1
|
Xiao L, He W, Hurley MM. Fibroblast growth factor 23 neutralizing antibody partially rescues bone loss and increases hematocrit in sickle cell disease mice. Sci Rep 2025; 15:10727. [PMID: 40155665 PMCID: PMC11953280 DOI: 10.1038/s41598-025-95335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Fibroblast Growth Factor 23 (FGF23) is increased in serum of humanized Sickle Cell Disease (SCD) mice. Since FGF23 is associated with impaired bone formation, we examined the effect of FGF23-neutralizing antibody (FGF23Ab) on bone loss in SCD mice. Healthy control (Ctrl) and SCD 5-months-old female mice were treated with FGF23Ab or isotype-specific IgG for 6 weeks. Significantly reduced hematocrit in SCD mice was increased by FGF23Ab. MicroCT of SCD femurs revealed no significant reduction in metaphyseal bone volume/total volume vs. Ctrl mice. However, histomorphometry of SCD femur revealed significantly reduced mineral apposition rate, bone formation rate, inter-label thickness, and osteoid surface, which were increased by FGF23Ab. Significantly increased osteoclast number/bone perimeter in SCD mice was reduced by FGF23Ab. Bone marrow stromal cells (BMSC) cultured in osteogenic media revealed significantly reduced mineralized nodules in SCD-IgG-BMSC that was increased in SCD-FGF23Ab-BMSC. FGF23 and αKlotho protein was significantly increased in SCD-IgG-BMSC and was not reduced by FGF23Ab. However, phosphorylated FGF Receptor-1, the receptor through which FGF23 signals, was significantly reduced by FGF23Ab. The mineralization inhibitor osteopontin was significantly increased in SCD-IgG-BMSC cultures and was reduced by FGF23Ab. We conclude that FGF23Ab may be efficacious in improving some parameters of reduced bone formation in female SCD mice.
Collapse
Affiliation(s)
- Liping Xiao
- Division of Endocrinology and Metabolism, Department of Medicine, UConn Health School of Medicine, Farmington, CT, 06030, USA.
| | - Wei He
- Division of Endocrinology and Metabolism, Department of Medicine, UConn Health School of Medicine, Farmington, CT, 06030, USA
| | - Marja M Hurley
- Division of Endocrinology and Metabolism, Department of Medicine, UConn Health School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Gobbo A, Longo F, Cattaneo CA, Verrienti M, Marzi G, Chamekh F, Culcasi M, Cossu A, Zatelli MC, Ambrosio MR. iFGF23 Plasma Levels in Transfusion-Dependent β-Thalassemia: Insights into Bone and Iron Metabolism. J Clin Med 2025; 14:1834. [PMID: 40142640 PMCID: PMC11942764 DOI: 10.3390/jcm14061834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: FGF23 is a phosphate homeostasis regulator; the literature suggests a link between FGF23, iron homeostasis and erythropoiesis. Little is known about the FGF23 level variations in β-thalassemia (βT), which is characterized by ineffective erythropoiesis and iron overload. Our cross-sectional study aims to evaluate the iFGF23 level variations in a large cohort of βT patients considering their bone mineral densities (BMDs) and iron loads. Methods: Clinical, biochemical and radiological data were collected from 213 transfusion-dependent βT (TDT) adults referring to the Regional HUB Centre for Thalassaemia and Haemoglobinopathies in Ferrara, Italy. The iFGF23 levels in the TDT patients were compared to the general population's reference range. The BMDs and hearth and liver iron deposits were assessed with DEXA scans and MRI, respectively. Results: The iFGF23 distribution in the TDT subjects is significantly different from that of the general population. The iFGF23 levels are positively correlated with the age at transfusion initiation and calcium and phosphate levels and are negatively correlated with the osteocalcin plasma levels. Patients treated with deferasirox had lower iFGF23 levels than those treated with other chelators. The iFGF23 levels are not correlated with the BMD or iron status. Conclusions: These findings provide insights into the relationship between the iFGF23 and bone and iron metabolism in TDT patients. Further studies are needed to explore its potential clinical relevance.
Collapse
Affiliation(s)
- Alberto Gobbo
- Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.G.); (M.C.Z.)
| | - Filomena Longo
- Department of Specialized Medicine, Day Hospital of Thalassemia and Hemoglobinopathies, Azienda Ospedaliero Universitaria S. Anna, 44124 Ferrara, Italy
| | - Camilla Alice Cattaneo
- Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.G.); (M.C.Z.)
| | - Martina Verrienti
- Unit of Endocrinology and Metabolic Diseases, Department of Specialty Medicines, Azienda Ospedaliero Universitaria di Ferrara, 44124 Ferrara, Italy;
| | - Gianluca Marzi
- Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.G.); (M.C.Z.)
| | - Fatima Chamekh
- Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.G.); (M.C.Z.)
| | - Martina Culcasi
- Department of Specialized Medicine, Day Hospital of Thalassemia and Hemoglobinopathies, Azienda Ospedaliero Universitaria S. Anna, 44124 Ferrara, Italy
| | - Alberto Cossu
- Radiology Unit, Azienda Ospedaliero Universitaria di Ferrara, 44124 Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.G.); (M.C.Z.)
- Unit of Endocrinology and Metabolic Diseases, Department of Specialty Medicines, Azienda Ospedaliero Universitaria di Ferrara, 44124 Ferrara, Italy;
| | - Maria Rosaria Ambrosio
- Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.G.); (M.C.Z.)
- Unit of Endocrinology and Metabolic Diseases, Department of Specialty Medicines, Azienda Ospedaliero Universitaria di Ferrara, 44124 Ferrara, Italy;
| |
Collapse
|
3
|
Salera D, Merkel N, Bellasi A, de Borst MH. Pathophysiology of chronic kidney disease-mineral bone disorder (CKD-MBD): from adaptive to maladaptive mineral homeostasis. Clin Kidney J 2025; 18:i3-i14. [PMID: 40083952 PMCID: PMC11903091 DOI: 10.1093/ckj/sfae431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Indexed: 03/16/2025] Open
Abstract
Chronic kidney disease-mineral bone disorder (CKD-MBD) is a multifaceted condition commonly seen in people with reduced kidney function. It involves a range of interconnected issues in mineral metabolism, bone health and cardiovascular calcification, which are linked to a lower quality of life and shorter life expectancy. Although various epidemiological studies show that the laboratory changes defining CKD-MBD become more common as the glomerular filtration rate declines, the pathophysiology of CKD-MBD is still largely unexplained. We herein review the current understanding of CKD-MBD, provide a conceptual framework to understand this syndrome, and review the genetic and environmental factors that may influence the clinical manifestation of CKD-MBD. However, a deeper understanding of the pathophysiology of CKD-MBD is needed to understand the phenotype variability and the relative contribution to organ damage of factors involved in CKD-MBD to develop more effective interventions to improve outcomes in patients with CKD.
Collapse
Affiliation(s)
- Davide Salera
- Service of Nephrology, Ospedale Regionale di Lugano, Ospedale Civico, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Nathalie Merkel
- Service of Nephrology, Ospedale Regionale di Lugano, Ospedale Civico, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Antonio Bellasi
- Service of Nephrology, Ospedale Regionale di Lugano, Ospedale Civico, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Università della Svizzera italiana (USi), Faculty of Biomedical Sciences, Lugano, Switzerland
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Hamano N, Komaba H, Tanaka H, Takahashi H, Takahashi Y, Hyodo T, Hida M, Suga T, Wada T, Kakuta T, Fukagawa M. Fibroblast Growth Factor 23, Endogenous Erythropoietin, Erythropoiesis-Stimulating Agents, and Erythropoietin Resistance in Hemodialysis Patients. Am J Nephrol 2025:1-9. [PMID: 39978330 DOI: 10.1159/000543506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025]
Abstract
INTRODUCTION Recent experimental studies have reported that fibroblast growth factor 23 (FGF23) inhibits erythropoiesis by suppressing erythropoietin (EPO) production and downregulating the EPO receptor. Conversely, either endogenous or exogenous EPO has been shown to stimulate FGF23 production. However, little is known about the relationships between FGF23, erythropoiesis-stimulating agent (ESA) treatment, ESA resistance, and endogenous EPO in hemodialysis patients. METHODS We analyzed cross-sectional data from a cohort of 654 maintenance hemodialysis patients. We examined the associations of intact or C-terminal FGF23 with ESA treatment, ESA resistance index (ERI), hemoglobin, C-reactive protein, and endogenous EPO levels using linear regression models. EPO was measured only in patients not receiving ESAs. RESULTS A total of 458 patients (70%) were treated with ESAs. The median EPO concentration in non-ESA users was 7.8 (interquartile range, 5.3-14.4) mIU/mL. The median levels of intact and C-terminal FGF23 were 1,598 (interquartile range, 548-4,586) pg/mL and 38.7 (interquartile range, 14.0-127.6) pmol/L, respectively, in non-ESA users and 1,955 (interquartile range, 573-5,264) pg/mL and 41.4 (interquartile range, 13.9-116.8) pmol/L, respectively, in ESA users. After adjustment for potential confounders, higher ESA dose was associated with higher FGF23 levels measured by both intact and C-terminal assays. Higher C-terminal FGF23 was also associated with higher ERI, lower hemoglobin, and higher endogenous EPO, but no such associations were observed for intact FGF23 levels. CONCLUSIONS Both intact and C-terminal FGF23 showed similar associations with ESA dose, but they showed different patterns of association with other parameters related to anemia. Further research is needed to elucidate the mechanisms underlying these different associations.
Collapse
Affiliation(s)
- Naoto Hamano
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan,
- Department of Nephrology, Shin-Yurigaoka General Hospital, Kawasaki, Japan,
| | - Hirotaka Komaba
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Hisae Tanaka
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Hiroo Takahashi
- Division of Nephrology and Diabetes, Tokai University Oiso Hospital, Oiso, Japan
- Jinken Clinic, Ebina, Japan
| | | | - Toru Hyodo
- Medical Corporation Kuratakai, Hiratsuka, Japan
| | - Miho Hida
- Medical Corporation Kuratakai, Hiratsuka, Japan
| | - Takao Suga
- Medical Corporation Showakai, Tokyo, Japan
| | - Takehiko Wada
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
- Department of Nephrology, Toranomon Hospital, Tokyo, Japan
| | - Takatoshi Kakuta
- Division of Nephrology, Endocrinology and Metabolism, Tokai University Hachioji Hospital, Hachioji, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
5
|
Park MY, Agoro R, Jankauskas SS, Le Henaff C, Sitara D. Phosphorus-independent role of FGF23 in erythropoiesis and iron homeostasis. PLoS One 2024; 19:e0315228. [PMID: 39666728 PMCID: PMC11637385 DOI: 10.1371/journal.pone.0315228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
A number of studies have reported an association between phosphorus, red blood cell (RBC) production, and iron metabolism. However, it is difficult to distinguish whether the effect of phosphorus is direct or through the actions of FGF23, and it is not clear whether phosphorus is positively or negatively associated with RBC production. In the present study, we investigated the effects of a) increased phosphorus load and b) phosphorus deficiency on erythropoiesis and iron metabolism in association with FGF23. Mice were fed either a 1.2% or 1.65% phosphorus diet and compared to mice fed a control diet containing 0.6% of phosphorus. Moreover, we used two mouse models of hypophosphatemia-induced either by dietary intervention in the form of a low phosphorus (LP) diet (0.02% of Pi) or genetically in a mouse model of X-linked hypophosphatemia (XLH)-that had opposite FGF23 levels. Phosphorus supplementation appropriately increased FGF23 levels leading to excretion of excess phosphorus and normalization of serum phosphorus levels. We also found that a phosphorus-rich diet results in inflammation-induced hypoferremia associated with reduced iron export leading to tissue iron overload. Moreover, high phosphorus intake results in ineffective erythropoiesis caused by decreased production (decreased RBCs, hemoglobin, hematocrit, and erythroid progenitors in the bone marrow) and increased destruction of RBCs, leading to anemia despite increased EPO secretion. These complications occur through the actions of elevated FGF23 in the presence of normophosphatemia. Our data also show that LP diet induces a decrease in the serum concentrations of phosphorus and FGF23, resulting in increased RBC counts, hemoglobin concentration, and hematocrit compared to mice fed normal diet. Moreover, serum iron and transferrin saturation were increased and positively correlated with serum ferritin, liver ferritin protein and mRNA expression in mice fed LP diet. However, hyp mice, the murine model of XLH, exhibit hypophosphatemia and high serum FGF23 levels, along with low number of circulating RBCs, hemoglobin, and hematocrit compared to wild-type mice. In the bone marrow, hyp mice showed reduced number of erythroid progenitors and formed significantly less BFU-E colonies compared to control mice. Serum iron levels and transferrin saturation were also decreased in hyp mice in comparison to control mice. Taken together, our data show that FGF23 acts independent of phosphorus levels to regulate erythropoiesis and iron homeostasis.
