10.1016/j.redox.2015.07.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 01/21/2023] Open
Abstract
ATP is essential for cellular function and is usually produced through oxidative phosphorylation. However, mitochondrial dysfunction is now being recognized as an important contributing factor in the development cardiovascular diseases, such as pulmonary hypertension (PH). In PH there is a metabolic change from oxidative phosphorylation to mainly glycolysis for energy production. However, the mechanisms underlying this glycolytic switch are only poorly understood. In particular the role of the respiratory Complexes in the mitochondrial dysfunction associated with PH is unresolved and was the focus of our investigations. We report that smooth muscle cells isolated from the pulmonary vessels of rats with PH (PH-PASMC), induced by a single injection of monocrotaline, have attenuated mitochondrial function and enhanced glycolysis. Further, utilizing a novel live cell assay, we were able to demonstrate that the mitochondrial dysfunction in PH-PASMC correlates with deficiencies in the activities of Complexes I-III. Further, we observed that there was an increase in mitochondrial reactive oxygen species generation and mitochondrial membrane potential in the PASMC isolated from rats with PH. We further found that the defect in Complex I activity was due to a loss of Complex I assembly, although the assembly of Complexes II and III were both maintained. Thus, we conclude that loss of Complex I assembly may be involved in the switch of energy metabolism in smooth muscle cells to glycolysis and that maintaining Complex I activity may be a potential therapeutic target for the treatment of PH.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, AZ, USA; Department of Medicine, The University of Arizona, Tucson, AZ, USA.
| | - Xutong Sun
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, AZ, USA; Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Olga Rafikova
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, AZ, USA; Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | | | - Ankit A Desai
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Zain Khalpey
- Department of Surgery, The University of Arizona, Tucson, AZ, USA
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, AZ, USA; Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Jeffrey R Fineman
- Department of Pediatrics and the University of California San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, AZ, USA; Department of Medicine, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
25
|
Pekarova M, Koudelka A, Kolarova H, Ambrozova G, Klinke A, Cerna A, Kadlec J, Trundova M, Sindlerova Svihalkova L, Kuchta R, Kuchtova Z, Lojek A, Kubala L. Asymmetric dimethyl arginine induces pulmonary vascular dysfunction via activation of signal transducer and activator of transcription 3 and stabilization of hypoxia-inducible factor 1-alpha. Vascul Pharmacol 2015; 73:138-48. [PMID: 26091577 DOI: 10.1016/j.vph.2015.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/02/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022]
Abstract
Pulmonary hypertension (PH), associated with imbalance in vasoactive mediators and massive remodeling of pulmonary vasculature, represents a serious health complication. Despite the progress in treatment, PH patients typically have poor prognoses with severely affected quality of life. Asymmetric dimethyl arginine (ADMA), endogenous inhibitor of endothelial nitric oxide synthase (eNOS), also represents one of the critical regulators of pulmonary vascular functions. The present study describes a novel mechanism of ADMA-induced dysfunction in human pulmonary endothelial and smooth muscle cells. The effect of ADMA was compared with well-established model of hypoxia-induced pulmonary vascular dysfunction. It was discovered for the first time that ADMA induced the activation of signal transducer and activator of transcription 3 (STAT3) and stabilization of hypoxia inducible factor 1α (HIF-1α) in both types of cells, associated with drastic alternations in normal cellular functions (e.g., nitric oxide production, cell proliferation/Ca(2+) concentration, production of pro-inflammatory mediators, and expression of eNOS, DDAH1, and ICAM-1). Additionally, ADMA significantly enhanced the hypoxia-mediated increase in the signaling cascades. In summary, increased ADMA may lead to manifestation of PH phenotype in human endothelial and smooth muscle cells via the STAT3/HIF-1α cascade. Therefore this signaling pathway represents the potential pathway for future clinical interventions in PH.
