1
|
Hui ST, Gong L, Swichkow C, Blencowe M, Kaminska D, Diamante G, Pan C, Dalsania M, French SW, Magyar CE, Pajukanta P, Pihlajamäki J, Boström KI, Yang X, Lusis AJ. Role of Matrix Gla Protein in Transforming Growth Factor-β Signaling and Nonalcoholic Steatohepatitis in Mice. Cell Mol Gastroenterol Hepatol 2023; 16:943-960. [PMID: 37611662 PMCID: PMC10632746 DOI: 10.1016/j.jcmgh.2023.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is a complex disease involving both genetic and environmental factors in its onset and progression. We analyzed NASH phenotypes in a genetically diverse cohort of mice, the Hybrid Mouse Diversity Panel, to identify genes contributing to disease susceptibility. METHODS A "systems genetics" approach, involving integration of genetic, transcriptomic, and phenotypic data, was used to identify candidate genes and pathways in a mouse model of NASH. The causal role of Matrix Gla Protein (MGP) was validated using heterozygous MGP knockout (Mgp+/-) mice. The mechanistic role of MGP in transforming growth factor-beta (TGF-β) signaling was examined in the LX-2 stellate cell line by using a loss of function approach. RESULTS Local cis-acting regulation of MGP was correlated with fibrosis, suggesting a causal role in NASH, and this was validated using loss of function experiments in 2 models of diet-induced NASH. Using single-cell RNA sequencing, Mgp was found to be primarily expressed in hepatic stellate cells and dendritic cells in mice. Knockdown of MGP expression in stellate LX-2 cells led to a blunted response to TGF-β stimulation. This was associated with reduced regulatory SMAD phosphorylation and TGF-β receptor ALK1 expression as well as increased expression of inhibitory SMAD6. Hepatic MGP expression was found to be significantly correlated with the severity of fibrosis in livers of patients with NASH, suggesting relevance to human disease. CONCLUSIONS MGP regulates liver fibrosis and TGF-β signaling in hepatic stellate cells and contributes to NASH pathogenesis.
Collapse
Affiliation(s)
- Simon T Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Lili Gong
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Chantle Swichkow
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Dorota Kaminska
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Meet Dalsania
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Clara E Magyar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Kristina I Boström
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
2
|
Jin S, Reesink KD, Kroon AA, de Galan B, van der Kallen CJH, Wesselius A, Schalkwijk CG, Stehouwer CDA, van Greevenbroek MMJ. Complement factors D and C3 cross-sectionally associate with arterial stiffness, but not independently of metabolic risk factors: The Maastricht Study. J Hypertens 2022; 40:2161-2170. [PMID: 35881455 DOI: 10.1097/hjh.0000000000003237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Arterial stiffness predicts cardiovascular outcomes. The complement system, particularly the alternative complement pathway, has been implicated in cardiovascular diseases. We herein investigated the associations of factor D, the rate-limiting protease of the alternative pathway, and C3, the central complement component, with arterial stiffness. METHODS In 3019 population-based participants (51.9% men, 60.1 ± 8.2 years, 27.7% type 2 diabetes [T2D], oversampled]), we measured carotid-femoral pulse wave velocity (cfPWV), carotid distensibility coefficient (DC) and carotid Young's elastic modulus (YEM), and plasma concentrations of factors D and C3. We conducted multiple linear regression to investigate the association of factors D and C3 (main independent variables, standardized) with cfPWV (primary outcome) and DC and YEM (secondary outcomes), adjusted for potential confounders. RESULTS Per SD higher factors D and C3, cfPWV was 0.41 m/s [95% confidence interval: 0.34; 0.49] and 0.33 m/s [0.25; 0.41] greater, respectively. These associations were substantially attenuated when adjusted for age, sex, education, mean arterial pressure, and heart rate (0.08 m/s [0.02; 0.15] and 0.11 m/s [0.05; 0.18], respectively), and were not significant when additionally adjusted for T2D, waist circumference and additional cardiovascular risk factors (0.06 m/s [-0.01; 0.13] and 0.01 m/s [-0.06; 0.09], respectively). Results were comparable for carotid YEM and DC. In persons with T2D, but not in those without, the association between factors D and cfPWV was significant in the fully adjusted model (0.14 m/s, [0.01; 0.27], P = 0.038, Pinteraction < 0.05). CONCLUSION The strong association of plasma factors D and C3 with arterial stiffness in this population-based cohort was not independent of T2D and other metabolic risk factors. Our data suggest that a possible causal pathway starting from alternative complement activation may via hypertension and T2D contribute to greater arterial stiffness.
