1
|
Mu-U-Min RBA, Diane A, Allouch A, Al-Siddiqi HH. Ca 2+-Mediated Signaling Pathways: A Promising Target for the Successful Generation of Mature and Functional Stem Cell-Derived Pancreatic Beta Cells In Vitro. Biomedicines 2023; 11:1577. [PMID: 37371672 DOI: 10.3390/biomedicines11061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is a chronic disease affecting over 500 million adults globally and is mainly categorized as type 1 diabetes mellitus (T1DM), where pancreatic beta cells are destroyed, and type 2 diabetes mellitus (T2DM), characterized by beta cell dysfunction. This review highlights the importance of the divalent cation calcium (Ca2+) and its associated signaling pathways in the proper functioning of beta cells and underlines the effects of Ca2+ dysfunction on beta cell function and its implications for the onset of diabetes. Great interest and promise are held by human pluripotent stem cell (hPSC) technology to generate functional pancreatic beta cells from diabetic patient-derived stem cells to replace the dysfunctional cells, thereby compensating for insulin deficiency and reducing the comorbidities of the disease and its associated financial and social burden on the patient and society. Beta-like cells generated by most current differentiation protocols have blunted functionality compared to their adult human counterparts. The Ca2+ dynamics in stem cell-derived beta-like cells and adult beta cells are summarized in this review, revealing the importance of proper Ca2+ homeostasis in beta-cell function. Consequently, the importance of targeting Ca2+ function in differentiation protocols is suggested to improve current strategies to use hPSCs to generate mature and functional beta-like cells with a comparable glucose-stimulated insulin secretion (GSIS) profile to adult beta cells.
Collapse
Affiliation(s)
- Razik Bin Abdul Mu-U-Min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Asma Allouch
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Heba H Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
2
|
Paracrine ADP Ribosyl Cyclase-Mediated Regulation of Biological Processes. Cells 2022; 11:cells11172637. [PMID: 36078044 PMCID: PMC9454491 DOI: 10.3390/cells11172637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
ADP-ribosyl cyclases (ADPRCs) catalyze the synthesis of the Ca2+-active second messengers Cyclic ADP-ribose (cADPR) and ADP-ribose (ADPR) from NAD+ as well as nicotinic acid adenine dinucleotide phosphate (NAADP+) from NADP+. The best characterized ADPRC in mammals is CD38, a single-pass transmembrane protein with two opposite membrane orientations. The first identified form, type II CD38, is a glycosylated ectoenzyme, while type III CD38 has its active site in the cytosol. The ectoenzymatic nature of type II CD38 raised long ago the question of a topological paradox concerning the access of the intracellular NAD+ substrate to the extracellular active site and of extracellular cADPR product to its intracellular receptors, ryanodine (RyR) channels. Two different transporters, equilibrative connexin 43 (Cx43) hemichannels for NAD+ and concentrative nucleoside transporters (CNTs) for cADPR, proved to mediate cell-autonomous trafficking of both nucleotides. Here, we discussed how type II CD38, Cx43 and CNTs also play a role in mediating several paracrine processes where an ADPRC+ cell supplies a neighboring CNT-and RyR-expressing cell with cADPR. Recently, type II CD38 was shown to start an ectoenzymatic sequence of reactions from NAD+/ADPR to the strong immunosuppressant adenosine; this paracrine effect represents a major mechanism of acquired resistance of several tumors to immune checkpoint therapy.
Collapse
|
3
|
Martucci LL, Cancela JM. Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium 2022; 104:102582. [DOI: 10.1016/j.ceca.2022.102582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
|
4
|
Roles of cADPR and NAADP in pancreatic beta cell signalling. Cell Calcium 2022; 103:102562. [DOI: 10.1016/j.ceca.2022.102562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
|
5
|
Glucose and NAADP trigger elementary intracellular β-cell Ca 2+ signals. Sci Rep 2021; 11:10714. [PMID: 34021189 PMCID: PMC8140081 DOI: 10.1038/s41598-021-88906-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
Pancreatic β-cells release insulin upon a rise in blood glucose. The precise mechanisms of stimulus-secretion coupling, and its failure in Diabetes Mellitus Type 2, remain to be elucidated. The consensus model, as well as a class of currently prescribed anti-diabetic drugs, are based around the observation that glucose-evoked ATP production in β-cells leads to closure of cell membrane ATP-gated potassium (KATP) channels, plasma membrane depolarisation, Ca2+ influx, and finally the exocytosis of insulin granules. However, it has been demonstrated by the inactivation of this pathway using genetic and pharmacological means that closure of the KATP channel alone may not be sufficient to explain all β-cell responses to glucose elevation. We have previously proposed that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells. Here we show using total internal reflection fluorescence (TIRF) microscopy that glucose as well as the Ca2+ mobilising messenger nicotinic acid adenine dinucleotide phosphate (NAADP), known to operate in β-cells, lead to highly localised elementary intracellular Ca2+ signals. These were found to be obscured by measurements of global Ca2+ signals and the action of powerful SERCA-based sequestration mechanisms at the endoplasmic reticulum (ER). Building on our previous work demonstrating that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells, we provide here the first demonstration of elementary Ca2+ signals in response to NAADP, whose occurrence was previously suspected. Optical quantal analysis of these events reveals a unitary event amplitude equivalent to that of known elementary Ca2+ signalling events, inositol trisphosphate (IP3) receptor mediated blips, and ryanodine receptor mediated quarks. We propose that a mechanism based on these highly localised intracellular Ca2+ signalling events mediated by NAADP may initially operate in β-cells when they respond to elevations in blood glucose.
