1
|
Zhang S, Li J, Zhai Y, Xu J, Wang Y, Ding X, Qiu X. Serum untargeted metabolomics analysis of the preventive mechanism of TAETEA Prebiotea on non-alcoholic fatty liver in rats. J Pharm Biomed Anal 2024; 247:116218. [PMID: 38810332 DOI: 10.1016/j.jpba.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024]
Abstract
Pu-erh tea belongs to the six tea categories of black tea, according to the processing technology and quality characteristics, is divided into two types of raw tea and ripe tea. Raw tea is made from fresh leaves of tea as raw materials, through the process of greening, kneading, sun drying, steam molding and other processes made of tightly pressed tea. Ripe tea is made from Yunnan large-leafed sun green tea, using a specific process, post-fermentation (rapid post-fermentation or slow post-fermentation) processing of loose tea and tightly pressed tea. TAETEA Prebiotea is Puerh Ripe Tea, TAETEA Prebiotea has the effect of increasing insulin level and improving hyperglycemia in mice, and it also has the effect of regulating blood lipids, which can reduce the level of serum total cholesterol (TC) and triglycerides (TG), increase the level of high-density lipoprotein cholesterol (HDL-C), and improve the metabolism of lipids. Therefore, further experiments were conducted by us, and TAETEA Prebiotea was formulated into a suitable dose for the intervention of non alcoholic fatty liver disease (NAFLD) model rats, and at the end of the experiments, the samples of each group of experiments were analyzed and detected by the method of UHPLC-Q-Exactive LC-MS liquid-mass spectrometry methodology, and the relevant metabolites as well as metabolic pathways were analyzed by the method of Non targeted metabolomics analysis. As a result, 71 differential metabolites could be screened, of which 35 differential metabolites were up-regulated after intervention and 36 differential metabolites were down-regulated after intervention. Based on the KEGG pathway enrichment and Pathway Impact bubble diagram analysis, glycine, serine, threonine metabolism, arginine and proline metabolism, protein digestion and absorption, and central carbon metabolism in cancer may be the main metabolic pathways in which TAETEA Prebiotea exerted preventive effects on NAFLD rats, C00148 (Proline), C00300 (Creatine) and C00719 (Betaine) are the differential metabolites that play important regulatory roles.
Collapse
Affiliation(s)
- Shijiao Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Jiahang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Yingfan Zhai
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Jiachen Xu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Yixin Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Xiaochen Ding
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Xiangjun Qiu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China.
| |
Collapse
|
2
|
Zhou R, Liu Y, Hu W, Yang J, Lin B, Zhang Z, Chen M, Yi J, Zhu C. Lycium barbarum polysaccharide ameliorates the accumulation of lipid droplets in adipose tissue via an ATF6/SIRT1-dependent mechanism. Acta Biochim Biophys Sin (Shanghai) 2024; 56:844-856. [PMID: 38606478 PMCID: PMC11214951 DOI: 10.3724/abbs.2024046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 04/13/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles that store neutral lipids and are closely linked to obesity. Previous studies have suggested that Lycium barbarum polysaccharide (LBP) supplements can ameliorate obesity, but the underlying mechanisms remain unclear. In this study, we hypothesize that LBP alleviates LD accumulation in adipose tissue (AT) by inhibiting fat-specific protein 27 (Fsp27) through an activating transcription factor-6 (ATF6)/small-molecule sirtuin 1 (SIRT1)-dependent mechanism. LD accumulation in AT is induced in high-fat diet (HFD)-fed mice, and differentiation of 3T3-L1 preadipocytes (PAs) is induced. The ability of LBP to alleviate LD accumulation and the possible underlying mechanism are then investigated both in vivo and in vitro. The influences of LBP on the expressions of LD-associated genes ( ATF6 and Fsp27) are also detected. The results show that HFD and PA differentiation markedly increase LD accumulation in ATs and adipocytes, respectively, and these effects are markedly suppressed by LBP supplementation. Furthermore, LBP significantly activates SIRT1 and decreases ATF6 and Fsp27 expressions. Interestingly, the inhibitory effects of LBP are either abolished or exacerbated when ATF6 is overexpressed or silenced, respectively. Furthermore, SIRT1 level is transcriptionally regulated by LBP through opposite actions mediated by ATF6. Collectively, our findings suggest that LBP supplementation alleviates obesity by ameliorating LD accumulation, which might be partially mediated by an ATF6/SIRT1-dependent mechanism.