Collapse
Affiliation(s)
- Min Young Park
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States of America
| | - Rafiou Agoro
- Department of Mammalian Genetics, The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - Carole Le Henaff
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States of America
| | - Despina Sitara
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States of America
- Department of Medicine, Holman Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, United States of America
| |
Collapse
|
6
|
Marando M, Tamburello A, Salera D, Di Lullo L, Bellasi A. Phosphorous metabolism and manipulation in chronic kidney disease. Nephrology (Carlton) 2024; 29:791-800. [PMID: 39433296 PMCID: PMC11579558 DOI: 10.1111/nep.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/13/2024] [Accepted: 10/05/2024] [Indexed: 10/23/2024]
Abstract
Chronic kidney disease-mineral bone disorder (CKD-MBD) is a syndrome commonly observed in subjects with impaired renal function. Phosphate metabolism has been implicated in the pathogenesis of CKD-MBD and according to the phosphorocentric hypothesis may be the key player in the pathogenesis of these abnormalities. As phosphorous is an essential component for life, absorption from the bowel, accumulation and release from the bones, and elimination through the kidneys are all homeostatic mechanisms that maintain phosphate balance through very sophisticated feedback mechanisms, which comprise as main actors: vitamin D (VD), parathyroid hormone (PTH), calciproteins particles (CPPs), fibroblast growth factor-23 (FGF-23) and other phosphatonins and klotho. Indeed, as the renal function declines, factors such as FGF-23 and PTH prevent phosphate accumulation and hyperphosphatemia. However, these factors per se may be responsible for the organ damages associated with CKD-MBD, such as bone osteodystrophy and vascular calcification. We herein review the current understanding of the CKD-MBD focusing on phosphorous metabolism and the impact of phosphate manipulation on surrogate and hard outcomes.
Collapse
Affiliation(s)
- Marco Marando
- Service of PneumologyHôpitaux Universitaires de GenèveGenevaSwitzerland
| | | | - Davide Salera
- Department of Internal MedicineOspedale Regionale di Lugano, Ospedale Civico, Ente Ospedaliero CantonaleLuganoSwitzerland
| | - Luca Di Lullo
- UOC Nephrology and Dialysis UnitAzienda USL Roma 6Albano LazialeItaly
| | - Antonio Bellasi
- Service of NephrologyOspedale Regionale di Lugano, Ospedale Civico, Ente Ospedaliero CantonaleLuganoSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera italianaLuganoSwitzerland
| |
Collapse
|
7
|
Carullo N, Sorbo D, Faga T, Pugliese S, Zicarelli MT, Costa D, Ielapi N, Battaglia Y, Pisani A, Coppolino G, Bolignano D, Michael A, Serra R, Andreucci M. Anemia and Mineral Bone Disorder in Kidney Disease Patients: The Role of FGF-23 and Other Related Factors. Int J Mol Sci 2024; 25:12838. [PMID: 39684548 DOI: 10.3390/ijms252312838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Anemia and mineral and bone disorder (MBD) are significant complications of chronic kidney disease (CKD). The erythropoietin (Epo) pathway plays a key role in both of these processes in CKD. Another molecule that plays an important role in CKD-MBD is fibroblast growth factor (FGF)-23, whose main role is to maintain serum phosphate levels in the normal range, acting via its co-receptor Klotho; however, its activity may also be related to anemia and inflammation. In this review, the regulation of Epo and FGF-23 and the molecular mechanisms of their action are outlined. Furthermore, the complex interaction between EPO and FGF-23 is discussed, as well as their association with other anemia-related factors and processes such as Klotho, vitamin D, and iron deficiency. Together, these may be part of a "kidney-bone marrow-bone axis" that promotes CKD-MBD.
Collapse
Affiliation(s)
- Nazareno Carullo
- "G. Jazzolino" Hospital, A.S.P. Vibo Valentia, I89900 Vibo Valentia, Italy
| | - David Sorbo
- San Bortolo Hospital, ULSS 8 Berica, I36100 Vicenza, Italy
| | - Teresa Faga
- Department of Health Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Sara Pugliese
- Department of Health Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Maria Teresa Zicarelli
- Amantea Outpatient Clinic, A.S.P. Cosenza, I87032 Amantea, Italy
- Department of Medical and Surgical Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Davide Costa
- Department of Medical and Surgical Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
- Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, I88100 Catanzaro, Italy
- Department of Public Health and Infectious Disease, "Sapienza" University of Rome, I00185 Rome, Italy
| | - Yuri Battaglia
- Department of Medicine, University of Verona, I37129 Verona, Italy
| | - Antonio Pisani
- Department of Public Health, University of Naples Federico II, I80131 Naples, Italy
| | - Giuseppe Coppolino
- Department of Health Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Ashour Michael
- Department of Health Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
- Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, I88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, "Magna Graecia" University, I88100 Catanzaro, Italy
| |
Collapse
|
8
|
Silarat P, Saeseow S, Pathumarak A, Srisuwarn P, Suvikapakornkul R, Disthabanchong S. Improved Clinical Outcomes Associated With Hungry Bone Syndrome Following Parathyroidectomy in Dialysis Patients. Endocr Pract 2024; 30:1079-1088. [PMID: 39214462 DOI: 10.1016/j.eprac.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Hungry bone syndrome (HBS) is a common complication after parathyroidectomy in dialysis patients with severe secondary hyperparathyroidism. The rapid decline in parathyroid hormone (PTH) levels diminishes bone resorption and accelerates bone formation. This causes a significant influx of calcium and phosphate into the bone, resulting in severe and prolonged hypocalcemia. While previous studies have established risk factors for HBS, the outcomes beyond the reduced recurrence rate of hyperparathyroidism have been largely unexplored. METHODS This single-center retrospective study analyzed 322 cases in 314 dialysis patients who underwent parathyroidectomy between 2012 and 2022. The study examined baseline factors associated with HBS, adverse events, and clinical outcomes, including changes in blood pressure and hematologic and nutritional parameters over 3-12 months of follow-up, stratified by HBS status. RESULTS Total parathyroidectomy was performed in 28 cases (8.7%), total parathyroidectomy with implantation in 98 cases (30.4%), and subtotal parathyroidectomy in 196 cases (60.9%). HBS occurred in 207 cases (64%). Independent predictors of HBS included male sex, lower serum calcium levels, higher PTH levels, and lack of active vitamin D treatment at baseline. Patients with HBS had longer hospital stays but did not experience an increase in other adverse events. Following parathyroidectomy, the HBS group showed a greater reduction in blood pressure and more significant increases in hemoglobin, total lymphocyte count, and serum creatinine. This group also saw a more substantial decrease in the proportions of patients with hemoglobin <11 g/dL and serum creatinine/body surface area <380 μmol/L/m2. Although the HBS group showed a more significant decline in PTH levels from baseline, similar proportions achieved the target PTH level by the end of the study. Serum calcium levels remained substantially lower in the HBS group throughout the follow-up, while serum phosphate and PTH levels were comparable. CONCLUSION HBS was associated with more pronounced improvements in blood pressure, anemia, and nutritional parameters. The presence of HBS could indicate greater achievement in controlling hyperparathyroidism following parathyroidectomy.
Collapse
Affiliation(s)
- Panida Silarat
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sarunya Saeseow
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adisorn Pathumarak
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Praopilad Srisuwarn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ronnarat Suvikapakornkul
- Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sinee Disthabanchong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
9
|
Courbon G, David V. Fibroblast growth factor 23 is pumping iron: C-terminal-fibroblast growth factor 23 cleaved peptide and its function in iron metabolism. Curr Opin Nephrol Hypertens 2024; 33:368-374. [PMID: 38661434 DOI: 10.1097/mnh.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW Iron deficiency regulates the production of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) but also its cleavage, to generate both intact (iFGF23) and C-terminal (Cter)-FGF23 peptides. Novel studies demonstrate that independently of the phosphaturic effects of iFGF23, Cter-FGF23 peptides play an important role in the regulation of systemic iron homeostasis. This review describes the complex interplay between iron metabolism and FGF23 biology. RECENT FINDINGS C-terminal (Cter) FGF23 peptides antagonize inflammation-induced hypoferremia to maintain a pool of bioavailable iron in the circulation. A key mechanism proposed is the down-regulation of the iron-regulating hormone hepcidin by Cter-FGF23. SUMMARY In this manuscript, we discuss how FGF23 is produced and cleaved in response to iron deficiency, and the principal functions of cleaved C-terminal FGF23 peptides. We also review possible implications anemia of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Guillaume Courbon
- INSERM U1059 SAINBIOSE, University of St Etienne, Mines St Etienne, St Etienne, France
| | - Valentin David
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Kobayashi Y, Taniguchi R, Shirasaki E, Yoshimoto YS, Aoi W, Kuwahata M. Continuous training in young athletes decreases hepcidin secretion and is positively correlated with serum 25(OH)D and ferritin. PeerJ 2024; 12:e17566. [PMID: 38948227 PMCID: PMC11214734 DOI: 10.7717/peerj.17566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background Iron deficiency is known to impair muscle function and reduce athletic performance, while vitamin D has been reported to induce iron deficiency. However, the mechanism underlying exercise-induced changes in iron metabolism and the involvement of vitamins in this mechanism are unclear. The present study examined changes in biological iron metabolism induced by continuous training and the effects of vitamin D on these changes. Methods Diet, physical characteristics, and blood test data were collected from 23 female high school students in a dance club on the last day of each of a 2-month continuous training period and a 2-week complete rest periods. Results Serum hepcidin-25 levels were significantly lower during the training period than the rest period (p = 0.013), as were the red blood cell count, hemoglobin, and hematocrit (all p < 0.001). Serum erythropoietin was significantly higher (p = 0.001) during the training period. Significant positive correlations were observed between 25(OH)D levels and serum iron, serum ferritin, and transferrin saturation during the training period. Multiple regression analysis with serum 25(OH)D level as the dependent variable and serum ferritin and iron levels as independent variables during the training period revealed a significant association with serum ferritin. Conclusion Continuous training may promote hemolysis and erythropoiesis, contributing to the suppression of hepcidin expression. The relationship between serum 25(OH)D and iron in vivo may be closely related to metabolic changes induced by the exercise load.
Collapse
Affiliation(s)
- Yukiko Kobayashi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Rikako Taniguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Emiko Shirasaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yuko Segawa Yoshimoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Wataru Aoi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masashi Kuwahata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
11
|
Nakagawa Y, Komaba H. Roles of Parathyroid Hormone and Fibroblast Growth Factor 23 in Advanced Chronic Kidney Disease. Endocrinol Metab (Seoul) 2024; 39:407-415. [PMID: 38752265 PMCID: PMC11220210 DOI: 10.3803/enm.2024.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 06/29/2024] Open
Abstract
Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) each play a central role in the pathogenesis of chronic kidney disease (CKD)-mineral and bone disorder. Levels of both hormones increase progressively in advanced CKD and can lead to damage in multiple organs. Secondary hyperparathyroidism (SHPT), characterized by parathyroid hyperplasia with increased PTH secretion, is associated with fractures and mortality. Emerging evidence suggests that these associations may be partially explained by PTH-induced browning of adipose tissue and increased energy expenditure. Observational studies suggest a survival benefit of PTHlowering therapy, and a recent study comparing parathyroidectomy and calcimimetics further suggests the importance of intensive PTH control. The mechanisms underlying the regulation of FGF23 secretion by osteocytes in response to phosphate load have been unclear, but recent experimental studies have identified glycerol-3-phosphate, a byproduct of glycolysis released by the kidney, as a key regulator of FGF23 production. Elevated FGF23 levels have been shown to be associated with mortality, and experimental data suggest off-target adverse effects of FGF23. However, the causal role of FGF23 in adverse outcomes in CKD patients remains to be established. Further studies are needed to determine whether intensive SHPT control improves clinical outcomes and whether treatment targeting FGF23 can improve patient outcomes.
Collapse
Affiliation(s)
- Yosuke Nakagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Hirotaka Komaba
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
- Interactive Translational Research Center for Kidney Diseases, Tokai University School of Medicine, Isehara, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Japan
| |
Collapse
|
12
|
Thomas E, Klomhaus AM, Laster ML, Furth SL, Warady BA, Salusky IB, Hanudel MR. Associations between anemia and FGF23 in the CKiD study. Pediatr Nephrol 2024; 39:837-847. [PMID: 37752381 PMCID: PMC10817837 DOI: 10.1007/s00467-023-06160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/13/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that plays a central role in chronic kidney disease-mineral bone disorder and is associated with CKD progression and cardiovascular morbidity. Factors related to CKD-associated anemia, including iron deficiency, can increase FGF23 production. This study aimed to assess whether anemia and/or iron deficiency are associated with increased circulating concentrations of FGF23 in the large, well-characterized Chronic Kidney Disease in Children (CKiD) study cohort. METHODS Hemoglobin concentrations, iron parameters, C-terminal (total) FGF23, intact FGF23, and relevant covariables were measured in cross-sectional analysis of CKiD study subjects. RESULTS In 493 pediatric patients with CKD (median [interquartile range] age 13 [9, 16] years), the median estimated glomerular filtration rate was 48 [35, 61] ml/min/1.73 m2, and 103 patients (21%) were anemic. Anemic subjects had higher total FGF23 concentrations than non-anemic subjects (204 [124, 390] vs. 109 [77, 168] RU/ml, p < 0.001). In multivariable linear regression modeling, anemia was independently associated with higher total FGF23, after adjustment for demographic, kidney-related, mineral metabolism, and inflammatory covariables (standardized β (95% confidence interval) 0.10 (0.04, 0.17), p = 0.002). In the subset of subjects with available iron parameters (n = 191), iron deficiency was not associated with significantly higher total FGF23 concentrations. In the subgroup that had measurements of both total and intact FGF23 (n = 185), in fully adjusted models, anemia was significantly associated with higher total FGF23 (standardized β (95% CI) 0.16 (0.04, 0.27), p = 0.008) but not intact FGF23 (standardized β (95% CI) 0.02 (-0.12, 0.15), p = 0.81). CONCLUSIONS In this cohort of pediatric patients with CKD, anemia was associated with increased total FGF23 levels but was not independently associated with elevated intact FGF23, suggesting possible effects on both FGF23 production and cleavage. Further studies are warranted to investigate non-mineral factors affecting FGF23 production and metabolism in CKD.
