1
|
Kakuda S, London E. Effect of a scramblase activator upon lipid and probe scrambling and membrane domain formation in HEK 293T cells. Faraday Discuss 2025. [PMID: 40341913 DOI: 10.1039/d4fd00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Lipid asymmetry, a difference between the lipid composition of the inner and outer leaflets (monolayers) of a membrane, is a characteristic of mammalian plasma membranes. In artificial lipid vesicles, asymmetry can either suppress or induce the formation of coexisting ordered and disordered lipid domains depending on lipid composition. In mammalian plasma membrane preparations, loss of asymmetry induces the formation of ordered domains. In this report, we studied the effect of a scramblase activator, the ionophore BrA23187 (BrA) plus Ca2+, upon ordered domain (lipid raft) formation in human embryonic kidney 293T cells. Addition of BrA induced a decrease in FRET between the plasma membrane outer leaflet probe TMADPH, which partly associates with ordered domains, and ODRB, which localizes largely in liquid disordered domains. This is consistent with the formation of coexisting ordered and disordered domains in the plasma membrane. In addition, upon BrA addition, the plasma membrane outer leaflet probe Pro12A exhibited a decrease in the generalized polarization (GP) suggesting a decrease in outer leaflet membrane order, perhaps due to a decrease in outer leaflet cholesterol However, there are other explanations for these observations. To test if BrA induced scrambling of fluorescent membrane probes, which would complicate interpretation of the experiments described above, we measured the effect of BrA upon extractability of outer leaflet probes with MβCD (in most cases, MβCD was more effective for extraction than BSA). These experiments showed that at most a small fraction of probes migrate to the inner leaflet upon addition of BrA. Other experiments raise the possibility that BrA binding to membranes may directly influence ordered domain formation and properties or alter fluorescence by direct interactions with TMADPH, and thus not reflect changes in domain formation.
Collapse
Affiliation(s)
- Shinako Kakuda
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
2
|
Machin JM, Ranson NA, Radford SE. Protein-induced membrane asymmetry modulates OMP folding kinetics and stability. Faraday Discuss 2025. [PMID: 40338084 PMCID: PMC12060775 DOI: 10.1039/d4fd00180j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 05/09/2025]
Abstract
Biological membranes are asymmetric structures, with asymmetry arising from differences in lipid identity in each leaflet of the bilayer, as well as non-uniform distribution of lipids and small molecules in the membrane. Proteins can also induce and modulate membrane asymmetry based on their shape, sequence and interactions with lipids. How membrane asymmetry affects macromolecular behaviour is poorly understood because of the complexity of natural membrane systems, and difficulties in creating relevant asymmetric bilayer systems in vitro. Here, we present a method exploiting the efficient, unidirectional folding of the transmembrane β-barrel outer membrane protein, OmpA, to create asymmetric proteoliposomes with protein-induced dipoles of known direction (arising from sequence variation engineered into the OmpA loops). We then characterise the folding kinetics and stability of different OmpA variants into these proteoliposomes. We find that both the primary sequence of the folding OmpA and the dipole of the membrane into which folding occurs play an important role for modulating the rate of folding. Critically, we find that by complementarily matching the charge on the folding protein to the membrane dipole it is possible to enhance both the folding kinetics and the stability of the folded OmpA. The results hint at how cells might exploit loop charge in membrane-embedded proteins to manipulate membrane environments for adaptation and survival.
Collapse
Affiliation(s)
- Jonathan M Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Engberg O, Döbel V, Engel KM, Huster D. Characterization of lipid chain order and dynamics in asymmetric membranes by solid-state NMR spectroscopy. Faraday Discuss 2025. [PMID: 40314250 DOI: 10.1039/d4fd00192c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
We studied the structure and dynamics of asymmetric POPCout/(POPE/POPG)in and POPSout/(POPE/POPG)in lipid membranes. To this end, the outer layer of multilamellar POPE/POPG (molar ratio 9 : 1) vesicles was exchanged (using methyl-β-cyclodextrin) by either chain deuterated POPC-d31 or POPS-d31, for which 2H NMR order parameters were measured. As controls, we prepared symmetric POPC-d31/POPE/POPG and POPS-d31/POPE/POPG membranes of the composition of just the outer membrane of the asymmetric multilamellar vesicles and pure POPC-d31 or POPS-d31 multilamellar vesicles. Compared to symmetric membranes of the same lipid composition, chain order parameters (S) of the asymmetric preparations were higher in the upper half of the chain and lower in the lower half. This reshuffling of acyl chain order is also expressed in higher 2H NMR Zeeman order relaxation rates (R1Z) of the chain segments in asymmetric membranes indicating alterations in the elastic properties of asymmetric bilayers as inferred from plots of R1Zvs. S2. Asymmetric membranes showed increased stiffness and rigidity although the lipid acyl chain composition between the inner and outer leaflets were identical. There were no indications for chain interdigitation between the two leaflets in the NMR spectra, which led us to speculate that the interleaflet coupling could be accomplished by sensing the differences in lipid packing densities between the two leaflets. These alterations in leaflet properties should have consequences for lipid protein interaction and ultimately protein function.
