1
|
Matsuo-Takasaki M, Kambayashi S, Hemmi Y, Wakabayashi T, Shimizu T, An Y, Ito H, Takeuchi K, Ibuki M, Kawashima T, Masayasu R, Suzuki M, Kawai Y, Umekage M, Kato TM, Noguchi M, Nakade K, Nakamura Y, Nakaishi T, Nishishita N, Tsukahara M, Hayashi Y. Complete suspension culture of human induced pluripotent stem cells supplemented with suppressors of spontaneous differentiation. eLife 2024; 12:RP89724. [PMID: 39529479 PMCID: PMC11556790 DOI: 10.7554/elife.89724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.
Collapse
Affiliation(s)
- Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Sho Kambayashi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yasuko Hemmi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tamami Wakabayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoya Shimizu
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Yuri An
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Hidenori Ito
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Kazuhiro Takeuchi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Masato Ibuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Terasu Kawashima
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Rio Masayasu
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Manami Suzuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yoshikazu Kawai
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Tomoaki M Kato
- Research and Development Center, CiRA FoundationKyotoJapan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Koji Nakade
- Gene Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoyuki Nakaishi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Naoki Nishishita
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
- Faculty of Medicine and School of Integrative and Global Majors, University of TsukubaIbarakiJapan
| |
Collapse
|
2
|
Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 2024; 31:312-333. [PMID: 38382531 PMCID: PMC10939785 DOI: 10.1016/j.stem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Though totipotency and pluripotency are transient during early embryogenesis, they establish the foundation for the development of all mammals. Studying these in vivo has been challenging due to limited access and ethical constraints, particularly in humans. Recent progress has led to diverse culture adaptations of epiblast cells in vitro in the form of totipotent and pluripotent stem cells, which not only deepen our understanding of embryonic development but also serve as invaluable resources for animal reproduction and regenerative medicine. This review delves into the hallmarks of totipotent and pluripotent stem cells, shedding light on their key molecular and functional features.
Collapse
Affiliation(s)
- Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Ji J, Cao J, Chen P, Huang R, Ye SD. Inhibition of protein kinase C increases Prdm14 level to promote self-renewal of embryonic stem cells through reducing Suv39h-induced H3K9 methylation. J Biol Chem 2024; 300:105714. [PMID: 38309502 PMCID: PMC10909794 DOI: 10.1016/j.jbc.2024.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024] Open
Abstract
Inhibition of protein kinase C (PKC) efficiently promoted the self-renewal of embryonic stem cells (ESCs). However, information about the function of PKC inhibition remains lacking. Here, RNA-sequencing showed that the addition of Go6983 significantly inhibited the expression of de novo methyltransferases (Dnmt3a and Dnmt3b) and their regulator Dnmt3l, resulting in global hypomethylation of DNA in mouse ESCs. Mechanistically, PR domain-containing 14 (Prdm14), a site-specific transcriptional activator, partially contributed to Go6983-mediated repression of Dnmt3 genes. Administration of Go6983 increased Prdm14 expression mainly through the inhibition of PKCδ. High constitutive expression of Prdm14 phenocopied the ability of Go6983 to maintain` mouse ESC stemness in the absence of self-renewal-promoting cytokines. In contrast, the knockdown of Prdm14 eliminated the response to PKC inhibition and substantially impaired the Go6983-induced resistance of mouse ESCs to differentiation. Furthermore, liquid chromatography-mass spectrometry profiling and Western blotting revealed low levels of Suv39h1 and Suv39h2 in Go6983-treated mouse ESCs. Suv39h enzymes are histone methyltransferases that recognize dimethylated and trimethylated histone H3K9 specifically and usually function as transcriptional repressors. Consistently, the inhibition of Suv39h1 by RNA interference or the addition of the selective inhibitor chaetocin increased Prdm14 expression. Moreover, chromatin immunoprecipitation assay showed that Go6983 treatment led to decreased enrichment of dimethylation and trimethylation of H3K9 at the Prdm14 promoter but increased RNA polymerase Ⅱ binding affinity. Together, our results provide novel insights into the pivotal association between PKC inhibition-mediated self-renewal and epigenetic changes, which will help us better understand the regulatory network of stem cell pluripotency.
Collapse
Affiliation(s)
- Junxiang Ji
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Jianjian Cao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Peng Chen
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Ru Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China.
| |
Collapse
|
4
|
Cavaleiro C, Afonso GJM, Oliveira PJ, Valero J, Mota SI, Ferreiro E. Urine-derived stem cells in neurological diseases: current state-of-the-art and future directions. Front Mol Neurosci 2023; 16:1229728. [PMID: 37965041 PMCID: PMC10642248 DOI: 10.3389/fnmol.2023.1229728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Stem cells have potential applications in the field of neurological diseases, as they allow for the development of new biological models. These models can improve our understanding of the underlying pathologies and facilitate the screening of new therapeutics in the context of precision medicine. Stem cells have also been applied in clinical tests to repair tissues and improve functional recovery. Nevertheless, although promising, commonly used stem cells display some limitations that curb the scope of their applications, such as the difficulty of obtention. In that regard, urine-derived cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, their obtaining can be challenging due to the low yield and complexity of the multi-phased and typically expensive differentiation protocols. As an alternative, urine-derived stem cells (UDSCs), included within the population of urine-derived cells, present a mesenchymal-like phenotype and have shown promising properties for similar purposes. Importantly, UDSCs have been differentiated into neuronal-like cells, auspicious for disease modeling, while overcoming some of the shortcomings presented by other stem cells for these purposes. Thus, this review assesses the current state and future perspectives regarding the potential of UDSCs in the ambit of neurological diseases, both for disease modeling and therapeutic applications.