Collapse
Affiliation(s)
- Elizabeth Thomas
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alexandra M Klomhaus
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marciana L Laster
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susan L Furth
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bradley A Warady
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mark R Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Meza K, Biswas S, Talmor C, Baqai K, Samsonov D, Solomon S, Akchurin O. Response to oral iron therapy in children with anemia of chronic kidney disease. Pediatr Nephrol 2024; 39:233-242. [PMID: 37458800 DOI: 10.1007/s00467-023-06048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Anemia is a common complication of chronic kidney disease (CKD) and oral iron is recommended as initial therapy. However, response to iron therapy in children with non-dialysis CKD has not been formally assessed. METHODS We reviewed medical records of pediatric patients with stages II-IV CKD followed in two New York metropolitan area medical centers between 2010 and 2020 and identified subjects who received oral iron therapy. Response to therapy at follow-up visits was assessed by improvement of hemoglobin, resolution of anemia by the 2012 KDIGO definition, and changes in iron status. Potential predictors of response were examined using regression analyses (adjusted for age, sex, eGFR, and center). RESULTS Study criteria were met by 65 children (median age 12 years, 35 males) with a median time between visits of 81 days. Median eGFR was 44 mL/min/1.73 m2, and 40.7% had glomerular CKD etiology. Following iron therapy, hemoglobin improved from 10.2 to 10.8 g/dL (p < 0.001), hematocrit from 31.3 to 32.8% (p < 0.001), serum iron from 49 to 66 mcg/dL (p < 0.001), and transferrin saturation from 16 to 21.4% (p < 0.001). There was no significant change in serum ferritin (55.0 to 44.9 ng/mL). Anemia (defined according to KDIGO) resolved in 29.3% of children. No improvement in hemoglobin/hematocrit was seen in 35% of children, and no transferrin saturation improvement in 26.9%. There was no correlation between changes in hemoglobin and changes in transferrin saturation/serum iron, but there was an inverse correlation between changes in hemoglobin and changes in ferritin. The severity of anemia and alkaline phosphatase at baseline inversely correlated with treatment response. CONCLUSIONS Anemia was resistant to 3 months of oral iron therapy in ~ 30% of children with CKD. Children with more severe anemia at baseline had better treatment response, calling for additional studies to refine approaches to iron therapy in children with anemia of CKD and to identify additional predictors of treatment response.
Collapse
Affiliation(s)
- Kelly Meza
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Sharmi Biswas
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | | | - Kanza Baqai
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Oleh Akchurin
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA.
- New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
14
|
Edmonston D, Grabner A, Wolf M. FGF23 and klotho at the intersection of kidney and cardiovascular disease. Nat Rev Cardiol 2024; 21:11-24. [PMID: 37443358 DOI: 10.1038/s41569-023-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD). As CKD progresses, CKD-specific risk factors, such as disordered mineral homeostasis, amplify traditional cardiovascular risk factors. Fibroblast growth factor 23 (FGF23) regulates mineral homeostasis by activating complexes of FGF receptors and transmembrane klotho co-receptors. A soluble form of klotho also acts as a 'portable' FGF23 co-receptor in tissues that do not express klotho. In progressive CKD, rising circulating FGF23 levels in combination with decreasing kidney expression of klotho results in klotho-independent effects of FGF23 on the heart that promote left ventricular hypertrophy, heart failure, atrial fibrillation and death. Emerging data suggest that soluble klotho might mitigate some of these effects via several candidate mechanisms. More research is needed to investigate FGF23 excess and klotho deficiency in specific cardiovascular complications of CKD, but the pathophysiological primacy of FGF23 excess versus klotho deficiency might never be precisely resolved, given the entangled feedback loops that they share. Therefore, randomized trials should prioritize clinical practicality over scientific certainty by targeting disordered mineral homeostasis holistically in an effort to improve cardiovascular outcomes in patients with CKD.
Collapse
Affiliation(s)
- Daniel Edmonston
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
15
|
Michon-Colin A, Metzger M, Bankir L, Gauci C, Brunel M, Baron S, Prot-Bertoye C, Stengel B, Thervet E, Haymann JP, Boffa JJ, Vrtovsnik F, Flamant M, Houillier P, Prie D, Courbebaisse M. Fibroblast growth factor 23 but not copeptin is independently associated with kidney failure and mortality in patients with chronic kidney disease. Clin Kidney J 2023; 16:2472-2481. [PMID: 38046034 PMCID: PMC10689138 DOI: 10.1093/ckj/sfad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 12/05/2023] Open
Abstract
Background Copeptin and intact fibroblast growth factor 23 (iFGF23) increase early during chronic kidney disease (CKD) and may be predictive of unfavourable outcomes. The aim of this study was to evaluate their respective associations with renal and vital outcomes in CKD patients. Methods We included CKD patients from the NephroTest cohort with concomitant measurements of plasma copeptin and iFGF23 concentrations and isotopic glomerular filtration rate measurement (mGFR). The primary endpoint was a composite outcome including kidney failure (KF) (dialysis initiation, pre-emptive transplantation or a 57% decrease of mGFR, corresponding to doubling of serum creatinine) or death before KF. Hazard ratios (HRs) of the primary endpoint associated with log-transformed copeptin and iFGF23 concentrations were estimated by Cox models. The slope of mGFR over time was analysed using a linear mixed model. Results A total of 329 CKD patients (243 men, mean age 60.3 ± 14.6 years) were included. Among them, 301 with an mGFR >15 ml/min/1.73 m2 were included in survival and mGFR slope analyses. During a median follow-up of 4.61 years (quartile 1-quartile 3: 3.72-6.07), 61 KFs and 32 deaths occurred. Baseline iFGF23 concentrations were associated with the composite outcome after multiple adjustments {HR 2.72 [95% confidence interval (CI) 1.85-3.99]}, whereas copeptin concentrations were not [HR 1.01 (95% CI 0.74-1.39)]. Neither copeptin nor iFGF23 were associated with mGFR slope over time. Conclusion Our study shows for the first time in population of CKD patients an independent association between iFGF23 and unfavourable renal and vital outcomes and shows no such association regarding copeptin, encouraging the integration of iFGF23 measurement into the follow-up of CKD.
Collapse
Affiliation(s)
- Arthur Michon-Colin
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Marie Metzger
- INSERM UMRS 1018, Equipe d'Epidémiologie Clinique, CESP, Université Paris-Saclay, Villejuif, France
| | - Lise Bankir
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS, ERL 8228, Laboratory of Kidney Physiology and Tubulopathies, Paris, France
| | - Cédric Gauci
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- INSERM UMRS 1018, Equipe d'Epidémiologie Clinique, CESP, Université Paris-Saclay, Villejuif, France
| | - Mélanie Brunel
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Stéphanie Baron
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Caroline Prot-Bertoye
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS, ERL 8228, Laboratory of Kidney Physiology and Tubulopathies, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Bénédicte Stengel
- INSERM UMRS 1018, Equipe d'Epidémiologie Clinique, CESP, Université Paris-Saclay, Villejuif, France
| | - Eric Thervet
- Université Paris Cité, Paris, France
- Néphrologie et Hémodialyse, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Philippe Haymann
- Explorations Fonctionnelles Multidisciplinaires, Sorbonne Université Paris, France
- Explorations Fonctionnelles Multidisciplinaires, Hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Jacques Boffa
- Explorations Fonctionnelles Multidisciplinaires, Sorbonne Université Paris, France
- Néphrologie et Dialyse, Hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - François Vrtovsnik
- Université Paris Cité, Paris, France
- Néphrologie, Hôpital Bichat, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Martin Flamant
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Multidisciplinaires, Hôpital Bichat, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Pascal Houillier
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Dominique Prie
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Département de Physiologie, Hôpital Necker, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Marie Courbebaisse
- Université Paris Cité, Paris, France
- Explorations Fonctionnelles Rénales – Physiologie, Hôpital Européen Georges-Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
16
|
Muras-Szwedziak K, Pawłowicz-Szlarska E, Nowicki M. Effect of intravenous iron on endogenous erythropoietin and FGF-23 secretion in patients with chronic kidney disease. Ren Fail 2023; 45:2164305. [PMID: 36688811 PMCID: PMC9873275 DOI: 10.1080/0886022x.2022.2164305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION It has been observed that intravenous iron administration may suppress endogenous production of erythropoietin (EPO). We postulate that this effect may be mediated by increased FGF-23 secretion. AIM OF THE STUDY To evaluate the short-term effect of intravenous iron sucrose administration on endogenous EPO secretion in patients with chronic kidney disease (CKD). MATERIALS AND METHODS The cohort comprised 35 nondialysis patients with CKD stages 3-5. All received 100 mg of intravenous iron (III)-hydroxide sucrose complex daily for five consecutive days. Plasma EPO, iFGF-23, cFGF-23, PTH, bone alkaline phosphatase (BAP), phosphorus (PO4), calcium (Ca), and high-sensitive C-reactive protein (CRP) were measured before, and two hours after, the first and third iron infusions, and after completing iron therapy. RESULTS EPO concentration at the end of iron treatment was significantly lower than two hours after the first iron infusion (p = 0.0003) and before the third dose (p = 0.0006) (12.6 [10.2, 41.4] mIU/mL. vs. 30.9 [15.9, 54.2] mIU/mL and 33.4 [15.4, 56.7] mIU/mL, respectively). Conversely, plasma iFGF-23 was significantly higher before the third dose (61.1 [18.6, 420.1 4] pg/mL; p = 0.025) and after the course of treatment (92.1 [28.4, 878.1] pg/mL; p = 0.004) compared to pretreatment value (48.4 [16.2, 420] pg/mL). cFGF-23 concentration was significantly lower than baseline after the first iron dose (491.8 [257.7, 1086.3] vs. 339.2 [75.4, 951.2] RU/mL; p = 0.005) and after treatment (398.7 [90.4, 1022.3] RU/mL; p = 0.025). No significant linear correlation was found between changes in plasma EPO and FGF-23. CONCLUSIONS Although intravenous iron therapy causes parallel increase of FGF-23 and supression of endogenous EPO, these two effects seem to be independent.
Collapse
Affiliation(s)
- Katarzyna Muras-Szwedziak
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Lodz, Poland
| | - Ewa Pawłowicz-Szlarska
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Lodz, Poland
| | - Michał Nowicki
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Lodz, Poland,CONTACT Michał Nowicki Central University Hospital, Medical University of Lodz, Pomorska 251, Lodz, 92-213, Poland
| |
Collapse
|
17
|
Li X, Lozovatsky L, Tommasini SM, Fretz J, Finberg KE. Bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in a mouse model of iron deficiency anemia. Blood Adv 2023; 7:5156-5171. [PMID: 37417950 PMCID: PMC10480544 DOI: 10.1182/bloodadvances.2022009524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023] Open
Abstract
Iron deficiency is a potent stimulator of fibroblast growth factor 23 (FGF23), a hormonal regulator of phosphate and vitamin D metabolism, that is classically thought to be produced by bone-embedded osteocytes. Here, we show that iron-deficient transmembrane serine protease 6 knockout (Tmprss6-/-) mice exhibit elevated circulating FGF23 and Fgf23 messenger RNA (mRNA) upregulation in the bone marrow (BM) but not the cortical bone. To clarify sites of Fgf23 promoter activity in Tmprss6-/- mice, we introduced a heterozygous enhanced green fluorescent protein (eGFP) reporter allele at the endogenous Fgf23 locus. Heterozygous Fgf23 disruption did not alter the severity of systemic iron deficiency or anemia in the Tmprss6-/- mice. Tmprss6-/-Fgf23+/eGFP mice showed green fluorescence in the vascular regions of BM sections and showed a subset of BM endothelial cells that were GFPbright by flow cytometry. Mining of transcriptomic data sets from mice with normal iron balance revealed higher Fgf23 mRNA in BM sinusoidal endothelial cells (BM-SECs) than that in other BM endothelial cell populations. Anti-GFP immunohistochemistry of fixed BM sections from Tmprss6-/-Fgf23+/eGFP mice revealed GFP expression in BM-SECs, which was more intense than in nonanemic controls. In addition, in mice with intact Tmprss6 alleles, Fgf23-eGFP reporter expression increased in BM-SECs following large-volume phlebotomy and also following erythropoietin treatment both ex vivo and in vivo. Collectively, our results identified BM-SECs as a novel site for Fgf23 upregulation in both acute and chronic anemia. Given the elevated serum erythropoietin in both anemic models, our findings raise the possibility that erythropoietin may act directly on BM-SECs to promote FGF23 production during anemia.
