1
|
Havas AP, Tula-Sanchez AA, Steenhoek HM, Bhakta A, Wingfield T, Huntley MJ, Nofal AS, Ahmed T, Jaime-Frias R, Smith CL. Defining cellular responses to HDAC-selective inhibitors reveals that efficient targeting of HDAC3 is required to elicit cytotoxicity and overcome naïve resistance to pan-HDACi in diffuse large B cell lymphoma. Transl Oncol 2024; 39:101779. [PMID: 37865047 PMCID: PMC10597794 DOI: 10.1016/j.tranon.2023.101779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 10/23/2023] Open
Abstract
Approved histone deacetylase (HDAC) inhibitors have low efficacy against the most commonly-diagnosed non-Hodgkin lymphoma, diffuse large B cell lymphoma (DLBCL), but the mechanisms underlying clinical resistance are poorly understood. Using a DLBCL cell-based model, we previously demonstrated that resistance to pan-HDAC inhibitors (HDACi) is characterized by reversible growth arrest and sensitivity by mitotic arrest and apoptosis. The goal of the current study is to better define mechanisms of sensitivity and resistance to the cytotoxic effects of HDACi by using HDAC-selective inhibitors to determine which HDACs need to be targeted to achieve the sensitive and resistant phenotypes. We find that an inhibitor selective for HDACs 1 and 2 induces G1 arrest across DLBCL cell lines used, which is consistent with the resistant phenotype. In contrast an HDAC3-selective inhibitor induces DNA damage and cytotoxicity in a cell line that is sensitive to pan-HDACi but has no effect on resistant cell lines. RNAi-mediated depletion of HDAC3 indicate the presence of a long-lived population of HDAC3 in DLBCL cell lines. Finally, doses of pan-HDACi 3-5 times higher than the IC50 established for reversible growth inhibition induce the sensitive phenotype in resistant cell lines, suggesting that resistance may be associated with failure to efficiently inhibit HDAC3. Our findings indicate that selective inhibition of HDACs 1 and 2 is associated with G1 arrest and resistance to pan-HDACi while efficient targeting of HDAC3 could be key to achieving a cytotoxic response. Thus, our work reveals a potential novel mechanism of resistance to pan-HDACi.
Collapse
Affiliation(s)
- Aaron P Havas
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Ana A Tula-Sanchez
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Hailey M Steenhoek
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Anvi Bhakta
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Taylor Wingfield
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Matthew J Huntley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Angela S Nofal
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Tasmia Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Rosa Jaime-Frias
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| |
Collapse
|
2
|
Carrera S, O'Donnell A, Li Y, Nowicki-Osuch K, Yang SH, Baker SM, Spiller D, Sharrocks AD. Complexities in the role of acetylation dynamics in modifying inducible gene activation parameters. Nucleic Acids Res 2021; 49:12744-12756. [PMID: 34850951 PMCID: PMC8682737 DOI: 10.1093/nar/gkab1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
High levels of histone acetylation are associated with the regulatory elements of active genes, suggesting a link between acetylation and gene activation. We revisited this model, in the context of EGF-inducible gene expression and found that rather than a simple unifying model, there are two broad classes of genes; one in which high lysine acetylation activity is required for efficient gene activation, and a second group where the opposite occurs and high acetylation activity is inhibitory. We examined the latter class in more detail using EGR2 as a model gene and found that lysine acetylation levels are critical for several activation parameters, including the timing of expression onset, and overall amplitudes of the transcriptional response. In contrast, DUSP1 responds in the canonical manner and its transcriptional activity is promoted by acetylation. Single cell approaches demonstrate heterogenous activation kinetics of a given gene in response to EGF stimulation. Acetylation levels modify these heterogenous patterns and influence both allele activation frequencies and overall expression profile parameters. Our data therefore point to a complex interplay between acetylation equilibria and target gene induction where acetylation level thresholds are an important determinant of transcriptional induction dynamics that are sensed in a gene-specific manner.
