1
|
Guo Y, Yuan T, Wang Y, Xia L, Zhang J, Fan S. Blockade of calcium-activated chloride channel ANO1 ameliorates ionizing radiation-induced intestinal injury. J Adv Res 2025:S2090-1232(25)00228-0. [PMID: 40210148 DOI: 10.1016/j.jare.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025] Open
Abstract
INTRODUCTION Radiation enteritis is one of the most frequent clinical complications of radiotherapy (RT), yet few effective strategies currently exist to protect against that. Anoctamin 1 (ANO1) functions both as a chloride channel and a signal transduction protein, influencing numerous pathophysiological processes. OBJECTIVES This study aimed to investigate whether targeting ANO1 could mitigate radiation-induced enteritis while enhancing tumor radiosensitivity. METHODS Quantitative PCR (qPCR) and Western blot (WB) were used to assess ANO1 expression and its changes after irradiation. Survival rates were recorded to evaluate the effects of ANO1 agonist and inhibitors. A cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor was administered to irradiated mice to investigate the role of chloride channel in radiation protection. qPCR and WB were executed to analyze the expression of relevant ion channels in intestinal epithelium. Functional validation was conducted using inhibitors in mice and 3D organoids. Fluorescent probe kits detected intracellular ion levels and membrane potential, and WB was performed to elucidate the underlying mechanisms. Finally, the radiosensitizing effect of CaCCinh-A01 was assessed in colorectal cancer (CRC) cells and validated in in vivo models. RESULTS Blocking the calcium-activated chloride channel (CaCC) protein ANO1, which is highly expressed in the colon, protects the intestine from radiation-induced damage. The ANO1 inhibitor CaCCinh-A01, suppresses CaCC currents, downregulates ANO1 protein expression, alleviates radiation-induced intestine injury, and enhances the radiosensitivity of CRC. Mechanistically, CaCCinh-A01 upregulates Na-K-Cl Cotransporter 1 (NKCC1) protein expression, leading to an increase in intracellular Cl- concentration and the inhibition of membrane depolarization in MODE-K cells. This subsequently inhibits p53-mediate DNA damage signaling, ultimately alleviating ionizing radiation-induced intestinal injury. CONCLUSION These findings suggest that targeting ANO1 not only alleviates radiation-induced intestinal injury in mice but also enhances CRC radiosensitivity. Thus, ANO1 represents a promising therapeutic target for mitigating the side effects of RT in CRC patients.
Collapse
Affiliation(s)
- Yuying Guo
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Tong Yuan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Yuna Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Lei Xia
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Immunotherapy, Chongqing 401336, China.
| | - Junling Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| |
Collapse
|
2
|
Kim H, Shim WS, Oh U. Anoctamin 1, a multi-modal player in pain and itch. Cell Calcium 2024; 123:102924. [PMID: 38964236 DOI: 10.1016/j.ceca.2024.102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Anoctamin 1 (ANO1/TMEM16A) encodes a Ca2+-activated Cl- channel. Among ANO1's many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca2+ and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca2+ release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca2+ influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.
Collapse
Affiliation(s)
- Hyungsup Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Arreola J, López-Romero AE, Huerta M, Guzmán-Hernández ML, Pérez-Cornejo P. Insights into the function and regulation of the calcium-activated chloride channel TMEM16A. Cell Calcium 2024; 121:102891. [PMID: 38772195 DOI: 10.1016/j.ceca.2024.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
The TMEM16A channel, a member of the TMEM16 protein family comprising chloride (Cl-) channels and lipid scramblases, is activated by the free intracellular Ca2+ increments produced by inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release after GqPCRs or Ca2+ entry through cationic channels. It is a ubiquitous transmembrane protein that participates in multiple physiological functions essential to mammals' lives. TMEM16A structure contains two identical 10-segment monomers joined at their transmembrane segment 10. Each monomer harbours one independent hourglass-shaped pore gated by Ca2+ ligation to an orthosteric site adjacent to the pore and controlled by two gates. The orthosteric site is created by assembling negatively charged glutamate side chains near the pore´s cytosolic end. When empty, this site generates an electrostatic barrier that controls channel rectification. In addition, an isoleucine-triad forms a hydrophobic gate at the boundary of the cytosolic vestibule and the inner side of the neck. When the cytosolic Ca2+ rises, one or two Ca2+ ions bind to the orthosteric site in a voltage (V)-dependent manner, thus neutralising the electrostatic barrier and triggering an allosteric gating mechanism propagating via transmembrane segment 6 to the hydrophobic gate. These coordinated events lead to pore opening, allowing the Cl- flux to ensure the physiological response. The Ca2+-dependent function of TMEM16A is highly regulated. Anions with higher permeability than Cl- facilitate V dependence by increasing the Ca2+ sensitivity, intracellular protons can replace Ca2+ and induce channel opening, and phosphatidylinositol 4,5-bisphosphate bound to four cytosolic sites likely maintains Ca2+ sensitivity. Additional regulation is afforded by cytosolic proteins, most likely by phosphorylation and protein-protein interaction mechanisms.
Collapse
Affiliation(s)
- Jorge Arreola
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico.
| | - Ana Elena López-Romero
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - Miriam Huerta
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - María Luisa Guzmán-Hernández
- Catedrática CONAHCYT, Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| |
Collapse
|
4
|
Yassin-Kassab A, Chatterjee S, Khan N, Wang N, Sandulache VC, Huang EHB, Burns TF, Duvvuri U. p90RSK pathway inhibition synergizes with cisplatin in TMEM16A overexpressing head and neck cancer. BMC Cancer 2024; 24:233. [PMID: 38373988 PMCID: PMC10875868 DOI: 10.1186/s12885-024-11892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) constitutes one of the most common types of human cancers and often metastasizes to lymph nodes. Platinum-based chemotherapeutic drugs are commonly used for treatment of a wide range of cancers, including HNSCC. Its mode of action relies on its ability to impede DNA repair mechanisms, inducing apoptosis in cancer cells. However, due to acquired resistance and toxic side-effects, researchers have been focusing on developing novel combinational therapeutic strategies to overcome cisplatin resistance. In the current study, we identified p90RSK, an ERK1/2 downstream target, as a key mediator and a targetable signaling node against cisplatin resistance. Our results strongly support the role of p90RSK in cisplatin resistance and identify the combination of p90RSK inhibitor, BI-D1870, with cisplatin as a novel therapeutic strategy to overcome cisplatin resistance. In addition, we have identified TMEM16A expression as a potential upstream regulator of p90RSK through the ERK pathway and a biomarker of response to p90RSK targeted therapy in the context of cisplatin resistance.
Collapse
Affiliation(s)
- Abdulkader Yassin-Kassab
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Suman Chatterjee
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nayel Khan
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nathaniel Wang
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vlad C Sandulache
- Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Eric H-B Huang
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy F Burns
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
- Smilow Research Center, 530 First Avenue, 801.b, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
6
|
Li S, Wang Z, Geng R, Zhang W, Wan H, Kang X, Guo S. TMEM16A ion channel: A novel target for cancer treatment. Life Sci 2023; 331:122034. [PMID: 37611692 DOI: 10.1016/j.lfs.2023.122034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Cancer draws attention owing to the high morbidity and mortality. It is urgent to develop safe and effective cancer therapeutics. The calcium-activated chloride channel TMEM16A is widely distributed in various tissues and regulates physiological functions. TMEM16A is abnormally expressed in several cancers and associate with tumorigenesis, metastasis, and prognosis. Knockdown or inhibition of TMEM16A in cancer cells significantly inhibits cancer development. Therefore, TMEM16A is considered as a biomarker and therapeutic target for some cancers. This work reviews the cancers associated with TMEM16A. Then, the molecular mechanism of TMEM16A overexpression in cancer was analyzed, and the possible signal transduction mechanism of TMEM16A regulating cancer development was summarized. Finally, TMEM16A inhibitors with anticancer effect and their anticancer mechanism were concluded. We hope to provide new ideas for pharmacological studies on TMEM16A in cancer.