Collapse
Affiliation(s)
- Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Baral I, Shirude MB, Jothi DL, Mukherjee A, Dutta D. Characterization of a Distinct State in the Continuum of Pluripotency Facilitated by Inhibition of PKCζ in Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2023; 19:1098-1115. [PMID: 36781773 DOI: 10.1007/s12015-023-10513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Inhibition of PKC (PKCi) signaling maintains pluripotency of embryonic stem cells (ESCs) across different mammalian species. However, the position of PKCi maintained ESCs in the pluripotency continuum is largely unknown. Here we demonstrate that mouse ESCs when cultured continuously, with PKCi, for 75 days are retained in naïve state of pluripotency. Gene expression analysis and proteomics studies demonstrated enhanced naïve character of PKCi maintained ESCs in comparison to classical serum/LIF (S/L) supported ESCs. Molecular analysis revealed that activation of PKCζ isoform associate with primed state of pluripotency, present in epiblast-like stem cells generated in vitro while inhibition of PKCζ phosphorylation associated with naïve state of pluripotency in vitro and in vivo. Phosphoproteomics and chromatin modification enzyme array based studies showed loss in DNA methyl transferase 3B (DNMT3B) and its phosphorylation level upon functional inhibition of PKCζ as one of the crucial components of this regulatory pathway. Unlike ground state of pluripotency maintained by MEK/GSK3 inhibitor in addition to LIF (2i/LIF), loss in DNMT3B is a reversible phenomenon in PKCi maintained ESCs. Absence of phosphorylation of c-MYC, RAF1, SPRY4 while presence of ERF, DUSP6, CIC and YAP1 phosphorylation underlined the phosphoproteomics signature of PKCi mediated maintenance of naïve pluripotency. States of pluripotency represent the developmental continuum and the existence of PKCi mediated mouse ESCs in a distinct state in the continuum of pluripotency (DiSCo) might contribute to the establishment of stages of murine embryonic development that were non-permissible till date.
Collapse
Affiliation(s)
- Ishita Baral
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Mayur Balkrishna Shirude
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Dhana Lakshmi Jothi
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Ananda Mukherjee
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
6
|
Nucleosome remodeling and deacetylation complex and MBD3 influence mouse embryonic stem cell naïve pluripotency under inhibition of protein kinase C. Cell Death Dis 2022; 8:344. [PMID: 35915078 PMCID: PMC9343426 DOI: 10.1038/s41420-022-01131-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022]
Abstract
The pluripotency of naïve mouse embryonic stem cells (mES) is regulated by multiple signaling pathways, with inhibition of protein kinase C (PKCi) playing a particularly important role in maintaining naïve mES. However, the regulatory function of nucleosome remodeling and deacetylase (NuRD) complex in mES cultured in a PKCi system is unknown. We found that, compared with 2iL-derived mES, PKCi-derived mES showed low mRNA expression of NuRD complex subunits, including MBD3, HDAC1/HDAC2, MTA1, and RbAP46/RbAP48. Western blot showed that PKCi-derived mES expressed lower protein levels of MBD3 and HDAC2 at passage 3, as well as MBD3, HDAC2, and MTA1 at passage 10, indicating that PKCi suppressed NuRD complex expression. Knockdown of MBD3 increased PKCi-derived mES pluripotency by increasing NANOG and OCT4 expression and colony formation. By contrast, overexpression of MBD3 or removal of PKC inhibitor-induced differentiation of mES, results in reduced NANOG, OCT4, and REX1 expression and colony formation, increased differentiation-related gene expression, and differentiation into flat cells. Knockdown of MBD3 in mES upon PKC inhibitor removal partially reversed cell differentiation. Our results show that the regulatory NuRD complex and its MBD3 subunit influence the naïve pluripotency of mES cultured in a PKCi system.
Collapse
|
7
|
Sun J, He N, Wang W, Dai Y, Hou C, Du F. PKC inhibitors regulate stem cell self-renewal by regulating H3K27me3 and H3K9me3. Am J Transl Res 2022; 14:4295-4309. [PMID: 35836851 PMCID: PMC9274548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Embryonic stem cell (ESC) research is critical to the scientific community, as their application in regenerative medicine can be widely beneficial. ESCs eventually withdraw from their self-renewal program and subsequently differentiate into specific cell lineages; however, the mechanisms regulating these processes remain unclear. PKC inhibition using 3-[1-[3-(dimethylamino) propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione (PKCi) is responsible for the derivation and maintenance of human, rat, and mouse ESCs, but the mechanism by which PKCi maintains stem cell self-renewal is poorly understood. By studying the PKCi stem cell (PKCi-mESC) transcriptome and epigenetic modification, we found the transcriptome of PKCi-mESC differed from 2i stem cells (2i-mESC), with 2010 up-regulated genes and 1784 down-regulated genes. Among them, genes related to core transcription factors, naïve-specific markers, and pluripotency are differentially expressed between the two stem cell lines. We analyzed epigenetic modification of PKCi-mESC and found the distribution of H3K27me3 signal was significantly reduced at transcription start sites (TSSs) throughout the genome and at differentially expressed genes (DEGs). Likewise, the H3K9me3 signal at TSSs throughout the genome was significantly reduced in PKCi-mESC, but the distribution on DEGs is reversed. Kdm4d and Kdm6a knockdown by RNA interference (RNAi) significantly altered the expression of genes related to self-renewal in PKCi-mESC. In conclusion, we revealed PKCi-mESC and 2i-mESC differentially express numerous genes, including stem cell-related genes. Furthermore, PKCi-mESC regulated gene expression through H3K27me3 and H3K9me3 modification, which maintained stem cell self-renewal capacity.