Collapse
Affiliation(s)
- Samantha Carrera
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Amanda O'Donnell
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Yaoyong Li
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Karol Nowicki-Osuch
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Shen-Hsi Yang
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Syed Murtuza Baker
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - David Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
3
|
Glucocorticoid-Dependent Mechanisms of Brain Tolerance to Hypoxia. Int J Mol Sci 2021; 22:ijms22157982. [PMID: 34360746 PMCID: PMC8348130 DOI: 10.3390/ijms22157982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Adaptation of organisms to stressors is coordinated by the hypothalamic-pituitary-adrenal axis (HPA), which involves glucocorticoids (GCs) and glucocorticoid receptors (GRs). Although the effects of GCs are well characterized, their impact on brain adaptation to hypoxia/ischemia is still understudied. The brain is not only the most susceptible to hypoxic injury, but also vulnerable to GC-induced damage, which makes studying the mechanisms of brain hypoxic tolerance and resistance to stress-related elevation of GCs of great importance. Cross-talk between the molecular mechanisms activated in neuronal cells by hypoxia and GCs provides a platform for developing the most effective and safe means for prevention and treatment of hypoxia-induced brain damage, including hypoxic pre- and post-conditioning. Taking into account that hypoxia- and GC-induced reprogramming significantly affects the development of organisms during embryogenesis, studies of the effects of prenatal and neonatal hypoxia on health in later life are of particular interest. This mini review discusses the accumulated data on the dynamics of the HPA activation in injurious and non-injurious hypoxia, the role of the brain GRs in these processes, interaction of GCs and hypoxia-inducible factor HIF-1, as well as cross-talk between GC and hypoxic signaling. It also identifies underdeveloped areas and suggests directions for further prospective studies.
Collapse
|
4
|
Acetylation of Hsp90 reverses dexamethasone-mediated inhibition of insulin secretion. Toxicol Lett 2020; 320:19-27. [PMID: 31778773 DOI: 10.1016/j.toxlet.2019.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 01/02/2023]
Abstract
The deleterious effects of glucocorticoids on glucose homeostasis limit their clinical use. There is substantial evidence demonstrating that islet function impaired by long-term glucocorticoids exposure is a core defect in the progression of impaired glucose tolerance to diabetes. The activity of heat-shock protein (Hsp) 90 is required to maintain the hormone-binding activity and stability of glucocorticoid receptor (GR). In the present study, Hsp90 inhibition by 17-DMAG counteracted dexamethasone-mediated inhibition of glucose-stimulated insulin secretion in isolated rat islets as well as expressions of neuropeptide Y (NPY) and somatostatin receptor 3 (SSTR3), two negative regulators of insulin secretion. Like 17-DMAG, both the pan-histone deacetylase (HDAC) inhibitor TSA and HDAC6 inhibitor Tubacin exhibited a similar action in protecting islet function against dexamethasone-induced injury, along with the downregulation of NPY and SSTR3 expressions. The hyperacetylation of Hsp90 by TSA and Tubacin disrupted its binding ability to GR and blocked dexamethasone-elicited nuclear translocation of GR in INS-1 β-cell lines. In addition, Tubacin treatment triggered the GR protein degradation through the ubiquitin-proteasome pathway. These findings suggest that Hsp90 acetylation by inhibiting HDAC6 activity may be a potential strategy to prevent the development of steroid diabetes mellitus via alleviating glucocorticoid-impaired islet function.
Collapse
|
5
|
Mansley MK, Roe AJ, Francis SL, Gill JH, Bailey MA, Wilson SM. Trichostatin A blocks aldosterone-induced Na + transport and control of serum- and glucocorticoid-inducible kinase 1 in cortical collecting duct cells. Br J Pharmacol 2019; 176:4708-4719. [PMID: 31423568 DOI: 10.1111/bph.14837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/30/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Aldosterone stimulates epithelial Na+ channel (ENaC)-dependent Na+ retention in the cortical collecting duct (CCD) of the kidney by activating mineralocorticoid receptors that promote expression of serum and glucocorticoid-inducible kinase 1 (SGK1). This response is critical to BP homeostasis. It has previously been suggested that inhibiting lysine deacetylases (KDACs) can post-transcriptionally disrupt this response by promoting acetylation of the mineralocorticoid receptor. The present study critically evaluates this hypothesis. EXPERIMENTAL APPROACH Electrometric and molecular methods were used to define the effects of a pan-KDAC inhibitor, trichostatin A, on the responses to a physiologically relevant concentration of aldosterone (3 nM) in murine mCCDcl1 cells. KEY RESULTS Aldosterone augmented ENaC-induced Na+ absorption and increased SGK1 activity and abundance, as expected. In the presence of trichostatin A, these responses were suppressed. Trichostatin A-induced inhibition of KDAC was confirmed by increased acetylation of histone H3, H4, and α-tubulin. Trichostatin A did not block the electrometric response to insulin, a hormone that activates SGK1 independently of increased transcription, indicating that trichostatin A has no direct effect upon the SGK1/ENaC pathway. CONCLUSIONS AND IMPLICATIONS Inhibition of lysine de-acetylation suppresses aldosterone-dependent control over the SGK1-ENaC pathway but does not perturb post-transcriptional signalling, providing a physiological basis for the anti-hypertensive action of KDAC inhibition seen in vivo.
