1
|
Chen H, Li Q, Cheng P, Yan T, Dong C, Hou Z, Zhu P, Huang C. Identification and analysis of major latex protein ( MLP) family genes in Rosa chinensis responsive to Botrytis cinerea infection by RNA-seq approaches. FRONTIERS IN PLANT SCIENCE 2024; 15:1511597. [PMID: 39735770 PMCID: PMC11671256 DOI: 10.3389/fpls.2024.1511597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024]
Abstract
Roses (Rosa chinensis) are among the most cherished ornamental plants globally, yet they are highly susceptible to infections by Botrytis cinerea, the causative agent of gray mold disease. Here we inoculated the resistant rose variety 'Yellow Leisure Liness' with B. cinerea to investigate its resistance mechanisms against gray mold disease. Through transcriptome sequencing, we identified 578 differentially expressed genes (DEGs) that were significantly upregulated at 24, 48, and 72 hours post-inoculation, with these genes significantly enriched for three defense response-related GO terms. Further domain analysis of the genes in these GO terms reveal that 21 DEGs contain the Bet v 1 family domain, belonging to the major latex protein (MLP) gene family, suggesting their potential key role in rose disease resistance. Furthermore, we systematically identified 46 RcMLP genes in roses and phylogenetically categorized them into two distinct subfamilies: group I and II. Genomic duplication analysis indicates that tandem duplication is the main driver for the expansion of the RcMLP family, and these genes have undergone by purifying selection. Additionally, detailed analyses of gene structure, motif composition, and promoter regions reveal that RcMLP genes contain numerous stress-responsive elements, with 32 RcMLP genes harboring fungal elicitor/wound-responsive elements. The constructed potential transcription factor regulatory network showed significant enrichment of the ERF transcription factor family in the regulation of RcMLP genes. Gene expression analysis reveal that DEGs are mainly distributed in subfamily II, where four highly expressed genes (RcMLP13, RcMLP28, RcMLP14, and RcMLP27) are identified in a small branch, with their fold change exceeding ten folds and verified by qRT-PCR. In summary, our research results underscore the potential importance of the RcMLP gene family in response to B. cinerea infection and provide comprehensive basis for further function exploration of the MLP gene family in rose resistance to fungal infections.
Collapse
Affiliation(s)
- Haoyuan Chen
- College of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Qingkui Li
- College of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Peilei Cheng
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Taotao Yan
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Chunlan Dong
- College of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Zhe Hou
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Peihuang Zhu
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Changbing Huang
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| |
Collapse
|
2
|
Wu S, Zhu Q, Liu F, Pei C, Hong D, Zhang Y, Lai S. Multiphase reactions of proteins in the air: Oligomerization, nitration and degradation of bovine serum albumin upon ambient exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171617. [PMID: 38467257 DOI: 10.1016/j.scitotenv.2024.171617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Proteins in atmospheric aerosol can react with atmospheric pollutants such as ozone (O3) and nitrogen dioxide (NO2) in the atmosphere via the reactions of oxidation, nitration, and cross-linking etc. Currently, the reactions have been more thoroughly studied in the laboratory but rarely investigated in the ambient environment. In this study, we used bovine serum albumin (BSA) as the model protein to conduct the exposure experiment in the ambient environment in southern China, an area with increasing oxidative capacity, to investigate the reactions of proteins in the atmosphere. We observed the occurrence of oligomerization, nitration and degradation of BSA upon exposure. The mass fraction of BSA monomer decreased by 5.86 ± 1.61% after exposure and those of dimers, trimers and higher oligomers increased by 1.04 ± 0.49%, 1.37 ± 0.74% and 3.40 ± 1.06%, respectively. Simultaneously, the nitration degrees of monomers, dimers, trimers and higher oligomers increased by 0.42 ± 0.15%, 0.53 ± 0.15%, 0.55 ± 0.28% and 2.15 ± 1.01%, respectively. The results show that oligomerization was significantly affected by O3 and temperature and nitration was jointly affected by O3, temperature and relative humidity, indicating the important role of atmospheric oxidants in the atmospheric reactions of protein. Atmospheric degradation of BSA was observed with the release of free amino acids (FAAs) such as glycine, alanine, serine and methionine. Glycine was the dominant FAA with a molar yield ranging from ∼8% to 33% for BSA. The estimated stoichiometric coefficient (α) of glycine is 10-7-10-6 for the degradation of BSA upon O3. Our observation suggests the occurrence of protein reactions in the oxidative ambient environment, leading to the production of nitrated products, oligomers and low molecular weight products such as peptides and FAAs. This study may deepen the current understanding of the atmospheric reaction mechanisms and reveal the influence of environmental factors in the atmosphere.
Collapse
Affiliation(s)
- Shiyi Wu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qiaoze Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Fobang Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Chenglei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510030, China
| | - Dachi Hong
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510030, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Fröhlich-Nowoisky J, Bothen N, Backes AT, Weller MG, Pöschl U. Oligomerization and tyrosine nitration enhance the allergenic potential of the birch and grass pollen allergens Bet v 1 and Phl p 5. FRONTIERS IN ALLERGY 2023; 4:1303943. [PMID: 38125293 PMCID: PMC10732249 DOI: 10.3389/falgy.2023.1303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Protein modifications such as oligomerization and tyrosine nitration alter the immune response to allergens and may contribute to the increasing prevalence of allergic diseases. In this mini-review, we summarize and discuss relevant findings for the major birch and grass pollen allergens Bet v 1 and Phl p 5 modified with tetranitromethane (laboratory studies), peroxynitrite (physiological processes), and ozone and nitrogen dioxide (environmental conditions). We focus on tyrosine nitration and the formation of protein dimers and higher oligomers via dityrosine cross-linking and the immunological effects studied.