Collapse
Affiliation(s)
- Oskar Engberg
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-4107 Leipzig, Germany.
| | - Viola Döbel
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-4107 Leipzig, Germany.
| | - Kathrin M Engel
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-4107 Leipzig, Germany.
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-4107 Leipzig, Germany.
| |
Collapse
|
4
|
Pabst G, Keller S. Exploring membrane asymmetry and its effects on membrane proteins. Trends Biochem Sci 2024; 49:333-345. [PMID: 38355393 DOI: 10.1016/j.tibs.2024.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Plasma membranes utilize free energy to maintain highly asymmetric, non-equilibrium distributions of lipids and proteins between their two leaflets. In this review we discuss recent progress in quantitative research enabled by using compositionally controlled asymmetric model membranes. Both experimental and computational studies have shed light on the nuanced mechanisms that govern the structural and dynamic coupling between compositionally distinct bilayer leaflets. This coupling can increase the membrane bending rigidity and induce order - or lipid domains - across the membrane. Furthermore, emerging evidence indicates that integral membrane proteins not only respond to asymmetric lipid distributions but also exhibit intriguing asymmetric properties themselves. We propose strategies to advance experimental research, aiming for a deeper, quantitative understanding of membrane asymmetry, which carries profound implications for cellular physiology.
Collapse
Affiliation(s)
- Georg Pabst
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| | - Sandro Keller
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
5
|
Machin JM, Kalli AC, Ranson NA, Radford SE. Protein-lipid charge interactions control the folding of outer membrane proteins into asymmetric membranes. Nat Chem 2023; 15:1754-1764. [PMID: 37710048 PMCID: PMC10695831 DOI: 10.1038/s41557-023-01319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Biological membranes consist of two leaflets of phospholipid molecules that form a bilayer, each leaflet comprising a distinct lipid composition. This asymmetry is created and maintained in vivo by dedicated biochemical pathways, but difficulties in creating stable asymmetric membranes in vitro have restricted our understanding of how bilayer asymmetry modulates the folding, stability and function of membrane proteins. In this study, we used cyclodextrin-mediated lipid exchange to generate liposomes with asymmetric bilayers and characterize the stability and folding kinetics of two bacterial outer membrane proteins (OMPs), OmpA and BamA. We found that excess negative charge in the outer leaflet of a liposome impedes their insertion and folding, while excess negative charge in the inner leaflet accelerates their folding relative to symmetric liposomes with the same membrane composition. Using molecular dynamics, mutational analysis and bioinformatics, we identified a positively charged patch critical for folding and stability. These results rationalize the well-known 'positive-outside' rule of OMPs and suggest insights into the mechanisms that drive OMP folding and assembly in vitro and in vivo.
Collapse
Affiliation(s)
- Jonathan M Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
6
|
Koh DHZ, Naito T, Na M, Yeap YJ, Rozario P, Zhong FL, Lim KL, Saheki Y. Visualization of accessible cholesterol using a GRAM domain-based biosensor. Nat Commun 2023; 14:6773. [PMID: 37880244 PMCID: PMC10600248 DOI: 10.1038/s41467-023-42498-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Cholesterol is important for membrane integrity and cell signaling, and dysregulation of the distribution of cellular cholesterol is associated with numerous diseases, including neurodegenerative disorders. While regulated transport of a specific pool of cholesterol, known as "accessible cholesterol", contributes to the maintenance of cellular cholesterol distribution and homeostasis, tools to monitor accessible cholesterol in live cells remain limited. Here, we engineer a highly sensitive accessible cholesterol biosensor by taking advantage of the cholesterol-sensing element (the GRAM domain) of an evolutionarily conserved lipid transfer protein, GRAMD1b. Using this cholesterol biosensor, which we call GRAM-W, we successfully visualize in real time the distribution of accessible cholesterol in many different cell types, including human keratinocytes and iPSC-derived neurons, and show differential dependencies on cholesterol biosynthesis and uptake for maintaining levels of accessible cholesterol. Furthermore, we combine GRAM-W with a dimerization-dependent fluorescent protein (ddFP) and establish a strategy for the ultrasensitive detection of accessible plasma membrane cholesterol. These tools will allow us to obtain important insights into the molecular mechanisms by which the distribution of cellular cholesterol is regulated.
Collapse
Affiliation(s)
- Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Minyoung Na
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Pritisha Rozario
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Skin Research Institute of Singapore (SRIS), Singapore, 308232, Singapore
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
7
|
Piller P, Semeraro EF, Rechberger GN, Keller S, Pabst G. Allosteric modulation of integral protein activity by differential stress in asymmetric membranes. PNAS NEXUS 2023; 2:pgad126. [PMID: 37143864 PMCID: PMC10153742 DOI: 10.1093/pnasnexus/pgad126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/07/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
The activity of integral membrane proteins is tightly coupled to the properties of the surrounding lipid matrix. In particular, transbilayer asymmetry, a hallmark of all plasma membranes, might be exploited to control membrane-protein activity. Here, we hypothesized that the membrane-embedded enzyme outer membrane phospholipase A (OmpLA) is susceptible to the lateral pressure differences that build up between such asymmetric membrane leaflets. Upon reconstituting OmpLA into synthetic, chemically well-defined phospholipid bilayers exhibiting different lateral pressure profiles, we indeed observed a substantial decrease in the enzyme's hydrolytic activity with increasing membrane asymmetry. No such effects were observed in symmetric mixtures of the same lipids. To quantitatively rationalize how the differential stress in asymmetric lipid bilayers inhibits OmpLA, we developed a simple allosteric model within the lateral pressure framework. Thus, we find that membrane asymmetry can serve as the dominant factor in controlling membrane-protein activity, even in the absence of specific, chemical cues or other physical membrane determinants such as hydrophobic mismatch.