Collapse
|
6
|
Nam TS, Park DR, Rah SY, Woo TG, Chung HT, Brenner C, Kim UH. Interleukin-8 drives CD38 to form NAADP from NADP + and NAAD in the endolysosomes to mobilize Ca 2+ and effect cell migration. FASEB J 2020; 34:12565-12576. [PMID: 32717131 DOI: 10.1096/fj.202001249r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 01/22/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing second messenger whose formation has remained elusive. In vitro, CD38-mediated NAADP synthesis requires an acidic pH and a nonphysiological concentration of nicotinic acid (NA). We discovered that CD38 catalyzes synthesis of NAADP by exchanging the nicotinamide moiety of nicotinamide adenine dinucleotide phosphate (NADP+ ) for the NA group of nicotinic acid adenine dinucleotide (NAAD) inside endolysosomes of interleukin 8 (IL8)-treated lymphokine-activated killer (LAK) cells. Upon IL8 stimulation, cytosolic NADP+ is transported to acidified endolysosomes via connexin 43 (Cx43) and gated by cAMP-EPAC-RAP1-PP2A signaling. CD38 then performs a base-exchange reaction with the donor NA group deriving from NAAD, produced by newly described endolysosomal activities of NA phosphoribosyltransferase (NAPRT) and NMN adenyltransferase (NMNAT) 3. Thus, the membrane organization of endolysosomal CD38, a signal-mediated transport system for NADP+ and luminal NAD+ biosynthetic enzymes integrate signals from a chemokine and cAMP to specify the spatiotemporal mobilization of Ca2+ to drive cell migration.
Collapse
Affiliation(s)
- Tae-Sik Nam
- Department of Biochemistry & National Creative Research Laboratory for Ca2+ Signaling, Chonbuk National University Medical School, Jeonju, Korea
| | - Dae-Ryoung Park
- Department of Biochemistry & National Creative Research Laboratory for Ca2+ Signaling, Chonbuk National University Medical School, Jeonju, Korea
| | - So-Young Rah
- Department of Biochemistry & National Creative Research Laboratory for Ca2+ Signaling, Chonbuk National University Medical School, Jeonju, Korea
| | - Tae-Gyu Woo
- Department of Biochemistry & National Creative Research Laboratory for Ca2+ Signaling, Chonbuk National University Medical School, Jeonju, Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Charles Brenner
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Uh-Hyun Kim
- Department of Biochemistry & National Creative Research Laboratory for Ca2+ Signaling, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
7
|
Artiukhov AV, Grabarska A, Gumbarewicz E, Aleshin VA, Kähne T, Obata T, Kazantsev AV, Lukashev NV, Stepulak A, Fernie AR, Bunik VI. Synthetic analogues of 2-oxo acids discriminate metabolic contribution of the 2-oxoglutarate and 2-oxoadipate dehydrogenases in mammalian cells and tissues. Sci Rep 2020; 10:1886. [PMID: 32024885 PMCID: PMC7002488 DOI: 10.1038/s41598-020-58701-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH. Using succinyl, glutaryl and adipoyl phosphonates on the enzyme preparations from tissues with varied DHTKD1 expression reveals the contributions of OADH and OGDH to oxidation of 2-oxoadipate and 2-oxoglutarate in vitro. In the phosphonates-treated cells with the high and low DHTKD1 expression, adipate or glutarate, correspondingly, are the most affected metabolites. The marker of fatty acid β-oxidation, adipate, is mostly decreased by the shorter, OGDH-preferring, phosphonate, in agreement with the known OGDH dependence of β-oxidation. The longest, OADH-preferring, phosphonate mostly affects the glutarate level. Coupled decreases in sugars and nicotinate upon the OADH inhibition link the perturbation in glucose homeostasis, known in OADH mutants, to the nicotinate-dependent NAD metabolism.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aneta Grabarska
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Vasily A Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Biochemistry, George W. Beadle Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
8
|
Galione A, Chuang KT. Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1131:371-394. [PMID: 31646518 DOI: 10.1007/978-3-030-12457-1_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ca2+ signals are probably the most common intracellular signaling cellular events, controlling an extensive range of responses in virtually all cells. Many cellular stimuli, often acting at cell surface receptors, evoke Ca2+ signals by mobilizing Ca2+ from intracellular stores. Inositol trisphosphate (IP3) was the first messenger shown to link events at the plasma membrane to release Ca2+ from the endoplasmic reticulum (ER), through the activation of IP3-gated Ca2+ release channels (IP3 receptors). Subsequently, two additional Ca2+ mobilizing messengers were discovered, cADPR and NAADP. Both are metabolites of pyridine nucleotides, and may be produced by the same class of enzymes, ADP-ribosyl cyclases, such as CD38. Whilst cADPR mobilizes Ca2+ from the ER by activation of ryanodine receptors (RyRs), NAADP releases Ca2+ from acidic stores by a mechanism involving the activation of two pore channels (TPCs). In addition, other pyridine nucleotides have emerged as intracellular messengers. ADP-ribose and 2'-deoxy-ADPR both activate TRPM2 channels which are expressed at the plasma membrane and in lysosomes.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Kai-Ting Chuang