Collapse
Affiliation(s)
- Shunxin Jin
- CARIM School for Cardiovascular Diseases
- Department of Internal Medicine
| | - Koen D Reesink
- CARIM School for Cardiovascular Diseases
- Department of Biomedical Technology
| | - Abraham A Kroon
- CARIM School for Cardiovascular Diseases
- Department of Internal Medicine
| | | | | | - Anke Wesselius
- Department of Genetics
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University and Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
3
|
Zhang L, Yao J, Yao Y, Boström KI. Contributions of the Endothelium to Vascular Calcification. Front Cell Dev Biol 2021; 9:620882. [PMID: 34079793 PMCID: PMC8165270 DOI: 10.3389/fcell.2021.620882] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Vascular calcification (VC) increases morbidity and mortality and constitutes a significant obstacle during percutaneous interventions and surgeries. On a cellular and molecular level, VC is a highly regulated process that involves abnormal cell transitions and osteogenic differentiation, re-purposing of signaling pathways normally used in bone, and even formation of osteoclast-like cells. Endothelial cells have been shown to contribute to VC through a variety of means. This includes direct contributions of osteoprogenitor cells generated through endothelial-mesenchymal transitions in activated endothelium, with subsequent migration into the vessel wall. The endothelium also secretes pro-osteogenic growth factors, such as bone morphogenetic proteins, inflammatory mediators and cytokines in conditions like hyperlipidemia, diabetes, and renal failure. High phosphate levels caused by renal disease have deleterious effects on the endothelium, and induction of tissue non-specific alkaline phosphatase adds to the calcific process. Furthermore, endothelial activation promotes proteolytic destruction of the internal elastic lamina that serves, among other things, as a stabilizer of the endothelium. Appropriate bone mineralization is highly dependent on active angiogenesis, but it is unclear whether the same relationship exists in VC. Through its location facing the vascular lumen, the endothelium is the first to encounter circulating factor and bone marrow-derived cells that might contribute to osteoclast-like versus osteoblast-like cells in the vascular wall. In the same way, the endothelium may be the easiest target to reach with treatments aimed at limiting calcification. This review provides a brief summary of the contributions of the endothelium to VC as we currently know them.
Collapse
Affiliation(s)
- Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Molecular Biology Institute, Los Angeles, CA, United States
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
4
|
Borrás T, Cowley DO, Asokan P, Pandya K. Generation of a Matrix Gla (Mgp) floxed mouse, followed by conditional knockout, uncovers a new Mgp function in the eye. Sci Rep 2020; 10:18583. [PMID: 33122788 PMCID: PMC7596545 DOI: 10.1038/s41598-020-75031-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
The ability to ablate a gene in a given tissue by generating a conditional knockout (cKO) is crucial for determining its function in the targeted tissue. Such tissue-specific ablation is even more critical when the gene's conventional knockout (KO) is lethal, which precludes studying the consequences of its deletion in other tissues. Therefore, here we describe a successful strategy that generated a Matrix Gla floxed mouse (Mgp.floxed) by the CRISPR/Cas9 system, that subsequently allowed the generation of cKOs by local viral delivery of the Cre-recombinase enzyme. MGP is a well-established inhibitor of calcification gene, highly expressed in arteries' smooth muscle cells and chondrocytes. MGP is also one of the most abundant genes in the trabecular meshwork, the eye tissue responsible for maintenance of intraocular pressure (IOP) and development of Glaucoma. Our strategy entailed one-step injection of two gRNAs, Cas9 protein and a long-single-stranded-circular DNA donor vector (lsscDNA, 6.7 kb) containing two loxP sites in cis and 900-700 bp 5'/3' homology arms. Ocular intracameral injection of Mgp.floxed mice with a Cre-adenovirus, led to an Mgp.TMcKO mouse which developed elevated IOP. Our study discovered a new role for the Mgp gene as a keeper of physiological IOP in the eye.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, 4109C Neuroscience Research Building CB 7041, 115 Mason Farm Road, Chapel Hill, NC, 27599-7041, USA.