Collapse
Affiliation(s)
- Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Zhichen Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Ruili Geng
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Weiwei Zhang
- School of Basic Medical Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Haifu Wan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
7
|
Parthasarathi KTS, Mandal S, George JP, Gaikwad KB, Sasidharan S, Gundimeda S, Jolly MK, Pandey A, Sharma J. Aberrations in ion channels interacting with lipid metabolism and epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Front Mol Biosci 2023; 10:1201459. [PMID: 37529379 PMCID: PMC10388552 DOI: 10.3389/fmolb.2023.1201459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most prevalent malignant gastrointestinal tumor. Ion channels contribute to tumor growth and progression through interactions with their neighboring molecules including lipids. The dysregulation of membrane ion channels and lipid metabolism may contribute to the epithelial-mesenchymal transition (EMT), leading to metastatic progression. Herein, transcriptome profiles of patients with ESCC were analyzed by performing differential gene expression and weighted gene co-expression network analysis to identify the altered ion channels, lipid metabolism- and EMT-related genes in ESCC. A total of 1,081 differentially expressed genes, including 113 ion channels, 487 lipid metabolism-related, and 537 EMT-related genes, were identified in patients with ESCC. Thereafter, EMT scores were correlated with altered co-expressed genes. The altered co-expressed genes indicated a correlation with EMT signatures. Interactions among 22 ion channels with 3 hub lipid metabolism- and 13 hub EMT-related proteins were determined using protein-protein interaction networks. A pathway map was generated to depict deregulated signaling pathways including insulin resistance and the estrogen receptor-Ca2+ signaling pathway in ESCC. The relationship between potential ion channels and 5-year survival rates in ESCC was determined using Kaplan-Meier plots and Cox proportional hazard regression analysis. Inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) was found to be associated with poor prognosis of patients with ESCC. Additionally, drugs interacting with potential ion channels, including GJA1 and ITPR3, were identified. Understanding alterations in ion channels with lipid metabolism and EMT in ESCC pathophysiology would most likely provide potential targets for the better treatment of patients with ESCC.
Collapse
Affiliation(s)
- K. T. Shreya Parthasarathi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Susmita Mandal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - John Philip George
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | | | - Sruthi Sasidharan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Seetaramanjaneyulu Gundimeda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Rochester, MN, United States
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Center for Individualized Medicine, Rochester, MN, United States
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
8
|
Shi S, Ma B, Ji Q, Guo S, An H, Ye S. Identification of a druggable pocket of the calcium-activated chloride channel TMEM16A in its open state. J Biol Chem 2023:104780. [PMID: 37142220 DOI: 10.1016/j.jbc.2023.104780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
The calcium-activated chloride channel TMEM16A is a potential drug target to treat hypertension, secretory diarrhea, and several cancers. However, all reported TMEM16A structures are either closed or desensitized, and direct inhibition of the open state by drug molecules lacks a reliable structural basis. Therefore, revealing the druggable pocket of TMEM16A exposed in the open state is important for understanding protein-ligand interactions and facilitating rational drug design. Here, we reconstructed the calcium-activated open conformation of TMEM16A using an enhanced sampling algorithm and segmental modeling. Furthermore, we identified an open state druggable pocket and screened a potent TMEM16A inhibitor, etoposide, which is a derivative of a traditional herbal monomer. Molecular simulations and site-directed mutagenesis showed that etoposide binds to the open state of TMEM16A, thereby blocking the ion conductance pore of the channel. Finally, we demonstrated that etoposide can target TMEM16A to inhibit the proliferation of prostate cancer PC-3 cells. Together, these findings provide a deep understanding of the TMEM16A open state at an atomic level and identify pockets for the design of novel inhibitors with broad applications in chloride channel biology, biophysics, and medicinal chemistry.
Collapse
Affiliation(s)
- Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
| | - Qiushuang Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
9
|
Carss KJ, Deaton AM, Del Rio-Espinola A, Diogo D, Fielden M, Kulkarni DA, Moggs J, Newham P, Nelson MR, Sistare FD, Ward LD, Yuan J. Using human genetics to improve safety assessment of therapeutics. Nat Rev Drug Discov 2023; 22:145-162. [PMID: 36261593 DOI: 10.1038/s41573-022-00561-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human genetics research has discovered thousands of proteins associated with complex and rare diseases. Genome-wide association studies (GWAS) and studies of Mendelian disease have resulted in an increased understanding of the role of gene function and regulation in human conditions. Although the application of human genetics has been explored primarily as a method to identify potential drug targets and support their relevance to disease in humans, there is increasing interest in using genetic data to identify potential safety liabilities of modulating a given target. Human genetic variants can be used as a model to anticipate the effect of lifelong modulation of therapeutic targets and identify the potential risk for on-target adverse events. This approach is particularly useful for non-clinical safety evaluation of novel therapeutics that lack pharmacologically relevant animal models and can contribute to the intrinsic safety profile of a drug target. This Review illustrates applications of human genetics to safety studies during drug discovery and development, including assessing the potential for on- and off-target associated adverse events, carcinogenicity risk assessment, and guiding translational safety study designs and monitoring strategies. A summary of available human genetic resources and recommended best practices is provided. The challenges and future perspectives of translating human genetic information to identify risks for potential drug effects in preclinical and clinical development are discussed.
Collapse
Affiliation(s)
| | - Aimee M Deaton
- Amgen, Cambridge, MA, USA.,Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Alberto Del Rio-Espinola
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,GentiBio Inc., Cambridge, MA, USA
| | | | - Mark Fielden
- Amgen, Thousand Oaks, MA, USA.,Kate Therapeutics, San Diego, CA, USA
| | | | - Jonathan Moggs
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Frank D Sistare
- Merck & Co., West Point, PA, USA.,315 Meadowmont Ln, Chapel Hill, NC, USA
| | - Lucas D Ward
- Amgen, Cambridge, MA, USA. .,Alnylam Pharmaceuticals, Cambridge, MA, USA.
| | - Jing Yuan
- Amgen, Cambridge, MA, USA.,Pfizer, Cambridge, MA, USA
| |
Collapse
|
10
|
Yamanoi Y, Lei J, Takayama Y, Hosogi S, Marunaka Y, Tominaga M. TRPV3-ANO1 interaction positively regulates wound healing in keratinocytes. Commun Biol 2023; 6:88. [PMID: 36690845 PMCID: PMC9870996 DOI: 10.1038/s42003-023-04482-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Transient receptor potential vanilloid 3 (TRPV3) belongs to the TRP ion channel super family and functions as a nonselective cation channel that is highly permeable to calcium. This channel is strongly expressed in skin keratinocytes and is involved in warmth sensation, itch, wound healing and secretion of several cytokines. Previous studies showed that anoctamin1 (ANO1), a calcium-activated chloride channel, was activated by calcium influx through TRPV1, TRPV4 or TRPA1 and that these channel interactions were important for TRP channel-mediated physiological functions. We found that ANO1 was expressed by normal human epidermal keratinocytes (NHEKs). We observed that ANO1 mediated currents upon TRPV3 activation of NHEKs and mouse skin keratinocytes. Using an in vitro wound-healing assay, we observed that either a TRPV3 blocker, an ANO1 blocker or low chloride medium inhibited cell migration and proliferation through p38 phosphorylation, leading to cell cycle arrest. These results indicated that chloride influx through ANO1 activity enhanced wound healing by keratinocytes.
Collapse
Affiliation(s)
- Yu Yamanoi
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Research Laboratory, Ikedamohando Co., Ltd., 16 Jinden, Kamiichi, Nakaniikawa, Toyama, 930-0394, Japan
| | - Jing Lei
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yoshinori Marunaka
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Makoto Tominaga
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
11
|
García G, Martínez-Magaña CJ, Oviedo N, Granados-Soto V, Murbartián J. Bestrophin-1 Participates in Neuropathic Pain Induced by Spinal Nerve Transection but not Spinal Nerve Ligation. THE JOURNAL OF PAIN 2022; 24:689-705. [PMID: 36521670 DOI: 10.1016/j.jpain.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Previous studies have reported that L5/L6 spinal nerve ligation (SNL), but not L5 spinal nerve transection (SNT), enhances anoctamin-1 in injured and uninjured dorsal root ganglia (DRG) of rats suggesting some differences in function of the type of nerve injury. The role of bestrophin-1 in these conditions is unknown. The aim of this study was to investigate the role of bestrophin-1 in rats subjected to L5 SNT and L5/L6 SNL. SNT up-regulated bestrophin-1 protein expression in injured L5 and uninjured L4 DRG at day 7, whereas it enhanced GAP43 mainly in injured, but also in uninjured DRG. In contrast, SNL enhanced GAP43 at day 1 and 7, while bestrophin-1 expression increased only at day 1 after nerve injury. Accordingly, intrathecal injection of the bestrophin-1 blocker CaCCinh-A01 (1-10 µg) reverted SNT- or SNL-induced tactile allodynia in a concentration-dependent manner. Intrathecal injection of CaCCinh-A01 (10 µg) prevented SNT-induced upregulation of bestrophin-1 and GAP43 at day 7. In contrast, CaCCinh-A01 did not affect SNL-induced up-regulation of GAP43 nor bestrophin-1. Bestrophin-1 was mainly expressed in small- and medium-size neurons in naïve rats, while SNT increased bestrophin-1 immunoreactivity in CGRP+, but not in IB4+ neuronal cells in DRG. Intrathecal injection of bestrophin-1 plasmid (pCMVBest) induced tactile allodynia and increased bestrophin-1 expression in DRG and spinal cord in naïve rats. CaCCinh-A01 reversed bestrophin-1 overexpression-induced tactile allodynia and restored bestrophin-1 expression. Our data suggest that bestrophin-1 plays a relevant role in neuropathic pain induced by SNT, but not by SNL. PERSPECTIVE: SNT, but not SNL, up-regulates bestrophin-1 and GAP43 protein expression in injured L5 and uninjured L4 DRG. SNT increases bestrophin-1 immunoreactivity in CGRP+ neurons in DRG. Bestrophin-1 overexpression induces allodynia. CaCCinh-A01 reduces allodynia and restores bestrophin-1 expression. Our data suggest bestrophin-1 is differentially regulated depending on the neuropathic pain model.
