1
|
Lv W, Yu H, Han M, Tan Y, Wu M, Zhang J, Wu Y, Zhang Q. Analysis of Tumor Glycosylation Characteristics and Implications for Immune Checkpoint Inhibitor’s Efficacy for Breast Cancer. Front Immunol 2022; 13:830158. [PMID: 35444644 PMCID: PMC9013822 DOI: 10.3389/fimmu.2022.830158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The alterations of glycosylation, which is a common post-translational modification of proteins, have been acknowledged as key events in breast cancer (BC) oncogenesis and progression. The aberrant expression of glycosyltransferases leads to aberrant glycosylation patterns, posing the diagnostic potential in BC outcomes. The present study aims to establish a glycosyltransferase-based signature to predict BC prognosis and response to immune checkpoint inhibitors. We firstly screened 9 glycosyltransferase genes from The Cancer Genome Atlas (TCGA) database and accordingly established a glyco-signature for predicting the prognosis in BC patients. Patients with BC were successfully divided into high-risk and low-risk groups based on the median cutoff point for risk scores in this signature. Next, the combinational analyses of univariate and multivariate Cox regression, Kaplan–Meier, and receiver operating characteristic (ROC) curves were used to prove that this glyco-signature possessed excellent predictive performance for prognosis of BC patients, as the high-risk group possessed worse outcomes, in comparison to the low-risk group. Additionally, the Gene Set Enrichment Analysis (GSEA) and immunologic infiltration analysis were adopted and indicated that there was a more immunosuppressive state in the high-risk group than that in the low-risk group. The clinical sample validation verified that glycosyltransferase genes were differentially expressed in patients in the low- and high-risk groups, while the biomarkers of antitumor M1 macrophages were increased and N-glycosyltransferase STT3A decreased in the low-risk group. The final in vitro assay showed that the silencing of STT3A suppressed the proliferation and migration of BC cells. Collectively, our well-constructed glyco-signature is able to distinguish the high- and low-risk groups and accordingly predict BC prognosis, which will synergistically promote the prognosis evaluation and provide new immunotherapeutic targets for combating BC.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Han
- Department of Anesthesiology, The People’s Hospital of China Three Gorges, China Three Gorges University, Yichang, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- *Correspondence: Jun Zhang, ; Yiping Wu, ; Qi Zhang,
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Zhang, ; Yiping Wu, ; Qi Zhang,
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Zhang, ; Yiping Wu, ; Qi Zhang,
| |
Collapse
|
2
|
Aziz F, Khan I, Shukla S, Dey DK, Yan Q, Chakraborty A, Yoshitomi H, Hwang SK, Sonwal S, Lee H, Haldorai Y, Xiao J, Huh YS, Bajpai VK, Han YK. Partners in crime: The Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer. Pharmacol Ther 2022; 232:107994. [PMID: 34571111 DOI: 10.1016/j.pharmthera.2021.107994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a major causative agent of chronic gastritis, gastric ulcer and gastric carcinoma. H. pylori cytotoxin associated antigen A (CagA) plays a crucial role in the development of gastric cancer. Gastric cancer is associated with glycosylation alterations in glycoproteins and glycolipids on the cell surface. H. pylori cytotoxin associated antigen A (CagA) plays a significant role in the progression of gastric cancer through post-translation modification of fucosylation to develop gastric cancer. The involvement of a variety of sugar antigens in the progression and development of gastric cancer has been investigated, including type II blood group antigens. Lewis Y (LeY) is overexpressed on the tumor cell surface either as a glycoprotein or glycolipid. LeY is a difucosylated oligosaccharide, which is catalyzed by fucosyltransferases such as FUT4 (α1,3). FUT4/LeY overexpression may serve as potential correlative biomarkers for the prognosis of gastric cancer. We discuss the various aspects of H. pylori in relation to fucosyltransferases (FUT1-FUT9) and its fucosylated Lewis antigens (LeY, LeX, LeA, and LeB) and gastric cancer. In this review, we summarize the carcinogenic effect of H. pylori CagA in association with LeY and its synthesis enzyme FUT4 in the development of gastric cancer as well as discuss its importance in the prognosis and its inhibition by combination therapy of anti-LeY antibody and celecoxib through MAPK signaling pathway preventing gastric carcinogenesis.