| | - Dale O Cowley
- Animal Models Core, University of North Carolina, Chapel Hill, NC, USA
| | - Priyadarsini Asokan
- Department of Ophthalmology, University of North Carolina School of Medicine, 4109C Neuroscience Research Building CB 7041, 115 Mason Farm Road, Chapel Hill, NC, 27599-7041, USA
| | - Kumar Pandya
- Animal Models Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Cystamine and cysteamine as inhibitors of transglutaminase activity in vivo. Biosci Rep 2018; 38:BSR20180691. [PMID: 30054429 PMCID: PMC6123069 DOI: 10.1042/bsr20180691] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/07/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cystamine is commonly used as a transglutaminase inhibitor. This disulphide undergoes reduction in vivo to the aminothiol compound, cysteamine. Thus, the mechanism by which cystamine inhibits transglutaminase activity in vivo could be due to either cystamine or cysteamine, which depends on the local redox environment. Cystamine inactivates transglutaminases by promoting the oxidation of two vicinal cysteine residues on the enzyme to an allosteric disulphide, whereas cysteamine acts as a competitive inhibitor for transamidation reactions catalyzed by this enzyme. The latter mechanism is likely to result in the formation of a unique biomarker, N-(γ-glutamyl)cysteamine that could serve to indicate how cyst(e)amine acts to inhibit transglutaminases inside cells and the body.
Collapse
|
6
|
Beazley KE, Nurminskaya M. Effects of dietary quercetin on female fertility in mice: implication of transglutaminase 2. Reprod Fertil Dev 2018; 28:974-981. [PMID: 25557047 DOI: 10.1071/rd14155] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022] Open
Abstract
Use of the dietary supplement quercetin is on the rise. Because previous studies imply an inhibitory effect of quercetin on male fertility, we explored the effects of this flavonoid on fertility in female mice. Birth outcomes, and ovarian morphology in 4-week-old offspring, were assessed in mice receiving dietary quercetin (5mgkg-1day-1) for 9 months during two breeding periods: from 2 to 6 months (prime reproductive age) and 8 to11 months of age. Quercetin increased birth spacing, leading to a 60% reduction in the number of litters, but enhanced folliculogenesis in ovaries of female offspring. While in young females quercetin caused an almost 70% increase in litter size, in older animals this effect was reversed. Consistent with the inhibitory activity of quercetin on the enzyme transglutaminase 2 (TG2), genetic ablation of TG2 in mice mirrors the effects of quercetin on birth outcomes and follicular development. Further, TG2-null mice lack responsiveness to quercetin ingestion. Our study shows for the first time that dietary quercetin can cause reduced reproductive potential in female mice and implies that TG2 may regulate ovarian ageing.
Collapse
Affiliation(s)
- Kelly E Beazley
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 108 N Greene St, Baltimore, MD 21201, USA
| | - Maria Nurminskaya
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 108 N Greene St, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW We give an update on the etiology and potential treatment options of rare inherited monogenic disorders associated with arterial calcification and calcific cardiac valve disease. RECENT FINDINGS Genetic studies of rare inherited syndromes have identified key regulators of ectopic calcification. Based on the pathogenic principles causing the diseases, these can be classified into three groups: (1) disorders of an increased extracellular inorganic phosphate/inorganic pyrophosphate ratio (generalized arterial calcification of infancy, pseudoxanthoma elasticum, arterial calcification and distal joint calcification, progeria, idiopathic basal ganglia calcification, and hyperphosphatemic familial tumoral calcinosis; (2) interferonopathies (Singleton-Merten syndrome); and (3) others, including Keutel syndrome and Gaucher disease type IIIC. Although some of the identified causative mechanisms are not easy to target for treatment, it has become clear that a disturbed serum phosphate/pyrophosphate ratio is a major force triggering arterial and cardiac valve calcification. Further studies will focus on targeting the phosphate/pyrophosphate ratio to effectively prevent and treat these calcific disease phenotypes.