Collapse
Affiliation(s)
- Jialei Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, China
| | - Na He
- Harbin Institute of TechnologyHarbin 150001, Heilongjiang, China
| | - Weiguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, China
| | - Yujian Dai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, China
| | - Chunhui Hou
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and TechnologyShenzhen 518055, Guangdong, China
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, China
| |
Collapse
|
8
|
Dai Y, Li J, Li M, Liu Z, Liu J, An L, Du F. Methyl-CpG-binding domain 3 (Mbd3) is an important regulator for apoptosis in mouse embryonic stem cells. Am J Transl Res 2020; 12:8147-8161. [PMID: 33437388 PMCID: PMC7791517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Methyl-CpG-binding domain 3 (Mbd3) is a core repressor complex component. Although Mbd3 is required for the pluripotency of embryonic stem cells (ES), the role of Mbd3 in mouse ES (mES) cell apoptosis remains undefined. In this study naïve-state mES were derived and maintained in the presence of a selective protein kinase C pathway inhibitor (PKCi; Gӧ6983) to study the function of Mbd3 during mES apoptosis. Mbd3 overexpression in mES decreased the total cell number and viability, and it also dramatically increased the rate of apoptosis. Further investigation of Mbd3 overexpression revealed a 3-fold increase in the proapoptotic/prosurvival protein ratio (Bax/Bcl-2) and elevated RNA expression levels of apoptosis-related genes, including Bim, Trail, Fasl, and caspase 3, with reduced Bcl-2 RNA expression levels. Removal of PKCi from the mES cell culture resulted in upregulated Mbd3 expression and apoptosis, similar to the effects of Mbd3 overexpression. Furthermore, specific knockdown of endogenous Mbd3 partially rescued the mES apoptosis induced by the removal of PKCi, thus increasing the total cell number and viability while decreasing the rate of apoptosis. Additionally, Bax, Bim, Trail, and caspase 3 RNA expression levels were partially reduced, and that of Bcl-2 was partially increased. Our findings support Mbd3 as a pivotal regulator of apoptosis in mES.
Collapse
Affiliation(s)
- Yujian Dai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Jinshan Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Mingyang Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Jiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Liyou An
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
- Renova Life, Inc.College Park, Maryland 20742, USA
| |
Collapse
|
9
|
Bhattacharya B, Home P, Ganguly A, Ray S, Ghosh A, Islam MR, French V, Marsh C, Gunewardena S, Okae H, Arima T, Paul S. Atypical protein kinase C iota (PKCλ/ι) ensures mammalian development by establishing the maternal-fetal exchange interface. Proc Natl Acad Sci U S A 2020; 117:14280-14291. [PMID: 32513715 PMCID: PMC7322033 DOI: 10.1073/pnas.1920201117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In utero mammalian development relies on the establishment of the maternal-fetal exchange interface, which ensures transportation of nutrients and gases between the mother and the fetus. This exchange interface is established via development of multinucleated syncytiotrophoblast cells (SynTs) during placentation. In mice, SynTs develop via differentiation of the trophoblast stem cell-like progenitor cells (TSPCs) of the placenta primordium, and in humans, SynTs are developed via differentiation of villous cytotrophoblast (CTB) progenitors. Despite the critical need in pregnancy progression, conserved signaling mechanisms that ensure SynT development are poorly understood. Herein, we show that atypical protein kinase C iota (PKCλ/ι) plays an essential role in establishing the SynT differentiation program in trophoblast progenitors. Loss of PKCλ/ι in the mouse TSPCs abrogates SynT development, leading to embryonic death at approximately embryonic day 9.0 (E9.0). We also show that PKCλ/ι-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. PKCλ/ι is selectively expressed in the first-trimester CTBs of a developing human placenta. Furthermore, loss of PKCλ/ι in CTB-derived human trophoblast stem cells (human TSCs) impairs their SynT differentiation potential both in vitro and after transplantation in immunocompromised mice. Our mechanistic analyses indicate that PKCλ/ι signaling maintains expression of GCM1, GATA2, and PPARγ, which are key transcription factors to instigate SynT differentiation programs in both mouse and human trophoblast progenitors. Our study uncovers a conserved molecular mechanism, in which PKCλ/ι signaling regulates establishment of the maternal-fetal exchange surface by promoting trophoblast progenitor-to-SynT transition during placentation.
Collapse
Affiliation(s)
- Bhaswati Bhattacharya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Pratik Home
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
| | - Avishek Ganguly
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soma Ray
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ananya Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Md Rashedul Islam
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Valerie French
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Courtney Marsh
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
10
|
Gao Y, Qiao H, Zhong T, Lu Z, Hou Y. MicroRNA‑29a promotes the neural differentiation of rat neural stem/progenitor cells by targeting KLF4. Mol Med Rep 2020; 22:1008-1016. [PMID: 32468029 PMCID: PMC7339629 DOI: 10.3892/mmr.2020.11177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/23/2020] [Indexed: 01/13/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) remain in the mammalian brain throughout life, where they have the ability to self-renew and generate different types of cell in the central nervous system (CNS). Therefore, NSPCs may be a potential novel therapeutic strategy following damage to the CNS. Previous research has reported that microRNA (miR)-29a served an important role in regulating cell proliferation, differentiation and survival; however, to the best of our knowledge, little is known of the effect of miR-29a in neural differentiation. The present study aimed to investigate the effect of miR-29a on the differentiation of NSPCs, determined via RNA interference, immunostaining, reverse transcription-quantitative PCR and western blotting. The present study discovered that the expression levels of miR-29a were significantly upregulated in a time-dependent manner during neural differentiation. Immunostaining showed that overexpression of miR-29a promoted neural differentiation, which manifested in increased expression levels of neuron-specific class III β-tubulin (Tuj1); however, miR-29a had no effect on neuroglial differentiation. The expression levels of Kruppel-like factor 4 (KLF4) were downregulated following overexpression of miR-29a, whereas the inhibition of miR-29a demonstrated the opposite effect. These results suggested that the overexpression of miR-29a may promote neural differentiation in cultured rat NSPCs by decreasing the expression levels of KLF4. Thus indicating that targeting KLF4, a crucial regulatory factor for the maintenance of stemness, may be a potential underlying mechanism of action for miR-29a. In conclusion, the findings of the present study identified a potential mechanism of action for miR-29a in NSPC differentiation and provided a novel insight into the treatment strategies for CNS damage.