Collapse
Affiliation(s)
- Michaela Pekarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Adolf Koudelka
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Hana Kolarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Anna Klinke
- Department of Experimental Cardiology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Anna Cerna
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jaroslav Kadlec
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Maria Trundova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, v.v.i., BIOCEV, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Lenka Sindlerova Svihalkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Radek Kuchta
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Zdenka Kuchtova
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Antonin Lojek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
26
|
Rafikova O, Rafikov R, Meadows ML, Kangath A, Jonigk D, Black SM. The sexual dimorphism associated with pulmonary hypertension corresponds to a fibrotic phenotype. Pulm Circ 2015; 5:184-97. [PMID: 25992281 DOI: 10.1086/679724] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/18/2014] [Indexed: 01/23/2023] Open
Abstract
Although female predominance in the development of all types of pulmonary hypertension (PH) is well established, many clinical studies have confirmed that females have better prognosis and higher survival rate than males. There is no clear explanation of why sex influences the pathogenesis and progression of PH. Using a rat angioproliferative model of PH, which closely resembles the primary pathological changes observed in humans, we evaluated the role of sex in the development and progression of PH. Female rats had a more pronounced increase in medial thickness in the small pulmonary arteries. However, the infiltration of small pulmonary arteries by inflammatory cells was found only in male rats, and this corresponded to increased myeloperoxidase activity and abundant adventitial and medial fibrosis that were not present in female rats. Although the level of right ventricle (RV) peak systolic pressure was similar in both groups, the survival rate in male rats was significantly lower. Moreover, male rats presented with a more pronounced increase in RV thickness that correlated with diffuse RV fibrosis and significantly impaired right cardiac function. The reduction in fibrosis in female rats correlated with increased expression of caveolin-1 and reduced endothelial nitric oxide synthase-derived superoxide. We conclude that, in the pathogenesis of PH, female sex is associated with greater remodeling of the pulmonary arteries but greater survival. Conversely, in males, the development of pulmonary and cardiac fibrosis leads to early and severe RV failure, and this may be an important reason for the lower survival rate among males.
Collapse
Affiliation(s)
- Olga Rafikova
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA ; These authors contributed equally to this study
| | - Ruslan Rafikov
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA ; These authors contributed equally to this study
| | - Mary Louise Meadows
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| | - Archana Kangath
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hanover, Germany
| | - Stephen M Black
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| |
Collapse
|
27
|
Sun X, Kumar S, Sharma S, Aggarwal S, Lu Q, Gross C, Rafikova O, Lee SG, Dasarathy S, Hou Y, Meadows ML, Han W, Su Y, Fineman JR, Black SM. Endothelin-1 induces a glycolytic switch in pulmonary arterial endothelial cells via the mitochondrial translocation of endothelial nitric oxide synthase. Am J Respir Cell Mol Biol 2014; 50:1084-95. [PMID: 24392990 DOI: 10.1165/rcmb.2013-0187oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent studies have indicated that, during the development of pulmonary hypertension (PH), there is a switch from oxidative phosphorylation to glycolysis in the pulmonary endothelium. However, the mechanisms underlying this phenomenon have not been elucidated. Endothelin (ET)-1, an endothelial-derived vasoconstrictor peptide, is increased in PH, and has been shown to play an important role in the oxidative stress associated with PH. Thus, in this study, we investigated whether there was a potential link between increases in ET-1 and mitochondrial remodeling. Our data indicate that ET-1 induces the redistribution of endothelial nitric oxide synthase (eNOS) from the plasma membrane to the mitochondria in pulmonary arterial endothelial cells, and that this was dependent on eNOS uncoupling. We also found that ET-1 disturbed carnitine metabolism, resulting in the attenuation of mitochondrial bioenergetics. However, ATP levels were unchanged due to a compensatory increase in glycolysis. Further mechanistic investigations demonstrated that ET-1 mediated the redistribution of eNOS via the phosphorylation of eNOS at Thr495 by protein kinase C δ. In addition, the glycolytic switch appeared to be dependent on mitochondrial-derived reactive oxygen species that led to the activation of hypoxia-inducible factor signaling. Finally, the cell culture data were confirmed in vivo using the monocrotaline rat model of PH. Thus, we conclude that ET-1 induces a glycolytic switch in pulmonary arterial endothelial cells via the redistribution of uncoupled eNOS to the mitochondria, and that preventing this event may be an approach for the treatment of PH.