Collapse
Affiliation(s)
- Rui Zhou
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Yajing Liu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Weiqian Hu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Jing Yang
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Bing Lin
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Zhentian Zhang
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Mingyan Chen
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Jingwen Yi
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Cuifeng Zhu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| |
Collapse
|
3
|
Ely EV, Kapinski AT, Paradi SG, Tang R, Guilak F, Collins KH. Designer Fat Cells: Adipogenic Differentiation of CRISPR-Cas9 Genome-Engineered Induced Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564206. [PMID: 37961399 PMCID: PMC10634849 DOI: 10.1101/2023.10.26.564206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Adipose tissue is an active endocrine organ that can signal bidirectionally to many tissues and organ systems in the body. With obesity, adipose tissue is a source of low-level inflammation that contributes to various co-morbidities and damage to downstream effector tissues. The ability to synthesize genetically engineered adipose tissue could have critical applications in studying adipokine signaling and the use of adipose tissue for novel therapeutic strategies. This study aimed to develop a method for non-viral adipogenic differentiation of genome-edited murine induced pluripotent stem cells (iPSCs) and to test the ability of such cells to engraft in mice in vivo . Designer adipocytes were created from iPSCs, which can be readily genetically engineered using CRISPR-Cas9 to knock out or insert individual genes of interest. As a model system for adipocyte-based drug delivery, an existing iPSC cell line that transcribes interleukin 1 receptor antagonist under the endogenous macrophage chemoattractant protein-1 promoter was tested for adipogenic capabilities under these same differentiation conditions. To understand the role of various adipocyte subtypes and their impact on health and disease, an efficient method was devised for inducing browning and whitening of IPSC-derived adipocytes in culture. Finally, to study the downstream effects of designer adipocytes in vivo , we transplanted the designer adipocytes into fat-free lipodystrophic mice as a model system for studying adipose signaling in different models of disease or repair. This novel translational tissue engineering and regenerative medicine platform provides an innovative approach to studying the role of adipose interorgan communication in various conditions.
Collapse
|
4
|
Song Y, Zhang J, Jiang C, Song X, Wu H, Zhang J, Raza SHA, Zhang L, Zhang L, Cai B, Wang X, Reng ZL, Ma Y, Wei D. FOXO1 regulates the formation of bovine fat by targeting CD36 and STEAP4. Int J Biol Macromol 2023; 248:126025. [PMID: 37506793 DOI: 10.1016/j.ijbiomac.2023.126025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Intramuscular fat content is closely related to the quality of beef, where the forkhead box protein O1 (FOXO1) is involved in adipocyte differentiation and lipid metabolism, but the specific mechanism of its involvement is still unclear. In this study, interfering with FOXO1 promoted the G1/S transformation of bovine adipocytes by enhancing the expression of proliferation marker genes PCNA, CDK1, CDK2, CCNA2, CCNB1, and CCNE2, thereby positively regulating the proliferation of bovine adipocytes. Additionally, interfering with FOXO1 negatively regulated the expression of adipogenic differentiation marker genes PPARG and CEBPA, as well as lipid anabolism marker genes ACC, FASN, SCD1, SREBP1, FABP4, ACSL1, LPL, and DGAT1, thus reducing triglyceride (TG) content and inhibiting the generation of lipid droplets in bovine adipocytes. A combination of transcriptomic and metabolomics analyses revealed that FOXO1 could regulate the lipogenesis of cattle by influencing the AMPK and PI3K/AKT pathways. Importantly, chromatin immunoprecipitation (ChIP) and site-directed mutagenesis revealed that FOXO1 could regulate bovine lipogenesis by binding to the promoter regions of the CD36 and STEAP4 genes and affecting their transcriptional activities. These results provide a foundation for studying the role and molecular mechanism of FOXO1 in the bovine adipogenesis.