Collapse
MESH Headings
- Abnormalities, Multiple/drug therapy
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Aortic Diseases/drug therapy
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Basal Ganglia Diseases/drug therapy
- Basal Ganglia Diseases/genetics
- Basal Ganglia Diseases/metabolism
- Calcinosis/drug therapy
- Calcinosis/genetics
- Calcinosis/metabolism
- Cartilage Diseases/drug therapy
- Cartilage Diseases/genetics
- Cartilage Diseases/metabolism
- Dental Enamel Hypoplasia/drug therapy
- Dental Enamel Hypoplasia/genetics
- Dental Enamel Hypoplasia/metabolism
- Diphosphates/metabolism
- Enzyme Replacement Therapy
- Gaucher Disease/drug therapy
- Gaucher Disease/genetics
- Gaucher Disease/metabolism
- Hand Deformities, Congenital/drug therapy
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/metabolism
- Humans
- Hyperostosis, Cortical, Congenital/drug therapy
- Hyperostosis, Cortical, Congenital/genetics
- Hyperostosis, Cortical, Congenital/metabolism
- Hyperphosphatemia/drug therapy
- Hyperphosphatemia/genetics
- Hyperphosphatemia/metabolism
- Interferons/metabolism
- Metacarpus/abnormalities
- Metacarpus/metabolism
- Muscular Diseases/drug therapy
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Odontodysplasia/drug therapy
- Odontodysplasia/genetics
- Odontodysplasia/metabolism
- Osteoporosis/drug therapy
- Osteoporosis/genetics
- Osteoporosis/metabolism
- Phosphates/metabolism
- Progeria/drug therapy
- Progeria/genetics
- Progeria/metabolism
- Pseudoxanthoma Elasticum/drug therapy
- Pseudoxanthoma Elasticum/genetics
- Pseudoxanthoma Elasticum/metabolism
- Pulmonary Valve Stenosis/drug therapy
- Pulmonary Valve Stenosis/genetics
- Pulmonary Valve Stenosis/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
Collapse
Affiliation(s)
- Yvonne Nitschke
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany.
| |
Collapse
|
8
|
Borrás T. A single gene connects stiffness in glaucoma and the vascular system. Exp Eye Res 2017; 158:13-22. [PMID: 27593913 PMCID: PMC6067113 DOI: 10.1016/j.exer.2016.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
Arterial calcification results in arterial stiffness and higher systolic blood pressure. Arterial calcification is prevented by the high expression of the Matrix-Gla gene (MGP) in the vascular smooth muscle cells (VSMC) of the arteries' tunica media. Originally, MGP, a gene highly expressed in cartilage and VSMC, was found to be one of the top expressed genes in the trabecular meshwork. The creation of an Mgp-lacZ Knock-In mouse and the use of mouse genetics revealed that in the eye, Mgp's abundant expression is localized and restricted to glaucoma-associated tissues from the anterior and posterior segments. In particular, it is specifically expressed in the regions of the trabecular meshwork and of the peripapillary sclera that surrounds the optic nerve. Because stiffness in these tissues would significantly alter outflow facility and biomechanical scleral stress in the optic nerve head (ONH), we propose MGP as a strong candidate for the regulation of stiffness in glaucoma. MGP further illustrates the presence of a common function affecting key glaucomatous parameters in the front and back of the eye, and thus offers the possibility for a sole therapeutic target for the disease.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, 4109C Neuroscience Research Building CB 7041, 105 Mason Farm Road, Chapel Hill, NC 27599-7041, USA.
| |
Collapse
|
9
|
Abstract
Vascular disease, such as atherosclerosis and diabetic vasculopathy, is frequently complicated by vascular calcification. Previously believed to be an end-stage process of unregulated mineral precipitation, it is now well established to be a multi-faceted disease influenced by the characteristics of its vascular location, the origins of calcifying cells and numerous regulatory pathways. It reflects the fundamental plasticity of the vasculature that is gradually being revealed by progress in vascular and stem cell biology. This review provides a brief overview of where we stand in our understanding of vascular calcification, facing the challenge of translating this knowledge into viable preventive and therapeutic strategies.