Collapse
Affiliation(s)
- Yunan Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tianyu Zhong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhen Lu
- Department of Orthodontics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
11
|
Liu J, Zhu X, Li J, Liu Z, Liu Y, Xue F, Yang L, An L, Chen CH, Presicce GA, Zheng Q, Du F. Deriving rabbit embryonic stem cells by small molecule inhibitors. Am J Transl Res 2019; 11:5122-5133. [PMID: 31497228 PMCID: PMC6731393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
We previously developed pluripotent rabbit embryonic stem cells (rbES) using a culture system supplemented with basic fibroblast growth factor (bFGF) and leukemia inhibitory factor (LIF), noggin and Y-27632 (referred to as iFLY). In present work, we explored multiple approaches to enhance the chance of deriving domed pluripotent rbES cells by inhibition of MEK, GSK, and PKC signaling pathways. Domed stated rbES were derived in defined medium supplemented with 15% KOSR, 103 IU/mL mouse LIF, 10 ng/mL bFGF and three inhibitors to the MEK (PD0325901, 1 µM), GSK3 (CHIR99021, 3 µM) and PKC (Gö6983, 5 µM) (3i). Domed rbES were passaged every 3-4 days till passage 3-4 for the designated experiments. We showed that bFGF and LIF are indispensable for the derivation and maintenance of rbES; whereas the 3i medium containing inhibitors to the MEK (PD0325901), GSK3 (CHIR99021) and PKC (Gö6983) were necessary for deriving domed rbES. Domed rbES possessed naïve ES markers as Rex1 and ERAS in addition to Oct4, Klf4, Sox 2 and c-myc by RT-PCR. Domed rbES showed positive staining for Rex1, Fgf4, Klf4, Nanog and Oct4 by immunofluorescence chemistry. Further deleting either one factor in 3i medium as CHIR99021, PD0325901, Gö6983 or bFGF resulted in disappearing of domed rbES colonies. The optimal concentrations of 3i contained 0.75 µM PD0325901, 2.25 µM CHIR99021, and 4.5 µM Gö6983. Our work, in combination of different inhibitors for deriving rabbit ES, supports that the network of signal pathways plays an important role in ES self-renew, propagation and maintenance, and sheds light on deriving authentic properties of rbES in an important yet understudied model animal species.
Collapse
Affiliation(s)
- Jiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | - Xiumei Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | - Jinshan Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | - Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | - Yanhong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | - Fei Xue
- Renova Life, Inc.Jacksonville, Florida 32258, USA
| | - Lan Yang
- Lannuo Biotechnologies Wuxi Inc.Wuxi 214000, Jiangsu, P. R. China
| | - Liyou An
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | | | | | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
- Renova Life, Inc.Jacksonville, Florida 32258, USA
| |
Collapse
|
12
|
Chen Y, Spitzer S, Agathou S, Karadottir RT, Smith A. Gene Editing in Rat Embryonic Stem Cells to Produce In Vitro Models and In Vivo Reporters. Stem Cell Reports 2018; 9:1262-1274. [PMID: 29020614 PMCID: PMC5639479 DOI: 10.1016/j.stemcr.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Rat embryonic stem cells (ESCs) offer the potential for sophisticated genome engineering in this valuable biomedical model species. However, germline transmission has been rare following conventional homologous recombination and clonal selection. Here, we used the CRISPR/Cas9 system to target genomic mutations and insertions. We first evaluated utility for directed mutagenesis and recovered clones with biallelic deletions in Lef1. Mutant cells exhibited reduced sensitivity to glycogen synthase kinase 3 inhibition during self-renewal. We then generated a non-disruptive knockin of dsRed at the Sox10 locus. Two clones produced germline chimeras. Comparative expression of dsRed and SOX10 validated the fidelity of the reporter. To illustrate utility, live imaging of dsRed in neonatal brain slices was employed to visualize oligodendrocyte lineage cells for patch-clamp recording. Overall, these results show that CRISPR/Cas9 gene editing technology in germline-competent rat ESCs is enabling for in vitro studies and for generating genetically modified rats. Gene mutation and homologous recombination in rat ESCs using CRISPR/Cas9 Lef1 mutants exhibit predicted loss of hypersensitivity to GSK3 inhibition Sox10 knockin rat provides a vital reporter of neural crest and oligodendroglia Sox10::dsRed facilitates patch-clamp recording from oligodendroglial lineage cells
Collapse
Affiliation(s)
- Yaoyao Chen
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sonia Spitzer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Sylvia Agathou
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Ragnhildur Thora Karadottir
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
13
|
Lin Z, Liu F, Shi P, Song A, Huang Z, Zou D, Chen Q, Li J, Gao X. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C. Stem Cell Res Ther 2018; 9:47. [PMID: 29482657 PMCID: PMC5937047 DOI: 10.1186/s13287-018-0792-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. METHODS Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. RESULTS We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. CONCLUSION We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.