Collapse
Affiliation(s)
- Xiuqi Li
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | | | - Steven M. Tommasini
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, CT
| | - Jackie Fretz
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, CT
| | | |
Collapse
|
18
|
Kato K, Nakashima A, Ohkido I, Kasai K, Yokoo T. Association between serum phosphate levels and anemia in non-dialysis patients with chronic kidney disease: a retrospective cross-sectional study from the Fuji City CKD Network. BMC Nephrol 2023; 24:244. [PMID: 37605118 PMCID: PMC10463297 DOI: 10.1186/s12882-023-03298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) present high mortality and morbidity rates despite the availability of various therapies. Although CKD-mineral and bone disorder (MBD) and renal anemia are important factors in patients with CKD, only few studies have analyzed the relationship between them. Therefore, this study aimed to evaluate the relationship between CKD-MBD and anemia in patients with CKD who did not receive erythropoiesis-stimulating agent or iron therapies. METHODS This retrospective cross-sectional study included patients with CKD aged ≥ 20 years with estimated glomerular filtration rate (eGFR) categories G2a to G5 who were referred to the Fuji City General Hospital between April 2018 and July 2019. The exclusion criterion was ongoing treatment for CKD-MBD and/or anemia. RESULTS The data of 300 patients with CKD were analyzed in this study. The median age of patients was 71 (range, 56.5-79) years. The median eGFR was 34 (range, 20-48) mL/min/1.73 m2, and the mean hemoglobin (Hb) level was 12.7 g/dL (standard deviation, 2.3), which decreased as the CKD stage increased. In a multivariate linear regression analysis of anemia-related factors, including age, renal function (eGFR), nutritional status, inflammation, and iron dynamics (serum iron level, total iron-binding capacity, ferritin levels), the serum phosphate levels were significantly associated with the Hb levels (coefficient [95% confidence interval], -0.73 [-1.1, -0.35]; P < 0.001). Subgroup analysis revealed a robust association between serum phosphate levels and Hb levels in the low-ferritin (coefficient [95% confidence interval], -0.94 [-1.53, -0.35]; P = 0.002) and advanced CKD groups (coefficient [95% confidence interval], -0.89 [-1.37, -0.41]; P < 0.001). CONCLUSIONS We found an association between high serum phosphate levels and low Hb levels in patients with CKD not receiving treatment for anemia. These results underscore the possibility of a mechanistic overlap between CKD-MBD and anemia.
Collapse
Affiliation(s)
- Kazuhiko Kato
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi Minato-Ku, Tokyo, 105-8461, Japan.
- Department of Internal Medicine, Fuji City General Hospital, Takashima-Cho 50, Fuji-Shi, Shizuoka, Japan.
| | - Akio Nakashima
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi Minato-Ku, Tokyo, 105-8461, Japan
| | - Ichiro Ohkido
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi Minato-Ku, Tokyo, 105-8461, Japan
| | - Kenji Kasai
- Department of Internal Medicine, Fuji City General Hospital, Takashima-Cho 50, Fuji-Shi, Shizuoka, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi Minato-Ku, Tokyo, 105-8461, Japan
| |
Collapse
|
19
|
Karava V, Dotis J, Kondou A, Christoforidis A, Taparkou A, Farmaki E, Economou M, Printza N. Fibroblast growth-factor 23 and vitamin D are associated with iron deficiency and anemia in children with chronic kidney disease. Pediatr Nephrol 2023; 38:2771-2779. [PMID: 36862253 DOI: 10.1007/s00467-023-05903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND This cross-sectional study investigates the association of fibroblast growth-factor 23 (FGF23) and other bone mineral parameters with iron status and anemia in pediatric chronic kidney disease (CKD). METHODS Serum calcium, phosphorus, 25-hydroxyvitamin D (25(OH)D), intact parathormone, c-terminal FGF23, a-Klotho, iron (Fe), ferritin, unsaturated iron-binding capacity, and hemoglobin (Hb) were measured in 53 patients from 5 to 19 years old with GFR < 60 mL/min/1.73 m2. Transferrin saturation (TSAT) was calculated. RESULTS Absolute (ferritin ≤ 100 ng/mL, TSAT ≤ 20%) and functional iron deficiency (ferritin > 100 ng/mL, TSAT ≤ 20%) were observed in 32% and 7.5% of patients, respectively. In CKD stages 3-4 (36 patients), lnFGF23 and 25(OH)D were correlated with Fe (rs = - 0.418, p = 0.012 and rs = 0.467, p = 0.005) and TSAT (rs = - 0.357, p = 0.035 and rs = 0.487, p = 0.003) but not to ferritin. In this patient group, lnFGF23 and 25(OH)D were correlated with Hb z-score (rs = - 0.649, p < 0.001 and rs = 0.358, p = 0.035). No correlation was detected between lnKlotho and iron parameters. In CKD stages 3-4, in multivariate backward logistic regression analysis, including bone mineral parameters, CKD stage, patient age, and daily alphacalcidol dose as covariates, lnFGF23 and 25(OH)D were associated with low TSΑΤ (15 patients) (OR 6.348, 95% CI 1.106-36.419, and OR 0.619, 95% CI 0.429-0.894, respectively); lnFGF23 was associated with low Hb (10 patients) (OR 5.747, 95% CI 1.270-26.005); while the association between 25(OH)D and low Hb did not reach statistical significance (OR 0.818, 95% CI 0.637-1.050). CONCLUSIONS In pediatric CKD stages 3-4, iron deficiency and anemia are associated with increased FGF23, independently of Klotho. Vitamin D deficiency might contribute to iron deficiency in this population. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Vasiliki Karava
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece.
| | - John Dotis
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - Antonia Kondou
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - Athanasios Christoforidis
- Pediatric Endocrinology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Taparkou
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Farmaki
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marina Economou
- Pediatric Hematology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikoleta Printza
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| |
Collapse
|
20
|
Courbon G, Thomas JJ, Martinez-Calle M, Wang X, Spindler J, Von Drasek J, Hunt-Tobey B, Mehta R, Isakova T, Chang W, Creemers JWM, Ji P, Martin A, David V. Bone-derived C-terminal FGF23 cleaved peptides increase iron availability in acute inflammation. Blood 2023; 142:106-118. [PMID: 37053547 PMCID: PMC10356820 DOI: 10.1182/blood.2022018475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
Inflammation leads to functional iron deficiency by increasing the expression of the hepatic iron regulatory peptide hepcidin. Inflammation also stimulates fibroblast growth factor 23 (FGF23) production by increasing both Fgf23 transcription and FGF23 cleavage, which paradoxically leads to excess in C-terminal FGF23 peptides (Cter-FGF23), rather than intact FGF23 (iFGF23) hormone. We determined that the major source of Cter-FGF23 is osteocytes and investigated whether Cter-FGF23 peptides play a direct role in the regulation of hepcidin and iron metabolism in response to acute inflammation. Mice harboring an osteocyte-specific deletion of Fgf23 showed a ∼90% reduction in Cter-FGF23 levels during acute inflammation. Reduction in Cter-FGF23 led to a further decrease in circulating iron in inflamed mice owing to excessive hepcidin production. We observed similar results in mice showing impaired FGF23 cleavage owing to osteocyte-specific deletion of Furin. We next showed that Cter-FGF23 peptides bind members of the bone morphogenetic protein (BMP) family, BMP2 and BMP9, which are established inducers of hepcidin. Coadministration of Cter-FGF23 and BMP2 or BMP9 prevented the increase in Hamp messenger RNA and circulating hepcidin levels induced by BMP2/9, resulting in normal serum iron levels. Finally, injection of Cter-FGF23 in inflamed Fgf23KO mice and genetic overexpression of Cter-Fgf23 in wild type mice also resulted in lower hepcidin and higher circulating iron levels. In conclusion, during inflammation, bone is the major source of Cter-FGF23 secretion, and independently of iFGF23, Cter-FGF23 reduces BMP-induced hepcidin secretion in the liver.
Collapse
Affiliation(s)
- Guillaume Courbon
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jane Joy Thomas
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marta Martinez-Calle
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jadeah Spindler
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John Von Drasek
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bridget Hunt-Tobey
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rupal Mehta
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Wenhan Chang
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA
| | | | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Aline Martin
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
21
|
Aprile A, Raggi L, Bolamperti S, Villa I, Storto M, Morello G, Marktel S, Tripodo C, Cappellini MD, Motta I, Rubinacci A, Ferrari G. Inhibition of FGF23 is a therapeutic strategy to target hematopoietic stem cell niche defects in β-thalassemia. Sci Transl Med 2023; 15:eabq3679. [PMID: 37256933 DOI: 10.1126/scitranslmed.abq3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Clinical evidence highlights a relationship between the blood and the bone, but the underlying mechanism linking these two tissues is not fully elucidated. Here, we used β-thalassemia as a model of congenital anemia with bone and bone marrow (BM) niche defects. We demonstrate that fibroblast growth factor 23 (FGF23) is increased in patients and mice with β-thalassemia because erythropoietin induces FGF23 overproduction in bone and BM erythroid cells via ERK1/2 and STAT5 pathways. We show that in vivo inhibition of FGF23 signaling by carboxyl-terminal FGF23 peptide is a safe and efficacious therapeutic strategy to rescue bone mineralization and deposition in mice with β-thalassemia, normalizing the expression of niche factors and restoring hematopoietic stem cell (HSC) function. FGF23 may thus represent a molecular link connecting anemia, bone, and the HSC niche. This study provides a translational approach to targeting bone defects and rescuing HSC niche interactions, with potential clinical relevance for improving HSC transplantation and gene therapy for hematopoietic disorders.
Collapse
Affiliation(s)
- Annamaria Aprile
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Raggi
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- University of Milano Bicocca, 20126 Milan, Italy
| | - Simona Bolamperti
- Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Endocrine and Osteometabolic Laboratory, Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Isabella Villa
- Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Endocrine and Osteometabolic Laboratory, Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mariangela Storto
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gaia Morello
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
- IFOM ETS, AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Maria Domenica Cappellini
- General Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Irene Motta
- General Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Alessandro Rubinacci
- Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
22
|
Komaba H. Roles of PTH and FGF23 in kidney failure: a focus on nonclassical effects. Clin Exp Nephrol 2023; 27:395-401. [PMID: 36977891 PMCID: PMC10104924 DOI: 10.1007/s10157-023-02336-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) each play a central role in the pathogenesis of chronic kidney disease-mineral and bone disorder (CKD-MBD). Both hormones increase as kidney function declines, presumably as a response to maintain normal phosphate balance, but when patients reach kidney failure, PTH and FGF23 fail to exert their phosphaturic effects, leading to hyperphosphatemia and further elevations in PTH and FGF23. In patients with kidney failure, the major target organ for PTH is the bone, but elevated PTH is also associated with mortality presumably through skeletal and nonskeletal mechanisms. Indeed, accumulated evidence suggests improved survival with PTH-lowering therapies, and a more recent study comparing parathyroidectomy and calcimimetic treatment further suggests a notion of "the lower, the better" for PTH control. Emerging data suggest that the link between SHPT and mortality could in part be explained by the action of PTH to induce adipose tissue browning and wasting. In the absence of a functioning kidney, the classical target organ for FGF23 is the parathyroid gland, but FGF23 loses its hormonal effect to suppress PTH secretion owing to the depressed expression of parathyroid Klotho. In this setting, experimental data suggest that FGF23 exerts adverse nontarget effects, but it remains to be confirmed whether FGF23 directly contributes to multiple organ injury in patients with kidney failure and whether targeting FGF23 can improve patient outcomes. Further efforts should be made to determine whether intensive control of SHPT improves clinical outcomes and whether nephrologists should aim at controlling FGF23 levels just as with PTH levels.
Collapse
Affiliation(s)
- Hirotaka Komaba
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, 259-1193, Japan.
- Interactive Translational Research Center for Kidney Diseases, Tokai University School of Medicine, Isehara, Japan.