Collapse
Affiliation(s)
- Yaping Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750021, China
| | - Chao Jiang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xiaoyu Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Hao Wu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Le Zhang
- Institute of Physical Education, Yan'an University, Yan'an 716000, China
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Bei Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuoma Luo Reng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
5
|
Ely E, Kapinski A, Paradi S, Tang R, Guilak F, Collins K. DESIGNER FAT CELLS: ADIPOGENIC DIFFERENTIATION OF CRISPR-CAS9 GENOME-ENGINEERED INDUCED PLURIPOTENT STEM CELLS. Eur Cell Mater 2023; 46:171-194. [PMID: 39830040 PMCID: PMC11741189 DOI: 10.22203/ecm.v046a09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Adipose tissue is an active endocrine organ that can signal bidirectionally to many tissues and organ systems in the body. With obesity, adipose tissue can serve as a source of low-level inflammation that contributes to various co-morbidities and damage to downstream effector tissues. The ability to synthesize genetically engineered adipose tissue could have critical applications in studying adipokine signaling and the use of adipose tissue for novel therapeutic strategies. This study aimed to develop a method for non-viral adipogenic differentiation of genome-edited murine induced pluripotent stem cells (iPSCs) and to test the ability of such cells to engraft in mice in vivo. Designer adipocytes were created from iPSCs, which can be readily genetically engineered using CRISPR-Cas9 to knock out or insert individual genes of interest. As a model system for adipocyte-based drug delivery, an existing iPSC cell line that transcribes interleukin 1 receptor antagonist under the endogenous macrophage chemoattractant protein-1 promoter was tested for adipogenic capabilities under these same differentiation conditions. To understand the role of various adipocyte subtypes and their impact on health and disease, an efficient method was devised for inducing browning and whitening of Ipsc-derived adipocytes in culture. Finally, to study the downstream effects of designer adipocytes in vivo, we transplanted the designer adipocytes into fat-free lipodystrophic mice as a model system for studying adipose signaling in different models of disease or repair. This novel translational tissue engineering and regenerative medicine platform provides an innovative approach to studying the role of adipose interorgan communication in various conditions.
Collapse
Affiliation(s)
- E.V. Ely
- Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, MO 63110, USA
- Shriners Hospitals for Children–St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - A.T. Kapinski
- Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, MO 63110, USA
- Shriners Hospitals for Children–St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - S.G. Paradi
- Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, MO 63110, USA
- Shriners Hospitals for Children–St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - R. Tang
- Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, MO 63110, USA
- Shriners Hospitals for Children–St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - F. Guilak
- Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, MO 63110, USA
- Shriners Hospitals for Children–St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - K.H. Collins
- Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, MO 63110, USA
- Shriners Hospitals for Children–St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Li F, Zhang F, Yi X, Quan LL, Yang X, Yin C, Ma Z, Wu R, Zhao W, Ling M, Lang L, Hussein A, Feng S, Fu Y, Wang J, Liang S, Zhu C, Wang L, Zhu X, Gao P, Xi Q, Zhang Y, Zhang L, Shu G, Jiang Q, Wang S. Proline hydroxylase 2 (PHD2) promotes brown adipose thermogenesis by enhancing the hydroxylation of UCP1. Mol Metab 2023; 73:101747. [PMID: 37279828 PMCID: PMC10293773 DOI: 10.1016/j.molmet.2023.101747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) plays a crucial role in regulating non-shivering thermogenesis under cold exposure. Proline hydroxylases (PHDs) were found to be involved in adipocyte differentiation and lipid deposition. However, the effects of PHDs on regulatory mechanisms of BAT thermogenesis are not fully understood. METHODS We detected the expression of PHDs in different adipose tissues by using immunoblotting and real-time PCR. Further, immunoblotting, real-time PCR, and immunostaining were performed to determine the correlation between proline hydroxylase 2 (PHD2) and UCP1 expression. Inhibitor of PHDs and PHD2-sgRNA viruses were used to construct the PHD2-deficiency model in vivo and in vitro to investigate the impacts of PHD2 on BAT thermogenesis. Afterward, the interaction between UCP1 and PHD2 and the hydroxylation modification level of UCP1 were verified by Co-IP assays and immunoblotting. Finally, the effect of specific proline hydroxylation on the expression/activity of UCP1 was further confirmed by site-directed mutation of UCP1 and mass spectrometry analysis. RESULTS PHD2, but not PHD1 and PHD3, was highly enriched in BAT, colocalized, and positively correlated with UCP1. Inhibition or knockdown of PHD2 significantly suppressed BAT thermogenesis under cold exposure and aggravated obesity of mice fed HFD. Mechanistically, mitochondrial PHD2 bound to UCP1 and regulated the hydroxylation level of UCP1, which was enhanced by thermogenic activation and attenuated by PHD2 knockdown. Furthermore, PHD2-dependent hydroxylation of UCP1 promoted the expression and stability of UCP1 protein. Mutation of the specific prolines (Pro-33, 133, and 232) in UCP1 significantly mitigated the PHD2-elevated UCP1 hydroxylation level and reversed the PHD2-increased UCP1 stability. CONCLUSIONS This study suggested an important role for PHD2 in BAT thermogenesis regulation by enhancing the hydroxylation of UCP1.