Collapse
Affiliation(s)
- Paulina Piller
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed Graz, Graz 8010, Austria
- Field of Excellence BioHealth—University of Graz, Graz 8010, Austria
| | - Enrico F Semeraro
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed Graz, Graz 8010, Austria
- Field of Excellence BioHealth—University of Graz, Graz 8010, Austria
| | - Gerald N Rechberger
- Field of Excellence BioHealth—University of Graz, Graz 8010, Austria
- Biochemistry, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Omics Center Graz, BioTechMed Graz, Graz 8010, Austria
| | - Sandro Keller
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed Graz, Graz 8010, Austria
- Field of Excellence BioHealth—University of Graz, Graz 8010, Austria
| | | |
Collapse
|
8
|
Krompers M, Heerklotz H. A Guide to Your Desired Lipid-Asymmetric Vesicles. MEMBRANES 2023; 13:267. [PMID: 36984654 PMCID: PMC10054703 DOI: 10.3390/membranes13030267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Liposomes are prevalent model systems for studies on biological membranes. Recently, increasing attention has been paid to models also representing the lipid asymmetry of biological membranes. Here, we review in-vitro methods that have been established to prepare free-floating vesicles containing different compositions of the classic two-chain glycero- or sphingolipids in their outer and inner leaflet. In total, 72 reports are listed and assigned to four general strategies that are (A) enzymatic conversion of outer leaflet lipids, (B) re-sorting of lipids between leaflets, (C) assembly from different monolayers and (D) exchange of outer leaflet lipids. To guide the reader through this broad field of available techniques, we attempt to draw a road map that leads to the lipid-asymmetric vesicles that suit a given purpose. Of each method, we discuss advantages and limitations. In addition, various verification strategies of asymmetry as well as the role of cholesterol are briefly discussed. The ability to specifically induce lipid asymmetry in model membranes offers insights into the biological functions of asymmetry and may also benefit the technical applications of liposomes.
Collapse
Affiliation(s)
- Mona Krompers
- Department of Pharmaceutical Technology and Biopharmacy, Institute for Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Heiko Heerklotz
- Department of Pharmaceutical Technology and Biopharmacy, Institute for Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| |
Collapse
|
9
|
Lange Y, Tabei SMA, Steck TL. A basic model for the association of ligands with membrane cholesterol: application to cytolysin binding. J Lipid Res 2023; 64:100344. [PMID: 36791915 PMCID: PMC10119614 DOI: 10.1016/j.jlr.2023.100344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Almost all the cholesterol in cellular membranes is associated with phospholipids in simple stoichiometric complexes. This limits the binding of sterol ligands such as filipin and Perfringolysin O (PFO) to a small fraction of the total. We offer a simple mathematical model that characterizes this complexity. It posits that the cholesterol accessible to ligands has two forms: active cholesterol, which is that not complexed with phospholipids; and extractable cholesterol, that which ligands can capture competitively from the phospholipid complexes. Simulations based on the model match published data for the association of PFO oligomers with liposomes, plasma membranes and the isolated endoplasmic reticulum. The model shows how the binding of a probe greatly underestimates cholesterol abundance when its affinity for the sterol is so weak that it competes poorly with the membrane phospholipids. Two examples are the under-staining of plasma membranes by filipin and the failure of domain D4 of PFO to label their cytoplasmic leaflets. Conversely, the exaggerated staining of endolysosomes suggests that their cholesterol, being uncomplexed, is readily available. The model is also applicable to the association of cholesterol with intrinsic membrane proteins. For example, it supports the hypothesis that the sharp threshold in the regulation of homeostatic ER proteins by cholesterol derives from the cooperativity of their binding to the sterol weakly held by the phospholipid. § Thus, the model explicates the complexity inherent in the binding of ligands like PFO and filipin to the small accessible fraction of membrane cholesterol.
Collapse
Affiliation(s)
- Yvonne Lange
- 1Department of Pathology, Rush University Medical Center, Chicago, Il 60612, USA.