- The Institute of Medical Sciences, Tokai University, Isehara, Japan.
| |
Collapse
|
23
|
Fang YW, Wang JT, Lin TY, Lee CJ, Jang TN, Tsai MH, Liou HH. High intact fibroblast growth factor 23 levels associated with low hemoglobin levels in patients on chronic hemodialysis. Front Med (Lausanne) 2023; 10:1098871. [PMID: 37081846 PMCID: PMC10110852 DOI: 10.3389/fmed.2023.1098871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
IntroductionA negative association between C-terminal fibroblast growth factor 23 (cFGF23) and hemoglobin (Hb) levels has been reported in patients with predialysis chronic kidney disease. In dialysis patients, the dominant form of serum FGF23 is intact FGF23 (iFGF23); however, its association with the Hb level remains unclear. Therefore, simultaneously monitoring iFGF23 and cFGF23 levels is crucial. In this study, we investigated the associations between both forms of FGF23 (iFGF23 and cFGF23) and renal anemia in chronic hemodialysis (CHD) patients.MethodsWe included 166 CHD patients from two hospitals in this cross-sectional, observational study. The primary predictors were serum iFGF23, cFGF23, and iFGF23/cFGF23 levels. The main outcome was the Hb level.ResultsAmong the CHD patients included, 60.8% were men with a mean age of 59.4 ± 12.7 years. In the crude analysis, iFGF23 and iFGF23/cFGF23 levels showed a significant negative association (−0.27, p = 0.004 and −0.22, p = 0.034, respectively) with the Hb level. Even after adjusting for multiple variables (a parsimonious model), every increment of natural log transformation by 1 for (ln)iFGF23 and ln(iFGF23/cFGF23) levels showed a negative correlation with the Hb level (estimate: −0.27 [95%CI: −0.44, −0.10, p = 0.001]; −0.19 [95%CI: −0.37, −0.01, p = 0.042], respectively), whereas both were positively associated with erythropoietin-stimulating agent (ESA) hyporesponsiveness (odds ratio [OR]: [95%CI: 2.30, 1.26–4.17], p = 0.006; 1.95 [95%CI: 1.08–3.50], p = 0.025). Moreover, these abovementioned associations were more dominant in patients with diabetes who used angiotensin receptor blockers.DiscussionIn conclusion, a negative association between serum iFGF23 or iFGF23/cFGF23 level and the Hb level was observed in our CHD patients. Meanwhile, a higher iFGF23 or iFGF23/cFGF23 level may predispose patients to ESA hyporesponsiveness.
Collapse
Affiliation(s)
- Yu-Wei Fang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jing-Tong Wang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, New Taipei City, Taiwan
| | - Tzu Yun Lin
- Division of Nephrology, Department of Internal Medicine, Hsin-Jen Hospital, New Taipei City, Taiwan
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Tsrang-Neng Jang
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, New Taipei City, Taiwan
| | - Ming-Hsien Tsai
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- *Correspondence: Ming-Hsien Tsai
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Internal Medicine, Hsin-Jen Hospital, New Taipei City, Taiwan
- Hung-Hsiang Liou
| |
Collapse
|
24
|
FGF23 in Chronic Kidney Disease: Bridging the Heart and Anemia. Cells 2023; 12:cells12040609. [PMID: 36831276 PMCID: PMC9954184 DOI: 10.3390/cells12040609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced mainly in osteocytes. In chronic kidney disease (CKD) FGF23 levels increase due to higher production, but also as the result of impaired cleavage and reduced excretion from the body. FGF23 has a significant role in disturbed bone and mineral metabolism in CKD, which leads to a higher cardiovascular risk and mortality in these patients. Current research has emphasized the expression of FGF23 in cardiac myocytes, fibroblasts, and endothelial cells, and in addition to the effects on the kidney, its primary role is in cardiac remodeling in CKD patients. Recent discoveries found a significant link between increased FGF23 levels and anemia development in CKD. This review describes the FGF23 role in cardiac hypertrophy and anemia in the setting of CKD and discusses the best therapeutical approach for lowering FGF23 levels.
Collapse
|
25
|
Bukhari H, Ahmad A, Noorin A, Khan A, Mushtaq M, Naeem A, Iqbal MR, Naureen F, Shah Y, Qayyum A, Munib S, Azhar A, Ullah F, Khan FFS. Association of Anemia with Parathyroid Hormone Levels and Other Factors in Patients with End-Stage Renal Disease Undergoing Hemodialysis: A Cross-Sectional, Real-World Data Study in Pakistan. Int J Clin Pract 2023; 2023:7418857. [PMID: 36815007 PMCID: PMC9940945 DOI: 10.1155/2023/7418857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
End-stage renal disease (ESRD) patients are mostly managed with maintenance hemodialysis (MHD). ESRD patients on MHD also present with many complications, such as anemia, hyperparathyroidism, and hepatitis prevalence. This study depicts the real-world scenario of anemia among MHD and end-stage renal disease patients in the Pakistani population. A retrospective, multicentric, and real-world data analytical study was conducted at 4 dialysis centers in Pakistan. The study had a sample size of n = 342 patients on maintenance hemodialysis. The data were gathered from the medical records of patients. Data analysis was performed using STATA Version 16. Statistical significance was gauged at a 0.05 level of significance. According to our results, the mean age of the patients was 45 (±15) years. Most of the patients were male (n = 234, 68.4%), whereas 58.1% of the patients were maintained on twice-weekly hemodialysis. The most commonly reported comorbidities were hypertension and diabetes mellitus. The frequency of dialysis (P < 0.01) and comorbidities (P = 0.009) had a significant association with anemia in MHD patients. The majority of the patients had hyperparathyroidism (52%) with anemia. Upon performing binary logistic regression, multivariate analysis displayed a similar odds value for having anemia in patients with every additional month in the duration of hemodialysis (OR 1.01, P = 0.001), the odds of anemic patients having a positive antihepatitis-C antibody (OR 2.22, P = 0.013), and the odds of having anemia in patients in the age category below 45 years (OR 1.93, P = 0.013). In conclusion, the study results depict that every additional month in the duration of hemodialysis, age (<45 years), and positive anti-HCV antibody status, these variables were more likely to have anemia in our study MHD patients. While in our final multivariate model, no statistically significant association was observed between hyperparathyroidism and anemia.
Collapse
Affiliation(s)
- Humera Bukhari
- Nephrology Ward, Jinnah Teaching Hospital, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Aneeqa Ahmad
- District Headquarters DHQ Hospital, Faisalabad, Punjab, Pakistan
| | - Amna Noorin
- Peshawar Institute of Cardiology -M.T. I, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Aimal Khan
- Northwest General Hospital and Research Center, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Mehwish Mushtaq
- Department of Pharmacy, University of Peshawar, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Aamir Naeem
- Consultant Physician in Endocrinology, Madinat Zayed Hospital SEHA Abu Dhabi Health Services, Abu-Dhabi, UAE
| | | | - Faiza Naureen
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yasar Shah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ahad Qayyum
- Nephrology Ward, Bahria International Hospital, Lahore, Pakistan
| | - Syed Munib
- Nephrology Ward, Institute of Kidney Disease Hayatabad Peshawar, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Amer Azhar
- Nephrology Ward, Khyber Teaching Hospital M. T. I., Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Farman Ullah
- Nephrology Ward, Khyber Teaching Hospital M. T. I., Khyber Pakhtunkhwa, Peshawar, Pakistan
| | | |
Collapse
|
26
|
Zhang L, Qin W. Research progress of fibroblast growth factor 23 in acute kidney injury. Pediatr Nephrol 2022:10.1007/s00467-022-05791-z. [PMID: 36416954 DOI: 10.1007/s00467-022-05791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is primarily produced in bones and mainly regulates calcium and phosphorus metabolism. The level of circulating FGF23 increases rapidly in the early stage of acute kidney injury (AKI). Recent studies have shown that FGF23 may serve as a biomarker for the diagnosis and poor prognosis of AKI. The mechanism of increased FGF23 in AKI may include increased production of FGF23, decreased renal clearance of FGF23, and some new regulatory factors, such as inflammation and glycerol 3-phosphate. However, the biological effects of elevated FGF23 in AKI are still unclear. It is also not known whether reducing the level of circulating FGF23 could alleviate AKI or its poor prognosis. Here, we review the pathophysiological mechanism and possible regulation of FGF23 in AKI and discuss the possibility of using FGF23 as a therapeutic target.
Collapse
Affiliation(s)
- Lina Zhang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.,Division of Nephrology, Henan Key Laboratory for Kidney Disease and Immunology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
27
|
Serum Phosphate Levels Modify the Impact of FGF23 Levels on Hemoglobin in Chronic Kidney Disease. Nutrients 2022; 14:nu14224842. [PMID: 36432528 PMCID: PMC9698012 DOI: 10.3390/nu14224842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Anemia is a complication of chronic kidney disease (CKD). Phosphate and fibroblast growth factor-23 (FGF23) have a close relationship, as both are related to the pathogenesis of anemia. However, the possible interplay between them regarding their effect on anemia has not been evaluated. This was a cross-sectional study of 896 participants from the NEFRONA study (273 CKD3, 246 CKD4-5, 282 dialysis and 95 controls). The levels of 25(OH) and 1,25(OH)2 vitamin D, intact FGF23 (iFGF23) and soluble Klotho were measured, together with standard blood biochemistries. Anemia was defined as hemoglobin levels < 13 g/dL in men and <12 g/dL in women. Patients with anemia (407, 45.4%) were younger, mostly men and diabetic; were in advanced CKD stages; had lower calcium, 1,25(OH)2 vitamin D and albumin levels; and had higher ferritin, phosphate, intact PTH, and iFGF23. An inverse correlation was observed between hemoglobin and both iFGF23 and phosphate. The multivariate logistic regression analyses showed that the adjusted risk of anemia was independently associated with higher serum phosphate and LogiFGF23 levels (ORs (95% CIs) of 4.33 (2.11−8.90) and 8.75 (3.17−24.2), respectively (p < 0.001)). A significant interaction between phosphate and iFGF23 (OR of 0.66 (0.53−0.83), p < 0.001) showed that the rise in the adjusted predicted risk of anemia with the increase in iFGF23 was steeper when phosphate levels were low. Phosphate levels acted as modifiers of the effect of iFGF23 concentration on anemia. Thus, the effect of the increase in iFGF23 levels was stronger when phosphate levels were low.
Collapse
|
28
|
The role of iron in chronic inflammatory diseases: from mechanisms to treatment options in anemia of inflammation. Blood 2022; 140:2011-2023. [PMID: 35994752 DOI: 10.1182/blood.2021013472] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
Anemia of inflammation (AI) is a highly prevalent comorbidity in patients affected by chronic inflammatory disorders, such as chronic kidney disease, inflammatory bowel disease, or cancer, that negatively affect disease outcome and quality of life. The pathophysiology of AI is multifactorial, with inflammatory hypoferremia and iron-restricted erythropoiesis playing a major role in the context of disease-specific factors. Here, we review the recent progress in our understanding of the molecular mechanisms contributing to iron dysregulation in AI, the impact of hypoferremia and anemia on the course of the underlying disease, and (novel) therapeutic strategies applied to treat AI.
Collapse
|
29
|
A review of ferric citrate clinical studies, and the rationale and design of the Ferric Citrate and Chronic Kidney Disease in Children (FIT4KiD) trial. Pediatr Nephrol 2022; 37:2547-2557. [PMID: 35237863 PMCID: PMC9437144 DOI: 10.1007/s00467-022-05492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022]
Abstract
Pediatric chronic kidney disease (CKD) is characterized by many co-morbidities, including impaired growth and development, CKD-mineral and bone disorder, anemia, dysregulated iron metabolism, and cardiovascular disease. In pediatric CKD cohorts, higher circulating concentrations of fibroblast growth factor 23 (FGF23) are associated with some of these adverse clinical outcomes, including CKD progression and left ventricular hypertrophy. It is hypothesized that lowering FGF23 levels will reduce the risk of these events and improve clinical outcomes. Reducing FGF23 levels in CKD may be accomplished by targeting two key stimuli of FGF23 production-dietary phosphate absorption and iron deficiency. Ferric citrate is approved for use as an enteral phosphate binder and iron replacement product in adults with CKD. Clinical trials in adult CKD cohorts have also demonstrated that ferric citrate decreases circulating FGF23 concentrations. This review outlines the possible deleterious effects of excess FGF23 in CKD, summarizes data from the adult CKD clinical trials of ferric citrate, and presents the Ferric Citrate and Chronic Kidney Disease in Children (FIT4KiD) study, a randomized, placebo-controlled trial to evaluate the effects of ferric citrate on FGF23 in pediatric patients with CKD stages 3-4 (ClinicalTrials.gov Identifier NCT04741646).