Collapse
Affiliation(s)
- Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lu Lu Quan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Cong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zewei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ruifan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Abdelaziz Hussein
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Junfeng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shuyi Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Wen's Foodstuffs Group Co., Ltd, Yunfu 527400, PR China.
| |
Collapse
|
7
|
Ahn D, Kwon J, Song S, Lee J, Yoon S, Chung SJ. Methyl Syringate Stimulates Glucose Uptake by Inhibiting Protein Tyrosine Phosphatases Relevant to Insulin Resistance. Life (Basel) 2023; 13:1372. [PMID: 37374154 DOI: 10.3390/life13061372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Several protein tyrosine phosphatases (PTPs), particularly PTPN1, PTPN2, PTPN6, PTPN9, PTPN11, PTPRS, and DUSP9, are involved in insulin resistance. Therefore, these PTPs could be promising targets for the treatment of type 2 diabetes. Our previous studies revealed that PTPN2 and PTPN6 are potential antidiabetic targets. Therefore, the identification of dual-targeting inhibitors of PTPN2 and PTPN6 could be a potential therapeutic strategy for the treatment or prevention of type 2 diabetes. In this study, we demonstrate that methyl syringate inhibits the catalytic activity of PTPN2 and PTPN6 in vitro, indicating that methyl syringate acts as a dual-targeting inhibitor of PTPN2 and PTPN6. Furthermore, methyl syringate treatment significantly increased glucose uptake in mature 3T3-L1 adipocytes. Additionally, methyl syringate markedly enhanced phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) in 3T3L1 adipocytes. Taken together, our results suggest that methyl syringate, a dual-targeting inhibitor of PTPN2 and PTPN6, is a promising therapeutic candidate for the treatment or prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Dohee Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihee Kwon
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Songyi Song
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jooyoung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunyoung Yoon
- Department of Cosmetic Science, Kwangju Women's University, Gwangju 62396, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Yoon SY, Yu JS, Hwang JY, So HM, Seo SO, Kim JK, Jang TS, Chung SJ, Kim KH. Phloridzin Acts as an Inhibitor of Protein-Tyrosine Phosphatase MEG2 Relevant to Insulin Resistance. Molecules 2021; 26:molecules26061612. [PMID: 33799458 PMCID: PMC7998658 DOI: 10.3390/molecules26061612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of the megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2, also named PTPN9) activity has been shown to be a potential therapeutic strategy for the treatment of type 2 diabetes. Previously, we reported that PTP-MEG2 knockdown enhances adenosine monophosphate activated protein kinase (AMPK) phosphorylation, suggesting that PTP-MEG2 may be a potential antidiabetic target. In this study, we found that phloridzin, isolated from Ulmus davidiana var. japonica, inhibits the catalytic activity of PTP-MEG2 (half-inhibitory concentration, IC50 = 32 ± 1.06 μM) in vitro, indicating that it could be a potential antidiabetic drug candidate. Importantly, phloridzin stimulated glucose uptake by differentiated 3T3-L1 adipocytes and C2C12 muscle cells compared to that by the control cells. Moreover, phloridzin led to the enhanced phosphorylation of AMPK and Akt relevant to increased insulin sensitivity. Importantly, phloridzin attenuated palmitate-induced insulin resistance in C2C12 muscle cells. We also found that phloridzin did not accelerate adipocyte differentiation, suggesting that phloridzin improves insulin sensitivity without significant lipid accumulation. Taken together, our results demonstrate that phloridzin, an inhibitor of PTP-MEG2, stimulates glucose uptake through the activation of both AMPK and Akt signaling pathways. These results strongly suggest that phloridzin could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
- Department of Cosmetic Science, Kwangju Women’s University, Gwangju 62396, Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Ji Young Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Hae Min So
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Seung Oh Seo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Tae Su Jang
- Department of Medicine, Dankook University, Cheonan, Chungnam 31116, Korea;
| | - Sang J. Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
- Correspondence: (S.J.C.); (K.H.K.); Tel.: +82-31-290-7703 (S.J.C.); +82-31-290-7700 (K.H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
- Correspondence: (S.J.C.); (K.H.K.); Tel.: +82-31-290-7703 (S.J.C.); +82-31-290-7700 (K.H.K.)