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Turovsky EA, Zinchenko VP, Kaimachnikov NP. Attenuation of calmodulin regulation evokes Ca 2+ oscillations: evidence for the involvement of intracellular arachidonate-activated channels and connexons. Mol Cell Biochem 2019; 456:191-204. [PMID: 30756222 DOI: 10.1007/s11010-019-03504-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023]
Abstract
Intracellular Са2+ controls its own level by regulation of Ca2+ transport across the plasma and organellar membranes, often acting via calmodulin (CaM). Drugs antagonizing CaM action induce an increase in cytosolic Ca2+ concentration in different cells. We have found persistent Са2+ oscillations in cultured white adipocytes in response to calmidazolium (CMZ). They appeared at [CMZ] > 1 μM as repetitive sharp spikes mainly superimposed on a transient or elevated baseline. Similar oscillations were observed when we used trifluoperazine. Oscillations evoked by 5 μM CMZ resulted from the release of stored Ca2+ and were supported by Са2+ entry. Inhibition of store-operated channels by YM-58483 or 2-APB did not change the responses. Phospholipase A2 inhibited by AACOCF3 was responsible for initial Ca2+ mobilization, but not for subsequent oscillations, whereas inhibition of iPLA2 by BEL had no effect. Phospholipase C was partially involved in both stages as revealed with U73122. Intracellular Са2+ stores engaged by CMZ were entirely dependent on thapsigargin. The oscillations existed in the presence of inhibitors of ryanodine or inositol 1,4,5-trisphosphate receptors, or antagonists of Ca2+ transport by lysosome-like acidic stores. Carbenoxolone or octanol, blockers of hemichannels (connexons), when applied for two hours, prevented oscillations but did not affect the initial Са2+ release. Incubation with La3+ for 2 or 24 h inhibited all responses to CMZ, retaining the thapsigargin-induced Ca2+ rise. These results suggest that Ca2+-CaM regulation suppresses La3+-sensitive channels in non-acidic organelles, of which arachidonate-activated channels initiate Ca2+ oscillations, and connexons are intimately implicated in their generation mechanism.
Collapse
Affiliation(s)
- Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Valery P Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Nikolai P Kaimachnikov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
10
|
Dziewulska A, Dobosz AM, Dobrzyn A. High-Throughput Approaches onto Uncover (Epi)Genomic Architecture of Type 2 Diabetes. Genes (Basel) 2018; 9:E374. [PMID: 30050001 PMCID: PMC6115814 DOI: 10.3390/genes9080374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex disorder that is caused by a combination of genetic, epigenetic, and environmental factors. High-throughput approaches have opened a new avenue toward a better understanding of the molecular bases of T2D. A genome-wide association studies (GWASs) identified a group of the most common susceptibility genes for T2D (i.e., TCF7L2, PPARG, KCNJ1, HNF1A, PTPN1, and CDKAL1) and illuminated novel disease-causing pathways. Next-generation sequencing (NGS)-based techniques have shed light on rare-coding genetic variants that account for an appreciable fraction of T2D heritability (KCNQ1 and ADRA2A) and population risk of T2D (SLC16A11, TPCN2, PAM, and CCND2). Moreover, single-cell sequencing of human pancreatic islets identified gene signatures that are exclusive to α-cells (GCG, IRX2, and IGFBP2) and β-cells (INS, ADCYAP1, INS-IGF2, and MAFA). Ongoing epigenome-wide association studies (EWASs) have progressively defined links between epigenetic markers and the transcriptional activity of T2D target genes. Differentially methylated regions were found in TCF7L2, THADA, KCNQ1, TXNIP, SOCS3, SREBF1, and KLF14 loci that are related to T2D. Additionally, chromatin state maps in pancreatic islets were provided and several non-coding RNAs (ncRNA) that are key to T2D pathogenesis were identified (i.e., miR-375). The present review summarizes major progress that has been made in mapping the (epi)genomic landscape of T2D within the last few years.