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614, USA
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Il 60637, USA
| |
Collapse
|
10
|
Scott HL, Kennison KB, Enoki TA, Doktorova M, Kinnun JJ, Heberle FA, Katsaras J. Model Membrane Systems Used to Study Plasma Membrane Lipid Asymmetry. Symmetry (Basel) 2021; 13. [PMID: 35498375 PMCID: PMC9053528 DOI: 10.3390/sym13081356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is well known that the lipid distribution in the bilayer leaflets of mammalian plasma membranes (PMs) is not symmetric. Despite this, model membrane studies have largely relied on chemically symmetric model membranes for the study of lipid–lipid and lipid–protein interactions. This is primarily due to the difficulty in preparing stable, asymmetric model membranes that are amenable to biophysical studies. However, in the last 20 years, efforts have been made in producing more biologically faithful model membranes. Here, we review several recently developed experimental and computational techniques for the robust generation of asymmetric model membranes and highlight a new and particularly promising technique to study membrane asymmetry.
Collapse
Affiliation(s)
- Haden L. Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Kristen B. Kennison
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Thais A. Enoki
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Jacob J. Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| |
Collapse
|
11
|
Kakuda S, Li B, London E. Preparation and utility of asymmetric lipid vesicles for studies of perfringolysin O-lipid interactions. Methods Enzymol 2021; 649:253-276. [PMID: 33712189 DOI: 10.1016/bs.mie.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studying the interaction of pore-forming toxins, including perfringolysin O (PFO), with lipid is crucial to understanding how they insert into membranes, assemble, and associate with membrane domains. In almost all past studies, symmetric lipid bilayers, i.e., bilayers having the same lipid composition in each monolayer (leaflet), have been used to study this process. However, practical methods to make asymmetric lipid vesicles have now been developed. These involve a cyclodextrin-catalyzed lipid exchange process in which the outer leaflet lipids are switched between two lipid vesicle populations with different lipid compositions. By use of alpha class cyclodextrins, it is practical to include a wide range of sterol concentrations in asymmetric vesicles. In this article, protocols for preparing asymmetric lipid vesicles are described, and to illustrate how they may be applied to studies of pore-forming toxin behavior, we summarize what has been learned about PFO conformation and its lipid interaction in symmetric and in asymmetric artificial lipid vesicles.
Collapse
Affiliation(s)
- Shinako Kakuda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Bingchen Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
12
|
Hossein A, Deserno M. Stiffening transition in asymmetric lipid bilayers: The role of highly ordered domains and the effect of temperature and size. J Chem Phys 2021; 154:014704. [PMID: 33412863 DOI: 10.1063/5.0028255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellular membranes consist of a large variety of lipids and proteins, with a composition that generally differs between the two leaflets of the same bilayer. One consequence of this asymmetry is thought to be the emergence of differential stress, i.e., a mismatch in the lateral tension of the two leaflets. This can affect a membrane's mechanical properties; for instance, it can increase the bending rigidity once the differential stress exceeds a critical threshold. Using coarse-grained molecular dynamics simulations based on the MARTINI model, we show that this effect arises due to the formation of more highly ordered domains in the compressed leaflet. The threshold asymmetry increases with temperature, indicating that the transition to a stiffened regime might be restricted to a limited temperature range above the gel transition. We also show that stiffening occurs more readily for larger membranes with smaller typical curvatures, suggesting that the stiffening transition is easier to observe experimentally than in the small-scale systems accessible to simulation.
Collapse
Affiliation(s)
- Amirali Hossein
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
13
|
Guo HY, Sun HY, Deng G, Xu J, Wu FG, Yu ZW. Fabrication of Asymmetric Phosphatidylserine-Containing Lipid Vesicles: A Study on the Effects of Size, Temperature, and Lipid Composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12684-12691. [PMID: 33047603 DOI: 10.1021/acs.langmuir.0c02273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The asymmetric distribution of lipids in plasma membranes is closely related to the physiological functions of cells. To improve our previous approach in fabricating asymmetric vesicles, we defined a parameter, asymmetric degree, in this work and investigated the effects of vesicle size, incubation temperature, and lipid composition on the formation process of asymmetric phosphatidylserine (PS)-containing lipid vesicles. The results indicate that all of the three factors have marked but different effects on the time-dependent asymmetric degree of the vesicles as well as the flip and flop rate constants of the PS lipids. However, only vesicle size and PS content show significant influence on the maximal asymmetric degree of the vesicles, while the incubation temperature exhibits negligible effect. This work not only deepens our understanding on the packing property of PS molecules in self-assembled membranes and the formation mechanism of asymmetric vesicles but also practically provides a solution to regulate the asymmetric degree of the PS-containing vesicles using the established kinetic equation. In addition, the method would facilitate researches related to asymmetric vesicles or reconstruction of biological membranes.
Collapse
Affiliation(s)
- Hao-Yue Guo
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hai-Yuan Sun
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Geng Deng
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Xu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
14
|
Lipid asymmetry of a model mitochondrial outer membrane affects Bax-dependent permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183241. [DOI: 10.1016/j.bbamem.2020.183241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022]
|
15
|
Lorent JH, Levental KR, Ganesan L, Rivera-Longsworth G, Sezgin E, Doktorova M, Lyman E, Levental I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol 2020; 16:644-652. [PMID: 32367017 DOI: 10.1101/698837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 03/27/2020] [Indexed: 05/26/2023]
Abstract
A fundamental feature of cellular plasma membranes (PMs) is an asymmetric lipid distribution between the bilayer leaflets. However, neither the detailed, comprehensive compositions of individual PM leaflets nor how these contribute to structural membrane asymmetries have been defined. We report the distinct lipidomes and biophysical properties of both monolayers in living mammalian PMs. Phospholipid unsaturation is dramatically asymmetric, with the cytoplasmic leaflet being approximately twofold more unsaturated than the exoplasmic leaflet. Atomistic simulations and spectroscopy of leaflet-selective fluorescent probes reveal that the outer PM leaflet is more packed and less diffusive than the inner leaflet, with this biophysical asymmetry maintained in the endocytic system. The structural asymmetry of the PM is reflected in the asymmetric structures of protein transmembrane domains. These structural asymmetries are conserved throughout Eukaryota, suggesting fundamental cellular design principles.