| |
Collapse
|
9
|
Harris AJ, Mirchandani AS, Lynch RW, Murphy F, Delaney L, Small D, Coelho P, Watts ER, Sadiku P, Griffith D, Dickinson RS, Clark E, Willson JA, Morrison T, Mazzone M, Carmeliet P, Ghesquiere B, O’Kane C, McAuley D, Jenkins SJ, Whyte MKB, Walmsley SR. IL4Rα Signaling Abrogates Hypoxic Neutrophil Survival and Limits Acute Lung Injury Responses In Vivo. Am J Respir Crit Care Med 2019; 200:235-246. [PMID: 30849228 PMCID: PMC6635795 DOI: 10.1164/rccm.201808-1599oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
Rationale: Acute respiratory distress syndrome is defined by the presence of systemic hypoxia and consequent on disordered neutrophilic inflammation. Local mechanisms limiting the duration and magnitude of this neutrophilic response remain poorly understood. Objectives: To test the hypothesis that during acute lung inflammation tissue production of proresolution type 2 cytokines (IL-4 and IL-13) dampens the proinflammatory effects of hypoxia through suppression of HIF-1α (hypoxia-inducible factor-1α)-mediated neutrophil adaptation, resulting in resolution of lung injury. Methods: Neutrophil activation of IL4Ra (IL-4 receptor α) signaling pathways was explored ex vivo in human acute respiratory distress syndrome patient samples, in vitro after the culture of human peripheral blood neutrophils with recombinant IL-4 under conditions of hypoxia, and in vivo through the study of IL4Ra-deficient neutrophils in competitive chimera models and wild-type mice treated with IL-4. Measurements and Main Results: IL-4 was elevated in human BAL from patients with acute respiratory distress syndrome, and its receptor was identified on patient blood neutrophils. Treatment of human neutrophils with IL-4 suppressed HIF-1α-dependent hypoxic survival and limited proinflammatory transcriptional responses. Increased neutrophil apoptosis in hypoxia, also observed with IL-13, required active STAT signaling, and was dependent on expression of the oxygen-sensing prolyl hydroxylase PHD2. In vivo, IL-4Ra-deficient neutrophils had a survival advantage within a hypoxic inflamed niche; in contrast, inflamed lung treatment with IL-4 accelerated resolution through increased neutrophil apoptosis. Conclusions: We describe an important interaction whereby IL4Rα-dependent type 2 cytokine signaling can directly inhibit hypoxic neutrophil survival in tissues and promote resolution of neutrophil-mediated acute lung injury.