Collapse
Affiliation(s)
- Anna Dziewulska
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland.
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland.
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland.
| |
Collapse
|
11
|
Two-pore channels and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1678-1686. [PMID: 29746898 PMCID: PMC6162333 DOI: 10.1016/j.bbamcr.2018.05.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 01/25/2023]
Abstract
Two-pore channels (TPCs) are Ca2+-permeable endo-lysosomal ion channels subject to multi-modal regulation. They mediate their physiological effects through releasing Ca2+ from acidic organelles in response to cues such as the second messenger, NAADP. Here, we review emerging evidence linking TPCs to disease. We discuss how perturbing both local and global Ca2+ changes mediated by TPCs through chemical and/or molecular manipulations can induce or reverse disease phenotypes. We cover evidence from models of Parkinson's disease, non-alcoholic fatty liver disease, Ebola infection, cancer, cardiac dysfunction and diabetes. A need for more drugs targeting TPCs is identified.
Collapse
|
12
|
Bunik V, Aleshin V. Analysis of the Protein Binding Sites for Thiamin and Its Derivatives to Elucidate the Molecular Mechanisms of the Noncoenzyme Action of Thiamin (Vitamin B1). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00011-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Fan Y, Li X, Zhang Y, Fan X, Zhang N, Zheng H, Song Y, Shen C, Shen J, Ren F, Yang J. Genetic Variants of TPCN2 Associated with Type 2 Diabetes Risk in the Chinese Population. PLoS One 2016; 11:e0149614. [PMID: 26918892 PMCID: PMC4769022 DOI: 10.1371/journal.pone.0149614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/02/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The aim of this study was to determine whether TPCN2 genetic variants are associated with type 2 diabetes and to elucidate which variants in TPCN2 confer diabetes susceptibility in the Chinese population. RESEARCH DESIGN AND METHODS The sample population included 384 patients with type 2 diabetes and 1468 controls. Anthropometric parameters, glycemic and lipid profiles and insulin resistance were measured. We selected 6 TPCN2 tag single nucleotide polymorphisms (rs35264875, rs267603153, rs267603154, rs3829241, rs1551305, and rs3750965). Genotypes were determined using a Sequenom MassARRAY SNP genotyping system. RESULTS Ultimately, we genotyped 3 single nucleotide polymorphisms (rs3750965, rs3829241, and rs1551305) in all individuals. There was a 5.1% higher prevalence of the rs1551305 variant allele in type 2 diabetes individuals (A) compared with wild-type homozygous individuals (G). The AA genotype of rs1551305 was associated with a higher diabetes risk (p<0.05). The distributions of rs3829241 and rs3750965 polymorphisms were not significantly different between the two groups. HOMA-%B of subjects harboring the AA genotype of rs1551305 decreased by 14.87% relative to the GG genotype. CONCLUSIONS TPCN2 plays a role in metabolic regulation, and the rs1551305 single nucleotide polymorphism is associated with type 2 diabetes risk. Future work will begin to unravel the underlying mechanisms.
Collapse
Affiliation(s)
- Yujuan Fan
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Xuesong Li
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Yu Zhang
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Xiaofang Fan
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Ning Zhang
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Hui Zheng
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Yuping Song
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Chunfang Shen
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Jiayi Shen
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Fengdong Ren
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Jialin Yang
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
14
|
Ali RA, Camick C, Wiles K, Walseth TF, Slama JT, Bhattacharya S, Giovannucci DR, Wall KA. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells. J Biol Chem 2016; 291:4503-22. [PMID: 26728458 DOI: 10.1074/jbc.m115.681833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells.