Collapse
Affiliation(s)
- J H Lorent
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - K R Levental
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - L Ganesan
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - E Sezgin
- John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- SciLifeLab, Karolinska Institute, Stockholm, Sweden
| | - M Doktorova
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - E Lyman
- Department of Physics and Astronomy and Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - I Levental
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
16
|
Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol 2020; 16:644-652. [PMID: 32367017 PMCID: PMC7246138 DOI: 10.1038/s41589-020-0529-6] [Citation(s) in RCA: 436] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
A fundamental feature of cellular plasma membranes (PM) is asymmetric lipid distribution between the bilayer leaflets. However, neither the detailed, comprehensive compositions of individual PM leaflets, nor how these contribute to structural membrane asymmetries have been defined. We report the distinct lipidomes and biophysical properties of both monolayers in living mammalian PMs. Phospholipid unsaturation is dramatically asymmetric, with the cytoplasmic leaflet being ~2-fold more unsaturated than the exoplasmic. Atomistic simulations and spectroscopy of leaflet-selective fluorescent probes reveal that the outer PM leaflet is more packed and less diffusive than the inner leaflet, with this biophysical asymmetry maintained in the endocytic system. The structural asymmetry of the PM is reflected in asymmetric structures of protein transmembrane domains (TMD). These structural asymmetries are conserved throughout Eukaryota, suggesting fundamental cellular design principles.
Collapse
|
17
|
Sarmento MJ, Hof M, Šachl R. Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems. Front Cell Dev Biol 2020; 8:284. [PMID: 32411705 PMCID: PMC7198703 DOI: 10.3389/fcell.2020.00284] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
The plasma membrane is a complex system, consisting of two layers of lipids and proteins compartmentalized into small structures called nanodomains. Despite the asymmetric composition of both leaflets, coupling between the layers is surprisingly strong. This can be evidenced, for example, by recent experimental studies performed on phospholipid giant unilamellar vesicles showing that nanodomains formed in the outer layer are perfectly registered with those in the inner leaflet. Similarly, microscopic phase separation in one leaflet can induce phase separation in the opposing leaflet that would otherwise be homogeneous. In this review, we summarize the current theoretical and experimental knowledge that led to the current view that domains are – irrespective of their size – commonly registered across the bilayer. Mechanisms inducing registration of nanodomains suggested by theory and calculations are discussed. Furthermore, domain coupling is evidenced by experimental studies based on the sparse number of methods that can resolve registered from independent nanodomains. Finally, implications that those findings using model membrane studies might have for cellular membranes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| |
Collapse
|
18
|
Markones M, Fippel A, Kaiser M, Drechsler C, Hunte C, Heerklotz H. Stairway to Asymmetry: Five Steps to Lipid-Asymmetric Proteoliposomes. Biophys J 2020; 118:294-302. [PMID: 31843262 PMCID: PMC6976795 DOI: 10.1016/j.bpj.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Membrane proteins are embedded in a complex lipid environment that influences their structure and function. One key feature of nearly all biological membranes is a distinct lipid asymmetry. However, the influence of membrane asymmetry on proteins is poorly understood, and novel asymmetric proteoliposome systems are beneficial. To our knowledge, we present the first study on a multispanning protein incorporated in large unilamellar liposomes showing a stable lipid asymmetry. These asymmetric proteoliposomes contain the Na+/H+ antiporter NhaA from Salmonella Typhimurium. Asymmetry was introduced by partial, outside-only exchange of anionic phosphatidylglycerol (PG), mimicking this key asymmetry of bacterial membranes. Outer-leaflet and total fractions of PG were determined via ζ-potential (ζ) measurements after lipid exchange and after scrambling of asymmetry. ζ-Values were in good agreement with exclusive outside localization of PG. The electrogenic Na+/H+ antiporter was active in asymmetric liposomes, and it can be concluded that reconstitution and generation of asymmetry were successful. Lipid asymmetry was stable for more than 7 days at 23°C and thus enabled characterization of the Na+/H+ antiporter in an asymmetric lipid environment. We present and validate a simple five-step protocol that addresses key steps to be taken and pitfalls to be avoided for the preparation of asymmetric proteoliposomes: 1) optimization of desired lipid composition, 2) detergent-mediated protein reconstitution with subsequent detergent removal, 3) generation of lipid asymmetry by partial exchange of outer-leaflet lipid, 4) verification of lipid asymmetry and stability, and 5) determination of protein activity in the asymmetric lipid environment. This work offers guidance in designing asymmetric proteoliposomes that will enable researchers to compare functional and structural properties of membrane proteins in symmetric and asymmetric lipid environments.