Collapse
Affiliation(s)
| | | | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La Raza, IMSS. Mexico City, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico.
| |
Collapse
|
12
|
Rodriguez TC, Zhong L, Simpson H, Gleason E. Reduced Expression of TMEM16A Impairs Nitric Oxide-Dependent Cl− Transport in Retinal Amacrine Cells. Front Cell Neurosci 2022; 16:937060. [PMID: 35966201 PMCID: PMC9363626 DOI: 10.3389/fncel.2022.937060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Postsynaptic cytosolic Cl− concentration determines whether GABAergic and glycinergic synapses are inhibitory or excitatory. We have shown that nitric oxide (NO) initiates the release of Cl− from acidic internal stores into the cytosol of retinal amacrine cells (ACs) thereby elevating cytosolic Cl−. In addition, we found that cystic fibrosis transmembrane conductance regulator (CFTR) expression and Ca2+ elevations are necessary for the transient effects of NO on cytosolic Cl− levels, but the mechanism remains to be elucidated. Here, we investigated the involvement of TMEM16A as a possible link between Ca2+ elevations and cytosolic Cl− release. TMEM16A is a Ca2+-activated Cl− channel that is functionally coupled with CFTR in epithelia. Both proteins are also expressed in neurons. Based on this and its Ca2+ dependence, we test the hypothesis that TMEM16A participates in the NO-dependent elevation in cytosolic Cl− in ACs. Chick retina ACs express TMEM16A as shown by Western blot analysis, single-cell PCR, and immunocytochemistry. Electrophysiology experiments demonstrate that TMEM16A functions in amacrine cells. Pharmacological inhibition of TMEM16A with T16inh-AO1 reduces the NO-dependent Cl− release as indicated by the diminished shift in the reversal potential of GABAA receptor-mediated currents. We confirmed the involvement of TMEM16A in the NO-dependent Cl− release using CRISPR/Cas9 knockdown of TMEM16A. Two different modalities targeting the gene for TMEM16A (ANO1) were tested in retinal amacrine cells: an all-in-one plasmid vector and crRNA/tracrRNA/Cas9 ribonucleoprotein. The all-in-one CRISPR/Cas9 modality did not change the expression of TMEM16A protein and produced no change in the response to NO. However, TMEM16A-specific crRNA/tracrRNA/Cas9 ribonucleoprotein effectively reduces both TMEM16A protein levels and the NO-dependent shift in the reversal potential of GABA-gated currents. These results show that TMEM16A plays a role in the NO-dependent Cl− release from retinal ACs.
Collapse
|
13
|
TMEM16A as a potential treatment target for head and neck cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:196. [PMID: 35668455 PMCID: PMC9172006 DOI: 10.1186/s13046-022-02405-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023]
Abstract
Transmembrane protein 16A (TMEM16A) forms a plasma membrane-localized Ca2+-activated Cl- channel. Its gene has been mapped to an area on chromosome 11q13, which is amplified in head and neck squamous cell carcinoma (HNSCC). In HNSCC, TMEM16A overexpression is associated with not only high tumor grade, metastasis, low survival, and poor prognosis, but also deterioration of clinical outcomes following platinum-based chemotherapy. Recent study revealed the interaction between TMEM16A and transforming growth factor-β (TGF-β) has an indirect crosstalk in clarifying the mechanism of TMEM16A-induced epithelial-mesenchymal transition. Moreover, human papillomavirus (HPV) infection can modulate TMEM16A expression along with epidermal growth factor receptor (EGFR), whose phosphorylation has been reported as a potential co-biomarker of HPV-positive cancers. Considering that EGFR forms a functional complex with TMEM16A and is a co-biomarker of HPV, there may be crosstalk between TMEM16A expression and HPV-induced HNSCC. EGFR activation can induce programmed death ligand 1 (PD-L1) synthesis via activation of the nuclear factor kappa B pathway and JAK/STAT3 pathway. Here, we describe an interplay among EGFR, PD-L1, and TMEM16A. Combination therapy using TMEM16A and PD-L1 inhibitors may improve the survival rate of HNSCC patients, especially those resistant to anti-EGFR inhibitor treatment. To the best of our knowledge, this is the first review to propose a biological validation that combines immune checkpoint inhibition with TMEM16A inhibition.
Collapse
|
14
|
Galietta LJ. TMEM16A (ANO1) as a therapeutic target in cystic fibrosis. Curr Opin Pharmacol 2022; 64:102206. [DOI: 10.1016/j.coph.2022.102206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023]
|
15
|
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, Hua X, Liu Z. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol 2022; 148:2045-2068. [PMID: 35471604 DOI: 10.1007/s00432-022-04004-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Dysregulation of gene amplification, cell-signaling-pathway transduction, epigenetic and transcriptional regulation, and protein interactions drives tumor-cell proliferation and invasion, while ion channels also play an important role in the generation and development of tumor cells. Overexpression of Ca2+-activated Cl- channel anoctamin 1 (ANO1) is shown in numerous cancer types and correlates with poor prognosis. However, the mechanisms involved in ANO1-mediated malignant cellular transformation and the role of ANO1 in tumor immunity remain unknown. In this review, we discuss recent studies to determine the role of ANO1 in tumorigenesis and provide novel insights into the role of ANO1 in the context of tumor immunity. Furthermore, we analyze the roles and potential mechanisms of ANO1 in different types of cancers, and provide novel notions for the role of ANO1 in the tumor microenvironment and for potential use of ANO1 in clinical applications. Our review shows that ANO1 is involved in tumor immunity and microenvironment, and may, therefore, be an effective biomarker and therapeutic drug target.
Collapse
Affiliation(s)
- Haini Li
- Department of Gastroenterology, Qingdao Sixth People's Hospital, Qingdao, 266001, China
| | - Zongxue Yu
- Department of Endocrinology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266001, China
| | - Haiyan Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Ning Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Xueguo Sun
- Department of Gastroenterology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Shengmei Yang
- Department of Gynecology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Xu Hua
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
16
|
Zafirlukast inhibits the growth of lung adenocarcinoma via inhibiting TMEM16A channel activity. J Biol Chem 2022; 298:101731. [PMID: 35176281 PMCID: PMC8931426 DOI: 10.1016/j.jbc.2022.101731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 01/05/2023] Open
Abstract
Lung cancer has the highest mortality among cancers worldwide due to its high incidence and lack of the effective cures. We have previously demonstrated that the membrane ion channel TMEM16A is a potential drug target for the treatment of lung adenocarcinoma and have identified a pocket of inhibitor binding that provides the basis for screening promising new inhibitors. However, conventional drug discovery strategies are lengthy and costly, and the unpredictable side effects lead to a high failure rate in drug development. Therefore, finding new therapeutic directions for already marketed drugs may be a feasible strategy to obtain safe and effective therapeutic drugs. Here, we screened a library of over 1400 Food and Drug Administration-approved drugs through virtual screening and activity testing. We identified a drug candidate, Zafirlukast (ZAF), clinically approved for the treatment of asthma, that could inhibit the TMEM16A channel in a concentration-dependent manner. Molecular dynamics simulations and site-directed mutagenesis experiments showed that ZAF can bind to S387/N533/R535 in the nonselective inhibitor binding pocket, thereby blocking the channel pore. Furthermore, we demonstrate ZAF can target TMEM16A channel to inhibit the proliferation and migration of lung adenocarcinoma LA795 cells. In vivo experiments showed that ZAF can significantly inhibit lung adenocarcinoma tumor growth in mice. Taken together, we identified ZAF as a novel TMEM16A channel inhibitor with excellent anticancer activity, and as such, it represents a promising candidate for future preclinical and clinical studies.