Collapse
Affiliation(s)
- Ramadan A Ali
- From the Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, and
| | - Christina Camick
- From the Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, and
| | - Katherine Wiles
- From the Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, and
| | - Timothy F Walseth
- the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - James T Slama
- From the Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, and
| | - Sumit Bhattacharya
- Department of Neurosciences, University of Toledo Health Science Campus, Toledo, Ohio 43614 and
| | - David R Giovannucci
- Department of Neurosciences, University of Toledo Health Science Campus, Toledo, Ohio 43614 and
| | - Katherine A Wall
- From the Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, and
| |
Collapse
|
15
|
Arredouani A, Ruas M, Collins SC, Parkesh R, Clough F, Pillinger T, Coltart G, Rietdorf K, Royle A, Johnson P, Braun M, Zhang Q, Sones W, Shimomura K, Morgan AJ, Lewis AM, Chuang KT, Tunn R, Gadea J, Teboul L, Heister PM, Tynan PW, Bellomo EA, Rutter GA, Rorsman P, Churchill GC, Parrington J, Galione A. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells. J Biol Chem 2015; 290:21376-21392. [PMID: 26152717 PMCID: PMC4571866 DOI: 10.1074/jbc.m115.671248] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/03/2015] [Indexed: 12/02/2022] Open
Abstract
Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca(2+) action potentials due to the activation of voltage-dependent Ca(2+) channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca(2+) release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca(2+) release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca(2+) from the endolysosomal system, resulting in localized Ca(2+) signals. We show here that NAADP-mediated Ca(2+) release from endolysosomal Ca(2+) stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca(2+) release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca(2+) signals, and insulin secretion. Our findings implicate NAADP-evoked Ca(2+) release from acidic Ca(2+) storage organelles in stimulus-secretion coupling in β cells.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| | - Margarida Ruas
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Stephan C Collins
- the Centre des Sciences du Gout et de l'Alimentation, Equipe 5, 9E Boulevard Jeanne d'Arc 21000 Dijon, France
| | - Raman Parkesh
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Frederick Clough
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Toby Pillinger
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - George Coltart
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Katja Rietdorf
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Andrew Royle
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Paul Johnson
- the Nuffield Department of Surgery, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, United Kingdom
| | - Matthias Braun
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Quan Zhang
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - William Sones
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Kenju Shimomura
- the Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - Anthony J Morgan
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Alexander M Lewis
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Kai-Ting Chuang
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ruth Tunn
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Joaquin Gadea
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Lydia Teboul
- The Mary Lyon Centre, Medical Research Council Harwell, Oxfordshire OX11 0RD, United Kingdom
| | - Paula M Heister
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Patricia W Tynan
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Elisa A Bellomo
- the Centre des Sciences du Gout et de l'Alimentation, Equipe 5, 9E Boulevard Jeanne d'Arc 21000 Dijon, France
| | - Guy A Rutter
- the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Medicine, Imperial College London, Hammersmith Hospital, du Cane Road, London W12 0NN, United Kingdom, and
| | - Patrik Rorsman
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Grant C Churchill
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - John Parrington
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| | - Antony Galione
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| |
Collapse
|
16
|
Arginine Thiazolidine Carboxylate Stimulates Insulin Secretion through Production of Ca2+-Mobilizing Second Messengers NAADP and cADPR in Pancreatic Islets. PLoS One 2015; 10:e0134962. [PMID: 26247205 PMCID: PMC4527757 DOI: 10.1371/journal.pone.0134962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/16/2015] [Indexed: 02/07/2023] Open
Abstract
Oxothiazolidine carboxylic acid is a prodrug of cysteine that acts as an anti-diabetic agent via insulin secretion and the formation of the Ca2+-mobilizing second messenger, cyclic ADP-ribose (cADPR). Here we show that a hybrid compound, arginine thiazolidine carboxylate (ATC), increases cytoplasmic Ca2+ in pancreatic β-cells, and that the ATC-induced Ca2+ signals result from the sequential formation of two Ca2+-mobilizing second messengers: nicotinic acid adenine dinucleotide phosphate (NAADP) and cADPR. Our data demonstrate that ATC has potent insulin-releasing properties, due to the additive action of its two components; thiazolidine carboxylate (TC) and L-arginine. TC increases glutathione (GSH) levels, resulting in cAMP production, followed by a cascade pathway of NAADP/nitric oxide (NO)/cGMP/cADPR synthesis. L-arginine serves as the substrate for NO synthase (NOS), which results in cADPR synthesis via cGMP formation. Neuronal NOS is specifically activated in pancreatic β-cells upon ATC treatment. These results suggest that ATC is an ideal candidate as an anti-diabetic, capable of modulating the physiological Ca2+ signalling pathway to stimulate insulin secretion.