Collapse
Affiliation(s)
- Morag K Mansley
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK.,Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Andrew J Roe
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| | - Sarah L Francis
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| | - Jason H Gill
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| | - Matthew A Bailey
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Stuart M Wilson
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| |
Collapse
|
6
|
Marié IJ, Chang HM, Levy DE. HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 2018; 215:3194-3212. [PMID: 30463877 PMCID: PMC6279398 DOI: 10.1084/jem.20180520] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/15/2018] [Accepted: 10/19/2018] [Indexed: 01/12/2023] Open
Abstract
In contrast to the common role of histone deacetylases (HDACs) for gene repression, HDAC activity provides a required positive function for IFN-stimulated gene (ISG) expression. Here, we show that HDAC1/2 as components of the Sin3A complex are required for ISG transcriptional elongation but not for recruitment of RNA polymerase or transcriptional initiation. Transcriptional arrest by HDAC inhibition coincides with failure to recruit the epigenetic reader Brd4 and elongation factor P-TEFb due to sequestration of Brd4 on hyperacetylated chromatin. Brd4 availability is regulated by an equilibrium cycle between opposed acetyltransferase and deacetylase activities that maintains a steady-state pool of free Brd4 available for recruitment to inducible promoters. An ISG expression signature is a hallmark of interferonopathies and other autoimmune diseases. Combined inhibition of HDAC1/2 and Brd4 resolved the aberrant ISG expression detected in cells derived from patients with two inherited interferonopathies, ISG15 and USP18 deficiencies, defining a novel therapeutic approach to ISG-associated autoimmune diseases.
Collapse
Affiliation(s)
- Isabelle J Marié
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Hao-Ming Chang
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - David E Levy
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| |
Collapse
|
7
|
Kim M, Lee HA, Cho HM, Kang SH, Lee E, Kim IK. Histone deacetylase inhibition attenuates hepatic steatosis in rats with experimental Cushing's syndrome. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 22:23-33. [PMID: 29302209 PMCID: PMC5746509 DOI: 10.4196/kjpp.2018.22.1.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/14/2017] [Accepted: 07/30/2017] [Indexed: 12/13/2022]
Abstract
Cushing's syndrome (CS) is a collection of symptoms caused by prolonged exposure to excess cortisol. Chronically elevated glucocorticoid (GC) levels contribute to hepatic steatosis. We hypothesized that histone deacetylase inhibitors (HDACi) could attenuate hepatic steatosis through glucocorticoid receptor (GR) acetylation in experimental CS. To induce CS, we administered adrenocorticotropic hormone (ACTH; 40 ng/kg/day) to Sprague-Dawley rats by subcutaneous infusion with osmotic mini-pumps. We administered the HDACi, sodium valproate (VPA; 0.71% w/v), in the drinking water. Treatment with the HDACi decreased steatosis and the expression of lipogenic genes in the livers of CS rats. The enrichment of GR at the promoters of the lipogenic genes, such as acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), and sterol regulatory element binding protein 1c (Srebp1c), was markedly decreased by VPA. Pan-HDACi and an HDAC class I-specific inhibitor, but not an HDAC class II a-specific inhibitor, attenuated dexamethasone (DEX)-induced lipogenesis in HepG2 cells. The transcriptional activity of Fasn was decreased by pretreatment with VPA. In addition, pretreatment with VPA decreased DEX-induced binding of GR to the glucocorticoid response element (GRE). Treatment with VPA increased the acetylation of GR in ACTH-infused rats and DEX-induced HepG2 cells. Taken together, these results indicate that HDAC inhibition attenuates hepatic steatosis hrough GR acetylation in experimental CS.
Collapse
Affiliation(s)
- Mina Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Hae-Ahm Lee
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Hyun-Min Cho
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Seol-Hee Kang
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Eunjo Lee
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - In Kyeom Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| |
Collapse
|
8
|
Griggs CA, Malm SW, Jaime-Frias R, Smith CL. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors. Toxicol Appl Pharmacol 2017; 339:110-120. [PMID: 29229235 DOI: 10.1016/j.taap.2017.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022]
Abstract
Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage.