Collapse
Affiliation(s)
| | - Nadine Bothen
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Anna T. Backes
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael G. Weller
- Division 1.5 - Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| |
Collapse
|
4
|
Hasan-Abad AM, Mohammadi M, Mirzaei H, Mehrabi M, Motedayyen H, Arefnezhad R. Impact of oligomerization on the allergenicity of allergens. Clin Mol Allergy 2022; 20:5. [PMID: 35488339 PMCID: PMC9052586 DOI: 10.1186/s12948-022-00172-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Type I hypersensitivity (allergic reaction) is an unsuitable or overreactive immune response to an allergen due to cross-link immunoglobulin E (IgE) antibodies bound to its high-affinity IgE receptors (FcεRIs) on effector cells. It is needless to say that at least two epitopes on allergens are required to the successful and effective cross-linking. There are some reports pointing to small proteins with only one IgE epitope could cross-link FcεRI-bound IgE through homo-oligomerization which provides two same IgE epitopes. Therefore, oligomerization of allergens plays an indisputable role in the allergenic feature and stability of allergens. In this regard, we review the signaling capacity of the B cell receptor (BCR) complex and cross-linking of FcεRI which results in the synthesis of allergen-specific IgE. This review also discusses the protein-protein interactions involved in the oligomerization of allergens and provide some explanations about the oligomerization of some well-known allergens, such as calcium-binding allergens, Alt a 1, Bet v 1, Der p 1, Per a3, and Fel d 1, along with the effects of their concentrations on dimerization.
Collapse
Affiliation(s)
- Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Mohammadi
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran.
| | - Reza Arefnezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Ozber N, Facchini PJ. Phloem-specific localization of benzylisoquinoline alkaloid metabolism in opium poppy. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153641. [PMID: 35240512 DOI: 10.1016/j.jplph.2022.153641] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 05/28/2023]
Abstract
Opium poppy is the only commercial source of the narcotic analgesics morphine and codeine, and semi-synthetic derivatives of the natural opiate precursor thebaine, including oxycodone and the opioid antagonist naloxone. The plant also accumulates the vasodilator and antitussive agents papaverine and noscapine, respectively, which together with morphine, codeine and thebaine comprise the major benzylisoquinoline alkaloids (BIAs) in opium poppy. A majority of enzymes involved in the highly branched BIA metabolism in opium poppy have now been discovered, with many specifically localized to sieve elements of the phloem based on immunofluorescence labeling techniques. Transcripts corresponding to sieve element-localized biosynthetic enzymes were detected in companion cells, as expected. The more recent application of shotgun proteomics has shown that several enzymes operating late in the morphine and noscapine biosynthetic pathways occur primarily in laticifers that are adjacent or proximal to sieve elements. BIA biosynthesis and accumulation in opium poppy involves three phloem cell types and implicates the translocation of key pathway intermediates between sieve elements and laticifers. The recent isolation of uptake transporters associated with laticifers supports an apoplastic rather than a symplastic route for translocation. In spite of the extensive elucidation of BIA biosynthetic enzymes in opium poppy, additional transporters and other auxiliary proteins are clearly necessary to support the complex spatial organization and dynamics involved in product formation and sequestration. In this review, we provide an update of BIA metabolism in opium poppy with a focus on the role of phloem in the biosynthesis of the major alkaloids.