Collapse
Affiliation(s)
- Alison J. Harris
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ananda S. Mirchandani
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ruairi W. Lynch
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fiona Murphy
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam Delaney
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Donna Small
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Patricia Coelho
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily R. Watts
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Pranvera Sadiku
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David Griffith
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca S. Dickinson
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eilidh Clark
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joseph A. Willson
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Tyler Morrison
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Massimilliano Mazzone
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, Leuven, Belgium; and
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, Leuven, Belgium
| | - Bart Ghesquiere
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, Leuven, Belgium
| | - Cecilia O’Kane
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Danny McAuley
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Steve J. Jenkins
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Moira K. B. Whyte
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah R. Walmsley
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Yoon SY, Lee SR, Hwang JY, Benndorf R, Beemelmanns C, Chung SJ, Kim KH. Fridamycin A, a Microbial Natural Product, Stimulates Glucose Uptake without Inducing Adipogenesis. Nutrients 2019; 11:nu11040765. [PMID: 30939853 PMCID: PMC6520714 DOI: 10.3390/nu11040765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes is a complex, heterogeneous, and polygenic disease. Currently, available drugs for treating type 2 diabetes predominantly include sulfonylureas, α-glucosidase inhibitors, and biguanides. However, long-term treatment with these therapeutic drugs is often accompanied by undesirable side effects, which have driven interest in the development of more effective and safer antidiabetic agents. To address the urgent need for new chemical solutions, we focused on the analysis of structurally novel and/or biologically new metabolites produced by insect-associated microbes as they have recently been recognized as a rich source of natural products. Comparative LC/MS-based analysis of Actinomadura sp. RB99, isolated from a fungus-growing termite, led to the identification of the type II polyketide synthase-derived fridamycin A. The structure of fridamycin A was confirmed by ¹H NMR data and LC/MS analysis. The natural microbial product, fridamycin A, was examined for its antidiabetic properties in 3T3-L1 adipocytes, which demonstrated that fridamycin A induced glucose uptake in 3T3-L1 cells by activating the AMP-activated protein kinase (AMPK) signaling pathway but did not affect adipocyte differentiation, suggesting that the glucose uptake took place through activation of the AMPK signaling pathway without inducing adipogenesis. Our results suggest that fridamycin A has potential to induce fewer side effects such as weight gain compared to rosiglitazone, a commonly used antidiabetic drug, and that fridamycin A could be a novel potential therapeutic candidate for the management of type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Ji Young Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - René Benndorf
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
11
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Yu Y, Zhou Y, Cheng T, Lu X, Yu K, Zhou Y, Hong J, Chen Y. Hypoxia enhances tenocyte differentiation of adipose-derived mesenchymal stem cells by inducing hypoxia-inducible factor-1α in a co-culture system. Cell Prolif 2016; 49:173-84. [PMID: 27021233 DOI: 10.1111/cpr.12250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/26/2016] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Tissue engineering is a promising approach for repair of tendon injuries. Adipose-derived mesenchymal stem cells (ADMSCs) have gained increasing research interest for their potential in improving healing and regeneration of injured tendons. The present study aimed to investigate effects of O2 tension and potential signalling pathways on AMDSC differentiation into tenocytes, in an indirect co-culture system. MATERIALS AND METHODS Human ADMSCs were co-cultured under normoxia (20% O2 ) and also under hypoxia (2% O2 ). Tenocyte differentiation of AMDSCs and expression of hypoxia-inducible factor-1 (HIF-1α) were analysed by reverse transcription-PCR, Western blotting and immunohistochemistry. Furthermore, HIF-1α inhibitor and inducer (FG-4592) effects on differentiation of AMDSCs were studied using qPCR, immunofluorescence and Western blotting. RESULTS Indirect co-culture with tenocytes increased differentiation of ADMSCs into tenocytes; furthermore, hypoxia further enhanced tenocyte differentiation of AMDSCs, accompanied by increased expression of HIF-1α. HIF-1α inhibitor attenuated effects of hypoxia on differentiation of ADMSCs; in contrast, FG-4592 increased differentiation of ADMSCs under both hypoxia and normoxia. CONCLUSIONS Taken together, we found that growing ADMSCs under hypoxia, or activating expression of HIF-1α to be important in differentiation of ADMSCs, which provides a foundation for application of ADMSCs in vivo for tendon regeneration.