Collapse
|
10
|
Glorieux G, Mullen W, Duranton F, Filip S, Gayrard N, Husi H, Schepers E, Neirynck N, Schanstra JP, Jankowski J, Mischak H, Argilés À, Vanholder R, Vlahou A, Klein J. New insights in molecular mechanisms involved in chronic kidney disease using high-resolution plasma proteome analysis. Nephrol Dial Transplant 2015; 30:1842-52. [PMID: 26160894 DOI: 10.1093/ndt/gfv254] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/21/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The reduced glomerular filtration rate in the advanced stages of chronic kidney disease (CKD) leads to plasma accumulation of uraemic retention solutes including proteins. It has been hypothesized that these changes may, at least in part, be responsible for CKD-associated morbidity and mortality. However, most studies focused on the role of individual proteins, while a holistic, large-scale, integrative approach may generate significant additional insight. METHODS In a discovery study, we analysed the plasma proteome of patients with stage 2-3 CKD (n = 14) and stage 5 CKD with haemodialysis (HD) (n = 15), using high-resolution LC-MS/MS analysis. Selected results were validated in a cohort of 40 patients with different CKD stages with or without HD, using ELISA. RESULTS Of a total of 2054 detected proteins, 127 displayed lower, while 206 displayed higher abundance in the plasma of patients on HD. Molecular pathway analysis confirmed the modification of known processes involved in CKD complications, including decreased haemostasis and increased inflammation, complement activation and vascular damage. In addition, we identified the plasma increase during CKD progression of lysozyme C and leucine-rich alpha-2 glycoprotein, two proteins related to vascular damage and heart failure. High level of leucine-rich alpha-2 glycoprotein was associated with higher mortality in stage 5 CKD patients on HD. CONCLUSIONS This study provides for the first time a comprehensive assessment of CKD plasma proteome, contributing to new knowledge and potential markers of CKD. These results will serve as a basis for future studies investigating the relevance of these molecules in CKD associated morbidity and mortality.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Section, Ghent University Hospital, Gent, Belgium
| | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | | - Szymon Filip
- Biomedical Research Foundation, Academy of Athens, Athens, Greece Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Holger Husi
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Eva Schepers
- Nephrology Section, Ghent University Hospital, Gent, Belgium
| | | | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Joachim Jankowski
- University Hospital RWTH, Institute for Molecular Cardiovascular Research, Aachen, Germany
| | - Harald Mischak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK Mosaiques Diagnostics, Hannover, Germany
| | | | | | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Athens, Greece School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
11
|
Beazley KE, Nurminsky D, Lima F, Gandhi C, Nurminskaya MV. Wnt16 attenuates TGFβ-induced chondrogenic transformation in vascular smooth muscle. Arterioscler Thromb Vasc Biol 2015; 35:573-9. [PMID: 25614285 PMCID: PMC4344425 DOI: 10.1161/atvbaha.114.304393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Phenotypic plasticity of vascular smooth muscle cells (VSMCs) contributes to cardiovascular disease. Chondrocyte-like transformation of VSMCs associates with vascular calcification and underlies the formation of aortic cartilaginous metaplasia induced in mice by genetic loss of matrix Gla protein (MGP). Previous microarray analysis identified a dramatic downregulation of Wnt16 in calcified MGP-null aortae, suggesting an antagonistic role for Wnt16 in the chondrogenic transformation of VSMCs. APPROACH AND RESULTS Wnt16 is significantly downregulated in MGP-null aortae, before the histological appearance of cartilaginous metaplasia, and in primary MGP-null VSMCs. In contrast, intrinsic TGFβ is activated in MGP-null VSMCs and is necessary for spontaneous chondrogenesis of these cells in high-density micromass cultures. TGFβ3-induced chondrogenic transformation in wild-type VSMCs associates with Smad2/3-dependent Wnt16 downregulation, but Wnt16 does not suppress TGFβ3-induced Smad activation. In addition, TGFβ3 inhibits Notch signaling in wild-type VSMCs, and this pathway is downregulated in MGP-null aortae. Exogenous Wnt16 stimulates Notch activity and attenuates TGFβ3-induced downregulation of Notch in wild-type VSMCs, prevents chondrogenesis in MGP-null and TGFβ3-treated wild-type VSMCs, and stabilizes expression of contractile markers of differentiated VSMCs. CONCLUSIONS We describe a novel TGFβ-Wnt16-Notch signaling conduit in the chondrocyte-like transformation of VSMCs and identify endogenous TGFβ activity in MGP-null VSMCs as a critical mediator of chondrogenesis. Our proposed model suggests that the activated TGFβ pathway inhibits expression of Wnt16, which is a positive regulator of Notch signaling and a stabilizer of VSMC phenotype. These data advance the comprehensive mechanistic understanding of VSMC transformation and may identify a novel potential therapeutic target in vascular calcification.
Collapse
Affiliation(s)
- Kelly E Beazley
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore
| | - Dmitry Nurminsky
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore
| | - Florence Lima
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore
| | - Chintan Gandhi
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore
| | - Maria V Nurminskaya
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore.
| |
Collapse
|