Collapse
Affiliation(s)
- Chanel A Griggs
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Scott W Malm
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Rosa Jaime-Frias
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
9
|
The nature of the GRE influences the screening for GR-activity enhancing modulators. PLoS One 2017; 12:e0181101. [PMID: 28686666 PMCID: PMC5501670 DOI: 10.1371/journal.pone.0181101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/25/2017] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoid resistance (GCR), i.e. unresponsiveness to the beneficial anti-inflammatory activities of the glucocorticoid receptor (GR), poses a serious problem in the treatment of inflammatory diseases. One possible solution to try and overcome GCR, is to identify molecules that prevent or revert GCR by hyper-stimulating the biological activity of the GR. To this purpose, we screened for compounds that potentiate the dexamethasone (Dex)-induced transcriptional activity of GR. To monitor GR transcriptional activity, the screen was performed using the lung epithelial cell line A549 in which a glucocorticoid responsive element (GRE) coupled to a luciferase reporter gene construct was stably integrated. Histone deacetylase inhibitors (HDACi) such as Vorinostat and Belinostat are two broad-spectrum HDACi that strongly increased the Dex-induced luciferase expression in our screening system. In sharp contrast herewith, results from a genome-wide transcriptome analysis of Dex-induced transcripts using RNAseq, revealed that Belinostat impairs the ability of GR to transactivate target genes. The stimulatory effect of Belinostat in the luciferase screen further depends on the nature of the reporter construct. In conclusion, a profound discrepancy was observed between HDACi effects on two different synthetic promoter-luciferase reporter systems. The favorable effect of HDACi on gene expression should be evaluated with care, when considering them as potential therapeutic agents. GEO accession number GSE96649.
Collapse
|
10
|
Patrick NM, Griggs CA, Icenogle AL, Gilpatrick MM, Kadiyala V, Jaime-Frias R, Smith CL. Class I lysine deacetylases promote glucocorticoid-induced transcriptional repression through functional interaction with LSD1. J Steroid Biochem Mol Biol 2017; 167:1-13. [PMID: 27645313 PMCID: PMC5444329 DOI: 10.1016/j.jsbmb.2016.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/12/2016] [Accepted: 09/15/2016] [Indexed: 01/23/2023]
Abstract
Small molecule inhibitors of lysine deacetylases (KDACs) are approved for clinical use in treatment of several diseases. Nuclear receptors, such as the glucocorticoid receptor (GR) use lysine acetyltransferases (KATs or HATs) and KDACs to regulate transcription through acetylation and deacetylation of protein targets such as histones. Previously we have shown that KDAC1 activity facilitates GR-activated transcription at about half of all cellular target genes. In the current study we examine the role of Class I KDACs in glucocorticoid-mediated repression of gene expression. Inhibition of KDACs through two structurally distinct Class I-selective inhibitors prevented dexamethasone (Dex)-mediated transcriptional repression in a gene-selective fashion. In addition, KDAC activity is also necessary to maintain repression. Steroid receptor coactivator 2 (SRC2), which is known to play a vital role in GR-mediated repression of pro-inflammatory genes, was found to be dispensable for repression of glucocorticoid target genes sensitive to KDAC inhibition. At the promoters of these genes, KDAC inhibition did not result in altered nucleosome occupancy or histone H3 acetylation. Surprisingly, KDAC inhibition rapidly induced a significant decrease in H3K4Me2 at promoter nucleosomes with no corresponding change in H3K4Me3, suggesting the activation of the lysine demethylase, LSD1/KDM1A. Depletion of LSD1 expression via siRNA restored Dex-mediated repression in the presence of KDAC inhibitors, suggesting that LSD1 activation at these gene promoters is incompatible with transcriptional repression. Treatment with KDAC inhibitors does not alter cellular levels of LSD1 or its association with Dex-repressed gene promoters. Therefore, we conclude that Class I KDACs facilitate Dex-induced transcriptional repression by suppressing LSD1 complex activity at selected target gene promoters. Rather than facilitating repression of transcription, LSD1 opposes it in these gene contexts.