Collapse
|
30
|
Halim A, Burney HN, Li X, Li Y, Tomkins C, Siedlecki AM, Lu TS, Kalim S, Thadhani R, Moe S, Ting SM, Zehnder D, Hiemstra TF, Lim K. FGF23 and Cardiovascular Structure and Function in Advanced Chronic Kidney Disease. KIDNEY360 2022; 3:1529-1541. [PMID: 36245643 PMCID: PMC9528374 DOI: 10.34067/kid.0002192022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
Background Fibroblast growth factor 23 (FGF23) is a bone-derived phosphatonin that is elevated in chronic kidney disease (CKD) and has been implicated in the development of cardiovascular disease. It is unknown whether elevated FGF23 in CKD is associated with impaired cardiovascular functional capacity, as assessed by maximum exercise oxygen consumption (VO2Max). We sought to determine whether FGF23 is associated with cardiovascular functional capacity in patients with advanced CKD and after improvement of VO2Max by kidney transplantation. Methods We performed secondary analysis of 235 patients from the Cardiopulmonary Exercise Testing in Renal Failure and After Kidney Transplantation (CAPER) cohort, which recruited patients with stage 5 CKD who underwent kidney transplantation or were waitlisted and hypertensive controls. All patients underwent cardiopulmonary exercise testing (CPET) and echocardiography and were followed longitudinally for 1 year after study enrollment. Results Patients across FGF23 quartiles differed in BMI (P=0.004) and mean arterial pressure (P<0.001) but did not significantly differ in sex (P=0.5) or age (P=0.08) compared with patients with lower levels of FGF23. Patients with higher FGF23 levels had impaired VO2Max (Q1: 24.2±4.8 ml/min per kilogram; Q4: 18.6±5.2 ml/min per kilogram; P<0.001), greater left ventricular mass index (LVMI; P<0.001), reduced HR at peak exercise (P<0.001), and maximal workload (P<0.001). Kidney transplantation conferred a significant decline in FGF23 at 2 months (P<0.001) before improvement in VO2Max at 1 year (P=0.008). Multivariable regression modeling revealed that changes in FGF23 was significantly associated with VO2Max in advanced CKD (P<0.001) and after improvement after kidney transplantation (P=0.006). FGF23 was associated with LVMI before kidney transplantation (P=0.003), however this association was lost after adjustment for dialysis status (P=0.4). FGF23 was not associated with LVMI after kidney transplantation in all models. Conclusions FGF23 levels are associated with alterations in cardiovascular functional capacity in advanced CKD and after kidney transplantation. FGF23 is only associated with structural cardiac adaptations in advanced CKD but this was modified by dialysis status, and was not associated after kidney transplantation.
Collapse
Affiliation(s)
- Arvin Halim
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather N. Burney
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaochun Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yang Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Claudia Tomkins
- Biochemistry Department, Kettering General Hospital NHS Foundation Trust, Kettering, United Kingdom
| | - Andrew M. Siedlecki
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tzong-shi Lu
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sahir Kalim
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Ravi Thadhani
- Mass General Brigham, Harvard Medical School, Massachusetts
| | - Sharon Moe
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephen M.S. Ting
- Department of Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Daniel Zehnder
- Department of Nephrology and Department of Acute Medicine, North Cumbria University Hospital NHS Trust, Carlisle, United Kingdom
| | - Thomas F. Hiemstra
- School of Clinical Medicine, University of Cambridge; Clinical Trials Unit (CTU), Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Kenneth Lim
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
31
|
Chang HH, Liou YS, Sun DS. Hematopoietic stem cell mobilization. Tzu Chi Med J 2022; 34:270-275. [PMID: 35912054 PMCID: PMC9333105 DOI: 10.4103/tcmj.tcmj_98_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation has been used to treat hematopoietic diseases for over 50 years. HSCs can be isolated from bone marrow (BM), umbilical cord blood, or peripheral blood. Because of lower costs, shorter hospitalization, and faster engraftment, peripheral blood has become the predominant source of HSCs for transplantation. The major factors determining the rate of successful HSC transplantation include the degree of human leukocyte antigen matching between the donor and recipient and the number of HSCs for transplantation. Administration of granulocyte colony-stimulating factor (G-CSF) alone or combined with plerixafor (AMD3100) are clinical used methods to promote HSC mobilization from BM to the peripheral blood for HSC transplantations. However, a significant portion of healthy donors or patients may be poor mobilizers of G-CSF, resulting in an insufficient number of HSCs for the transplantation and necessitating alternative strategies to increase the apheresis yield. The detailed mechanisms underlying G-CSF-mediated HSC mobilization remain to be elucidated. This review summarizes the current research on deciphering the mechanism of HSC mobilization.
Collapse
Affiliation(s)
- Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
32
|
Okada M, Tominaga Y, Sato T, Tomosugi T, Futamura K, Hiramitsu T, Ichimori T, Goto N, Narumi S, Kobayashi T, Uchida K, Watarai Y. Elevated parathyroid hormone one year after kidney transplantation is an independent risk factor for graft loss even without hypercalcemia. BMC Nephrol 2022; 23:212. [PMID: 35710357 PMCID: PMC9205154 DOI: 10.1186/s12882-022-02840-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Hypercalcemic hyperparathyroidism has been associated with poor outcomes after kidney transplantation (KTx). However, the clinical implications of normocalcemic hyperparathyroidism after KTx are unclear. This retrospective cohort study attempted to identify these implications. Methods Normocalcemic recipients who underwent KTx between 2000 and 2016 without a history of parathyroidectomy were included in the study. Those who lost their graft within 1 year posttransplant were excluded. Normocalcemia was defined as total serum calcium levels of 8.5–10.5 mg/dL, while hyperparathyroidism was defined as when intact parathyroid hormone levels exceeded 80 pg/mL. The patients were divided into two groups based on the presence of hyperparathyroidism 1 year after KTx. The primary outcome was the risk of graft loss. Results Among the 892 consecutive patients, 493 did not have hyperparathyroidism (HPT-free group), and 399 had normocalcemic hyperparathyroidism (NC-HPT group). Ninety-five patients lost their grafts. Death-censored graft survival after KTx was significantly lower in the NC-HPT group than in the HPT-free group (96.7% vs. 99.6% after 5 years, respectively, P < 0.001). Cox hazard analysis revealed that normocalcemic hyperparathyroidism was an independent risk factor for graft loss (P = 0.002; hazard ratio, 1.94; 95% confidence interval, 1.27–2.98). Conclusions Normocalcemic hyperparathyroidism 1 year after KTx was an independent risk factor for death-censored graft loss. Early intervention of elevated parathyroid hormone levels may lead to better graft outcomes, even without overt hypercalcemia. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02840-5.
Collapse
Affiliation(s)
- Manabu Okada
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan.
| | - Yoshihiro Tominaga
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Tetsuhiko Sato
- Department of Diabetes and Endocrinology, Japanese Red Cross Nagoya Daini Hospital, Showa-ku, Nagoya, Aichi, Japan
| | - Toshihide Tomosugi
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Kenta Futamura
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Takahisa Hiramitsu
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Toshihiro Ichimori
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Norihiko Goto
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Shunji Narumi
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Takaaki Kobayashi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kazuharu Uchida
- Department of Renal Transplant Surgery, Masuko Memorial Hospital, Nakamura-ku, Nagoya, Aichi, Japan
| | - Yoshihiko Watarai
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| |
Collapse
|
33
|
New concepts in regulation and function of the FGF23. Clin Exp Med 2022:10.1007/s10238-022-00844-x. [PMID: 35708778 DOI: 10.1007/s10238-022-00844-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
In comparison to the regulation of calcium homeostasis, which has been widely studied over the last several decades, phosphate homeostasis is little understood. The parathyroid hormone (PTH)/vitamin D axis has traditionally been used as a conceptual framework for understanding mineral metabolism. Recently, the fundamental regulator of phosphate homeostasis, fibroblast growth factor 23 (FGF23), which is produced by osteocytes and is involved in the hormonal bone-parathyroid-kidney axis, has attracted more attention. The secretion of FGF23 is controlled by diet, serum phosphate levels, PTH, and 1,25(OH)2 vitamin D. FGF-23, the FGF receptors and the obligate co-receptor α-Klotho work in concert to affect FGF-23 actions on targeted organs. Despite all efforts to investigate pleotropic effects of FGF23 in various endocrine organs, many aspects of the regulation and functions of FGF23 and the exact crosstalk among FGF23, serum phosphate, calcium, PTH, and vitamin D in the regulation of mineral homeostasis remain unclear; much efforts need to be established before it can be moved toward therapeutic applications. In this regard, we provide a brief overview of the novel findings in the regulation and function of FGF23 and refer to related questions and hypotheses not answered yet, which can be a window for future projects. We also focus on the current knowledge about the role of FGF23 obtained from our researches in recent years.
Collapse
|
34
|
Gupta M, Orozco G, Rao M, Gedaly R, Malluche HH, Neyra JA. The Role of Alterations in Alpha-Klotho and FGF-23 in Kidney Transplantation and Kidney Donation. Front Med (Lausanne) 2022; 9:803016. [PMID: 35602513 PMCID: PMC9121872 DOI: 10.3389/fmed.2022.803016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease and mineral bone disorders are major contributors to morbidity and mortality among patients with chronic kidney disease and often persist after renal transplantation. Ongoing hormonal imbalances after kidney transplant (KT) are associated with loss of graft function and poor outcomes. Fibroblast growth factor 23 (FGF-23) and its co-receptor, α-Klotho, are key factors in the underlying mechanisms that integrate accelerated atherosclerosis, vascular calcification, mineral disorders, and osteodystrophy. On the other hand, kidney donation is also associated with endocrine and metabolic adaptations that include transient increases in circulating FGF-23 and decreases in α-Klotho levels. However, the long-term impact of these alterations and their clinical relevance have not yet been determined. This manuscript aims to review and summarize current data on the role of FGF-23 and α-Klotho in the endocrine response to KT and living kidney donation, and importantly, underscore specific areas of research that may enhance diagnostics and therapeutics in the growing population of KT recipients and kidney donors.
Collapse
Affiliation(s)
- Meera Gupta
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
- *Correspondence: Meera Gupta
| | - Gabriel Orozco
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Madhumati Rao
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Roberto Gedaly
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Hartmut H. Malluche
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Javier A. Neyra
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Javier A. Neyra
| |
Collapse
|
35
|
Afsar B, Kanbay M, Afsar RE. Interconnections of fibroblast growth factor 23 and klotho with erythropoietin and hypoxia-inducible factor. Mol Cell Biochem 2022; 477:1973-1985. [PMID: 35381946 DOI: 10.1007/s11010-022-04422-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
Bone marrow (BM) hematopoiesis is tightly regulated process and bone components such as osteoblasts, extracellular matrix, and minerals influence hematopoiesis via regulation of hematopoietic stem cell function. Erythropoietin (EPO) secreted mostly by renal EPO producing (REP) cells which employ the hypoxia-inducible factor (HIF) pathway. When tissue hypoxia occurs, HIFs bind to hypoxia response element in the EPO promoter and induce EPO production. EPO binds to the EPO receptor on red cell progenitors in the BM and triggers expansion of red cell mass. Fibroblast growth factor-23 (FGF23) which is secreted mostly by osteoblasts and less by BM impacts hematopoiesis by influencing EPO production. Reciprocally, increases of EPO (acute or chronic) influence both FG23 production and cleavage resulting in variation of c fragment FGF23 (cFGF23) and intact FGF23 (iFGF23) ratios. As HIFs stimulate EPO production, they indirectly affect FGF23. Direct stimulation of FGF23 synthesis by binding of HIF on FGF23 promoter is also suggested. FGF23 cleavage by furin is another potential mechanism affecting FGF23 levels. Klotho is present in membrane-bound (transmembrane) and free (circulating) forms. Transmembrane klotho is the co-receptor of FGF23 and forms complexes with FGF23 receptors in the membrane surface and required for FGF23 actions. Recent evidence showed that klotho is also associated with EPO and HIF production suggesting a complex relationship between FGF23, klotho, EPO, and HIF. In this review, we have summarized the connections between FGF23, klotho, HIF, and EPO and their reflections to hematopoiesis.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Mehmet Kanbay
- Department of Nephrology, School of Medicine, Koc University, Istanbul, Turkey
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
36
|
Wu HH, Chinnadurai R. Erythropoietin-Stimulating Agent Hyporesponsiveness in Patients Living with Chronic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:103-114. [PMID: 35527989 PMCID: PMC9021651 DOI: 10.1159/000521162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Erythropoietin-stimulating agent (ESA) hyporesponsiveness is commonly observed in patients with anemia secondary to chronic kidney disease (CKD). Because of its complexity, a global consensus on how we should define ESA hyporesponsiveness remains unavailable. The reported prevalence and demographic information on ESA hyporesponsiveness within the CKD population are variable with no consensus definition. SUMMARY ESA hyporesponsiveness is defined as having no increase in hemoglobin concentration from baseline after the first month of treatment on appropriate weight-based dosing. The important factors associated with ESA hyporesponsiveness include absolute or functional iron deficiency, inflammation, and uremia. Hepcidin has been demonstrated to play an important role in this process. Mineral bone disease secondary to CKD and non-iron malnutrition among other factors are also associated with ESA hyporesponsiveness. There is continued debate toward determining a gold-standard treatment pathway to manage ESA hyporesponsiveness. The development of hypoxia-inducing factor-stabilizers brings new insights and opportunities in the management of ESA hyporesponsiveness. KEY MESSAGE Management of ESA hyporesponsiveness involves a comprehensive multidisciplinary team approach to address its risk factors. The progression of basic and clinical research on identifying risk factors and management of ESA hyporesponsiveness brings greater hope on finding solutions to eventually tackling one of the most difficult problems in the topic of anemia in CKD.