Collapse
Affiliation(s)
- Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China.
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Peiliang Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China
| | - Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China
| | - Zan Huang
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agriculture University, 1 Weigang Road, Nanjing, Jiangsu, 210095, China
| | - Dayuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China
| | - Qin Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China
| | - Jianxin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China
| |
Collapse
|
14
|
Abstract
Since its domestication over 100 years ago, the laboratory rat has been the preferred experimental animal in many areas of biomedical research (Lindsey and Baker The laboratory rat. Academic, New York, pp 1-52, 2006). Its physiology, size, genetics, reproductive cycle, cognitive and behavioural characteristics have made it a particularly useful animal model for studying many human disorders and diseases. Indeed, through selective breeding programmes numerous strains have been derived that are now the mainstay of research on hypertension, obesity and neurobiology (Okamoto and Aoki Jpn Circ J 27:282-293, 1963; Zucker and Zucker J Hered 52(6):275-278, 1961). Despite this wealth of genetic and phenotypic diversity, the ability to manipulate and interrogate the genetic basis of existing phenotypes in rat strains and the methodology to generate new rat models has lagged significantly behind the advances made with its close cousin, the laboratory mouse. However, recent technical developments in stem cell biology and genetic engineering have again brought the rat to the forefront of biomedical studies and enabled researchers to exploit the increasingly accessible wealth of genome sequence information. In this review, we will describe how a breakthrough in understanding the molecular basis of self-renewal of the pluripotent founder cells of the mammalian embryo, embryonic stem (ES) cells, enabled the derivation of rat ES cells and their application in transgenesis. We will also describe the remarkable progress that has been made in the development of gene editing enzymes that enable the generation of transgenic rats directly through targeted genetic modifications in the genomes of zygotes. The simplicity, efficiency and cost-effectiveness of the CRISPR/Cas gene editing system, in particular, mean that the ability to engineer the rat genome is no longer a limiting factor. The selection of suitable targets and gene modifications will now become a priority: a challenge where ES culture and gene editing technologies can play complementary roles in generating accurate bespoke rat models for studying biological processes and modelling human disease.
Collapse
|
15
|
Buonfiglio LGV, Bagegni M, Borcherding JA, Sieren JC, Caraballo JC, Reger A, Zabner J, Li X, Comellas AP. Protein Kinase Cζ Inhibitor Promotes Resolution of Bleomycin-Induced Acute Lung Injury. Am J Respir Cell Mol Biol 2017; 55:869-877. [PMID: 27486964 DOI: 10.1165/rcmb.2015-0006oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein kinase Cζ (PKCζ) is highly expressed in the lung, where it plays several regulating roles in the pathogenesis of acute lung injury (ALI). Proliferation and differentiation of integrin β4+ distal lung epithelial progenitor cells seem to play a key role in proper lung regeneration. We investigated the effects of a myristoylated PKCζ inhibitor (PKCζi) in a murine model of bleomycin-induced ALI. After intratracheal injury, we treated mice three times a week with PKCζi or its vehicle, DMSO. We found that mice injured with bleomycin and then treated with PKCζi for one week showed decreased activation of PKCζ, improved lung compliance, and decreased lung protein permeability compared to injured mice treated with DMSO. Mice treated continuously with PKCζi for 6 weeks showed reduced evidence of lung fibrosis by computed tomographic images, decreased lung collagen deposition, and decreased active transforming growth factor-β in the bronchoalveolar lavage fluid. In addition, we found an increased number of lung β4+ cells compared to DMSO at Week 6. Therefore, we grew isolated integrin β4+ lung progenitor cells in the presence of PKCζi or DMSO and found that β4+ cells treated with PKCζi proliferated more in vitro compared to DMSO. We conclude that the use of a PKCζi promotes resolution of lung fibrosis in a bleomycin ALI model and increases the number of β4+ progenitor cells with regenerative potential in the lung.
Collapse
Affiliation(s)
- Luis G Vargas Buonfiglio
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Mosaab Bagegni
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Jennifer A Borcherding
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | | | - Juan C Caraballo
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Andrew Reger
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Joseph Zabner
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Xiaopeng Li
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| | - Alejandro P Comellas
- 1 Internal Medicine Department, Division of Pulmonary, Critical Care, and Occupational Medicine, and
| |
Collapse
|
16
|
|
17
|
Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism. Chem Biol Interact 2016; 250:1-11. [PMID: 26947806 DOI: 10.1016/j.cbi.2016.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 01/23/2023]
Abstract
Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients.
Collapse
|
18
|
Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 2016; 17:155-69. [PMID: 26860365 DOI: 10.1038/nrm.2015.28] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms and signalling pathways that regulate the in vitro preservation of distinct pluripotent stem cell configurations, and their induction in somatic cells by direct reprogramming, constitute a highly exciting area of research. In this Review, we integrate recent discoveries related to isolating unique naive and primed pluripotent stem cell states with altered functional and molecular characteristics, and from different species. We provide an overview of the pathways underlying pluripotent state transitions and interconversion in vitro and in vivo. We conclude by highlighting unresolved key questions, future directions and potential novel applications of such dynamic pluripotent cell states.