Collapse
|
17
|
Wang Y, Gao J, Zhao S, Song Y, Huang H, Zhu G, Jiao P, Xu X, Zhang G, Wang K, Zhang L, Liu Z. Discovery of 4-arylthiophene-3-carboxylic acid as inhibitor of ANO1 and its effect as analgesic agent. Acta Pharm Sin B 2021; 11:1947-1964. [PMID: 34386330 PMCID: PMC8343189 DOI: 10.1016/j.apsb.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023] Open
Abstract
Anoctamin 1 (ANO1) is a kind of calcium-activated chloride channel involved in nerve depolarization. ANO1 inhibitors display significant analgesic activity by the local peripheral and intrathecal administration. In this study, several thiophenecarboxylic acid and benzoic acid derivatives were identified as novel ANO1 inhibitors through the shape-based virtual screening, among which the 4-arylthiophene-3-carboxylic acid analogues with the best ANO1 inhibitory activity were designed, synthesized and compound 42 (IC50 = 0.79 μmol/L) was finally obtained. Compound 42 selectively inhibited ANO1 without affecting ANO2 and intracellular Ca2+ concentration. Subsequently, the analgesic effect was investigated by intragastric administration in pain models. Compound 42 significantly attenuated allodynia which was induced by formalin and chronic constriction injury. Through homology modeling and molecular dynamics, the binding site was predicted to be located near the calcium-binding region between α6 and α8. Our study validates ANO1 inhibitors having a significant analgesic effect by intragastric administration and also provides selective molecular tools for ANO1-related research.
Collapse
|
18
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
19
|
Cabrita I, Talbi K, Kunzelmann K, Schreiber R. Loss of PKD1 and PKD2 share common effects on intracellular Ca 2+ signaling. Cell Calcium 2021; 97:102413. [PMID: 33915319 DOI: 10.1016/j.ceca.2021.102413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
In polycystic kidney disease (PKD) multiple bilateral renal cysts gradually enlarge causing a decline in renal function. Transepithelial chloride secretion through cystic fibrosis transmembrane conductance regulator (CFTR) and TMEM16A (anoctamin 1) drive cyst enlargement. We demonstrated recently that a loss of PKD1 increases expression and function of TMEM16A in murine kidneys and in mouse M1 collecting duct cells. The data demonstrated that TMEM16A contributes essentially to cyst growth by upregulating intracellular Ca2+ signaling. Enhanced expression of TMEM16A and Ca2+ signaling increased both cell proliferation and fluid secretion, which suggested inhibition of TMEM16A as a novel therapy in ADPKD. About 15 % of all ADPKD cases are caused by mutations in PKD2. To analyze the effects of loss of function of PKD2 on Ca2+ signaling, we knocked-down Pkd2 in mouse primary renal epithelial cells in the present study, using viral transfection of shRNA. Unlike in Pkd1-/- cells, knockdown of PKD2 lowered basal Ca2+ and augmented store-operated Ca2+ entry, which was both independent of TMEM16A. However, disease causing purinergic Ca2+ store release was enhanced, similar to that observed in Pkd1-/- renal epithelial cells. The present data suggest pharmacological inhibition of TMEM16A as a treatment in ADPKD caused by mutations in both PKD1 and PKD2.
Collapse
Affiliation(s)
- Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Khaoula Talbi
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
20
|
Wang H, Wang T, Zhang Z, Fan Y, Zhang L, Gao K, Luo S, Xiao Q, Sun C. Simvastatin inhibits oral squamous cell carcinoma by targeting TMEM16A Ca 2+-activated chloride channel. J Cancer Res Clin Oncol 2021; 147:1699-1711. [PMID: 33755783 DOI: 10.1007/s00432-021-03575-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Ca2+-activated chloride channel TMEM16A has been found to be overexpressed in many cancers including head and neck squamous cell carcinoma (HNSCC). Nevertheless, the role of TMEM16A in oral squamous cell carcinoma (OSCC) remains unclear. Although simvastatin is known to produce anti-tumor effect, the mechanisms by which simvastatin inhibits cancer remain unclear. METHODS In this study, we explored the role of TMEM16A expression in human OSCC tissues using both TCGA dataset and immunohistochemistry. CCK-8 assay was applied to evaluate cell proliferation. Patch clamp technique was applied to record TMEM16A Cl- currents. RESULTS We found that high TMEM16A expression is related with large tumor size, lymph node metastasis, and poor clinical outcome in patients with OSCC. In addition, TMEM16A overexpression could promote cell proliferation, and inhibition of TMEM16A channel activities could suppress cell proliferation in OSCC cells. Furthermore, simvastatin could suppress TMEM16A channel activities, and inhibited cell proliferation in OSCC cells via TMEM16A. CONCLUSION Our findings identify a novel anti-tumor mechanism of simvastatin by targeting TMEM16A. Simvastatin may represent an innovative strategy for treating OSCC with high TMEM16A expression.
Collapse
Affiliation(s)
- Hechen Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, 117 Nanjing Bei Jie, Heping District, Shenyang,, 110002, Liaoning, China.,Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Tianyu Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Zeying Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, 117 Nanjing Bei Jie, Heping District, Shenyang,, 110002, Liaoning, China
| | - Yu Fan
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Hospital Infection Management Office, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Kuan Gao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China.
| | - Changfu Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, 117 Nanjing Bei Jie, Heping District, Shenyang,, 110002, Liaoning, China.
| |
Collapse
|
21
|
Filippou A, Pehkonen H, Karhemo PR, Väänänen J, Nieminen AI, Klefström J, Grénman R, Mäkitie AA, Joensuu H, Monni O. ANO1 Expression Orchestrates p27Kip1/MCL1-Mediated Signaling in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13051170. [PMID: 33803266 PMCID: PMC7967175 DOI: 10.3390/cancers13051170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Our aim was to elucidate the molecular mechanisms of how ANO1 contributes to oncogenic processes in squamous cell carcinoma of the head and neck (HNSCC). We explored transcriptional programs influenced by ANO1 knockdown in patient-derived UT-SCC cell lines with 11q13 amplification and ANO1 overexpression. ANO1 depletion led to downregulation of broad pro-survival BCL2 family protein members, including MCL1, and simultaneously induced upregulation of the cell cycle inhibitor p27Kip1 and its redistribution from the cytoplasm into the nucleus in the studied HNSCC cells. Gene set enrichment analysis highlighted pathways associated with perturbed cell cycle and apoptosis in the ANO1-depleted samples. Silencing of ANO1 and application of an ANO1-targeting small-molecule inhibitor led to ANO1 degradation and reduction of cell viability. These findings suggest that ANO1 has drug target potential that deserves further evaluation in preclinical in vivo models. Abstract Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that derive from the mucosal epithelium of the upper aerodigestive tract and present high mortality rate. Lack of efficient targeted-therapies and biomarkers towards patients’ stratification are caveats in the disease treatment. Anoctamin 1 (ANO1) gene is amplified in 30% of HNSCC cases. Evidence suggests involvement of ANO1 in proliferation, migration, and evasion of apoptosis; however, the exact mechanisms remain elusive. Aim of this study was to unravel the ANO1-dependent transcriptional programs and expand the existing knowledge of ANO1 contribution to oncogenesis and drug response in HNSCC. We cultured two HNSCC cell lines established from primary tumors harboring amplification and high expression of ANO1 in three-dimensional collagen. Differential expression analysis of ANO1-depleted HNSCC cells demonstrated downregulation of MCL1 and simultaneous upregulation of p27Kip1 expression. Suppressing ANO1 expression led to redistribution of p27Kip1 from the cytoplasm to the nucleus and associated with a cell cycle arrested phenotype. ANO1 silencing or pharmacological inhibition resulted in reduction of cell viability and ANO1 protein levels, as well as suppression of pro-survival BCL2 family proteins. Collectively, these data provide insights of ANO1 involvement in HNSCC carcinogenesis and support the rationale that ANO1 is an actionable drug target.
Collapse
Affiliation(s)
- Artemis Filippou
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (A.F.); (H.P.); (P.-R.K.); (J.V.)
| | - Henna Pehkonen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (A.F.); (H.P.); (P.-R.K.); (J.V.)
| | - Piia-Riitta Karhemo
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (A.F.); (H.P.); (P.-R.K.); (J.V.)
| | - Juho Väänänen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (A.F.); (H.P.); (P.-R.K.); (J.V.)
| | - Anni I. Nieminen
- Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Turku and Turku University Hospital, 20520 Turku, Finland;
| | - Antti A. Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00130 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Heikki Joensuu
- Department of Oncology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland;
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (A.F.); (H.P.); (P.-R.K.); (J.V.)