Collapse
Affiliation(s)
- Natali Ozber
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
6
|
Protić-Rosić I, Nešić A, Lukić I, Miljković R, Popović DM, Atanasković-Marković M, Stojanović M, Gavrović-Jankulović M. Recombinant Bet v 1-BanLec chimera modulates functional characteristics of peritoneal murine macrophages by promoting IL-10 secretion. Mol Immunol 2021; 138:58-67. [PMID: 34364073 DOI: 10.1016/j.molimm.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
Allergen-specific immunotherapy (AIT) is a desensitizing treatment for allergic diseases that corrects the underlined pathological immune response to innocuous protein antigens, called allergens. Recombinant allergens employed in the AIT allowed the production of well-defined formulations that possessed consistent quality but were often less efficient than natural allergen extracts. Combining recombinant allergens with an adjuvant or immunomodulatory agent could improve AIT efficacy. This study aimed to perform structural and functional characterization of newly designed recombinant chimera composed of the Bet v 1, the major birch pollen allergen, and Banana Lectin (BanLec), TLR2, and CD14 binding protein, for the application in AIT. rBet v 1-BanLec chimera was designed in silico and expressed as a soluble fraction in Escherichia coli. Purified rBet v 1-BanLec (33.4 kDa) retained BanLec-associated biological activity of carbohydrate-binding and preserved IgE reactive epitopes of Bet v 1. The chimera revealed secondary structures with predominant β sheets. The immunomodulatory capacity of rBet v 1-BanLec tested on macrophages showed changes in myeloperoxidase activity, reduced NO production, and significant alterations in the production of cytokines when compared to both rBanLec and rBet v 1. Comparing to rBet v 1, rBet v 1-BanLec was demonstrated to be more efficient promoter of IL-10 production as well as weaker inducer of NO production and secretion of pro-inflammatory cytokines TNFα, and IL-6. The ability of rBet v 1-BanLec to promote IL-10 in together with the preserved 3D structure of Bet v 1 part implies that the construct might exert a beneficial effect in the allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Isidora Protić-Rosić
- Department of Biochemistry, Faculty of Chemistry University of Belgrade, Belgrade, Serbia
| | - Andrijana Nešić
- Department of Biochemistry, Faculty of Chemistry University of Belgrade, Belgrade, Serbia
| | - Ivana Lukić
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, Belgrade, Serbia
| | - Radmila Miljković
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, Belgrade, Serbia
| | - Dragan M Popović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Marina Atanasković-Marković
- Department of Allergology and Pulmonology, University Children's Hospital, Medical Faculty University of Belgrade, Belgrade, Serbia
| | - Marijana Stojanović
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, Belgrade, Serbia
| | | |
Collapse
|
7
|
Führer S, Kamenik AS, Zeindl R, Nothegger B, Hofer F, Reider N, Liedl KR, Tollinger M. Inverse relation between structural flexibility and IgE reactivity of Cor a 1 hazelnut allergens. Sci Rep 2021; 11:4173. [PMID: 33603065 PMCID: PMC7892832 DOI: 10.1038/s41598-021-83705-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
A major proportion of allergic reactions to hazelnuts (Corylus avellana) are caused by immunologic cross-reactivity of IgE antibodies to pathogenesis-related class 10 (PR-10) proteins. Intriguingly, the four known isoforms of the hazelnut PR-10 allergen Cor a 1, denoted as Cor a 1.0401-Cor a 1.0404, share sequence identities exceeding 97% but possess different immunologic properties. In this work we describe the NMR solution structures of these proteins and provide an in-depth study of their biophysical properties. Despite sharing highly similar three-dimensional structures, the four isoforms exhibit remarkable differences regarding structural flexibility, hydrogen bonding and thermal stability. Our experimental data reveal an inverse relation between structural flexibility and IgE-binding in ELISA experiments, with the most flexible isoform having the lowest IgE-binding potential, while the isoform with the most rigid backbone scaffold displays the highest immunologic reactivity. These results point towards a significant entropic contribution to the process of antibody binding.
Collapse
Affiliation(s)
- Sebastian Führer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Anna S Kamenik
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Ricarda Zeindl
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Bettina Nothegger
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Florian Hofer
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Norbert Reider
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
8
|
Landry AP, Moon S, Bonanata J, Cho US, Coitiño EL, Banerjee R. Dismantling and Rebuilding the Trisulfide Cofactor Demonstrates Its Essential Role in Human Sulfide Quinone Oxidoreductase. J Am Chem Soc 2020; 142:14295-14306. [PMID: 32787249 DOI: 10.1021/jacs.0c06066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sulfide quinone oxidoreductase (SQOR) catalyzes the first step in sulfide clearance, coupling H2S oxidation to coenzyme Q reduction. Recent structures of human SQOR revealed a sulfur atom bridging the SQOR active site cysteines in a trisulfide configuration. Here, we assessed the importance of this cofactor using kinetic, crystallographic, and computational modeling approaches. Cyanolysis of SQOR proceeds via formation of an intense charge transfer complex that subsequently decays to eliminate thiocyanate. We captured a disulfanyl-methanimido thioate intermediate in the SQOR crystal structure, revealing how cyanolysis leads to reversible loss of SQOR activity that is restored in the presence of sulfide. Computational modeling and MD simulations revealed an ∼105-fold rate enhancement for nucleophilic addition of sulfide into the trisulfide versus a disulfide cofactor. The cysteine trisulfide in SQOR is thus critical for activity and provides a significant catalytic advantage over a cysteine disulfide.
Collapse
Affiliation(s)
- Aaron P Landry
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Sojin Moon
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jenner Bonanata
- Laboratorio de Química Teórica y Computacional (LQTC), Instituto de Química Biológica, Facultad de Ciencias and Centro de Investigaciones Biomédicas (CeInBio), Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Uhn Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - E Laura Coitiño
- Laboratorio de Química Teórica y Computacional (LQTC), Instituto de Química Biológica, Facultad de Ciencias and Centro de Investigaciones Biomédicas (CeInBio), Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Köhler VK, Crescioli S, Fazekas-Singer J, Bax HJ, Hofer G, Pranger CL, Hufnagl K, Bianchini R, Flicker S, Keller W, Karagiannis SN, Jensen-Jarolim E. Filling the Antibody Pipeline in Allergy: PIPE Cloning of IgE, IgG 1 and IgG 4 against the Major Birch Pollen Allergen Bet v 1. Int J Mol Sci 2020; 21:E5693. [PMID: 32784509 PMCID: PMC7460837 DOI: 10.3390/ijms21165693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Birch pollen allergy is among the most prevalent pollen allergies in Northern and Central Europe. This IgE-mediated disease can be treated with allergen immunotherapy (AIT), which typically gives rise to IgG antibodies inducing tolerance. Although the main mechanisms of allergen immunotherapy (AIT) are known, questions regarding possible Fc-mediated effects of IgG antibodies remain unanswered. This can mainly be attributed to the unavailability of appropriate tools, i.e., well-characterised recombinant antibodies (rAbs). We hereby aimed at providing human rAbs of several classes for mechanistic studies and as possible candidates for passive immunotherapy. We engineered IgE, IgG1, and IgG4 sharing the same variable region against the major birch pollen allergen Bet v 1 using Polymerase Incomplete Primer Extension (PIPE) cloning. We tested IgE functionality and IgG blocking capabilities using appropriate model cell lines. In vitro studies showed IgE engagement with FcεRI and CD23 and Bet v 1-dependent degranulation. Overall, we hereby present fully functional, human IgE, IgG1, and IgG4 sharing the same variable region against Bet v 1 and showcase possible applications in first mechanistic studies. Furthermore, our IgG antibodies might be useful candidates for passive immunotherapy of birch pollen allergy.