Collapse
Affiliation(s)
- Nina M Patrick
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Chanel A Griggs
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Ali L Icenogle
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Maryam M Gilpatrick
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Vineela Kadiyala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States; Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ, 85721, United States
| | - Rosa Jaime-Frias
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
11
|
Yang X, Zhang Y, Xu W, Deng R, Liu Y, Li F, Wang Y, Ji X, Bai M, Zhou F, Zhou L, Wang X. Potential role of Hsp90 in rat islet function under the condition of high glucose. Acta Diabetol 2016; 53:621-8. [PMID: 26997509 DOI: 10.1007/s00592-016-0852-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/20/2016] [Indexed: 01/02/2023]
Abstract
AIMS The preservation of pancreatic β-cell function is a key point in the treatment of type 2 diabetes mellitus. There is substantial evidence demonstrating that heat-shock protein 90 (Hsp90) is needed for the stabilization and correct folding of client proteins and plays important roles in various biological processes. Here, we revealed the important role of Hsp90 in β-cell function. METHODS Islets from male Sprague-Dawley rats were isolated to be used for further RT-PCR, Western blot, and insulin secretion test ex vivo in response to different stimuli. RESULTS Our results revealed that Hsp90 expression was significantly decreased in isolated rat islets exposed to high glucose, which was involved in glucokinase activation and glucose metabolism, not calcium signaling. Two kinds of Hsp90 inhibitors 17-DMAG and CCT018159 markedly enhanced glucose-stimulated insulin secretion from rat islets, along with increased expressions of genes closely related to β-cell function. CONCLUSIONS These data indicate that Hsp90 may be involved in high glucose-induced islet function adaptation.
Collapse
Affiliation(s)
- Xue Yang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Yuqing Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Wan Xu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Ruyuan Deng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Yun Liu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Fengying Li
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Yao Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Xueying Ji
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Mengyao Bai
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Feiye Zhou
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Libin Zhou
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
| | - Xiao Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
| |
Collapse
|
12
|
Jiménez-Canino R, Lorenzo-Díaz F, Jaisser F, Farman N, Giraldez T, Alvarez de la Rosa D. Histone Deacetylase 6-Controlled Hsp90 Acetylation Significantly Alters Mineralocorticoid Receptor Subcellular Dynamics But Not its Transcriptional Activity. Endocrinology 2016; 157:2515-32. [PMID: 27100623 DOI: 10.1210/en.2015-2055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily that transduces the biological effects of corticosteroids. Its best-characterized role is to enhance transepithelial sodium reabsorption in response to increased aldosterone levels. In addition, MR participates in other aldosterone- or glucocorticoid-controlled processes such as cardiovascular homeostasis, adipocyte differentiation or neurogenesis, and regulation of neuronal activity in the hippocampus. Like other steroid receptors, MR forms cytosolic heterocomplexes with heat shock protein (Hsp) 90), Hsp70, and other proteins such as immunophilins. Interaction with Hsp90 is thought to maintain MR in a ligand-binding competent conformation and to regulate ligand-dependent and -independent nucleocytoplasmatic shuttling. It has previously been shown that acetylation of residue K295 in Hsp90 regulates its interaction with the androgen receptor and glucocorticoid receptor (GR). In this work we hypothesized that Hsp90 acetylation provides a regulatory step to modulate MR cellular dynamics and activity. We used Hsp90 acetylation mimic mutant K295Q or nonacetylatable mutant K295R to examine whether MR nucleocytoplasmatic shuttling and gene transactivation are affected. Furthermore, we manipulated endogenous Hsp90 acetylation levels by controlling expression or activity of histone deacetylase 6 (HDAC6), the enzyme responsible for deacetylation of Hsp90-K295. Our data demonstrates that HDAC6-mediated Hsp90 acetylation regulates MR cellular dynamics but it does not alter its function. This stands in contrast with the down-regulation of GR by HDAC6, suggesting that Hsp90 acetylation may play a role in balancing relative MR and GR activity when both factors are co-expressed in the same cell.