- Department of Oncology, Clinicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-407639302
| |
Collapse
|
22
|
ANO1 regulates the maintenance of stemness in glioblastoma stem cells by stabilizing EGFRvIII. Oncogene 2021; 40:1490-1502. [PMID: 33452454 DOI: 10.1038/s41388-020-01612-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Abstract
Glioblastoma multiforme (GBM) or glioblastoma is the most deadly malignant brain tumor in adults. GBM is difficult to treat mainly due to the presence of glioblastoma stem cells (GSCs). Epidermal growth factor receptor variant III (EGFRvIII) has been linked to stemness and malignancy of GSCs; however, the regulatory mechanism of EGFRvIII is largely unknown. Here, we demonstrated that Anoctamin-1 (ANO1), a Ca2+-activated Cl- channel, interacts with EGFRvIII, increases its protein stability, and supports the maintenance of stemness and tumor progression in GSCs. Specifically, shRNA-mediated knockdown and pharmacological inhibition of ANO1 suppressed the self-renewal, invasion activities, and expression of EGFRvIII and related stem cell factors, including NOTCH1, nestin, and SOX2 in GSCs. Conversely, ANO1 overexpression enhanced the above phenomena. Mechanistically, ANO1 protected EGFRvIII from proteasomal degradation by directly binding to it. ANO1 knockdown significantly increased survival in mice and strongly suppressed local invasion of GSCs in an in vivo intracranial mouse model. Collectively, these results suggest that ANO1 plays a crucial role in the maintenance of stemness and invasiveness of GSCs by regulating the expression of EGFRvIII and related signaling molecules, and can be considered a promising therapeutic target for GBM treatment.
Collapse
|
23
|
Choi SH, Ryu S, Sim K, Song C, Shin I, Kim SS, Lee YS, Park JY, Sim T. Anti-glioma effects of 2-aminothiophene-3-carboxamide derivatives, ANO1 channel blockers. Eur J Med Chem 2020; 208:112688. [PMID: 32906067 DOI: 10.1016/j.ejmech.2020.112688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
Anoctamin1 (ANO1), a calcium-activated chloride ion channel (CaCC), is associated with various physiological functions including cancer progression and metastasis/invasion. ANO1 has been considered as a promising target for cancer therapeutics as ANO1 is over-expressed in a variety of cancers including glioblastoma (GBM) and inhibition of ANO1 has been reported to suppress cell proliferation, migration and invasion in GBM. GBM is one of the most common and aggressive cancers with poor prognosis with median survival for 15 months. Lack of effective treatment options against GBM emphasizes urgent necessity of effective GBM therapeutics. In an effort to discover potent and selective ANO1 inhibitors capable of inhibiting GBM cells, we have designed and synthesized a series of new 2-aminothiophene-3-carboxamide derivatives and performed SAR studies using both fluorescent cellular membrane potential assay and whole-cell patch-clamp recording. We observed that among these substances, 9c and 10q strongly suppress ANO1 channel activities and possess remarkable selectivity over ANO2. Unique structural feature of 10q, a cyclopentane-fused thiophene-3-carboxamide derivative, is the presence of benzoylthiourea functionality which dramatically contributes to activity. Both 9c and 10q suppress more strongly proliferation of GBM cells than four reference compounds including 3, Ani-9 and are also capable of inhibiting much more strongly colony formation than reference compounds in both 2D colony formation assay and 3D soft agar assay using U251 glioma cells. In addition, 9c and 10q suppress far more strongly migration/invasion of GBM cells than reference compounds. We, for the first time, found that the combination of ANO1 inhibitor (9c or 3) and temozolomide (TMZ) brings about remarkable synergistic effects in suppressing proliferation of GBM cells. Our study may provide an insight into designing selective and potent ANO1 inhibitors aiming at GBM treatment.
Collapse
Affiliation(s)
- Seung-Hye Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kyoungmi Sim
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Chiman Song
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Injae Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seong-Seop Kim
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Sun Lee
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
24
|
Design of Anticancer 2,4-Diaminopyrimidines as Novel Anoctamin 1 (ANO1) Ion Channel Blockers. Molecules 2020; 25:molecules25215180. [PMID: 33172169 PMCID: PMC7664333 DOI: 10.3390/molecules25215180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Pyrimidine is a privileged scaffold in many synthetic compounds exhibiting diverse pharmacological activities, and is used for therapeutic applications in a broad spectrum of human diseases. In this study, we prepared a small set of pyrimidine libraries based on the structure of two hit compounds that were identified through the screening of an in-house library in order to identify an inhibitor of anoctamin 1 (ANO1). ANO1 is amplified in various types of human malignant tumors, such as head and neck, parathyroid, and gastrointestinal stromal tumors, as well as in breast, lung, and prostate cancers. After initial screening and further structure optimization, we identified Aa3 as a dose-dependent ANO1 blocker. This compound exhibited more potent anti-cancer activity in the NCI-H460 cell line, expressing high levels of ANO1 compared with that in A549 cells that express low levels of ANO1. Our results open a new direction for the development of small-molecule ANO1 blockers composed of a pyrimidine scaffold and a nitrogen-containing heterocyclic moiety, with drug-like properties.
Collapse
|
25
|
Pearson H, Todd EJAA, Ahrends M, Hover SE, Whitehouse A, Stacey M, Lippiat JD, Wilkens L, Fieguth HG, Danov O, Hesse C, Barr JN, Mankouri J. TMEM16A/ANO1 calcium-activated chloride channel as a novel target for the treatment of human respiratory syncytial virus infection. Thorax 2020; 76:64-72. [PMID: 33109690 PMCID: PMC7803913 DOI: 10.1136/thoraxjnl-2020-215171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Introduction Human respiratory syncytial virus (HRSV) is a common cause of respiratory tract infections (RTIs) globally and is one of the most fatal infectious diseases for infants in developing countries. Of those infected, 25%–40% aged ≤1 year develop severe lower RTIs leading to pneumonia and bronchiolitis, with ~10% requiring hospitalisation. Evidence also suggests that HRSV infection early in life is a major cause of adult asthma. There is no HRSV vaccine, and the only clinically approved treatment is immunoprophylaxis that is expensive and only moderately effective. New anti-HRSV therapeutic strategies are therefore urgently required. Methods It is now established that viruses require cellular ion channel functionality to infect cells. Here, we infected human lung epithelial cell lines and ex vivo human lung slices with HRSV in the presence of a defined panel of chloride (Cl−) channel modulators to investigate their role during the HRSV life-cycle. Results We demonstrate the requirement for TMEM16A, a calcium-activated Cl− channel, for HRSV infection. Time-of-addition assays revealed that the TMEM16A blockers inhibit HRSV at a postentry stage of the virus life-cycle, showing activity as a postexposure prophylaxis. Another important negative-sense RNA respiratory pathogen influenza virus was also inhibited by the TMEM16A-specific inhibitor T16Ainh-A01. Discussion These findings reveal TMEM16A as an exciting target for future host-directed antiviral therapeutics.
Collapse
Affiliation(s)
| | | | - Mareike Ahrends
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany
| | | | | | | | - Jonathan D Lippiat
- University of Leeds, Leeds, UK.,School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | | | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany
| | - Christina Hesse
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany
| | | | | |
Collapse
|
26
|
Shi S, Guo S, Chen Y, Sun F, Pang C, Ma B, Qu C, An H. Molecular mechanism of CaCC inh-A01 inhibiting TMEM16A channel. Arch Biochem Biophys 2020; 695:108650. [PMID: 33132191 DOI: 10.1016/j.abb.2020.108650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
TMEM16A is a calcium-activated chloride channel that is associate with several diseases, including pulmonary diseases, hypertension, diarrhea and cancer. The CaCCinh-A01 (A01) is widely recognized as an efficient blocker of TMEM16A and has been used as a tool drug to inhibit TMEM16A currents in the laboratory. A01 also has excellent pharmacokinetic properties and can be developed as a drug to target TMEM16A. However, the molecular mechanism how A01 inhibits TMEM16A is still elusive, which slows down its drug development process. Here, calculations identified that the binding pocket of A01 was located above the pore, and it was also discovered that the binding of A01 to TMEM16A not only blocked the pore but also led to its collapse. The interaction model analysis predicted that R515/K603/E623 were crucial residues for the binding between TMEM16A and A01, and the site-directed mutagenesis studies confirmed the above results. The binding mode and quantum chemical calculations showed that the carboxyl and the amide oxygen atom of A01 were the key interaction sites between TMEM16A and A01. Therefore, our study proposed the inhibitory mechanism of TMEM16A current by A01 and revealed how A01 inhibits TMEM16A at the molecular level. These findings will shed light on both the development of A01 as a potential drug for TMEM16A dysfunction-related disorders and drug screening targeting the pocket.