Collapse
Affiliation(s)
- Verena K. Köhler
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’s Hospitals and King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Judit Fazekas-Singer
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK
| | - Gerhard Hofer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; (G.H.); (W.K.)
| | - Christina L. Pranger
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; (G.H.); (W.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’s Hospitals and King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| |
Collapse
|
10
|
Stratilová B, Řehulka P, Garajová S, Řehulková H, Stratilová E, Hrmova M, Kozmon S. Structural characterization of the Pet c 1.0201 PR-10 protein isolated from roots of Petroselinum crispum (Mill.) Fuss. PHYTOCHEMISTRY 2020; 175:112368. [PMID: 32334148 DOI: 10.1016/j.phytochem.2020.112368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/13/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The native dimeric Petroselinum crispum (Mill.) Fuss protein Pet c 1.0201 and a monomeric xyloglucan endotransglycosylase enzyme (Garajova et al., 2008) isolated from the root cells co-purify and share similar molecular masses and acidic isoelectric points. In this work, we determined the complete primary structure of the parsley Pet c 1.0201 protein, based on tryptic and chymotryptic peptides followed by the manual micro-gradient chromatographic separation coupled with offline MALDI-TOF/TOF mass spectrometry. The bioinformatics approach enabled us to include the parsley protein into the PR-10 family, as it exhibited the highest protein sequence identity with the Apium graveolens Api g 1.0201 allergen and the major Daucus carota allergen Dau c 1.0201. Hence, we designated the Petroselinum crispum protein as Pet c 1.0201 and deposited it in the UniProt Knowledgebase under the accession C0HKF5. 3D protein homology modelling and molecular dynamics simulations of the Pet c 1.0201 dimer confirmed the typical structure of the Bet v 1 family allergens, and the potential of the Pet c 1.0201 protein to dimerize in water. However, the behavioural properties of Pet c 1.0201 and the celery allergen Api g 1.0101 differed in the presence of salts due to transiently and stably formed dimeric forms of Pet c 1.0201 and Api g 1.0101, respectively.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University Bratislava, Mlynská dolina, SK-84215, Bratislava, Slovakia
| | - Pavel Řehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, CZ-50001, Hradec Králové, Czech Republic
| | - Soňa Garajová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia
| | - Helena Řehulková
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, CZ-50001, Hradec Králové, Czech Republic
| | - Eva Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia
| | - Maria Hrmova
- School of Life Science, Huaiyin Normal University, Huai'an, 223300, China; School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stanislav Kozmon
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia.
| |
Collapse
|
11
|
Dastmalchi M, Chen X, Hagel JM, Chang L, Chen R, Ramasamy S, Yeaman S, Facchini PJ. Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy. Nat Chem Biol 2019; 15:384-390. [DOI: 10.1038/s41589-019-0247-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/11/2019] [Indexed: 11/09/2022]
|
12
|
Stock LG, Wildner S, Regl C, Gadermaier G, Huber CG, Stutz H. Monitoring of Deamidation and Lanthionine Formation in Recombinant Mugwort Allergen by Capillary Zone Electrophoresis (CZE)-UV and Transient Capillary Isotachophoresis-CZE-Electrospray Ionization-TOF-MS. Anal Chem 2018; 90:11933-11940. [PMID: 30179456 DOI: 10.1021/acs.analchem.8b02328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The response to thermal stress is an important parameter relevant for characterizing the biological activity and long-term stability of recombinant proteins, which may show irreversible, pH dependent structural changes under these conditions. We selected the recombinant pollen allergen of mugwort ( Artemisia vulgaris) rArt v 3.0201 as a relevant model to study structural changes due to thermal and pH stress by means of capillary zone electrophoresis (CZE)-UV and capillary zone electrophoresis (CZE)-electrospray ionization (ESI)-TOF-MS. Therefore, this recombinant protein was exposed to 95 °C under acidic (pH 3.4) and slightly alkaline (pH 7.3) conditions for up to 120 min. CZE-UV data showed a continuous degradation of the allergen accompanied by the gradual formation of several reaction products. Characterization of novel allergen variants occurring at longer migration times was done via CZE-ESI-TOF-MS using in-capillary transient capillary isotachophoresis (tCITP) preconcentration to facilitate the identification of minor variants. MS data revealed various modifications of rArt v 3.0201 in response to heating. Variants with deamidations and sulfur-related modifications including both yield and loss of sulfur were identified at increased migration times. Desulfurization produced allergen variants with up to four lanthionines that replaced initial disulfide bonds. In addition, mass spectra revealed shifts in the charge state distribution which indicate concomitant conformational alterations. Moreover, several low-abundant oxidized variants were identified. With extended thermal stress, the portfolio of variants increased and progressively shifted toward rArt v 3.0201 with high lanthionine content. The kinetics of conversion and the complexity of variant composition were pH dependent and increased under alkaline conditions.