Collapse
Affiliation(s)
- Marie Markones
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany.
| | - Anika Fippel
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany
| | - Michael Kaiser
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany
| | - Carina Drechsler
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany
| | - Carola Hunte
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Heiko Heerklotz
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Abstract
The lipid bilayer, together with embedded proteins, is the central structure in biomembranes. While artificial lipid bilayers are useful to model natural membranes, they are generally symmetric, with the same membrane lipid composition in each lipid monolayer (leaflet). In contrast, natural membranes are often asymmetric, with different lipids in each leaflet. To prepare asymmetric lipid vesicles, we developed cyclodextrin-catalyzed phospholipid exchange procedures. The basic method is that an excess of vesicles with one set of lipids (the donor vesicles) is mixed with a second set of vesicles (acceptor vesicles) with a different set of lipids. Cyclodextrin is introduced into the external aqueous solution, so that lipids in the outer leaflet of the vesicles bind to it and are shuttled between the vesicles. At equilibrium, the lipids in the outer leaflet of the acceptor vesicles are replaced by those from the donor vesicles. The exchanged acceptor vesicles are then isolated. Asymmetric vesicles are versatile in terms of vesicle sizes and lipid compositions that can be prepared. Measuring asymmetry is often difficult. A variety of assays can be used to measure the extent of asymmetry, but most are specific for one particular membrane lipid type or class, and there are none that can be used in all situations. Studies using asymmetric vesicles have begun to explore how asymmetry influences lipid movement across the bilayer, the formation of ordered lipid domains, coupling between the physical properties in each leaflet, and membrane protein conformation. Lipid domain formation stands out as one of the most important properties in which asymmetry is likely to be crucial. Lipid bilayers can exist in both liquidlike and solid/ordered-like states depending on lipid structure, and in lipid vesicles with a mixture of lipids highly ordered and disordered domains can coexist. However, until very recently, such studies only had been carried out in symmetric artificial membranes. Whether ordered domains (often called lipid rafts) and disordered lipid domains coexist in asymmetric cell membranes remains controversial partly because lipids favoring the formation of an ordered state are largely restricted to the leaflet facing the external environment. Studies using asymmetric vesicles have recently shown that each leaflet can influence the physical behavior of the other, i.e., that the domain forming properties in each leaflet tend to be coupled, with consequences highly dependent upon the details of lipid structure. Future studies investigating the dependence of coupling and properties upon the details of lipid composition should clarify the potential of natural membranes to form lipid domains. In addition, we recently extended the exchange method to living mammalian cells, using exchange to efficiently replace virtually the entire phospholipid and sphingolipid population of the plasma membrane outer leaflet with exogenous lipids without harming cells. This should allow detailed studies of the functional impact of lipid structure, asymmetry, domain organization, and interactions with membrane proteins in living cells.
Collapse
Affiliation(s)
- Erwin London
- Department of Biochemistry and Cell Biology and Department of Chemistry Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
20
|
Abstract
Freely suspended liposomes are widely used as model membranes for studying lipid-lipid and protein-lipid interactions. Liposomes prepared by conventional methods have chemically identical bilayer leaflets. By contrast, living cells actively maintain different lipid compositions in the two leaflets of the plasma membrane, resulting in asymmetric membrane properties that are critical for normal cell function. Here, we present a protocol for the preparation of unilamellar asymmetric phospholipid vesicles that better mimic biological membranes. Asymmetry is generated by methyl-β-cyclodextrin-catalyzed exchange of the outer leaflet lipids between vesicle pools of differing lipid composition. Lipid destined for the outer leaflet of the asymmetric vesicles is provided by heavy-donor multilamellar vesicles containing a dense sucrose core. Donor lipid is exchanged into extruded unilamellar acceptor vesicles that lack the sucrose core, facilitating the post-exchange separation of the donor and acceptor pools by centrifugation because of differences in vesicle size and density. We present two complementary assays allowing quantification of each leaflet's lipid composition: the overall lipid composition is determined by gas chromatography-mass spectrometry, whereas the lipid distribution between the two leaflets is determined by NMR, using the lanthanide shift reagent Pr3+. The preparation protocol and the chromatographic assay can be applied to any type of phospholipid bilayer, whereas the NMR assay is specific to lipids with choline-containing headgroups, such as phosphatidylcholine and sphingomyelin. In ~12 h, the protocol can produce a large yield of asymmetric vesicles (up to 20 mg) suitable for a wide range of biophysical studies.
Collapse
|
21
|
Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1112-1122. [PMID: 30904407 DOI: 10.1016/j.bbamem.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.