Collapse
Affiliation(s)
- Sai Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Shuai Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China; College of Life Science, Hebei University, Baoding, 071002, Hebei, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Fude Sun
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Chang Qu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
27
|
Tian X, Sun C, Wang X, Ma K, Chang Y, Guo Z, Si J. ANO1 regulates cardiac fibrosis via ATI-mediated MAPK pathway. Cell Calcium 2020; 92:102306. [PMID: 33075549 DOI: 10.1016/j.ceca.2020.102306] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Cardiac fibrosis is associated with most of heart diseases, but its molecular mechanism remains unclear. Anoctamin-1 (ANO1), a calcium-activated chloride channels (CaCCs) protein, plays a critical role in various pathophysiological processes. In the current study, we identified ANO1 expression in myocardial infarction (MI) model of rat and verified the role of ANO1 in cardiac fibrosis using transcriptomics combined with RNAi assays. we found that ANO1 expression was increased during the first two weeks, and decreased in the third week after MI. Fluorescence double labeling showed that ANO1 was mainly expressed in cardiac fibroblasts (CFs) and displayed an increased expression in CFs with proliferation tendency. The proliferation and secretion of CFs were markedly inhibited by knockdown of ANO1. RNA-Seq showed that most of the downregulation genes were related to the proliferation of CFs and cardiac fibrosis. After ANO1 knockdown, the expressions of angiotensin II type 1 receptor (AT1R) and cell nuclear proliferation antigen were markedly reduced, and the phosphorylation levels of MEK and ERK1/2 was decreased significantly, indicating that ANO1 regulate cardiac fibrosis through ATIR-mediated MAPK signaling pathway. These findings would be useful for the development of therapeutic strategies targeting ANO1 to treat and prevent cardiac fibrosis.
Collapse
Affiliation(s)
- Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, People's Republic of China; Department of Physiology, Medical College of Shihezi University, Shihezi, People's Republic of China
| | - Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Ketao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, People's Republic of China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, People's Republic of China.
| | - Junqiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, People's Republic of China.
| |
Collapse
|
28
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
29
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
30
|
Cyst growth in ADPKD is prevented by pharmacological and genetic inhibition of TMEM16A in vivo. Nat Commun 2020; 11:4320. [PMID: 32859916 PMCID: PMC7455562 DOI: 10.1038/s41467-020-18104-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD) multiple bilateral renal cysts gradually enlarge, leading to a decline in renal function. Transepithelial chloride secretion through cystic fibrosis transmembrane conductance regulator (CFTR) and TMEM16A (anoctamin 1) are known to drive cyst enlargement. Here we demonstrate that loss of Pkd1 increased expression of TMEM16A and CFTR and Cl- secretion in murine kidneys, with TMEM16A essentially contributing to cyst growth. Upregulated TMEM16A enhanced intracellular Ca2+ signaling and proliferation of Pkd1-deficient renal epithelial cells. In contrast, increase in Ca2+ signaling, cell proliferation and CFTR expression was not observed in Pkd1/Tmem16a double knockout mice. Knockout of Tmem16a or inhibition of TMEM16A in vivo by the FDA-approved drugs niclosamide and benzbromarone, as well as the TMEM16A-specific inhibitor Ani9 largely reduced cyst enlargement and abnormal cyst cell proliferation. The present data establish a therapeutic concept for the treatment of ADPKD.
Collapse
|
31
|
Sharma A, Elble RC. From Orai to E-Cadherin: Subversion of Calcium Trafficking in Cancer to Drive Proliferation, Anoikis-Resistance, and Metastasis. Biomedicines 2020; 8:biomedicines8060169. [PMID: 32575848 PMCID: PMC7345168 DOI: 10.3390/biomedicines8060169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
The common currency of epithelial differentiation and homeostasis is calcium, stored primarily in the endoplasmic reticulum, rationed according to need, and replenished from the extracellular milieu via store-operated calcium entry (SOCE). This currency is disbursed by the IP3 receptor in response to diverse extracellular signals. The rate of release is governed by regulators of proliferation, autophagy, survival, and programmed cell death, the strength of the signal leading to different outcomes. Intracellular calcium acts chiefly through intermediates such as calmodulin that regulates growth factor receptors such as epidermal growth factor receptor (EGFR), actin polymerization, and adherens junction assembly and maintenance. Here we review this machinery and its role in differentiation, then consider how cancer cells subvert it to license proliferation, resist anoikis, and enable metastasis, either by modulating the level of intracellular calcium or its downstream targets or effectors such as EGFR, E-cadherin, IQGAP1, TMEM16A, CLCA2, and TRPA1. Implications are considered for the roles of E-cadherin and growth factor receptors in circulating tumor cells and metastasis. The discovery of novel, cell type-specific modulators and effectors of calcium signaling offers new possibilities for cancer chemotherapy.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Randolph C. Elble
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence: ; Tel.: +217-545-7381
| |
Collapse
|
32
|
Dual role of Ca 2+-activated Cl - channel transmembrane member 16A in lipopolysaccharide-induced intestinal epithelial barrier dysfunction in vitro. Cell Death Dis 2020; 11:404. [PMID: 32472021 PMCID: PMC7260209 DOI: 10.1038/s41419-020-2614-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Dysfunction of intestinal epithelial Cl− currents and channels have previously been reported in inflammatory intestinal diseases. However, the expression and function of the newly identified Ca2+-activated Cl− channel transmembrane member 16A (TMEM16A) in the intestinal epithelium is unclear. In this study, we investigated the effects of TMEM16A on intestinal epithelial barrier function in vitro. Intestinal epithelial barrier dysfunction was modeled by lipopolysaccharide (LPS)-induced cell damage in intestinal epithelial IEC-6 cells and the effects of TMEM16A knockdown and overexpression on cell apoptosis and tight junctions were studied. Corresponding mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence analysis, respectively. TMEM16A expression was significantly increased by LPS, possibly via a process involving the transcription factor nuclear factor-κB and both Th1 and Th2 cytokines. Low- and high-dose LPS dysregulated tight junctions (high-myosin light-chain kinase expression) and cell apoptosis-dependent cell barrier dysfunction, respectively. TMEM16A aggravated cell barrier dysfunction in IEC-6 cells pretreated with low-dose LPS by activating ERK1/MLCK signaling pathways, but protected against cell barrier dysfunction by activating ERK/Bcl-2/Bax signaling pathways in IEC-6 cells pretreated with high-dose LPS. We concluded that TMEM16A played a dual role in LPS-induced epithelial dysfunction in vitro. The present results indicated the complex regulatory mechanisms and targeting of TMEM16A may provide potential treatment strategies for intestinal epithelial barrier damage, as well as forming the basis for future studies of the expression and function of TMEM16A in normal and inflammatory intestinal diseases in vivo.
Collapse
|
33
|
Suppression of CaMKIIβ Inhibits ANO1-Mediated Glioblastoma Progression. Cells 2020; 9:cells9051079. [PMID: 32357567 PMCID: PMC7290681 DOI: 10.3390/cells9051079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
ANO1, a Ca2+-activated chloride channel, is highly expressed in glioblastoma cells and its surface expression is involved in their migration and invasion. However, the regulation of ANO1 surface expression in glioblastoma cells is largely unknown. In this study, we found that Ca2+/Calmodulin-dependent protein kinase II (CaMKII) β specifically enhances the surface expression and channel activity of ANO1 in U251 glioblastoma cells. When KN-93, a CaMKII inhibitor, was used to treat U251 cells, the surface expression and channel activity of ANO1 were significantly reduced. Only CaMKIIβ, among the four CaMKII isoforms, increased the surface expression and channel activity of ANO1 in a heterologous expression system. Additionally, gene silencing of CaMKIIβ suppressed the surface expression and channel activity of ANO1 in U251 cells. Moreover, gene silencing of CaMKIIβ or ANO1 prominently reduced the migration and invasion of U251 and U87 MG glioblastoma cells. We thus conclude that CaMKIIβ plays a specific role in the surface expression of ANO1 and in the ANO1-mediated tumorigenic properties of glioblastoma cells, such as migration and invasion.
Collapse
|
34
|
Centeio R, Cabrita I, Benedetto R, Talbi K, Ousingsawat J, Schreiber R, Sullivan JK, Kunzelmann K. Pharmacological Inhibition and Activation of the Ca 2+ Activated Cl - Channel TMEM16A. Int J Mol Sci 2020; 21:ijms21072557. [PMID: 32272686 PMCID: PMC7177308 DOI: 10.3390/ijms21072557] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
TMEM16A is a Ca2+ activated Cl− channel with important functions in airways, intestine, and other epithelial organs. Activation of TMEM16A is proposed as a therapy in cystic fibrosis (CF) to reinstall airway Cl− secretion and to enhance airway surface liquid (ASL). This CFTR-agnostic approach is thought to improve mucociliary clearance and lung function in CF. This could indeed improve ASL, however, mucus release and airway contraction may also be induced by activators of TMEM16A, particularly in inflamed airways of patients with asthma, COPD, or CF. Currently, both activators and inhibitors of TMEM16A are developed and examined in different types of tissues. Here we compare activation and inhibition of endogenous and overexpressed TMEM16A and analyze potential off-target effects. The three well-known blockers benzbromarone, niclosamide, and Ani9 inhibited both TMEM16A and ATP-induced Ca2+ increase by variable degrees, depending on the cell type. Niclosamide, while blocking Ca2+ activated TMEM16A, also induced a subtle but significant Ca2+ store release and inhibited store-operated Ca2+ influx. Niclosamide, benzbromarone and Ani9 also affected TMEM16F whole cell currents, indicating limited specificity for these inhibitors. The compounds Eact, cinnamaldehyde, and melittin, as well as the phosphatidylinositol diC8-PIP2 are the reported activators of TMEM16A. However, the compounds were unable to activate endogenous TMEM16A in HT29 colonic epithelial cells. In contrast, TMEM16A overexpressed in HEK293 cells was potently stimulated by these activators. We speculate that overexpressed TMEM16A might have a better accessibility to intracellular Ca2+, which causes spontaneous activity even at basal intracellular Ca2+ concentrations. Small molecules may therefore potentiate pre-stimulated TMEM16A currents, but may otherwise fail to activate silent endogenous TMEM16A.