Collapse
Affiliation(s)
- Lorenz G Stock
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Sabrina Wildner
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Christof Regl
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Gabriele Gadermaier
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Christian G Huber
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Hanno Stutz
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| |
Collapse
|
13
|
Structure of a patient-derived antibody in complex with allergen reveals simultaneous conventional and superantigen-like recognition. Proc Natl Acad Sci U S A 2018; 115:E8707-E8716. [PMID: 30150373 PMCID: PMC6140506 DOI: 10.1073/pnas.1806840115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies classically bind antigens via their complementarity-determining regions, but an alternative mode of interaction involving V-domain framework regions has been observed for some B cell "superantigens." We report the crystal structure of an antibody employing both modes of interaction simultaneously and binding two antigen molecules. This human antibody from an allergic individual binds to the grass pollen allergen Phl p 7. Not only are two allergen molecules bound to each antibody fragment (Fab) but also each allergen molecule is bound by two Fabs: One epitope is recognized classically, the other in a superantigen-like manner. A single allergen molecule thus cross-links two identical Fabs, contrary to the one-antibody-one-epitope dogma, which dictates that a dimeric allergen at least is required for this to occur. Allergens trigger immediate hypersensitivity reactions by cross-linking receptor-bound IgE molecules on effector cells. We found that monomeric Phl p 7 induced degranulation of basophils sensitized solely with this monoclonal antibody expressed as an IgE, demonstrating that the dual specificity has functional consequences. The monomeric state of Phl p 7 and two structurally related allergens was confirmed by size-exclusion chromatography and multiangle laser light scattering, and the results were supported by degranulation studies with the related allergens, a second patient-derived allergen-specific antibody lacking the nonclassical binding site, and mutagenesis of the nonclassically recognized allergen epitope. The antibody dual reactivity and cross-linking mechanism not only have implications for understanding allergenicity and allergen potency but, importantly, also have broader relevance to antigen recognition by membrane Ig and cross-linking of the B cell receptor.
Collapse
|
14
|
Kurze E, Lo Scalzo R, Campanelli G, Schwab W. Effect of tomato variety, cultivation, climate and processing on Sola l 4, an allergen from Solanum lycopersicum. PLoS One 2018; 13:e0197971. [PMID: 29902173 PMCID: PMC6002116 DOI: 10.1371/journal.pone.0197971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/13/2018] [Indexed: 01/29/2023] Open
Abstract
Tomatoes (Solanum lycopersicum) are one of the most consumed vegetables worldwide. However, tomato allergies in patients suffering from birch pollen allergy occur frequently. Due to highly similar protein structures of the tomato allergen Sola l 4 and the major birch pollen allergen Bet v 1, patients cross-react with allergenic proteins from tomato as well as other fruits or vegetables. The aim of this study was to quantify Sola l 4 in various tomatoes differing in color, size and shape for identification of varieties with a reduced allergen level. Therefore, an indirect competitive ELISA using a specific polyclonal Sola l 4 antibody was developed. In addition, two varieties, both cultivated either conventionally or organically and furthermore dried with different methods, were analyzed to investigate the influence of the cultivation method and processing techniques on Sola l 4 level. Within 23 varieties, Sola l 4 content varied significantly between 0.24 and 1.71 μg Sola l 4/g FW. The tomato cultivars Rugantino and Rhianna showed the significantly lowest level, whereas in cultivars Farbini and Bambello the significantly highest concentration was determined. Drying of tomatoes in the oven and by sun resulted in a significant decrease. The thermal instability was verified for the recombinant Sola l 4 emphasizing the results for the native protein in dried tomato samples. Overall, the Sola l 4 content is cultivar-dependent and no correlation between color and Sola l 4 amount was found. During the drying process of tomatoes Sola l 4 level was significantly reduced due to thermal instability. Growing conditions have a minor effect whereas seasonal effects show a more pronounced impact. These findings could extend the knowledge about the allergen level of different tomato varieties and may help to improve food safety to potentially increase the life quality of patients suffering from birch pollen allergy.