Collapse
|
19
|
Unahabhokha T, Chanvorachote P, Pongrakhananon V. The attenuation of epithelial to mesenchymal transition and induction of anoikis by gigantol in human lung cancer H460 cells. Tumour Biol 2016; 37:8633-41. [PMID: 26733180 DOI: 10.1007/s13277-015-4717-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
Lung cancer has been the major cause of death within patients due to the high metastatic rate. One of the most essential processes of metastasis is the ability of cancer cells to resist the programmed cell death in a detached condition called anoikis. The discoveries of new natural compound that is able to sensitize anoikis in cancer cells have garnered the most interest in cancer pharmaceutical science. Gigantol, a bibenzyl compound extracted from Dendrobium draconis, has been a promising natural derived compound for cancer therapy due to several cytotoxic effects in cancer cells. This study has demonstrated for the first time that gigantol significantly decreases lung cancer cells' viability in a detached condition through anoikis and anchorage-independent assays. Western blotting analysis reveals that gigantol greatly decreases epithelial to mesenchymal transition (EMT) markers including N-cadherin, vimentin, and Slug leading to a significant suppression of protein kinase B (AKT), extracellular signal-regulated kinase (ERK), and caveolin-1 (cav-1) survival pathways during the detached condition. Therefore, gigantol could be a potential cancer therapeutic compound suggesting for further development for cancer therapy.
Collapse
Affiliation(s)
- Thitita Unahabhokha
- Pharmaceutical Technology (International) Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand, 10330
- Cell-Based Drug and Health Product Development Research Unit, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand, 10330
- Cell-Based Drug and Health Product Development Research Unit, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand, 10330.
- Cell-Based Drug and Health Product Development Research Unit, Chulalongkorn University, Bangkok, Thailand, 10330.
| |
Collapse
|
20
|
Mah IK, Soloff R, Hedrick SM, Mariani FV. Atypical PKC-iota Controls Stem Cell Expansion via Regulation of the Notch Pathway. Stem Cell Reports 2015; 5:866-880. [PMID: 26527382 PMCID: PMC4649379 DOI: 10.1016/j.stemcr.2015.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
The number of stem/progenitor cells available can profoundly impact tissue homeostasis and the response to injury or disease. Here, we propose that an atypical PKC, Prkci, is a key player in regulating the switch from an expansion to a differentiation/maintenance phase via regulation of Notch, thus linking the polarity pathway with the control of stem cell self-renewal. Prkci is known to influence symmetric cell division in invertebrates; however a definitive role in mammals has not yet emerged. Using a genetic approach, we find that loss of Prkci results in a marked increase in the number of various stem/progenitor cells. The mechanism used likely involves inactivation and symmetric localization of NUMB, leading to the activation of NOTCH1 and its downstream effectors. Inhibition of atypical PKCs may be useful for boosting the production of pluripotent stem cells, multipotent stem cells, or possibly even primordial germ cells by promoting the stem cell/progenitor fate. PRKCi, a polarity protein, regulates expansion of various stem/progenitor cells PRKCi acts in this capacity via a Notch-dependent pathway Thus, PRKCi acts as a link between polarity and stem cell self-renewal Inhibition of aPKCs may be generally useful for expanding progenitor populations
Collapse
Affiliation(s)
- In Kyoung Mah
- Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA
| | - Rachel Soloff
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen M Hedrick
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesca V Mariani
- Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA.
| |
Collapse
|
21
|
Grigor’eva EV, Shevchenko AI, Medvedev SP, Mazurok NA, Zhelezova AI, Zakian SM. Induced Pluripotent Stem Cells of Microtus levis x Microtus arvalis Vole Hybrids: Conditions Necessary for Their Generation and Self-Renewal. Acta Naturae 2015; 7:56-69. [PMID: 26798492 PMCID: PMC4717250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Every year, the list of mammalian species for which cultures of pluripotent stem cells (PSCs) are generated increases. PSCs are a unique tool for extending the limits of experimental studies and modeling different biological processes. In this work, induced pluripotent stem cells (iPSCs) from the hybrids of common voles Microtus levis and Microtus arvalis, which are used as model objects to study genome organization on the molecular-genetic level and the mechanisms of X-chromosome inactivation, have been generated. Vole iPSCs were isolated and cultured in a medium containing cytokine LIF, basic fibroblast growth factor (bFGF), ascorbic acid, and fetal bovine serum. Undifferentiated state of vole iPSCs is maintained by activation of their endogenous pluripotency genes - Nanog, Oct4, Sox2, Sall4, and Esrrb. The cells were able to maintain undifferentiated state for at least 28 passages without change in their morphology and give rise to three germ layers (ectoderm, mesoderm and endoderm) upon differentiation.
Collapse
Affiliation(s)
- E. V. Grigor’eva
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the, Rechkunovskaya Str., 15, 630055, Novosibirsk, Russia
| | - A. I. Shevchenko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the, Rechkunovskaya Str., 15, 630055, Novosibirsk, Russia
| | - S. P. Medvedev
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the, Rechkunovskaya Str., 15, 630055, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str., 2, 630090, Novosibirsk, Russia
| | - N. A. Mazurok
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the, Rechkunovskaya Str., 15, 630055, Novosibirsk, Russia
| | - A. I. Zhelezova
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
| | - S. M. Zakian
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the, Rechkunovskaya Str., 15, 630055, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str., 2, 630090, Novosibirsk, Russia
| |
Collapse
|
22
|
Mahato B, Home P, Rajendran G, Paul A, Saha B, Ganguly A, Ray S, Roy N, Swerdlow RH, Paul S. Regulation of mitochondrial function and cellular energy metabolism by protein kinase C-λ/ι: a novel mode of balancing pluripotency. Stem Cells 2015; 32:2880-92. [PMID: 25142417 DOI: 10.1002/stem.1817] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/27/2014] [Accepted: 07/23/2014] [Indexed: 01/02/2023]
Abstract
Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis are key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing versus differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization, and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-hypoxia-inducible factor 1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts.