Collapse
|
22
|
Doktorova M, Heberle FA, Marquardt D, Rusinova R, Sanford RL, Peyear TA, Katsaras J, Feigenson GW, Weinstein H, Andersen OS. Gramicidin Increases Lipid Flip-Flop in Symmetric and Asymmetric Lipid Vesicles. Biophys J 2019; 116:860-873. [PMID: 30755300 PMCID: PMC6400823 DOI: 10.1016/j.bpj.2019.01.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 01/06/2023] Open
Abstract
Unlike most transmembrane proteins, phospholipids can migrate from one leaflet of the membrane to the other. Because this spontaneous lipid translocation (flip-flop) tends to be very slow, cells facilitate the process with enzymes that catalyze the transmembrane movement and thereby regulate the transbilayer lipid distribution. Nonenzymatic membrane-spanning proteins with unrelated primary functions have also been found to accelerate lipid flip-flop in a nonspecific manner and by various hypothesized mechanisms. Using deuterated phospholipids, we examined the acceleration of flip-flop by gramicidin channels, which have well-defined structures and known functions, features that make them ideal candidates for probing the protein-membrane interactions underlying lipid flip-flop. To study compositionally and isotopically asymmetric proteoliposomes containing gramicidin, we expanded a recently developed protocol for the preparation and characterization of lipid-only asymmetric vesicles. Channel incorporation, conformation, and function were examined with small angle x-ray scattering, circular dichroism, and a stopped-flow spectrofluorometric assay, respectively. As a measure of lipid scrambling, we used differential scanning calorimetry to monitor the effect of gramicidin on the melting transition temperatures of the two bilayer leaflets. The two calorimetric peaks of the individual leaflets merged into a single peak over time, suggestive of scrambling, and the effect of the channel on the transbilayer lipid distribution in both symmetric 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and asymmetric 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles was quantified from proton NMR measurements. Our results show that gramicidin increases lipid flip-flop in a complex, concentration-dependent manner. To determine the molecular mechanism of the process, we used molecular dynamics simulations and further computational analysis of the trajectories to estimate the extent of membrane deformation. Together, the experimental and computational approaches were found to constitute an effective means for studying the effects of transmembrane proteins on lipid distribution in both symmetric and asymmetric model membranes.
Collapse
Affiliation(s)
- Milka Doktorova
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, New York.
| | - Frederick A Heberle
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas; The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee
| | | | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - R Lea Sanford
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Thasin A Peyear
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - John Katsaras
- Large Scale Structures Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Greenberg Center, New York, New York
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| |
Collapse
|
23
|
Abstract
The utilization of light energy to power organic-chemical transformations is a fundamental strategy of the terrestrial energy cycle. Inspired by the elegance of natural photosynthesis, much interdisciplinary research effort has been devoted to the construction of simplified cell mimics based on artificial vesicles to provide a novel tool for biocatalytic cascade reactions with energy-demanding steps. By inserting natural or even artificial photosynthetic systems into liposomes or polymersomes, the light-driven proton translocation and the resulting formation of electrochemical gradients have become possible. This is the basis for the conversion of photonic into chemical energy in form of energy-rich molecules such as adenosine triphosphate (ATP), which can be further utilized by energy-dependent biocatalytic reactions, e.g. carbon fixation. This review compares liposomes and polymersomes as artificial compartments and summarizes the types of light-driven proton pumps that have been employed in artificial photosynthesis so far. We give an overview over the methods affecting the orientation of the photosystems within the membranes to ensure a unidirectional transport of molecules and highlight recent examples of light-driven biocatalysis in artificial vesicles. Finally, we summarize the current achievements and discuss the next steps needed for the transition of this technology from the proof-of-concept status to preparative applications.
Collapse
|
24
|
Markones M, Drechsler C, Kaiser M, Kalie L, Heerklotz H, Fiedler S. Engineering Asymmetric Lipid Vesicles: Accurate and Convenient Control of the Outer Leaflet Lipid Composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1999-2005. [PMID: 29294294 DOI: 10.1021/acs.langmuir.7b03189] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The asymmetric distribution of lipids between the two bilayer leaflets represents a typical feature of biological membranes. The loss of this asymmetry, for example the exposure of negatively charged lipids on the extracellular membrane leaflet of mammalian cells, is involved in apoptosis and occurs in tumor cells. Thus, the controlled production of asymmetric liposomes helps to better understand such crucial cellular processes. Here, we present an approach that allows us to design asymmetric model-membrane experiments on a rational basis and predict the fraction of exchanged lipid. In addition, we developed a label-free and nondestructive assay to quantify the asymmetric uptake of negatively charged lipids in terms of the zeta potential. This significantly enhances the applicability, impact, and predictive power of model membranes.