Collapse
Affiliation(s)
- Raquel Centeio
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | - Inês Cabrita
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | - Roberta Benedetto
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | - Khaoula Talbi
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
| | | | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany; (R.C.); (I.C.); (R.B.); (K.T.); (J.O.); (R.S.)
- * Correspondence: ; Tel.: +49-(0)941-943-4302; Fax: +49-(0)941-943-4315
| |
Collapse
|
35
|
TMEM16A: An Alternative Approach to Restoring Airway Anion Secretion in Cystic Fibrosis? Int J Mol Sci 2020; 21:ijms21072386. [PMID: 32235608 PMCID: PMC7177896 DOI: 10.3390/ijms21072386] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
The concept that increasing airway hydration leads to improvements in mucus clearance and lung function in cystic fibrosis has been clinically validated with osmotic agents such as hypertonic saline and more convincingly with cystic fibrosis transmembrane conductance regulator (CFTR) repair therapies. Although rapidly becoming the standard of care in cystic fibrosis (CF), current CFTR modulators do not treat all patients nor do they restore the rate of decline in lung function to normal levels. As such, novel approaches are still required to ensure all with CF have effective therapies. Although CFTR plays a fundamental role in the regulation of fluid secretion across the airway mucosa, there are other ion channels and transporters that represent viable targets for future therapeutics. In this review article we will summarise the current progress with CFTR-independent approaches to restoring mucosal hydration, including epithelial sodium channel (ENaC) blockade and modulators of SLC26A9. A particular emphasis is given to modulation of the airway epithelial calcium-activated chloride channel (CaCC), TMEM16A, as there is controversy regarding whether it should be positively or negatively modulated. This is discussed in light of a recent report describing for the first time bona fide TMEM16A potentiators and their positive effects upon epithelial fluid secretion and mucus clearance.
Collapse
|
36
|
Wang Q, Bai L, Luo S, Wang T, Yang F, Xia J, Wang H, Ma K, Liu M, Wu S, Wang H, Guo S, Sun X, Xiao Q. TMEM16A Ca 2+-activated Cl - channel inhibition ameliorates acute pancreatitis via the IP 3R/Ca 2+/NFκB/IL-6 signaling pathway. J Adv Res 2020; 23:25-35. [PMID: 32071789 PMCID: PMC7016042 DOI: 10.1016/j.jare.2020.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 02/08/2023] Open
Abstract
TMEM16A Ca2+-activated Cl- channels are expressed in pancreatic acinar cells and participate in inflammation-associated diseases. Whether TMEM16A contributes to the pathogenesis of acute pancreatitis (AP) remains unknown. Here, we found that increased TMEM16A expression in the pancreatic tissue was correlated with the interleukin-6 (IL-6) level in the pancreatic tissue and in the serum of a cerulein-induced AP mouse model. IL-6 treatment promoted TMEM16A expression in AR42J pancreatic acinar cells via the IL-6 receptor (IL-6R)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. In addition, TMEM16A was co-immunoprecipitated with the inositol 1,4,5-trisphosphate receptor (IP3R) and was activated by IP3R-mediated Ca2+ release. TMEM16A inhibition reduced the IP3R-mediated Ca2+ release induced by cerulein. Furthermore, TMEM16A overexpression activated nuclear factor-κB (NFκB) and increased IL-6 release by increasing intracellular Ca2+. TMEM16A knockdown by shRNAs reduced the cerulein-induced NFκB activation by Ca2+. TMEM16A inhibitors inhibited NFκB activation by decreasing channel activity and reducing TMEM16A protein levels in AR42J cells, and it ameliorated pancreatic damage in cerulein-induced AP mice. This study identifies a novel mechanism underlying the pathogenesis of AP by which IL-6 promotes TMEM16A expression via IL-6R/STAT3 signaling activation, and TMEM16A overexpression increases IL-6 secretion via IP3R/Ca2+/NFκB signaling activation in pancreatic acinar cells. TMEM16A inhibition may be a new potential strategy for treating AP.
Collapse
Key Words
- AP, acute pancreatitis
- Acute pancreatitis
- BAPTA-AM, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid-acetyloxymethyl ester
- CCK, cholesystokinin
- CFBE, cystic fibrosis bronchial epithelial
- CaCCinh-A01, Ca2+-activated Cl− channel inhibitor-A01
- EDTA, ethylenediaminetetraacetic acid
- EGF, epidermal growth factor
- EGFP, green fluorescent protein
- EGFR, epidermal growth factor receptor
- EGTA, ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid
- ELISA, enzyme-linked immunosorbent assay
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- HEPES, N-2-hydroxyethil-piperazine-N'-2-ethanesulfonic acid
- IL-6, interleukin 6
- IL-6R, interleukin 6 receptor
- IP3R, inositol 1,4,5-trisphosphate receptor
- Inositol 1,4,5-trisphosphate receptor
- Interleukin-6
- NFκB
- NFκB, nuclear factor-κB
- NMDG, N-methyl-D-glucamine
- NP-40, Nonidet P-40
- PACs, pancreatic acinar cells
- RIPA, radio immunoprecipitation assay
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- STAT3, signal transducers and activators of transcription 3
- T16Ainh-A01, TMEM16A inhibitor-A01
- TMEM16A
- Tris, tris(hydroxymethyl)aminomethane
- WT, wild type
- shRNAs, short hairpin RNAs
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Department of Experimental Center, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Lichuan Bai
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Tianyu Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Fan Yang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jialin Xia
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shuwei Wu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Huijie Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shibin Guo
- Department of Gastroenterological Endoscopy, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaohong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
37
|
Hyuga S, Danielsson J, Vink J, Fu XW, Wapner R, Gallos G. Functional comparison of anoctamin 1 antagonists on human uterine smooth muscle contractility and excitability. J Smooth Muscle Res 2019; 54:28-42. [PMID: 29937453 PMCID: PMC6013749 DOI: 10.1540/jsmr.54.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Pre-term birth is a major health care challenge
throughout the world, and preterm labor represents a potentially reversible
component of this problem. Current tocolytics do not improve preterm labor
beyond 48 h. We have previously shown that anoctamin 1 (ANO1) channel blockade
results in relaxation of pre-contracted human uterine smooth muscle (USM). Three
drug classes with reported medicinal effects in humans also have members with
ANO1 antagonism. In this study, we compared the ability of representatives from
these 3 classes to reduce human USM contractility and excitability.
Objective: This study sought to examine the comparative potency
of 3 ANO1 antagonists on pregnant human USM relaxation, contraction frequency
reduction, inhibition of intracellular calcium release and membrane
hyperpolarization. Methods: Experiments were performed using: 1)
Ex vivo organ bath (human pregnant tissue), 2)
Oxytocin-induced calcium flux (in vitro human USM cells) and 3)
Membrane potential assay (in vitro human USM cells).
Results: Benzbromarone (BB) demonstrated the greatest potency
among the compounds tested with respect to force, frequency inhibition, reducing
calcium elevation and depolarizing membrane potential. Conclusion:
While all 3 ANO1 antagonists attenuate pregnant human uterine tissue
contractility and excitability, BB is the most potent tocolytic drug. Our
findings may serve as a foundation for future structure-function analyses for
novel tocolytic drug development.