Collapse
Affiliation(s)
- Henry H.L. Wu
- Department of Renal Medicine, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Rajkumar Chinnadurai
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford, United Kingdom
| |
Collapse
|
37
|
Tsai CY, Fang TP, Chen SW, Chen HW, Lin ECY, Lin TA, Tarng DC, Chang YI. Di(2-ethylhexyl)phthalate impairs erythropoiesis via inducing Klotho expression and not via bioenergetic reprogramming. Am J Transl Res 2022; 14:1234-1245. [PMID: 35273725 PMCID: PMC8902563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is the most widely used phthalate to manufacture various plastic products. However, the potential effects of DEHP on erythropoiesis have not been investigated comprehensively. Here, we aimed to investigate whether DEHP modulated the function of hematopoietic stem and progenitor cells (HSPCs) to influence erythropoiesis, and to explore the associated mechanisms. In the present study, human cell lines with a capacity to differentiate into erythroid cells and murine bone marrow cells were treated with DEHP. DEHP not only impaired HSPC function, but also suppressed erythroid differentiation in a dose-dependent manner. In addition, DEHP removal restored HSPC activity. To explore how DEHP interfered with erythroid differentiation, we focused on energy metabolism and Klotho expression. DEHP suppressed erythroid differentiation via upregulating Klotho expression, while it did not via modulating cellular bioenergetics. Therefore, our results provided a novel insight into the pathophysiological link between phthalates and dysregulated erythroid differentiation.
Collapse
Affiliation(s)
- Chang-Yi Tsai
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| | - Te-Ping Fang
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| | - Shuoh-Wen Chen
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| | - Hsiao-Wen Chen
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| | - Eric Chang-Yi Lin
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| | - Ting-An Lin
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General HospitalTaipei 112201, Taiwan
| | - Der-Cherng Tarng
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General HospitalTaipei 112201, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B)Hsinchu 300093, Taiwan
| | - Yuan-I Chang
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| |
Collapse
|
38
|
Park MY, Le Henaff C, Sitara D. Administration of α-Klotho Does Not Rescue Renal Anemia in Mice. Front Pediatr 2022; 10:924915. [PMID: 35813388 PMCID: PMC9259788 DOI: 10.3389/fped.2022.924915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 12/05/2022] Open
Abstract
Renal anemia is a common complication in chronic kidney disease (CKD), associated with decreased production of erythropoietin (EPO) due to loss of kidney function, and subsequent decreased red blood cell (RBC) production. However, many other factors play a critical role in the development of renal anemia, such as iron deficiency, inflammation, and elevated fibroblast growth factor 23 (FGF23) levels. We previously reported that inhibition of FGF23 signaling rescues anemia in mice with CKD. In the present study we sought to investigate whether α-Klotho deficiency present in CKD also contributes to the development of renal anemia. To address this, we administered α-Klotho to mice with CKD induced by an adenine-rich diet. Mice were sacrificed 24 h after α-Klotho injection, and blood and organs were collected immediately post-mortem. Our data show that α-Klotho administration had no beneficial effect in mice with CKD-associated anemia as it did not increase RBC numbers and hemoglobin levels, and it did not stimulate EPO secretion. Moreover, α-Klotho did not improve iron deficiency and inflammation in CKD as it had no effect on iron levels or inflammatory markers. Interestingly, Klotho supplementation significantly reduced the number of erythroid progenitors in the bone marrow and downregulated renal Epo and Hif2α mRNA in mice fed control diet resulting in reduced circulating EPO levels in these mice. In addition, Klotho significantly decreased intestinal absorption of iron in control mice leading to reduced serum iron and transferrin saturation levels. Our findings demonstrate that α-Klotho does not have a direct role in renal anemia and that FGF23 suppresses erythropoiesis in CKD via a Klotho-independent mechanism. However, in physiological conditions α-Klotho appears to have an inhibitory effect on erythropoiesis and iron regulation.
Collapse
Affiliation(s)
- Min Young Park
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States
| | - Carole Le Henaff
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States
| | - Despina Sitara
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States.,Medicine, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
39
|
Bernardor J, Alioli C, Meaux MN, Peyruchaud O, Machuca-Gayet I, Bacchetta J. Peripheral Blood Mononuclear Cells (PBMCs) to Dissect the Underlying Mechanisms of Bone Disease in Chronic Kidney Disease and Rare Renal Diseases. Curr Osteoporos Rep 2021; 19:553-562. [PMID: 34773213 DOI: 10.1007/s11914-021-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW To describe the methods that can be used to obtain functional and mature osteoclasts from peripheral blood mononuclear cells (PBMCs) and report the data obtained with this model in two peculiar diseases, namely pediatric chronic kidney disease-associated mineral and bone disorders (CKD-MBD) and nephropathic cystinosis. To discuss future research possibilities in the field. RECENT FINDINGS Bone tissue undergoes continuous remodeling throughout life to maintain bone architecture; it involves two processes: bone formation and bone resorption with the coordinated activity of osteoblasts, osteoclasts, and osteocytes. Animal models fail to fully explain human bone pathophysiology during chronic kidney disease, mainly due to interspecies differences. The development of in vitro models has permitted to mimic human bone-related diseases as an alternative to in vivo models. Since 1997, osteoclasts have been generated in cell cultures, notably when culturing PBMCs with specific growth factors and cytokines (i.e., M-CSF and RANK-L), without the need for osteoblasts or stromal cells. These models may improve the global understanding of bone pathophysiology. They can be been used not only to evaluate the direct effects of cytokines, hormones, cells, or drugs on bone remodeling during CKD-MBD, but also in peculiar genetic renal diseases inducing specific bone impairment.
Collapse
Affiliation(s)
- Julie Bernardor
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France.
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Filière Maladies Rares OSCAR, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
- Centre de Référence des Maladies Rénales Rares, Filières Maladies Rares ORKID et ERK-Net, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
- Faculté de Médecine, Université de Nice Côte d'Azur, Nice, France.
- Unité d'hémodialyse pédiatrique, Archet 2, CHU de Nice, 06202, Nice, France.
| | - Candide Alioli
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Marie-Noelle Meaux
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Olivier Peyruchaud
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Irma Machuca-Gayet
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Justine Bacchetta
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Filière Maladies Rares OSCAR, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Centre de Référence des Maladies Rénales Rares, Filières Maladies Rares ORKID et ERK-Net, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factor 23 (FGF23) is a bone- and bone marrow-derived hormone that is critical to maintain phosphate homeostasis. The principal actions of FGF23 are to reduce serum phosphate levels by decreasing kidney phosphate reabsorption and 1,25-dihydroxyvitamin D synthesis. FGF23 deficiency causes hyperphosphatemia and ectopic calcifications, while FGF23 excess causes hypophosphatemia and skeletal defects. Excess FGF23 also correlates with kidney disease, where it is associated with increased morbidity and mortality. Accordingly, FGF23 levels are tightly regulated, but the mechanisms remain incompletely understood. RECENT FINDINGS In addition to bone mineral factors, additional factors including iron, erythropoietin, inflammation, energy, and metabolism regulate FGF23. All these factors affect Fgf23 expression, while some also regulate FGF23 protein cleavage. Conversely, FGF23 may have a functional role in regulating these biologic processes. Understanding the bi-directional relationship between FGF23 and non-bone mineral factors is providing new insights into FGF23 regulation and function.
Collapse
Affiliation(s)
- Petra Simic
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jodie L Babitt
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Bone marrow sinusoidal endothelium controls terminal erythroid differentiation and reticulocyte maturation. Nat Commun 2021; 12:6963. [PMID: 34845225 PMCID: PMC8630019 DOI: 10.1038/s41467-021-27161-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Within the bone marrow microenvironment, endothelial cells (EC) exert important functions. Arterial EC support hematopoiesis while H-type capillaries induce bone formation. Here, we show that BM sinusoidal EC (BM-SEC) actively control erythropoiesis. Mice with stabilized β-catenin in BM-SEC (Ctnnb1OE-SEC) generated by using a BM-SEC-restricted Cre mouse line (Stab2-iCreF3) develop fatal anemia. While activation of Wnt-signaling in BM-SEC causes an increase in erythroblast subsets (PII-PIV), mature erythroid cells (PV) are reduced indicating impairment of terminal erythroid differentiation/reticulocyte maturation. Transplantation of Ctnnb1OE-SEC hematopoietic stem cells into wildtype recipients confirms lethal anemia to be caused by cell-extrinsic, endothelial-mediated effects. Ctnnb1OE-SEC BM-SEC reveal aberrant sinusoidal differentiation with altered EC gene expression and perisinusoidal ECM deposition and angiocrine dysregulation with de novo endothelial expression of FGF23 and DKK2, elevated in anemia and involved in vascular stabilization, respectively. Our study demonstrates that BM-SEC play an important role in the bone marrow microenvironment in health and disease.
Collapse
|
42
|
Lanser L, Fuchs D, Kurz K, Weiss G. Physiology and Inflammation Driven Pathophysiology of Iron Homeostasis-Mechanistic Insights into Anemia of Inflammation and Its Treatment. Nutrients 2021; 13:3732. [PMID: 34835988 PMCID: PMC8619077 DOI: 10.3390/nu13113732] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Anemia is very common in patients with inflammatory disorders. Its prevalence is associated with severity of the underlying disease, and it negatively affects quality of life and cardio-vascular performance of patients. Anemia of inflammation (AI) is caused by disturbances of iron metabolism resulting in iron retention within macrophages, a reduced erythrocyte half-life, and cytokine mediated inhibition of erythropoietin function and erythroid progenitor cell differentiation. AI is mostly mild to moderate, normochromic and normocytic, and characterized by low circulating iron, but normal and increased levels of the storage protein ferritin and the iron hormone hepcidin. The primary therapeutic approach for AI is treatment of the underlying inflammatory disease which mostly results in normalization of hemoglobin levels over time unless other pathologies such as vitamin deficiencies, true iron deficiency on the basis of bleeding episodes, or renal insufficiency are present. If the underlying disease and/or anemia are not resolved, iron supplementation therapy and/or treatment with erythropoietin stimulating agents may be considered whereas blood transfusions are an emergency treatment for life-threatening anemia. New treatments with hepcidin-modifying strategies and stabilizers of hypoxia inducible factors emerge but their therapeutic efficacy for treatment of AI in ill patients needs to be evaluated in clinical trials.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
43
|
Limm-Chan B, Wesseling-Perry K, Pearl MH, Jung G, Tsai-Chambers E, Weng PL, Hanudel MR. Associations among erythropoietic, iron-related, and FGF23 parameters in pediatric kidney transplant recipients. Pediatr Nephrol 2021; 36:3241-3249. [PMID: 33903951 PMCID: PMC8448905 DOI: 10.1007/s00467-021-05081-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND In pediatric kidney transplant recipients, anemia is common and oftentimes multifactorial. Hemoglobin concentrations may be affected by traditional factors, such as kidney function and iron status, as well as novel parameters, such as fibroblast growth factor 23 (FGF23). METHODS Here, we evaluated associations among erythropoietic, iron-related, and FGF23 parameters in a cohort of pediatric kidney transplant recipients, hypothesizing that multiple factors are associated with hemoglobin concentrations. RESULTS In a cross-sectional analysis of 59 pediatric kidney transplant recipients (median (interquartile range) age 16.3 (13.5, 18.6) years, median estimated glomerular filtration rate (eGFR) 67 (54, 87) ml/min/1.73 m2), the median age-related hemoglobin standard deviation score (SDS) was -2.1 (-3.3, -1.1). Hemoglobin SDS was positively associated with eGFR and calcium, and was inversely associated with erythropoietin (EPO), mycophenolate dose, and total, but not intact, FGF23. In multivariable analysis, total FGF23 remained inversely associated with hemoglobin SDS, independent of eGFR, iron parameters, EPO, and inflammatory markers, suggesting a novel FGF23-hemoglobin association in pediatric kidney transplant patients. In a subset of patients with repeat measurements, only delta hepcidin was inversely associated with delta hemoglobin SDS. Also, delta EPO positively correlated with delta erythroferrone (ERFE), and delta ERFE inversely correlated with delta hepcidin, suggesting a possible physiologic role for the EPO-ERFE-hepcidin axis in the setting of chronic kidney disease (CKD). CONCLUSION Our study provides further insight into factors potentially associated with erythropoiesis in pediatric kidney transplant recipients. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Blair Limm-Chan
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| | - Katherine Wesseling-Perry
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| | - Meghan H Pearl
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1752, USA
| | | | - Patricia L Weng
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| | - Mark R Hanudel
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA.
| |
Collapse
|
44
|
The relationship between FGF23 and anemia in HD and renal transplant patients. Int Urol Nephrol 2021; 54:1117-1122. [PMID: 34482498 DOI: 10.1007/s11255-021-02982-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Recent studies claim that FGF23 is also associated with anemia and inflammation. In this study, the relationship between FGF23 and anemia in hemodialysis (HD) and renal transplantation patients (RTx patients) patients was investigated. METHODS This was a cross-sectional study involving 40 RTx patients (13 females, 27 males; mean age, 45.93 ± 12.49 years) who had transplantation at least 6 months before, 25 HD patients (12 females, 13 males; mean age, 54.72 ± 15.5 years), and 20 healthy control subjects (13 females, 7 males; mean age, 36.7 ± 9.38 years). FGF23 was studied using Elisa method. Parameters such as iron, ferritin, total iron binding capacity, and transferrin saturation were assessed. RESULTS FGF23 level was significantly higher in HD patients when compared with the RTx patients and control groups. In the bivariate correlation analysis, hemoglobin was positively correlated with albumin (r = 0.681, p = 0.000), ferritin (r = 0.446, p = 0.043), and negatively correlated with CRP (r = - 0.476, p = 0.016) and FGF23 (r = 0.493, p = 0.043). FGF23 was found to be an independent predictor of decreased hemoglobin in HD patients. In addition, this association was observed to disappear after transplantation. CONCLUSION While FGF23 is closely related to hemoglobin levels in HD patients, we have shown that this relationship disappears after transplantation.