Collapse
Affiliation(s)
- Biraj Mahato
- Department of Pathology & Laboratory Medicine, Kansas City, Kansas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Manor YS, Massarwa R, Hanna JH. Establishing the human naïve pluripotent state. Curr Opin Genet Dev 2015; 34:35-45. [PMID: 26291026 DOI: 10.1016/j.gde.2015.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 02/08/2023]
Abstract
Pluripotency is first assembled within the inner-cell-mass of developing pre-implantation blastocysts, and is gradually reconfigured and dismantled during early post-implantation development, before overt differentiation into somatic lineages ensues. This transition from pre-implantation to post-implantation pluripotent states, respectively referred to as naïve and primed, is accompanied by dramatic changes in molecular and functional characteristics. Remarkably, pluripotent states can be artificially preserved in a self-renewing state in vitro by continuous supplementation of a variety of exogenous cytokines and small molecule inhibitors. Different exogenous factors endow the cells with distinct configurations of pluripotency that have direct influence on stem cell characteristics both in mice and humans. Here we overview pluripotent states captured from rodents and humans under different growth conditions, and provide a conceptual framework for classifying pluripotent cell states on the basis of a combination of multiple characteristics that a pluripotent cell can simultaneously retain. We further highlight the complexity and dynamic nature of these artificially isolated in vitro pluripotent states in humans.
Collapse
Affiliation(s)
- Yair S Manor
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rada Massarwa
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Jacob H Hanna
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
24
|
Mohamed W, Ray S, Brazill D, Baskar R. Absence of catalytic domain in a putative protein kinase C (PkcA) suppresses tip dominance in Dictyostelium discoideum. Dev Biol 2015; 405:10-20. [PMID: 26183108 DOI: 10.1016/j.ydbio.2015.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/06/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Abstract
A number of organisms possess several isoforms of protein kinase C but little is known about the significance of any specific isoform during embryogenesis and development. To address this we characterized a PKC ortholog (PkcA; DDB_G0288147) in Dictyostelium discoideum. pkcA expression switches from prestalk in mound to prespore in slug, indicating a dynamic expression pattern. Mutants lacking the catalytic domain of PkcA (pkcA(-)) did not exhibit tip dominance. A striking phenotype of pkcA- was the formation of an aggregate with a central hollow, and aggregates later fragmented to form small mounds, each becoming a fruiting body. Optical density wave patterns of cAMP in the late aggregates showed several cAMP wave generation centers. We attribute these defects in pkcA(-) to impaired cAMP signaling, altered cell motility and decreased expression of the cell adhesion molecules - CadA and CsaA. pkcA(-) slugs showed ectopic expression of ecmA in the prespore region. Further, the use of a PKC-specific inhibitor, GF109203X that inhibits the activity of catalytic domain phenocopied pkcA(-).
Collapse
Affiliation(s)
- Wasima Mohamed
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sibnath Ray
- Department of Biological Sciences, Center for Translational and Basic Research, Hunter College and The Graduate Center of the City University of New York, New York, NY 10065, USA
| | - Derrick Brazill
- Department of Biological Sciences, Center for Translational and Basic Research, Hunter College and The Graduate Center of the City University of New York, New York, NY 10065, USA
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
25
|
Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure. Proc Natl Acad Sci U S A 2015; 112:E2337-46. [PMID: 25870291 DOI: 10.1073/pnas.1504778112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human pluripotent stem cells (PSCs) show epiblast-type pluripotency that is maintained with ACTIVIN/FGF2 signaling. Here, we report the acquisition of a unique stem cell phenotype by both human ES cells (hESCs) and induced pluripotent stem cells (iPSCs) in response to transient (24-36 h) exposure to bone morphogenetic protein 4 (BMP4) plus inhibitors of ACTIVIN signaling (A83-01) and FGF2 (PD173074), followed by trypsin dissociation and recovery of colonies capable of growing on a gelatin substratum in standard medium for human PSCs at low but not high FGF2 concentrations. The self-renewing cell lines stain weakly for CDX2 and strongly for NANOG, can be propagated clonally on either Matrigel or gelatin, and are morphologically distinct from human PSC progenitors on either substratum but still meet standard in vitro criteria for pluripotency. They form well-differentiated teratomas in immune-compromised mice that secrete human chorionic gonadotropin (hCG) into the host mouse and include small areas of trophoblast-like cells. The cells have a distinct transcriptome profile from the human PSCs from which they were derived (including higher expression of NANOG, LEFTY1, and LEFTY2). In nonconditioned medium lacking FGF2, the colonies spontaneously differentiated along multiple lineages, including trophoblast. They responded to PD173074 in the absence of both FGF2 and BMP4 by conversion to trophoblast, and especially syncytiotrophoblast, whereas an A83-01/PD173074 combination favored increased expression of HLA-G, a marker of extravillous trophoblast. Together, these data suggest that the cell lines exhibit totipotent potential and that BMP4 can prime human PSCs to a self-renewing alternative state permissive for trophoblast development. The results may have implications for regulation of lineage decisions in the early embryo.
Collapse
|
26
|
Paul A, Paul S. PKCλ/ι signaling-a common node for normal cellular development and breast oncogenesis. Mol Cell Oncol 2015; 2:e975076. [PMID: 27308429 PMCID: PMC4905021 DOI: 10.4161/23723556.2014.975076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022]
Abstract
We recently demonstrated that PKCλ/ι signaling is an important contributor to breast cancer development. Strikingly, PKCλ/ι signaling is also important to balance self-renewal versus differentiation in pluripotent stem cells and is essential for embryonic development. This commentary highlights some key functions of PKCλ/ι signaling that are integral to both normal development and cancer progression.