Collapse
Affiliation(s)
- Rubén Jiménez-Canino
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Fabián Lorenzo-Díaz
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Frederic Jaisser
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Nicolette Farman
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Teresa Giraldez
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Diego Alvarez de la Rosa
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| |
Collapse
|
13
|
Lee HA, Song MJ, Seok YM, Kang SH, Kim SY, Kim I. Histone Deacetylase 3 and 4 Complex Stimulates the Transcriptional Activity of the Mineralocorticoid Receptor. PLoS One 2015; 10:e0136801. [PMID: 26305553 PMCID: PMC4549324 DOI: 10.1371/journal.pone.0136801] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylases (HDACs) act as corepressors in gene transcription by altering the acetylation of histones, resulting in epigenetic gene silencing. We previously reported that HDAC3 acts as a coactivator of the mineralocorticoid receptor (MR). Although HDAC3 forms complexes with class II HDACs, their potential role in the transcriptional activity of MR is unclear. We hypothesized that HDAC4 of the class II family stimulates the transcriptional activity of MR. The expression of MR target genes was measured by quantitative real-time PCR. MR and RNA polymerase II recruitment to promoters of MR target genes was analyzed by chromatin immunoprecipitation. The association of MR with HDACs was investigated by co-immunoprecipitation. MR acetylation was determined with an anti-acetyl-lysine antibody after immunoprecipitation with an anti-MR antibody. Among the class II HDACs, HDAC4 interacted with both MR and HDAC3 after aldosterone stimulation. The nuclear translocation of HDAC4 was mediated by protein kinase A (PKA) and protein phosphatases (PP). The transcriptional activity of MR was significantly decreased by inhibitors of PKA (H89), PP1/2 (calyculin A), class I HDACs (MS-275), but not class II HDACs (MC1568). MR acetylation was increased by H89, calyculin A, and MS-275, but not by MC1568. Interaction between MR and HDAC3 was significantly decreased by H89, calyculin A, and HDAC4 siRNA. A non-genomic effect of MR via PKA and PP1/2 induced nuclear translocation of HDAC4 to facilitate the interaction between MR and HDAC3. Thus, we have uncovered a crucial role for a class II HDAC in the activation of MR-dependent transcription.
Collapse
Affiliation(s)
- Hae-Ahm Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Min-Ji Song
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Young-Mi Seok
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Korea Promotion Institute for Traditional Medicine Industry, Gyeongsan, Gyeongbuk 712–260, Republic of Korea
| | - Seol-Hee Kang
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138–736, Republic of Korea
- Department of Medicine, University of Ulsan, College of Medicine, Seoul 138–736, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- * E-mail:
| |
Collapse
|
14
|
Liberman AC, Antunica-Noguerol M, Arzt E. Modulation of the Glucocorticoid Receptor Activity by Post-Translational Modifications. NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
| | - María Antunica-Noguerol
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| |
Collapse
|
15
|
Kadiyala V, Smith CL. Minireview: The versatile roles of lysine deacetylases in steroid receptor signaling. Mol Endocrinol 2014; 28:607-21. [PMID: 24645680 DOI: 10.1210/me.2014-1002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lysine deacetylases have been known to regulate nuclear receptor function for many years. In the unliganded state, nuclear receptors that form heterodimers with retinoid X receptors, such as the retinoic acid and thyroid hormone receptors, associate with deacetylases to repress target genes. In the case of steroid receptors, binding of an antagonist ligand was initially reported to induce association of deacetylases to prevent activation of target genes. Since then, deacetylases have been shown to have diverse functions in steroid receptor signaling, from regulating interactions with molecular chaperones to facilitating their ability to activate transcription. The purpose of this review is to summarize recent studies on the role of deacetylases in steroid receptor signaling, which show deacetylases to be highly versatile regulators of steroid receptor function.
Collapse
Affiliation(s)
- Vineela Kadiyala
- Department of Pharmacology and Toxicology, College of Pharmacy (V.K., C.L.S.), Department of Chemistry and Biochemistry, College of Science (V.K.), University of Arizona, Tucson Arizona 85721
| | | |
Collapse
|
16
|
Achary BG, Campbell KM, Co IS, Gilmour DS. RNAi screen in Drosophila larvae identifies histone deacetylase 3 as a positive regulator of the hsp70 heat shock gene expression during heat shock. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:355-63. [PMID: 24607507 DOI: 10.1016/j.bbagrm.2014.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 12/27/2022]
Abstract
The transcription regulation of the Drosophila hsp70 gene is a complex process that involves the regulation of multiple steps, including the establishment of paused Pol II and release of Pol II into elongation upon heat shock activation. While the major players involved in the regulation of gene expression have been studied in detail, additional factors involved in this process continue to be discovered. To identify factors involved in hsp70 expression, we developed a screen that capitalizes on a visual assessment of heat shock activation using a hsp70-beta galactosidase reporter and publicly available RNAi fly lines to deplete candidate proteins. We validated the screen by showing that the depletion of HSF, CycT, Cdk9, Nurf 301, or ELL prevented the full induction of hsp70 by heat shock. Our screen also identified the histone deacetylase HDAC3 and its associated protein SMRTER as positive regulators of hsp70 activation. Additionally, we show that HDAC3 and SMRTER contribute to hsp70 gene expression at a step subsequent to HSF-mediated activation and release of the paused Pol II that resides at the promoter prior to heat shock induction.