Collapse
|
17
|
Abstract
The genetic basis of type 2 diabetes remains incompletely defined despite the use of multiple genetic strategies. Multiparental populations such as heterogeneous stocks (HS) facilitate gene discovery by allowing fine mapping to only a few megabases, significantly decreasing the number of potential candidate genes compared to traditional mapping strategies. In the present work, we employed expression and sequence analysis in HS rats (Rattus norvegicus) to identify Tpcn2 as a likely causal gene underlying a 3.1-Mb locus for glucose and insulin levels. Global gene expression analysis on liver identified Tpcn2 as the only gene in the region that is differentially expressed between HS rats with glucose intolerance and those with normal glucose regulation. Tpcn2 also maps as a cis-regulating expression QTL and is negatively correlated with fasting glucose levels. We used founder sequence to identify variants within this region and assessed association between 18 variants and diabetic traits by conducting a mixed-model analysis, accounting for the complex family structure of the HS. We found that two variants were significantly associated with fasting glucose levels, including a nonsynonymous coding variant within Tpcn2. Studies in Tpcn2 knockout mice demonstrated a significant decrease in fasting glucose levels and insulin response to a glucose challenge relative to those in wild-type mice. Finally, we identified variants within Tpcn2 that are associated with fasting insulin in humans. These studies indicate that Tpcn2 is a likely causal gene that may play a role in human diabetes and demonstrate the utility of multiparental populations for positionally cloning genes within complex loci.
Collapse
|
18
|
Reactivation of Lysosomal Ca2+ Efflux Rescues Abnormal Lysosomal Storage in FIG4-Deficient Cells. J Neurosci 2015; 35:6801-12. [PMID: 25926456 DOI: 10.1523/jneurosci.4442-14.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of function of FIG4 leads to Charcot-Marie-Tooth disease Type 4J, Yunis-Varon syndrome, or an epilepsy syndrome. FIG4 is a phosphatase with its catalytic specificity toward 5'-phosphate of phosphatidylinositol-3,5-diphosphate (PI3,5P2). However, the loss of FIG4 decreases PI3,5P2 levels likely due to FIG4's dominant effect in scaffolding a PI3,5P2 synthetic protein complex. At the cellular level, all these diseases share similar pathology with abnormal lysosomal storage and neuronal degeneration. Mice with no FIG4 expression (Fig4(-/-)) recapitulate the pathology in humans with FIG4 deficiency. Using a flow cytometry technique that rapidly quantifies lysosome sizes, we detected an impaired lysosomal fission, but normal fusion, in Fig4(-/-) cells. The fission defect was associated with a robust increase of intralysosomal Ca(2+) in Fig4(-/-) cells, including FIG4-deficient neurons. This finding was consistent with a suppressed Ca(2+) efflux of lysosomes because the endogenous ligand of lysosomal Ca(2+) channel TRPML1 is PI3,5P2 that is deficient in Fig4(-/-) cells. We reactivated the TRPML1 channels by application of TRPML1 synthetic ligand, ML-SA1. This treatment reduced the intralysosomal Ca(2+) level and rescued abnormal lysosomal storage in Fig4(-/-) culture cells and ex vivo DRGs. Furthermore, we found that the suppressed Ca(2+) efflux in Fig4(-/-) culture cells and Fig4(-/-) mouse brains profoundly downregulated the expression/activity of dynamin-1, a GTPase known to scissor organelle membranes during fission. This downregulation made dynamin-1 unavailable for lysosomal fission. Together, our study revealed a novel mechanism explaining abnormal lysosomal storage in FIG4 deficiency. Synthetic ligands of the TRPML1 may become a potential therapy against diseases with FIG4 deficiency.
Collapse
|
19
|
CD38-mediated Ca(2+) signaling contributes to glucagon-induced hepatic gluconeogenesis. Sci Rep 2015; 5:10741. [PMID: 26038839 PMCID: PMC4454144 DOI: 10.1038/srep10741] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/27/2015] [Indexed: 01/02/2023] Open
Abstract
CD38 is a multifunctional enzyme for the synthesis of Ca2+ second messengers. Glucagon promotes hepatic glucose production through Ca2+ signaling in the fasting condition. In this study, we investigated the role of CD38 in the glucagon signaling of hepatocytes. Here, we show that glucagon induces cyclic ADP-ribose (cADPR) production and sustained Ca2+ increases via CD38 in hepatocytes. 8-Br-cADPR, an antagonistic cADPR analog, completely blocked glucagon-induced Ca2+ increases and phosphorylation of cAMP response element-binding protein (CREB). Moreover, glucagon-induced sustained Ca2+ signals and translocation of CREB-regulated transcription coactivator 2 to the nucleus were absent and glucagon-induced glucose production and expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (Pck1) are remarkably reduced in hepatocytes from CD38−/− mice. Furthermore, in the fasting condition, CD38−/− mice have decreased blood glucose and hepatic expression of G6Pase and Pck1 compared to wild type mice. Our data suggest that CD38/cADPR-mediated Ca2+ signals play a key role in glucagon-induced gluconeogenesis in hepatocytes, and that the signal pathway has significant clinical implications in metabolic diseases, including type 2 diabetes.