Collapse
Affiliation(s)
- Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Roberto Lo Scalzo
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Unità di ricerca per i processi dell’industria agroalimentare (CREA-IT), Milan, Italy
| | - Gabriele Campanelli
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Unità di ricerca per i processi dell’industria agroalimentare (CREA-IT), Milan, Italy
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
15
|
Simonova MA, Pivovarov VD, Ryazantsev DY, Kostromina MA, Muravieva TI, Mokronosova MA, Khlgatian SV, Esipov RS, Zavriev SK. Determination of Specific Class E Immunoglobulins to Bet v 1 Birch Allergen by the Immuno-PCR Method. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018010168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Mansouritorghabeh H, Jabbari-Azad F, Varasteh A, Sankian M, Farid-Hosseini R. Common solvents for making extraction of allergenic proteins from plants' pollens for prick tests and related factors: a technical review. Electron Physician 2017; 9:4440-4446. [PMID: 28713519 PMCID: PMC5498712 DOI: 10.19082/4440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/12/2016] [Indexed: 11/20/2022] Open
Abstract
Collecting information on influencing factors in developing consistent and high-quality extracts results in accurate diagnosis and effective treatment of type I allergy (IgE mediated). Furthermore, considering that a large number of allergens are currently in practice, any attempt to develop a more effective procedure for preparing extract may be useful. Nowadays, different saline solvents, temperature, incubation time, and PH are being incorporated for preparing allergen extracts. The objective of the current study was to clear and address the commonest of solvent buffers and allied conditions for making extracts of pollens of grasses, trees, and weeds. The literature review was done in Jan 2016 on PubMed and Google Scholar medical search engines without any time limitation. After reading abstracts of 87 articles, finally 37 relevant papers were selected and their full texts were retrieved. In conclusion, 24 full-text papers were recognized appropriate and chosen. The extracted information for papers has been described fully in the text. On the basis of these data, PBS buffer with PH 7.4, temperature of 4 °C and with overnight incubation time, may be the optimized condition in order to have a proper extract for carrying out skin prick tests.
Collapse
Affiliation(s)
| | - Farahzad Jabbari-Azad
- M.D., Associate Professor of Allergy and Clinical Immunology, Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Varasteh
- Ph.D., Professor of Medical School, Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Ph.D., Associate Professor of Immunology, Immunology Research Center, Bouali Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Farid-Hosseini
- M.D., Professor of Allergy and Clinical Immunology, Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, Lakey PSJ, Lai S, Liu F, Kunert AT, Ziegler K, Shen F, Sgarbanti R, Weber B, Bellinghausen I, Saloga J, Weller MG, Duschl A, Schuppan D, Pöschl U. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4119-4141. [PMID: 28326768 PMCID: PMC5453620 DOI: 10.1021/acs.est.6b04908] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 05/13/2023]
Abstract
Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Collapse
Affiliation(s)
| | - Christopher J. Kampf
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Institute
of Inorganic and Analytical Chemistry, Johannes
Gutenberg University, Mainz, 55128, Germany
| | - Kurt Lucas
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Naama Lang-Yona
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | | | - Manabu Shiraiwa
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Senchao Lai
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- South
China University of Technology, School of
Environment and Energy, Guangzhou, 510006, China
| | - Fobang Liu
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Anna T. Kunert
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Kira Ziegler
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Fangxia Shen
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Rossella Sgarbanti
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Iris Bellinghausen
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Joachim Saloga
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Michael G. Weller
- Division
1.5 Protein Analysis, Federal Institute
for Materials Research and Testing (BAM), Berlin, 12489, Germany
| | - Albert Duschl
- Department
of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Detlef Schuppan
- Institute
of Translational Immunology and Research Center for Immunotherapy,
Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, 55131 Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| |
Collapse
|
18
|
Liu F, Reinmuth-Selzle K, Lai S, Weller MG, Pöschl U, Kampf CJ. Simultaneous determination of nitrated and oligomerized proteins by size exclusion high-performance liquid chromatography coupled to photodiode array detection. J Chromatogr A 2017; 1495:76-82. [PMID: 28342582 DOI: 10.1016/j.chroma.2017.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/25/2022]
Abstract
Chemical modifications such as nitration and cross-linking may enhance the allergenic potential of proteins. The kinetics and mechanisms of the underlying chemical processes, however, are not yet well understood. Here, we present a size-exclusion chromatography/spectrophotometry method (SEC-HPLC-DAD) that allows a simultaneous detection of mono-, di-, tri-, and higher protein oligomers, as well as their individual nitration degrees (NDs). The ND results of proteins from this new method agree well with the results from an alternative well-established method, for the analysis of tetranitromethane (TNM)- and nitrogen dioxide and ozone (NO2/O3)-nitrated protein samples. Importantly, the NDs for individual oligomer fractions can be obtained from the new method, and also, we provide a proof of principle for the calculation of the concentrations for individual protein oligomer fractions by their determined NDs, which will facilitate the investigation of the kinetics and mechanism for protein tyrosine nitration and cross-linking.