Collapse
Affiliation(s)
- Bhavana G Achary
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA 16802, USA
| | - Katie M Campbell
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA 16802, USA
| | - Ivy S Co
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA 16802, USA
| | - David S Gilmour
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
17
|
Højfeldt JW, Cruz-Rodríguez O, Imaeda Y, Van Dyke AR, Carolan JP, Mapp AK, Iñiguez-Lluhí JA. Bifunctional ligands allow deliberate extrinsic reprogramming of the glucocorticoid receptor. Mol Endocrinol 2014; 28:249-59. [PMID: 24422633 DOI: 10.1210/me.2013-1343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Therapies based on conventional nuclear receptor ligands are extremely powerful, yet their broad and long-term use is often hindered by undesired side effects that are often part of the receptor's biological function. Selective control of nuclear receptors such as the glucocorticoid receptor (GR) using conventional ligands has proven particularly challenging. Because they act solely in an allosteric manner, conventional ligands are constrained to act via cofactors that can intrinsically partner with the receptor. Furthermore, effective means to rationally encode a bias for specific coregulators are generally lacking. Using the (GR) as a framework, we demonstrate here a versatile approach, based on bifunctional ligands, that extends the regulatory repertoire of GR in a deliberate and controlled manner. By linking the macrolide FK506 to a conventional agonist (dexamethasone) or antagonist (RU-486), we demonstrate that it is possible to bridge the intact receptor to either positively or negatively acting coregulatory proteins bearing an FK506 binding protein domain. Using this strategy, we show that extrinsic recruitment of a strong activation function can enhance the efficacy of the full agonist dexamethasone and reverse the antagonist character of RU-486 at an endogenous locus. Notably, the extrinsic recruitment of histone deacetylase-1 reduces the ability of GR to activate transcription from a canonical GR response element while preserving ligand-mediated repression of nuclear factor-κB. By providing novel ways for the receptor to engage specific coregulators, this unique ligand design approach has the potential to yield both novel tools for GR study and more selective therapeutics.
Collapse
Affiliation(s)
- Jonas W Højfeldt
- Department of Chemistry (J.W.H.,Y.I., J.P.C., A.K.M.), University of Michigan, and Department of Pharmacology (O.C.-R., J.A.I.-L.), University of Michigan Medical School, Ann Arbor, Michigan 48109; and Department of Chemistry and Biochemistry (A.R.V.D.), Fairfield University, Fairfield, Connecticut 06824
| | | | | | | | | | | | | |
Collapse
|
18
|
Dominance of the strongest: inflammatory cytokines versus glucocorticoids. Cytokine Growth Factor Rev 2013; 25:21-33. [PMID: 24412262 DOI: 10.1016/j.cytogfr.2013.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/15/2013] [Indexed: 02/08/2023]
Abstract
Pro-inflammatory cytokines are involved in the pathogenesis of many inflammatory diseases, and the excessive expression of many of them is normally counteracted by glucocorticoids (GCs), which are steroids that bind to the glucocorticoid receptor (GR). Hence, GCs are potent inhibitors of inflammation, and they are widely used to treat inflammatory diseases, such as asthma, rheumatoid arthritis and inflammatory bowel disease. However, despite the success of GC therapy, many patients show some degree of GC unresponsiveness, called GC resistance (GCR). This is a serious problem because it limits the full therapeutic exploitation of the anti-inflammatory power of GCs. Patients with reduced GC responses often have higher cytokine levels, and there is a complex interplay between GCs and cytokines: GCs downregulate pro-inflammatory cytokines while cytokines limit GC action. Treatment of inflammatory diseases with GCs is successful when GCs dominate. But when cytokines overrule the anti-inflammatory actions of GCs, patients become GC insensitive. New insights into the molecular mechanisms of GR-mediated actions and GCR are needed for the design of more effective GC-based therapies.
Collapse
|