Collapse
|
20
|
Ruas M, Galione A, Parrington J. Two-Pore Channels: Lessons from Mutant Mouse Models. ACTA ACUST UNITED AC 2015; 4:4-22. [PMID: 27330869 DOI: 10.1166/msr.2015.1041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent interest in two-pore channels (TPCs) has resulted in a variety of studies dealing with the functional role and mechanism of action of these endo-lysosomal proteins in diverse physiological processes. With the availability of mouse lines harbouring mutant alleles for Tpcnl and/or Tpcn2 genes, several studies have made use of them to validate, consolidate and discover new roles for these channels not only at the cellular level but, importantly, also at the level of the whole organism. The different mutant mouse lines that have been used were derived from distinct genetic manipulation strategies, with the aim of knocking out expression of TPC proteins. However, the expression of different residual TPC sequences predicted to occur in these mutant mouse lines, together with the varied degree to which the effects on Tpcn expression have been studied, makes it important to assess the true knockout status of some of the lines. In this review we summarize these Tpcn mutant mouse lines with regard to their predicted effect on Tpcn expression and the extent to which they have been characterized. Additionally, we discuss how results derived from studies using these Tpcn mutant mouse lines have consolidated previously proposed roles for TPCs, such as mediators of NAADP signalling, endo-lysosomal functions, and pancreatic β cell physiology. We will also review how they have been instrumental in the assignment of new physiological roles for these cation channels in processes such as membrane electrical excitability, neoangiogenesis, viral infection and brown adipose tissue and heart function, revealing, in some cases, a specific contribution of a particular TPC isoform.
Collapse
Affiliation(s)
- Margarida Ruas
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
21
|
Park DR, Park KH, Kim BJ, Yoon CS, Kim UH. Exercise ameliorates insulin resistance via Ca2+ signals distinct from those of insulin for GLUT4 translocation in skeletal muscles. Diabetes 2015; 64:1224-34. [PMID: 25409702 DOI: 10.2337/db14-0939] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Muscle contraction and insulin induce glucose uptake in skeletal muscle through GLUT4 membrane translocation. Beneficial effects of exercise on glucose homeostasis in insulin-resistant individuals are known to be due to their distinct mechanism between contraction and insulin action on glucose uptake in skeletal muscle. However, the underlying mechanisms are not clear. Here we show that in skeletal muscle, distinct Ca(2+) second messengers regulate GLUT4 translocation by contraction and insulin treatment; d-myo-inositol 1,4,5-trisphosphate/nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose/NAADP are main players for insulin- and contraction-induced glucose uptake, respectively. Different patterns of phosphorylation of AMPK and Ca(2+)/calmodulin-dependent protein kinase II were shown in electrical stimuli (ES)- and insulin-induced glucose uptake pathways. ES-induced Ca(2+) signals and glucose uptake are dependent on glycolysis, which influences formation of NAD(P)-derived signaling messengers, whereas insulin-induced signals are not. High-fat diet (HFD) induced a defect in only insulin-mediated, but not ES-mediated, Ca(2+) signaling for glucose uptake, which is related to a specifically lower NAADP formation. Exercise decreases blood glucose levels in HFD-induced insulin resistance mice via NAADP formation. Thus we conclude that different usage of Ca(2+) signaling in contraction/insulin-stimulated glucose uptake in skeletal muscle may account for the mechanism by which exercise ameliorates glucose homeostasis in individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Dae-Ryoung Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea National Creative Research Laboratory for Ca Signaling Network, Chonbuk National University, Jeonju, Korea
| | - Kwang-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea National Creative Research Laboratory for Ca Signaling Network, Chonbuk National University, Jeonju, Korea
| | - Byung-Ju Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea National Creative Research Laboratory for Ca Signaling Network, Chonbuk National University, Jeonju, Korea
| | - Chung-Su Yoon
- Department of Physical Education, Chonbuk National University, Jeonju, Korea
| | - Uh-Hyun Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea National Creative Research Laboratory for Ca Signaling Network, Chonbuk National University, Jeonju, Korea Institute of Cardiovascular Research, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
22
|
Park KH, Kim KN, Park DR, Jang KY, Kim UH. Role of Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) in Keratinocyte Differentiation. J Invest Dermatol 2015; 135:1692-1694. [PMID: 25668236 DOI: 10.1038/jid.2015.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kwang-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea; National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Korea; Department of Oriental Pharmaceutical Development, Nambu University, Gwangju 506-706, Korea
| | - Kwang N Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea; National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Korea
| | - Dae-Ryoung Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea; National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Korea
| | - Kyu Y Jang
- Department of Pathology, Chonbuk National University Medical School, Jeonju, Korea
| | - Uh-Hyun Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea; National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Korea; Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, Korea.