Collapse
Affiliation(s)
- Yang Yu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaolang Lu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kehe Yu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jianjun Hong
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ying Chen
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
13
|
Kang JH, Kwak HJ, Choi HE, Kim J, Hong S, Kim OH, Oh BC, Cheon HG. Involvement of Prolyl Hydroxylase Domain Protein in the Rosiglitazone-Induced Suppression of Osteoblast Differentiation. PLoS One 2015; 10:e0139093. [PMID: 26418009 PMCID: PMC4587972 DOI: 10.1371/journal.pone.0139093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/09/2015] [Indexed: 01/10/2023] Open
Abstract
Rosiglitazone is a well-known anti-diabetic drug that increases insulin sensitivity via peroxisome proliferator-activated receptor γ (PPARγ) activation, but unfortunately it causes bone loss in animals and humans. A previous study showed that prolyl hydroxylase domain protein (PHD) plays a role in rosiglitazone-induced adipocyte differentiation. Based on the inverse relationship between adipocyte and osteoblast differentiation, we investigated whether PHD is involved in the effects of rosiglitazone on osteoblast differentiation. Rosiglitazone inhibited osteoblast differentiation in a concentration-dependent manner, and in parallel induced three PHD isoforms (PHD1, 2, and 3). PHD inhibitors and knockdown of each isoform prevented the inhibitory effects of rosiglitazone on osteoblast differentiation and increased the expression of Runx2, a transcription factor essential for osteoblastogenesis. MG-132, a proteasomal inhibitor also prevented the rosiglitazone-induced degradation of Runx2. Furthermore, both increased PHD isoform expressions and reduced osteoblast differentiation by rosiglitazone were prevented by PPARγ antagonists, indicating these effects were mediated via PPARγ activation. In vivo oral administration of rosiglitazone to female ICR mice for 8 weeks reduced bone mineral densities and plasma alkaline phosphatase (ALP) activity, and increased PHD expression in femoral primary bone marrow cells and the ubiquitination of Runx2. Together, this suggests that the rosiglitazone-induced suppression of osteoblast differentiation is at least partly induced via PPARγ-mediated PHD induction and subsequent promotion of the ubiquitination and degradation of Runx2.
Collapse
Affiliation(s)
- Ju-Hee Kang
- Department of Pharmacology, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Pharmacology, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Hye-Eun Choi
- Department of Pharmacology, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Juyoung Kim
- Department of Pharmacology, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Sangmee Hong
- Department of Molecular Medicine, Gachon University, Incheon, Republic of Korea
| | - Ok-Hee Kim
- Department of Molecular Medicine, Gachon University, Incheon, Republic of Korea
| | - Byung Chul Oh
- Department of Molecular Medicine, Gachon University, Incheon, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, School of Medicine, Gachon University, Incheon, Republic of Korea
- Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
14
|
Hu X, Zhang L, Jin J, Zhu W, Xu Y, Wu Y, Wang Y, Chen H, Webster KA, Chen H, Yu H, Wang J. Heparanase released from mesenchymal stem cells activates integrin beta1/HIF-2alpha/Flk-1 signaling and promotes endothelial cell migration and angiogenesis. Stem Cells 2015; 33:1850-1862. [PMID: 25754303 PMCID: PMC5108061 DOI: 10.1002/stem.1995] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 11/10/2022]
Abstract
Heparanase plays important roles in tumor angiogenesis. Our previous study demonstrated that hypoxic preconditioning (HPC) enhanced the angiogenic and therapeutic effects of mesenchymal stem cells (MSCs), effects that were paralleled by enhanced heparanase expression. This study was designed to elucidate the role of heparanase in the improved therapeutic properties of HPC-MSCs and to explore underlying mechanisms using an ischemic rat hind limb model. MSCs transfected with heparanase (MSC(hpa) ) or empty vector (MSC(null) ) were delivered by intramuscular injections to ischemic hind limbs. Hind limbs that received MSC(hpa) recovered blood flow more rapidly at 7 days and acquired higher capillary density at 14 days compared with MSC(null) . Conditioned medium from MSC(hpa) increased endothelial cell migration and promoted greater tube formation relative to that from the MSC(null) groups. Vascular endothelial growth factor receptor 2 (VEGFR2, Flk-1) and its downstream signaling pathway (p38MAPK/HSP27) were significantly increased in human umbilical vein endothelial cells (HUVECs) after treatment with MSC(hpa) conditioned medium. Each of these responses was decreased by cocultured with MSC(hpa-KD) conditioned medium. MSC(hpa) conditioned medium activated hypoxia-inducible factor-2α (HIF-2α) and increased in parallel the transcript level of Flk-1 as determined by chromatin immunoprecipitation-PCR and luciferase assays. Analyses of integrin expression revealed an important role for integrin β1 in the regulation of HIF-2α. All angiogenic effects of MSC(hpa) conditioned medium were abolished by knockdown of integrin β1, HIF-2α, and Flk-1 in HUVECs with selective shRNAs. These findings identify heparanse as a key regulator of angiogenesis by MSCs. We propose a novel pathway wherein heparanse sequentially activates integrin β1, HIF-2α, Flk-1, and p38MAPK/HSP27 with corresponding enhancement of angiogenesis.