Collapse
Affiliation(s)
- Faisal Aziz
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA; Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China.
| | - Imran Khan
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Debasish Kumar Dey
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China
| | | | - Hisae Yoshitomi
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Seung-Kyu Hwang
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| |
Collapse
|
3
|
Khan IM, Ulrich BJ, Nelson AS, Sehra S, Kansas GS, Kaplan MH. Selectin Dependence of Allergic Skin Inflammation Is Diminished by Maternal Atopy. Immunohorizons 2021; 5:703-710. [PMID: 34433625 PMCID: PMC8638165 DOI: 10.4049/immunohorizons.2100052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
Allergic skin inflammation requires the influx of inflammatory cells into the skin. Extravasation of leukocytes into the skin requires interactions between endothelial selectins and their glycan ligands on the surface of leukocytes. Selectin-ligand formation requires the activity of several glycosyltransferases, including Fut7 In this report, we tested the importance of Fut7 for the development of allergic skin inflammation in the Stat6VT transgenic mouse model. We observed that Fut7 deficiency was protective but did not eliminate disease. Segregation of the data by gender of the parent that transmitted the Stat6VT transgene, but not by gender of the pups, which were analyzed for disease, revealed that the protective effects of Fut7 deficiency were significantly greater when dams were Stat6VT negative. In contrast, in mice from litters of Stat6VT+ dams, Fut7 deficiency resulted in only modest protection. These findings indicate that pups from atopic dams exhibit a greater propensity for allergic disease, similar to observations in humans, and that the effect of maternal atopy is due to enhanced selectin-independent mechanisms of leukocyte recruitment in their offspring. Together, these results demonstrate that Fut7 deficiency can be protective in a model of atopic dermatitis but that maternal atopy diminishes these protective effects, suggesting alternative pathways for leukocyte recruitment in the absence of Fut7 enzyme activity. These observations have implications for understanding how the environment in utero predisposes for the development of allergic disease.
Collapse
Affiliation(s)
- Ibrahim M Khan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Andrew S Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
| | - Sarita Sehra
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
| | - Geoffrey S Kansas
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN;
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
| |
Collapse
|
4
|
Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal Cancers. BIOLOGY 2017; 6:biology6010016. [PMID: 28241499 PMCID: PMC5372009 DOI: 10.3390/biology6010016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/20/2022]
Abstract
The tetrasaccharide structures Siaα2,3Galβ1,3(Fucα1,4)GlcNAc and Siaα2,3Galβ1,4(Fucα1,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLea) and sialyl-Lewis x (sLex), respectively, and are the minimal requirement for selectin binding to their counter-receptors. Interaction of sLex expressed on the cell surface of leucocytes with E-selectin on endothelial cells allows their arrest and promotes their extravasation. Similarly, the rolling of cancer cells ectopically expressing the selectin ligands on endothelial cells is potentially a crucial step favoring the metastatic process. In this review, we focus on the biosynthetic steps giving rise to selectin ligand expression in cell lines and native tissues of gastrointestinal origin, trying to understand whether and how they are deregulated in cancer. We also discuss the use of such molecules in the diagnosis of gastrointestinal cancers, particularly in light of recent data questioning the ability of colon cancers to express sLea and the possible use of circulating sLex in the early detection of pancreatic cancer. Finally, we reviewed the data dealing with the mechanisms that link selectin ligand expression in gastrointestinal cells to cancer malignancy. This promising research field seems to require additional data on native patient tissues to reach more definitive conclusions.