| |
Collapse
|
23
|
Cheng X, Hookway E, Kashima T, Oppermann U, Galione A, Athanasou NA. The role of calcium and nicotinic acid adenine dinucleotide phosphate (NAADP) in human osteoclast formation and resorption. Calcif Tissue Int 2015; 96:73-9. [PMID: 25433853 PMCID: PMC6667340 DOI: 10.1007/s00223-014-9939-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Osteoclasts are specialised bone resorbing cells which form by fusion of circulating mononuclear phagocyte precursors. Bone resorption results in the release of large amounts of calcium into the extracellular fluid (ECF), but it is not certain whether changes in extracellular calcium concentration [Ca(2+)]e influence osteoclast formation and resorption. In this study, we sought to determine the effect of [Ca(2+)]e and NAADP, a potent calcium mobilising messenger that induces calcium uptake, on human osteoclast formation and resorption. CD14+ human monocytes were cultured with M-CSF and RANKL in the presence of different concentrations of calcium and NAADP and the effect on osteoclast formation and resorption evaluated. We found that the number of TRAP+ multinucleated cells and the extent of lacunar resorption were reduced when there was an increase in extracellular calcium and NAADP. This was associated with a decrease in RANK mRNA expression by CD14+ cells. At high concentrations (20 mM) of [Ca(2+)]e mature osteoclast resorption activity remained unaltered relative to control cultures. Our findings indicate that osteoclast formation is inhibited by a rise in [Ca(2+)]e and that RANK expression by mononuclear phagocyte osteoclast precursors is also [Ca(2+)]e dependent. Changes in NAADP also influence osteoclast formation, suggesting a role for this molecule in calcium handling. Osteoclasts remained capable of lacunar resorption, even at high ECF [Ca(2+)]e, in keeping with their role in physiological and pathological bone resorption.
Collapse
Affiliation(s)
- X Cheng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7LD
| | - E. Hookway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7LD
| | - T. Kashima
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7LD
| | - U. Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7LD
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - A. Galione
- Department of Pharmacology, University of Oxford, OX1 3QT
| | - NA Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7LD
- Author for correspondence: Tel: +44 1865 7 38136, Fax: +44 1865 7)38140,
| |
Collapse
|
24
|
Gilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014; 56:340-61. [DOI: 10.1016/j.ceca.2014.09.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
25
|
Galione A. A primer of NAADP-mediated Ca(2+) signalling: From sea urchin eggs to mammalian cells. Cell Calcium 2014; 58:27-47. [PMID: 25449298 DOI: 10.1016/j.ceca.2014.09.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Since the discovery of the Ca(2+) mobilizing effects of the pyridine nucleotide metabolite, nicotinic acid adenine dinucleotide phosphate (NAADP), this molecule has been demonstrated to function as a Ca(2+) mobilizing intracellular messenger in a wide range of cell types. In this review, I will briefly summarize the distinct principles behind NAADP-mediated Ca(2+) signalling before going on to outline the role of this messenger in the physiology of specific cell types. Central to the discussion here is the finding that NAADP principally mobilizes Ca(2+) from acidic organelles such as lysosomes and it is this property that allows NAADP to play a unique role in intracellular Ca(2+) signalling. Lysosomes and related organelles are small Ca(2+) stores but importantly may also initiate a two-way dialogue with other Ca(2+) storage organelles to amplify Ca(2+) release, and may be strategically localized to influence localized Ca(2+) signalling microdomains. The study of NAADP signalling has created a new and fruitful focus on the lysosome and endolysosomal system as major players in calcium signalling and pathophysiology.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
26
|
Guerrero-Hernandez A, Gallegos-Gomez ML, Sanchez-Vazquez VH, Lopez-Mendez MC. Acidic intracellular Ca(2+) stores and caveolae in Ca(2+) signaling and diabetes. Cell Calcium 2014; 56:323-31. [PMID: 25182518 DOI: 10.1016/j.ceca.2014.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Abstract
Acidic Ca(2+) stores, particularly lysosomes, are newly discovered players in the well-orchestrated arena of Ca(2+) signaling and we are at the verge of understanding how lysosomes accumulate Ca(2+) and how they release it in response to different chemical, such as NAADP, and physical signals. Additionally, it is now clear that lysosomes play a key role in autophagy, a process that allows cells to recycle components or to eliminate damaged structures to ensure cellular well-being. Moreover, lysosomes are being unraveled as hubs that coordinate both anabolism via insulin signaling and catabolism via AMPK. These acidic vesicles have close contact with the ER and there is a bidirectional movement of information between these two organelles that exquisitely regulates cell survival. Lysosomes also connect with plasma membrane where caveolae are located as specialized regions involved in Ca(2+) and insulin signaling. Alterations of all these signaling pathways are at the core of insulin resistance and diabetes.
Collapse
|