Collapse
|
45
|
|
46
|
Glycerol-3-phosphate and fibroblast growth factor 23 regulation. Curr Opin Nephrol Hypertens 2021; 30:397-403. [PMID: 33901058 PMCID: PMC8312345 DOI: 10.1097/mnh.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Both classical and nonclassical factors regulate fibroblast growth factor 23 (FGF23), with impacts on gene expression and proteolytic cleavage. Here, we review recent publications that extend current knowledge on these factors. RECENT FINDINGS Emerging nonclassical FGF23 regulators such as erythropoietin cause a balanced increase in FGF23 expression and cleavage, with minimal or no increase in biologically active intact FGF23 (iFGF23) in blood. However, circulating FGF23 profiles may not reflect the bone marrow microenvironment. For example, granulocyte colony-stimulating factor increases local marrow iFGF23 levels without impacting circulating iFGF23 levels. The view that phosphate does not increase bone FGF23 production also warrants reconsideration, as phosphate can reduce iFGF23 cleavage and phosphate-containing calciprotein particles increase FGF23 expression. Finally, a screen of renal venous plasma identifies glycerol-3-phosphate as a kidney-derived molecule that circulates to bone and bone marrow, where it is converted to lysophosphatidic acid and signals through a G-protein coupled receptor to increase FGF23 synthesis. SUMMARY FGF23 regulation is complex, requiring consideration of known and emerging stimuli, expression and cleavage, and circulating and local levels. Recent work identifies glycerol-3-phosphate as an FGF23 regulator derived from the injured kidney; whether it participates in FGF23 production downstream of classical or nonclassical factors requires further study.
Collapse
|
47
|
Interplay of erythropoietin, fibroblast growth factor 23, and erythroferrone in patients with hereditary hemolytic anemia. Blood Adv 2021; 4:1678-1682. [PMID: 32324886 DOI: 10.1182/bloodadvances.2020001595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, erythropoietin (EPO) was identified as regulator of fibroblast growth factor 23 (FGF23). Proteolytic cleavage of biologically active intact FGF23 (iFGF23) results in the formation of C-terminal fragments (cFGF23). An increase in cFGF23 relative to iFGF23 suppresses FGF receptor signaling by competitive inhibition. EPO lowers the i:cFGF23 ratio, thereby overcoming iFGF23-mediated suppression of erythropoiesis. We investigated EPO-FGF23 signaling and levels of erythroferrone (ERFE) in 90 patients with hereditary hemolytic anemia (www.trialregister.nl [NL5189]). We show, for the first time, the importance of EPO-FGF23 signaling in hereditary hemolytic anemia: there was a clear correlation between total FGF23 and EPO levels (r = +0.64; 95% confidence interval [CI], 0.09-0.89), which persisted after adjustment for iron load, inflammation, and kidney function. There was no correlation between iFGF23 and EPO. Data are consistent with a low i:cFGF23 ratio. Therefore, as expected, we report a correlation between EPO and ERFE in a diverse set of hereditary hemolytic anemias (r = +0.47; 95% CI, 0.14-0.69). There was no association between ERFE and total FGF23 or iFGF23, which suggests that ERFE does not contribute to the connection between FGF23 and EPO. These findings open a new area of research and might provide potentially new druggable targets with the opportunity to ameliorate ineffective erythropoiesis and the development of disease complications in hereditary hemolytic anemias.
Collapse
|
48
|
Iwasaki T, Fujimori A, Nakanishi T, Okada S, Hanawa N, Hasuike Y, Kuragano T. Saccharated ferric oxide attenuates haematopoietic response induced by epoetin beta pegol in patients undergoing haemodialysis. BMC Nephrol 2021; 22:124. [PMID: 33832448 PMCID: PMC8034147 DOI: 10.1186/s12882-021-02320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background Decreased erythropoietin levels and impaired iron metabolism due to excessive hepcidin levels are responsible for renal anaemia in patients undergoing haemodialysis. Recently, erythroferrone (ERFE) has been identified as a factor that regulates hepcidin. In addition, fibroblast growth factor 23 (FGF23), which has been recognized as a phosphorus-regulating hormone, appears to be involved in haematopoietic regulation. Clarification of the detailed mechanism of haematopoiesis could lead to the improvement of renal anaemia treatment. Methods Epoetin beta pegol (CERA) was administered to patients undergoing haemodialysis at week 0, and the same amount of CERA with saccharated ferric oxide (SFO) was administered at week 4. The changes in haematopoiesis-related biomarkers, including ERFE, intact FGF23 (iFGF23), C-terminal FGF23 (cFGF23), and inflammatory markers, were examined. Results Administration of CERA increased ERFE levels, decreased hepcidin levels, and stimulated iron usage for haematopoiesis, leading to an increase in reticulocytes (Ret) and haemoglobin (Hb). Simultaneous administration of SFO with CERA (CERA + SFO) significantly attenuated the responses of ERFE, Ret, and Hb compared with CERA alone. Although iFGF23 levels were not affected by either CERA or CERA + SFO, cFGF23 was significantly elevated from baseline after CERA. Since cFGF23 levels were not affected by CERA + SFO, cFGF23 levels after CERA + SFO were significantly lower than those after CERA alone. The ratio of iFGF23 to cFGF23 (i/cFGF23 ratio) was significantly higher after CERA + SFO than that after CERA alone. In addition, high-sensitivity C-reactive protein (hsCRP) levels were significantly higher after CERA + SFO than after CERA alone. Conclusion Administration of SFO suppressed haematopoietic responses induced by CERA. Elevation of i/cFGF23 ratio and hsCRP could account for the inhibitory effects of SFO on haematopoiesis. Trial registration This study was registered with the University Hospital Medical Information Network (ID UMIN000016552). Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02320-2.
Collapse
Affiliation(s)
- Takahide Iwasaki
- Internal Medicine (Nephrology and Dialysis), Hyogo College of Medicine, Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Akira Fujimori
- Department of Nephrology, Konan Medical Centre, 1-5-16 Kamokogahara, Higashinada-ku, Kobe, 658-0064, Japan.
| | - Takeshi Nakanishi
- Department of Internal Medicine (Nephrology), Sumiyoshigawa Hospital, 5-6-7 Konan-cho, Higashinada-ku, Kobe, 658-0084, Japan
| | - Shioko Okada
- Department of Nephrology, Konan Medical Centre, 1-5-16 Kamokogahara, Higashinada-ku, Kobe, 658-0064, Japan
| | - Nobuto Hanawa
- Department of Nephrology, Konan Medical Centre, 1-5-16 Kamokogahara, Higashinada-ku, Kobe, 658-0064, Japan
| | - Yukiko Hasuike
- Internal Medicine (Nephrology and Dialysis), Hyogo College of Medicine, Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Takahiro Kuragano
- Internal Medicine (Nephrology and Dialysis), Hyogo College of Medicine, Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan
| |
Collapse
|
49
|
McCullough PA. Anemia of cardiorenal syndrome. Kidney Int Suppl (2011) 2021; 11:35-45. [PMID: 33777494 PMCID: PMC7983020 DOI: 10.1016/j.kisu.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 01/28/2023] Open
Abstract
Cardiorenal syndrome includes a spectrum of disorders of the kidneys and heart in which loss of function in one organ contributes to reduced function in the other organ. Cardiorenal syndrome is frequently complicated by comorbid anemia, which leads to reciprocal and progressive cardiac and renal deterioration. The triad of heart failure, chronic kidney disease (CKD), and anemia is termed cardiorenal anemia syndrome (CRAS). There are currently no evidence-based recommendations for managing patients with CRAS; however, the treatment of these patients is multifactorial. Not only must the anemia be controlled, but heart failure and kidney injury must be addressed, in addition to other comorbidities. Intravenous iron and erythropoiesis-stimulating agents are the mainstays of treatment for anemia of CKD, addressing both iron and erythropoiesis deficiencies. Since erythropoiesis-stimulating agent therapy can be associated with adverse outcomes at higher doses in patients with CKD and is not used in routine practice in patients with heart failure, treatment options for managing anemia in patients with CRAS are limited. Several new therapies, particularly the hypoxia-inducible factor-prolyl hydroxylase inhibitors, are currently under clinical development. The hypoxia-inducible factor-prolyl hydroxylase inhibitors have shown promising results for treating anemia of CKD in clinical trials and may confer benefits in patients with CRAS, potentially addressing some of the limitations of erythropoiesis-stimulating agents. Updated clinical practice guidelines for the screening and management of anemia in cardiorenal syndrome, in light of potential new therapies and clinical evidence, would improve the clinical outcomes of patients with this complex syndrome.
Collapse
Affiliation(s)
- Peter A. McCullough
- Department of Medicine, Texas A & M College of Medicine, Baylor University Medical Center, Baylor Heart and Vascular Hospital, Baylor Heart and Vascular Institute, Dallas, Texas, USA
| |
Collapse
|
50
|
Liu C, Li X, Zhao Z, Chi Y, Cui L, Zhang Q, Ping F, Chai X, Jiang Y, Wang O, Li M, Xing X, Xia W. Iron deficiency plays essential roles in the trigger, treatment, and prognosis of autosomal dominant hypophosphatemic rickets. Osteoporos Int 2021; 32:737-745. [PMID: 32995940 DOI: 10.1007/s00198-020-05649-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
UNLABELLED By analyzing iron status of 14 ADHR patients, we found that iron deficiency was an important trigger of ADHR. Correcting iron deficiency significantly improved patients' symptoms. Meanwhile, patients' serum phosphate showed positive correlations with iron metabolism parameters and hemoglobin-related parameters, suggesting the necessity of monitoring and correcting the iron status in ADHR. INTRODUCTION Autosomal dominant hypophosphatemic rickets (ADHR) is unique for its incomplete penetrance, variety of disease onsets, and waxing and waning phenotypes. Iron deficiency is a trigger of ADHR. This study aimed to clarify the role of iron deficiency in ADHR. METHODS Data of clinical manifestations and laboratory examinations were collected from patients among eight kindreds with ADHR. Multiple regression and Pearson's correlation tests were performed to test the relationships of serum phosphate levels and other laboratory variables during the patients' follow-ups. RESULTS Among 23 ADHR patients with fibroblast growth factor 23 (FGF23) mutations, 14 patients presented with obvious symptoms. Ten patients had iron deficiency at the onset of ADHR, coinciding with menarche, menorrhagia, pregnancy, and chronic gastrointestinal bleeding. Two patients who did not have their iron status tested presented with symptoms after abortion and pregnancy in one patient each, which suggested that they also had iron deficiency at onset. Patients were treated with ferrous succinate tablets, vitamin C, and neutral phosphate and calcitriol. With correction of the iron status, the patients' symptoms showed notable improvement, with increased serum phosphate levels. Two patients' FGF23 levels also declined to the normal range. There were strong correlations between serum phosphate and serum iron levels (r = 0.7689, p < 0.0001), serum ferritin levels (r = 0.5312, p = 0.002), iron saturation (r = 0.7907, p < 0.0001), and transferrin saturation (r = 0.7875, p < 0.001). We also examined the relationships between serum phosphate levels and hemoglobin-related indices, which were significant (hemoglobin: r = 0.71, p < 0.0001; MCV: r = 0.7589, p < 0.0001; MCH: r = 0.8218, p < 0.0001; and MCHC: r = 0.7751, p < 0.0001). Longitudinal data of six patients' follow-up also showed synchronous changes in serum phosphate with serum iron levels. CONCLUSIONS Iron deficiency plays an important role in triggering ADHR. Monitoring and correcting the iron status are helpful for diagnosing and treating ADHR. Iron metabolism parameters and hemoglobin-related parameters are positively correlated with serum phosphate levels in patients with ADHR and iron deficiency, and these might serve as good indicators of prognosis of ADHR.
Collapse
Affiliation(s)
- C Liu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - X Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Z Zhao
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Y Chi
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - L Cui
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Q Zhang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - F Ping
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - X Chai
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Y Jiang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - O Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - M Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - X Xing
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - W Xia
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|