Collapse
Affiliation(s)
- Xutong Sun
- 1 Pulmonary Disease Program, Vascular Biology Center, and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rafikov R, Kumar S, Aggarwal S, Hou Y, Kangath A, Pardo D, Fineman JR, Black SM. Endothelin-1 stimulates catalase activity through the PKCδ-mediated phosphorylation of serine 167. Free Radic Biol Med 2014; 67:255-64. [PMID: 24211614 PMCID: PMC3945115 DOI: 10.1016/j.freeradbiomed.2013.10.814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/03/2023]
Abstract
Our previous studies have shown that endothelin-1 (ET-1) stimulates catalase activity in endothelial cells and in lambs with acute increases in pulmonary blood flow (PBF), without altering gene expression. The purpose of this study was to investigate the molecular mechanism by which this occurs. Exposing pulmonary arterial endothelial cells to ET-1 increased catalase activity and decreased cellular hydrogen peroxide (H2O2) levels. These changes correlated with an increase in serine-phosphorylated catalase. Using the inhibitory peptide δV1.1, this phosphorylation was shown to be protein kinase Cδ (PKCδ) dependent. Mass spectrometry identified serine 167 as the phosphorylation site. Site-directed mutagenesis was used to generate a phospho-mimic (S167D) catalase. Activity assays using recombinant protein purified from Escherichia coli or transiently transfected COS-7 cells demonstrated that S167D catalase had an increased ability to degrade H2O2 compared to the wild-type enzyme. Using a phospho-specific antibody, we were able to verify that pS167 catalase levels are modulated in lambs with acute increases in PBF in the presence and absence of the ET receptor antagonist tezosentan. S167 is located on the dimeric interface, suggesting it could be involved in regulating the formation of catalase tetramers. To evaluate this possibility we utilized analytical gel filtration to examine the multimeric structure of recombinant wild-type and S167D catalase. We found that recombinant wild-type catalase was present as a mixture of monomers and dimers, whereas S167D catalase was primarily tetrameric. Further, the incubation of wild-type catalase with PKCδ was sufficient to convert wild-type catalase into a tetrameric structure. In conclusion, this is the first report indicating that the phosphorylation of catalase regulates its multimeric structure and activity.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
- Please address correspondence and proofs to: Stephen M. Black, Ph.D., Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Blvd, CB 3211-B, Augusta, GA-30912, Tel: 706-721-7860,
| | - Sanjiv Kumar
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
- Please address correspondence and proofs to: Stephen M. Black, Ph.D., Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Blvd, CB 3211-B, Augusta, GA-30912, Tel: 706-721-7860,
| | - Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Yali Hou
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Archana Kangath
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Daniel Pardo
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Jeffrey R. Fineman
- Department of Pediatrics University of California, San Francisco, CA, 94143
- Cardiovascular Research Institute, University of California, San Francisco, CA, 94143
| | - Stephen M. Black
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| |
Collapse
|
29
|
Lee DY, Wauquier F, Eid AA, Roman LJ, Ghosh-Choudhury G, Khazim K, Block K, Gorin Y. Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. J Biol Chem 2013; 288:28668-86. [PMID: 23940049 DOI: 10.1074/jbc.m113.470971] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces endothelial nitric-oxide synthase (eNOS) uncoupling with enhanced generation of reactive oxygen species (ROS) and decreased production of NO. Ang II promotes a rapid increase in 3-nitrotyrosine formation, and uric acid attenuates Ang II-induced decrease in NO bioavailability, demonstrating that peroxynitrite mediates the effects of Ang II on eNOS dysfunction. Ang II rapidly up-regulates Nox4 protein. Inhibition of Nox4 abolishes the increase in ROS and peroxynitrite generation as well as eNOS uncoupling triggered by Ang II, indicating that Nox4 is upstream of eNOS. This pathway contributes to Ang II-mediated fibronectin accumulation in MCs. Ang II also elicits an increase in mitochondrial abundance of Nox4 protein, and the oxidase contributes to ROS production in mitochondria. Overexpression of mitochondrial manganese superoxide dismutase prevents the stimulatory effects of Ang II on mitochondrial ROS production, loss of NO availability, and MC fibronectin accumulation, whereas manganese superoxide dismutase depletion increases mitochondrial ROS, NO deficiency, and fibronectin synthesis basally and in cells exposed to Ang II. This work provides the first evidence that uncoupled eNOS is responsible for Ang II-induced MC fibronectin accumulation and identifies Nox4 and mitochondrial ROS as mediators of eNOS dysfunction. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal fibrosis.
Collapse
|