Collapse
Affiliation(s)
- Fobang Liu
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Kathrin Reinmuth-Selzle
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Senchao Lai
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Michael G Weller
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Christopher J Kampf
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany; Institute for Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany; Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
19
|
Structural insights into the IgE mediated responses induced by the allergens Hev b 8 and Zea m 12 in their dimeric forms. Sci Rep 2016; 6:32552. [PMID: 27586352 PMCID: PMC5009318 DOI: 10.1038/srep32552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023] Open
Abstract
Oligomerization of allergens plays an important role in IgE-mediated reactions, as effective crosslinking of IgE- FcεRI complexes on the cell membrane is dependent on the number of exposed B-cell epitopes in a single allergen molecule or on the occurrence of identical epitopes in a symmetrical arrangement. Few studies have attempted to experimentally demonstrate the connection between allergen dimerization and the ability to trigger allergic reactions. Here we studied plant allergenic profilins rHev b 8 (rubber tree) and rZea m 12 (maize) because they represent an important example of cross-reactivity in the latex-pollen-food syndrome. Both allergens in their monomeric and dimeric states were isolated and characterized by exclusion chromatography and mass spectrometry and were used in immunological in vitro experiments. Their crystal structures were solved, and for Hev b 8 a disulfide-linked homodimer was found. Comparing the structures we established that the longest loop is relevant for recognition by IgE antibodies, whereas the conserved regions are important for cross-reactivity. We produced a novel monoclonal murine IgE (mAb 2F5), specific for rHev b 8, which was useful to provide evidence that profilin dimerization considerably increases the IgE-mediated degranulation in rat basophilic leukemia cells.
Collapse
|
20
|
Kampf CJ, Liu F, Reinmuth-Selzle K, Berkemeier T, Meusel H, Shiraiwa M, Pöschl U. Protein Cross-Linking and Oligomerization through Dityrosine Formation upon Exposure to Ozone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10859-66. [PMID: 26287571 DOI: 10.1021/acs.est.5b02902] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Air pollution is a potential driver for the increasing prevalence of allergic disease, and post-translational modification by air pollutants can enhance the allergenic potential of proteins. Here, the kinetics and mechanism of protein oligomerization upon ozone (O3) exposure were studied in coated-wall flow tube experiments at environmentally relevant O3 concentrations, relative humidities and protein phase states (amorphous solid, semisolid, and liquid). We observed the formation of protein dimers, trimers, and higher oligomers, and attribute the cross-linking to the formation of covalent intermolecular dityrosine species. The oligomerization proceeds fast on the surface of protein films. In the bulk material, reaction rates are limited by diffusion depending on phase state and humidity. From the experimental data, we derive a chemical mechanism and rate equations for a kinetic multilayer model of surface and bulk reaction enabling the prediction of oligomer formation. Increasing levels of tropospheric O3 in the Anthropocene may promote the formation of protein oligomers with enhanced allergenicity and may thus contribute to the increasing prevalence of allergies.
Collapse
Affiliation(s)
- Christopher J Kampf
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz , 55128 Mainz, Germany
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Fobang Liu
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | | | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Hannah Meusel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| |
Collapse
|
21
|
Folded or Not? Tracking Bet v 1 Conformation in Recombinant Allergen Preparations. PLoS One 2015; 10:e0132956. [PMID: 26186356 PMCID: PMC4506129 DOI: 10.1371/journal.pone.0132956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/20/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recombinant Bet v 1a (rBet v 1a) has been used in allergy research for more than three decades, including clinical application of so-called hypoallergens. Quantitative IgE binding to rBet v 1a depends on its native protein conformation, which might be compromised upon heterologous expression, purification, or mutational engineering of rBet v 1a. OBJECTIVE To correlate experimental/theoretical comparisons of IgE binding of defined molar ratios of folded/misfolded recombinant Bet v 1a variants and to determine accuracy and precision of immuno- and physicochemical assays routinely used to assess the quality of recombinant allergen preparations. METHODS rBet v 1a and its misfolded variant rBet v 1aS112P/R145P were heterologously expressed and purified from Escherichia coli. Structural integrities and oligomerisation of the recombinant allergens were evaluated by 1H-nuclear magnetic resonance (1H-NMR), circular dichroism (CD) spectroscopy, and dynamic light scattering (DLS). IgE binding of defined combinations of rBet v 1a and rBet v 1aS112P/R145P was assessed using immunoblotting (IB), enzyme-linked immunosorbent assay (ELISA) and mediator release (MR) of humanized rat basophilic leukemia cells sensitized with serum IgE of subjects allergic to birch pollen. Experimental and theoretically expected results of the analyses were compared. RESULTS 1H-NMR spectra of rBet v 1a and rBet v 1aS112P/R145P demonstrate a native and highly disordered protein conformations, respectively. The CD spectra suggested typical alpha-helical and beta-sheet secondary structure content of rBet v 1a and random coil for rBet v 1aS112P/R145P. The hydrodynamic radii (RH) of 2.49 ± 0.39 nm (rBet v 1a) and 3.1 ± 0.56 nm (rBet v 1aS112P/R145P) showed monomeric dispersion of both allergens in solution. Serum IgE of birch pollen allergic subjects bound to 0.1% rBet v 1a in the presence of 99.9% of non-IgE binding rBet v 1aS112P/R145P. Immunoblot analysis overestimated, whereas ELISA and mediator release assay underestimated the actual quantity of IgE-reactive rBet v 1a in mixtures of rBet v 1a/rBet v 1aS112P/R145P with a molar ratio of rBet v 1a ≤ 10%. CONCLUSION Valid conclusions on quantitative IgE binding of recombinant Bet v 1a preparations depend on the accuracy and precision of physico- and immunochemical assays with which natively folded allergen is detected.