Collapse
Affiliation(s)
- Marie Markones
- Institute for Pharmaceutical Sciences, University of Freiburg , Hermann-Herder-Straße 9, Freiburg im Breisgau 79104, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg , Schänzlestraße 18, Freiburg im Breisgau 79104, Germany
| | - Carina Drechsler
- Institute for Pharmaceutical Sciences, University of Freiburg , Hermann-Herder-Straße 9, Freiburg im Breisgau 79104, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg , Schänzlestraße 18, Freiburg im Breisgau 79104, Germany
| | - Michael Kaiser
- Institute for Pharmaceutical Sciences, University of Freiburg , Hermann-Herder-Straße 9, Freiburg im Breisgau 79104, Germany
| | - Louma Kalie
- Institute for Pharmaceutical Sciences, University of Freiburg , Hermann-Herder-Straße 9, Freiburg im Breisgau 79104, Germany
| | - Heiko Heerklotz
- Institute for Pharmaceutical Sciences, University of Freiburg , Hermann-Herder-Straße 9, Freiburg im Breisgau 79104, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg , Schänzlestraße 18, Freiburg im Breisgau 79104, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto , 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Sebastian Fiedler
- Leslie Dan Faculty of Pharmacy, University of Toronto , 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
25
|
Sarangi NK, Basu JK. Pathways for creation and annihilation of nanoscale biomembrane domains reveal alpha and beta-toxin nanopore formation processes. Phys Chem Chem Phys 2018; 20:29116-29130. [DOI: 10.1039/c8cp05729j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Raft-like functional domains with putative sizes of 20–200 nm and which are evolving dynamically are believed to be the most crucial regions in cellular membranes which determine cell signaling and various functions of cells.
Collapse
Affiliation(s)
| | - Jaydeep Kumar Basu
- Department of Physics
- Indian Institute of Science
- Bangalore – 560 012
- India
| |
Collapse
|
26
|
St. Clair JR, Wang Q, Li G, London E. Preparation and Physical Properties of Asymmetric Model Membrane Vesicles. SPRINGER SERIES IN BIOPHYSICS 2017. [DOI: 10.1007/978-981-10-6244-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Nickels JD, Smith JC, Cheng X. Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes. Chem Phys Lipids 2015; 192:87-99. [DOI: 10.1016/j.chemphyslip.2015.07.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/20/2015] [Accepted: 07/25/2015] [Indexed: 11/28/2022]
|
28
|
Marquardt D, Geier B, Pabst G. Asymmetric lipid membranes: towards more realistic model systems. MEMBRANES 2015; 5:180-96. [PMID: 25955841 PMCID: PMC4496639 DOI: 10.3390/membranes5020180] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/28/2015] [Indexed: 01/23/2023]
Abstract
Despite the ubiquity of transbilayer asymmetry in natural cell membranes, the vast majority of existing research has utilized chemically well-defined symmetric liposomes, where the inner and outer bilayer leaflets have the same composition. Here, we review various aspects of asymmetry in nature and in model systems in anticipation for the next phase of model membrane studies.
Collapse
Affiliation(s)
- Drew Marquardt
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Humboldtstr 50/III, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, 8010, Austria.
| | - Barbara Geier
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Humboldtstr 50/III, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, 8010, Austria.
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Humboldtstr 50/III, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, 8010, Austria.
| |
Collapse
|
29
|
Lin Q, Wang T, Li H, London E. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size. J Membr Biol 2015; 248:517-27. [PMID: 25850715 DOI: 10.1007/s00232-015-9798-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30-50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.
Collapse
Affiliation(s)
- Qingqing Lin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | | | | | | |
Collapse
|
30
|
Morante K, Caaveiro JMM, Tanaka K, González-Mañas JM, Tsumoto K. A pore-forming toxin requires a specific residue for its activity in membranes with particular physicochemical properties. J Biol Chem 2015; 290:10850-61. [PMID: 25759390 DOI: 10.1074/jbc.m114.615211] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Indexed: 12/29/2022] Open
Abstract
The physicochemical landscape of the bilayer modulates membrane protein function. Actinoporins are a family of potent hemolytic proteins from sea anemones acting at the membrane level. This family of cytolysins preferentially binds to target membranes containing sphingomyelin, where they form lytic pores giving rise to cell death. Although the cytolytic activity of the actinoporin fragaceatoxin C (FraC) is sensitive to vesicles made of various lipid compositions, it is far from clear how this toxin adjusts its mechanism of action to a broad range of physiochemical landscapes. Herein, we show that the conserved residue Phe-16 of FraC is critical for pore formation in cholesterol-rich membranes such as those of red blood cells. The interaction of a panel of muteins of Phe-16 with model membranes composed of raft-like lipid domains is inactivated in cholesterol-rich membranes but not in cholesterol-depleted membranes. These results indicate that actinoporins recognize different membrane environments, resulting in a wider repertoire of susceptible target membranes (and preys) for sea anemones. In addition, this study has unveiled promising candidates for the development of protein-based biosensors highly sensitive to the concentration of cholesterol within the membrane.
Collapse
Affiliation(s)
- Koldo Morante
- From the Department of Bioengineering, Graduate School of Engineering and the Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain, and
| | - Jose M M Caaveiro
- From the Department of Bioengineering, Graduate School of Engineering and
| | - Koji Tanaka
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Juan Manuel González-Mañas
- the Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain, and
| | - Kouhei Tsumoto
- From the Department of Bioengineering, Graduate School of Engineering and Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan, the Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan
| |
Collapse
|
31
|
Lin Q, London E. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry. PLoS One 2014; 9:e87903. [PMID: 24489974 PMCID: PMC3905041 DOI: 10.1371/journal.pone.0087903] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes “artificial plasma membrane mimicking” (“PMm”) vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.
Collapse
Affiliation(s)
- Qingqing Lin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|