Collapse
|
5
|
Nicolay JP, Felcht M, Schledzewski K, Goerdt S, Géraud C. Sézary syndrome: old enigmas, new targets. J Dtsch Dermatol Ges 2016; 14:256-64. [DOI: 10.1111/ddg.12900] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jan P. Nicolay
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
- Department of Immunogenetics; German Cancer Research Center; Heidelberg Germany
| | - Moritz Felcht
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| |
Collapse
|
6
|
Nicolay JP, Felcht M, Schledzewski K, Goerdt S, Géraud C. Sézary-Syndrom: von ungelösten Fragen zu neuen Therapieansätzen. J Dtsch Dermatol Ges 2016. [DOI: 10.1111/ddg.12900_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan P. Nicolay
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
- Abteilung für Immungenetik; Deutsches Krebsforschungszentrum; Heidelberg Deutschland
| | - Moritz Felcht
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Kai Schledzewski
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Sergij Goerdt
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Cyrill Géraud
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| |
Collapse
|
7
|
Ebel ME, Awe O, Kaplan MH, Kansas GS. Diverse inflammatory cytokines induce selectin ligand expression on murine CD4 T cells via p38α MAPK. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:5781-8. [PMID: 25941329 PMCID: PMC4698157 DOI: 10.4049/jimmunol.1500485] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/02/2015] [Indexed: 01/03/2023]
Abstract
Selectins are glycan-binding adhesion molecules that mediate the initial steps of leukocyte recognition of endothelium. Cytokines control numerous aspects of CD4 Th cell differentiation, but how cytokines control the induction of ligands for E- and P-selectin on Th cell subsets remains poorly understood. Among 20 cytokines that affect Th cell differentiation, we identified six that induce expression of selectin ligands on murine CD4 T cells above the low levels associated with TCR engagement: IL-12, IL-18, IL-27, IL-9, IL-25, and TGF-β1. Collectively, these six cytokines could potentially account for selectin ligand expression on all of the currently defined nonsessile Th cell lineages, including Th1, Th2, Th9, and Th17 cells, as well as regulatory T cells. Induction of selectin ligand expression by each of these six cytokines was almost completely inhibited by pharmacologic inhibition of p38 MAPK, but not other MAPKs, or by conditional genetic deletion of p38α MAPK. Analysis of the expression of key glycosyltransferase genes revealed that p38α signaling was selectively required for induction of Fut7 and Gcnt1 but not for the induction of St3gal4 or St3gal6. Constitutively active MKK6, an immediate upstream activator of p38 MAPK, induced selectin ligand expression equivalent to that of cytokines, and this induction was completely dependent on the expression of p38α. Our results identify the repertoire of cytokines responsible for selectin ligand induction on CD4 T cells and provide a mechanistic link between Th cell development and T cell migration.
Collapse
Affiliation(s)
- Mark E Ebel
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Olufolakemi Awe
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Geoffrey S Kansas
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
| |
Collapse
|
8
|
Pink M, Ratsch BA, Mardahl M, Schröter MF, Engelbert D, Triebus J, Hamann A, Syrbe U. Identification of two regulatory elements controlling Fucosyltransferase 7 transcription in murine CD4+ T cells. Mol Immunol 2014; 62:1-9. [PMID: 24915132 DOI: 10.1016/j.molimm.2014.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 02/04/2023]
Abstract
Fucosyltransferase VII encoded by the gene Fut7 is essential in CD4(+) T cells for the generation of E- and P-selectin ligands (E- and P-lig) which facilitate recruitment of lymphocytes into inflamed tissues and into the skin. This study aimed to identify regulatory elements controlling the inducible Fut7 expression in CD4(+) T cells that occurs upon activation and differentiation of naive T cells into effector cells. Comparative analysis of the histone modification pattern in non-hematopoetic cells and CD4(+) T cell subsets revealed a differential histone modification pattern within the Fut7 locus including a conserved non-coding sequence (CNS) identified by cross-species conservation comparison suggesting that regulatory elements are confined to this region. Cloning of the CNS located about 500 bp upstream of the Fut7 locus, into a luciferase reporter vector elicited reporter activity after transfection of the αβ-WT T cell line, but not after transfection of primary murine CD4(+) Th1 cells. As quantification of different Fut7 transcripts revealed a predominance of transcripts lacking the first exons in primary Th1 cells we searched for an alternative promoter. Cloning of an intragenic region spanning a 1kb region upstream of exon 4 into an enhancer-containing vector indeed elicited promoter activity. Interestingly, also the CNS enhanced activity of this intragenic minimal promoter in reporter assays in primary Th1 cells suggesting that both elements interact in primary CD4(+) T cells to induce Fut7 transcription.
Collapse
Affiliation(s)
- Matthias Pink
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Boris A Ratsch
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Maibritt Mardahl
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Micha F Schröter
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Dirk Engelbert
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Julia Triebus
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Alf Hamann
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Uta Syrbe
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany; Charité, Universitätsmedizin Berlin, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Hindenburgdamm 30, 12200 Berlin, Germany.
| |
Collapse
|