Collapse
|
22
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
23
|
Garrido-Arandia M, Gómez-Casado C, Díaz-Perales A, Pacios LF. Molecular Dynamics of Major Allergens from Alternaria, Birch Pollen and Peach. Mol Inform 2014; 33:682-94. [PMID: 27485303 DOI: 10.1002/minf.201400057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/29/2014] [Indexed: 11/08/2022]
Abstract
In the search for factors that make a protein allergenic (an issue that remains so far elusive) some common features of allergens such as small size, high stability and lipid binding are recognized in spite of their structural diversity. Other relevant but still poorly understood feature is their capability to form homodimers. We investigated by means of Molecular Dynamics (MD) calculations the stability in solution of several dimers of three major allergens from Alternaria mold, birch pollen, and peach fruit known to play essential roles in allergic disease. By running 20 ns MD simulations we found essential properties on solution that provide information of interest on their dimerization, stability of their epitopes and dynamical features of ligand binding cavities. Our results show that three essential allergen proteins display a distinct behavior on their trends to form homodimers in solution.
Collapse
Affiliation(s)
- María Garrido-Arandia
- Departamento de Biotecnología y Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, 28040 Madrid, Spain tel. 34 91 3364297
| | - Cristina Gómez-Casado
- Departamento de Biotecnología y Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, 28040 Madrid, Spain tel. 34 91 3364297
| | - Araceli Díaz-Perales
- Departamento de Biotecnología y Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, 28040 Madrid, Spain tel. 34 91 3364297
| | - Luis F Pacios
- Departamento de Biotecnología y Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, 28040 Madrid, Spain tel. 34 91 3364297.
| |
Collapse
|
24
|
Ackaert C, Kofler S, Horejs-Hoeck J, Zulehner N, Asam C, von Grafenstein S, Fuchs JE, Briza P, Liedl KR, Bohle B, Ferreira F, Brandstetter H, Oostingh GJ, Duschl A. The impact of nitration on the structure and immunogenicity of the major birch pollen allergen Bet v 1.0101. PLoS One 2014; 9:e104520. [PMID: 25126882 PMCID: PMC4134196 DOI: 10.1371/journal.pone.0104520] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022] Open
Abstract
Allergy prevalence has increased in industrialized countries. One contributing factor could be pollution, which can cause nitration of allergens exogenously (in the air) or endogenously (in inflamed lung tissue). We investigated the impact of nitration on both the structural and immunological behavior of the major birch pollen allergen Bet v 1.0101 to determine whether nitration might be a factor in the increased incidence of allergy. Bet v 1.0101 was nitrated with tetranitromethane. Immune effects were assessed by measuring the proliferation of specific T-cell lines (TCLs) upon stimulation with different concentrations of nitrated and unmodified allergen, and by measurement of cytokine release of monocyte-derived dendritic cells (moDCs) and primary DCs (primDCs) stimulated with nitrated versus unmodified allergen. HPLC-MS, crystallography, gel electrophoresis, amino acid analysis, size exclusion chromatography and molecular dynamics simulation were performed to characterize structural changes after nitration of the allergen. The proliferation of specific TCLs was higher upon stimulation with the nitrated allergen in comparison to the unmodified allergen. An important structural consequence of nitration was oligomerization. Moreover, analysis of the crystal structure of nitrated Bet v 1.0101 showed that amino acid residue Y83, located in the hydrophobic cavity, was nitrated to 100%. Both moDCs and primDCs showed decreased production of TH1-priming cytokines, thus favoring a TH2 response. These results implicate that nitration of Bet v 1.0101 might be a contributing factor to the observed increase in birch pollen allergy, and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.
Collapse
Affiliation(s)
- Chloé Ackaert
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Stefan Kofler
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Nora Zulehner
- Department of Pathophysiology and Allergy Research and the Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria
| | - Claudia Asam
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Susanne von Grafenstein
- Institute of General, Inorganic and Theoretical Chemistry/Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry/Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Peter Briza
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry/Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research and the Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria
| | - Fátima Ferreira
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Hans Brandstetter
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Gertie J. Oostingh
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
25
|
Wiederstein M, Gruber M, Frank K, Melo F, Sippl MJ. Structure-based characterization of multiprotein complexes. Structure 2014; 22:1063-70. [PMID: 24954616 PMCID: PMC4087271 DOI: 10.1016/j.str.2014.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 01/22/2023]
Abstract
Multiprotein complexes govern virtually all cellular processes. Their 3D structures provide important clues to their biological roles, especially through structural correlations among protein molecules and complexes. The detection of such correlations generally requires comprehensive searches in databases of known protein structures by means of appropriate structure-matching techniques. Here, we present a high-speed structure search engine capable of instantly matching large protein oligomers against the complete and up-to-date database of biologically functional assemblies of protein molecules. We use this tool to reveal unseen structural correlations on the level of protein quaternary structure and demonstrate its general usefulness for efficiently exploring complex structural relationships among known protein assemblies.
Collapse
Affiliation(s)
- Markus Wiederstein
- Division of Structural Biology & Bioinformatics, Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Markus Gruber
- Division of Structural Biology & Bioinformatics, Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Karl Frank
- Division of Structural Biology & Bioinformatics, Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Francisco Melo
- Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Alameda 340, 8320000 Santiago, Chile; Molecular Bioinformatics Laboratory, Millennium Institute on Immunology and Immunotherapy, 8320000 Santiago, Chile
| | - Manfred J Sippl
- Division of Structural Biology & Bioinformatics, Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|