Collapse
Affiliation(s)
- Arindam Paul
- The University of Kansas Cancer Center; University of Kansas Medical Center; Kansas City, KS USA; Department of Pathology and Laboratory Medicine; University of Kansas Medical Center; Kansas City, KS USA
| | - Soumen Paul
- The University of Kansas Cancer Center; University of Kansas Medical Center; Kansas City, KS USA; Department of Pathology and Laboratory Medicine; University of Kansas Medical Center; Kansas City, KS USA
| |
Collapse
|
27
|
Shoni M, Lui KO, Vavvas DG, Muto MG, Berkowitz RS, Vlahos N, Ng SW. Protein kinases and associated pathways in pluripotent state and lineage differentiation. Curr Stem Cell Res Ther 2015; 9:366-87. [PMID: 24998240 DOI: 10.2174/1574888x09666140616130217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Protein kinases (PKs) mediate the reversible conversion of substrate proteins to phosphorylated forms, a key process in controlling intracellular signaling transduction cascades. Pluripotency is, among others, characterized by specifically expressed PKs forming a highly interconnected regulatory network that culminates in a finely-balanced molecular switch. Current high-throughput phosphoproteomic approaches have shed light on the specific regulatory PKs and their function in controlling pluripotent states. Pluripotent cell-derived endothelial and hematopoietic developments represent an example of the importance of pluripotency in cancer therapeutics and organ regeneration. This review attempts to provide the hitherto known kinome profile and the individual characterization of PK-related pathways that regulate pluripotency. Elucidating the underlying intrinsic and extrinsic signals may improve our understanding of the different pluripotent states, the maintenance or induction of pluripotency, and the ability to tailor lineage differentiation, with a particular focus on endothelial cell differentiation for anti-cancer treatment, cell-based tissue engineering, and regenerative medicine strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu-Wing Ng
- 221 Longwood Avenue, BLI- 449A, Boston MA 02115, USA.
| |
Collapse
|
28
|
Jiang Z, Kong C, Zhang Z, Zhu Y, Zhang Y, Chen X. Reduction of protein kinase C α (PKC-α) promote apoptosis via down-regulation of Dicer in bladder cancer. J Cell Mol Med 2015; 19:1085-93. [PMID: 25752336 PMCID: PMC4420610 DOI: 10.1111/jcmm.12503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/28/2014] [Indexed: 02/05/2023] Open
Abstract
In clinic, we examined the expression of protein kinase C (PKC)-α and Dicer in the samples of bladder cancer patients, and found that the two proteins have a line correlation. Our study confirmed this correlation existing by clearing the decreasing expression of Dicer after the PKC-α knockdown. Treatment of bladder cancer cell lines (T24, 5637) with the PKC-α or Dicer knockdown and the PKC inhibitors (Calphostin C and Gö 6976) can promote the apoptosis. Inhibition of PKC can increase the activities of caspase-3 and PARP, however, decrease the expression of Dicer. And knockdown of the PKC-α or Dicer can also activate the caspase-3 or the PARP. Considering the reduction of PKC-α can induce the Dicer down-regulation, we make the conclusion that the reduction of PKC-α can promote the apoptosis via the down-regulation of Dicer in bladder cancer.
Collapse
Affiliation(s)
- Zhenming Jiang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
29
|
Huang G, Ye S, Zhou X, Liu D, Ying QL. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci 2015; 72:1741-57. [PMID: 25595304 DOI: 10.1007/s00018-015-1833-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) can be maintained in culture indefinitely while retaining the capacity to generate any type of cell in the body, and therefore not only hold great promise for tissue repair and regeneration, but also provide a powerful tool for modeling human disease and understanding biological development. In order to fulfill the full potential of ESCs, it is critical to understand how ESC fate, whether to self-renew or to differentiate into specialized cells, is regulated. On the molecular level, ESC fate is controlled by the intracellular transcriptional regulatory networks that respond to various extrinsic signaling stimuli. In this review, we discuss and compare important signaling pathways in the self-renewal and differentiation of mouse, rat, and human ESCs with an emphasis on how these pathways integrate into ESC-specific transcription circuitries. This will be beneficial for understanding the common and conserved mechanisms that govern self-renewal, and for developing novel culture conditions that support ESC derivation and maintenance.
Collapse
Affiliation(s)
- Guanyi Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | | | | | | | | |
Collapse
|
30
|
Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH. Derivation of novel human ground state naive pluripotent stem cells. Nature 2013; 504:282-6. [PMID: 24172903 DOI: 10.1038/nature12745] [Citation(s) in RCA: 829] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022]
Abstract
Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.
Collapse
Affiliation(s)
- Ohad Gafni
- 1] The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel [2]
| | - Leehee Weinberger
- 1] The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel [2]
| | - Abed AlFatah Mansour
- 1] The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel [2]
| | - Yair S Manor
- 1] The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel [2]
| | - Elad Chomsky
- 1] The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel [2] The Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel [3] The Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel [4]
| | - Dalit Ben-Yosef
- 1] Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel [2] The Department of Cell and Developmental Biology, Sackler Medical School, Tel-Aviv University, Israel
| | - Yael Kalma
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Sergey Viukov
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itay Maza
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaf Zviran
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoach Rais
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Shipony
- 1] The Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel [2] The Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Mukamel
- 1] The Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel [2] The Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vladislav Krupalnik
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mirie Zerbib
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shay Geula
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Inbal Caspi
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Schneir
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Shwartz
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Shlomit Gilad
- The Israel National Center for Personalized Medicine (INCPM), Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniela Amann-Zalcenstein
- The Israel National Center for Personalized Medicine (INCPM), Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sima Benjamin
- The Israel National Center for Personalized Medicine (INCPM), Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ido Amit
- The Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amos Tanay
- 1] The Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel [2] The Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rada Massarwa
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noa Novershtern
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jacob H Hanna
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|