Collapse
Affiliation(s)
- Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Ling Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Jing Jin
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Yinchuan Xu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Yan Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Yingchao Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Han Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Keith A. Webster
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Huiqiang Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Jian’an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
15
|
Abstract
GATA3 is a highly conserved, essential transcription factor expressed in a number of tissues, including the mammary gland. GATA3 expression is required for normal development of the mammary gland where it is estimated to be the most abundant transcription factor in luminal epithelial cells. In breast cancer, GATA3 expression is highly correlated with the luminal transcriptional program. Recent genomic analysis of human breast cancers has revealed high-frequency mutation in GATA3 in luminal tumors, suggesting "driver" function(s). Here we discuss mutation of GATA3 in breast cancer and the potential mechanism(s) by which mutation may lead to a growth advantage in cancer.
Collapse
Affiliation(s)
- Motoki Takaku
- *Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC, USA
| | - Sara A. Grimm
- †Integrated Bioinformatics, National Institute of Environmental Health Science, Research Triangle Park, NC, USA
| | - Paul A. Wade
- *Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Tharaheswari M, Jayachandra Reddy N, Kumar R, Varshney KC, Kannan M, Sudha Rani S. Trigonelline and diosgenin attenuate ER stress, oxidative stress-mediated damage in pancreas and enhance adipose tissue PPARγ activity in type 2 diabetic rats. Mol Cell Biochem 2014; 396:161-74. [DOI: 10.1007/s11010-014-2152-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/11/2014] [Indexed: 12/11/2022]
|
17
|
Yuan SM, Guo Y, Zhou XJ, Shen WM, Chen HN. PDGFR-β (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2861-2870. [PMID: 25031705 PMCID: PMC4097281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/23/2014] [Indexed: 06/03/2023]
Abstract
Infantile hemangioma, a common benign tumor of infancy, grows quickly in the first year of life, and then regresses slowly to fibrofatty tissue in childhood. The accumulation of fibrofatty tissue in hemangioma involution indicates adipogenesis during this period. Perivascular cells (PCs) from multiple organs display multi-lineage differentiation, including adipogenesis. So we supposed that PCs in hemangioma may contribute to the adipogenesis in the involution. In this study, PDGFR-β (+) PCs was isolated from hemangioma tissue (hemangioma-derived perivascular cells, Hem-PCs) by fluorescence-activated cell sorter. In vitro, Hem-PCs showed fibroblast-like morphology. Immunofluorescence staining and flow cytometry showed Hem-PCs expressed MSCs markers CD105, CD90, CD29 and vimentin, pericyte markers α-SMA and PDGFR-β, stem cell marker CD133, and the adipogenic transcription factor PPAR-γ, but not hematopoietic/endothelial markers CD45, CD34, CD31, and flt-1. In vitro inductions confirmed multi-lineage differentiation of Hem-PCs, especially strong adipogenic potential. Then a murine model was established to observe in vivo differentiation of Hem-PCs by subcutaneous injection of cells/Matrigel compound into nude mice. The results showed Hem-PCs differentiated into adipocytes in vivo. To the best of our knowledge, this is the first study reporting the isolation of multipotential PDGFR-β (+) PCs from hemangioma, and observing their adipogenic differentiation in vivo. PCs may be the cellular basis of adipogenesis in hemangioma involution, and may be the target cells of adipogenic induction to promote hemangioma involution.
Collapse
Affiliation(s)
- Si-Ming Yuan
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu 210002, China
| | - Yao Guo
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu 210002, China
| | - Xiao-Jun Zhou
- Department of Pathology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu 210002, China
| | - Wei-Min Shen
- Department of Plastic Surgery, Children’s HospitalNanjing, Jiangsu 210008, China
| | - Hai-Ni Chen
- Department of Plastic Surgery, Children’s HospitalNanjing, Jiangsu 210008, China
| |
Collapse
|