Collapse
Affiliation(s)
- Shunsuke Hyuga
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Jennifer Danielsson
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Joy Vink
- Department of Obstetrics & Gynecology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Xiao Wen Fu
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Ronald Wapner
- Department of Obstetrics & Gynecology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - George Gallos
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| |
Collapse
|
38
|
Liu PY, Zhang Z, Liu Y, Tang XL, Shu S, Bao XY, Zhang Y, Gu Y, Xu Y, Cao X. TMEM16A Inhibition Preserves Blood-Brain Barrier Integrity After Ischemic Stroke. Front Cell Neurosci 2019; 13:360. [PMID: 31447648 PMCID: PMC6691060 DOI: 10.3389/fncel.2019.00360] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022] Open
Abstract
The inflammatory response plays a pivotal role in Blood–Brain Barrier (BBB) destruction following ischemic brain injury. Enhanced leukocyte adhesion to vascular endothelial cells is an essential event in the inflammatory process. TMEM16A, a newly discovered protein regulating calcium-activated chloride channels, is widely expressed in eukaryotes. Recent studies have suggested that upregulated expression of TMEM16A is associated with the occurrence and development of many diseases. However, the role of TMEM16A in regulating BBB integrity after ischemic stroke has not been fully investigated. In this study, we found that TMEM16A is mainly expressed in brain endothelial cells and upregulated after ischemic stroke in the mouse brain. Caccinh-A01, an TMEM16A inhibitor that reduced its upregulation, attenuated brain infarct size and neurological deficits after ischemic stroke. ICAM-1 and MPO expression and BBB permeability were decreased after TMEM16A inhibitor administration. In addition, TMEM16A silencing rescued oxygen-glucose deprivation/reoxygenation (OGD/R)-induced transendothelial permeability in vitro accompanied by decreased ICAM-1 expression and leukocyte adhesion. Furthermore, our mechanistic study showed that TMEM16A knockdown alleviated NF-κB activation and nuclear translocation, indicating that TMEM16A knockdown downregulated OGD/R-induced ICAM-1 expression in an NF-κB-dependent manner. Finally, NF-κB inhibitor treatment also alleviated OGD/ R-induced BBB permeability, confirming that activated NF-κB and increased ICAM-1 are essential factors involved in ischemia-induced BBB damage. Thus, our research provides a promising treatment strategy against BBB destruction after ischemic stroke, and TMEM16A may become a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Pin-Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xue-Lian Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xin-Yu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yan Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
39
|
Kim JY, Youn HY, Choi J, Baek SK, Kwon SY, Eun BK, Park JY, Oh KH. Anoctamin-1 affects the migration and invasion of anaplastic thyroid carcinoma cells. Anim Cells Syst (Seoul) 2019; 23:294-301. [PMID: 31489251 PMCID: PMC6711113 DOI: 10.1080/19768354.2019.1614981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 11/11/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare malignancy with very poor prognosis. The exact cause underlying its strong aggressive nature is not clear. Here, we discovered the elevated expression of anoctamin-1 (ANO1; Ca2+-activated Cl− channels) in advanced-stage ATC tissue. Using different ATC cell lines, the degree of expression of ANO1 was found to be related to the degree of ATC cell invasion by quantitative reverse transcription polymerase chain reaction and western blotting. Suppression of ANO1 activity either by selective inhibitor (T16Ainh-A01) or by siRNA significantly attenuated the migration and invasion of ATC cells. In conclusion, ANO1 appears to increase the ability of ATC cells to invade and migrate. Our results also suggest that the expression of ANO1 in patients with ATC may be helpful in predicting the prognosis of ATC.
Collapse
Affiliation(s)
- Jae-Young Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung Kuk Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soon Young Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Bok Kee Eun
- Core-Laboratory for Convergent Translational Research, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Kyoung Ho Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Lee YH, Yi GS. Prediction of Novel Anoctamin1 (ANO1) Inhibitors Using 3D-QSAR Pharmacophore Modeling and Molecular Docking. Int J Mol Sci 2018; 19:ijms19103204. [PMID: 30336555 PMCID: PMC6214110 DOI: 10.3390/ijms19103204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 11/24/2022] Open
Abstract
Recently, anoctamin1 (ANO1), a calcium-activated chloride channel, has been considered an important drug target, due to its involvement in various physiological functions, as well as its possibility for treatment of cancer, pain, diarrhea, hypertension, and asthma. Although several ANO1 inhibitors have been discovered by high-throughput screening, a discovery of new ANO1 inhibitors is still in the early phase, in terms of their potency and specificity. Moreover, there is no computational model to be able to identify a novel lead candidate of ANO1 inhibitor. Therefore, three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophore modeling approach was employed for identifying the essential chemical features to be required in the inhibition of ANO1. The pharmacophore hypothesis 2 (Hypo2) was selected as the best model based on the highest correlation coefficient of prediction on the test set (0.909). Hypo2 comprised a hydrogen bond acceptor, a hydrogen bond donor, a hydrophobic, and a ring aromatic feature with good statistics of the total cost (73.604), the correlation coefficient of the training set (0.969), and the root-mean-square deviation (RMSD) value (0.946). Hypo2 was well assessed by the test set, Fischer randomization, and leave-one-out methods. Virtual screening of the ZINC database with Hypo2 retrieved the 580 drug-like candidates with good potency and ADMET properties. Finally, two compounds were selected as novel lead candidates of ANO1 inhibitor, based on the molecular docking score and the interaction analysis. In this study, the best pharmacophore model, Hypo2, with notable predictive ability was successfully generated, and two potential leads of ANO1 inhibitors were identified. We believe that these compounds and the 3D-QSAR pharmacophore model could contribute to discovering novel and potent ANO1 inhibitors in the future.
Collapse
Affiliation(s)
- Yoon Hyeok Lee
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Gwan-Su Yi
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
41
|
Lambert M, Capuano V, Olschewski A, Sabourin J, Nagaraj C, Girerd B, Weatherald J, Humbert M, Antigny F. Ion Channels in Pulmonary Hypertension: A Therapeutic Interest? Int J Mol Sci 2018; 19:ijms19103162. [PMID: 30322215 PMCID: PMC6214085 DOI: 10.3390/ijms19103162] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial and severe disease without curative therapies. PAH pathobiology involves altered pulmonary arterial tone, endothelial dysfunction, distal pulmonary vessel remodeling, and inflammation, which could all depend on ion channel activities (K⁺, Ca2+, Na⁺ and Cl-). This review focuses on ion channels in the pulmonary vasculature and discusses their pathophysiological contribution to PAH as well as their therapeutic potential in PAH.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Véronique Capuano
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, Graz 8010, Austria.
- Department of Physiology, Medical University Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria.
| | - Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, UMRS 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, Graz 8010, Austria.
| | - Barbara Girerd
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Jason Weatherald
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
- Division of Respirology, Department of Medicine, University of Calgary, Calgary, AB T1Y 6J4, Canada.
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T1Y 6J4, Canada.
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| |
Collapse
|
42
|
Bill A, Alex Gaither L. The Mechanistic Role of the Calcium-Activated Chloride Channel ANO1 in Tumor Growth and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 966:1-14. [PMID: 28293832 DOI: 10.1007/5584_2016_201] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple studies have described the high expression and amplification of Anoctamin 1 (ANO1) in various cancers, including, but not limited to breast cancer, head and neck cancer, gastrointestinal stromal tumors and glioblastoma. ANO1 has been demonstrated to be critical for tumor growth in breast and head and neck cancers through its regulation of EGFR signaling and pathway modulators like MAPK and protein kinase B. However, the discovery of ANO1 as a calcium activated chloride channel came as a surprise to the field and has given rise to many questions. How does a chloride channel promote oncogenesis? Is the chloride channel function of ANO1 important for its role in cancer? Does ANO1 exhibits chloride-independent functions in cancer cells? This review summarizes the current understanding of ANO1's function in cancer, provides a synopsis of the findings addressing the open questions in the field and gives an outlook on the promising future of ANO1 as a potential therapeutic target for the treatment of various cancers.
Collapse
Affiliation(s)
- Anke Bill
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | | |
Collapse
|
43
|
Inhibition of ANO1/TMEM16A induces apoptosis in human prostate carcinoma cells by activating TNF-α signaling. Cell Death Dis 2018; 9:703. [PMID: 29899325 PMCID: PMC5999606 DOI: 10.1038/s41419-018-0735-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 12/16/2022]
Abstract
Overexpression of the Ca2+-activated chloride channel ANO1/TMEM16A is implicated in tumorigenesis, and inhibition of ANO1 overexpression suppresses xenograft tumor growth and invasiveness. However, the underlying molecular mechanism for ANO1 inhibition in suppression of tumorigenesis remains unknown. Here, we show that silencing or inhibition of endogenous ANO1 inhibits cell growth, induces apoptosis and upregulates TNF-α expression in prostate cancer PC-3 cells. Enhancement of TNF-α signaling by ANO1 knockdown leads to upregulation of phosphorylated Fas-associated protein with death domain and caspase activation. Furthermore, silencing of ANO1 inhibits growth of PC-3 xenograft tumors in nude mice and induces apoptosis in tumors via upregulation of TNF-α signaling. Taken together, our findings provide mechanistic insight into promoting apoptosis in prostate cancer cells by ANO1 inhibition through upregulation of TNF-α signaling.
Collapse
|
44
|
Danielsson J, Vink J, Hyuga S, Fu XW, Funayama H, Wapner R, Blanks AM, Gallos G. Anoctamin Channels in Human Myometrium: A Novel Target for Tocolysis. Reprod Sci 2018; 25:1589-1600. [PMID: 29471754 DOI: 10.1177/1933719118757683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Spontaneous preterm labor leading to preterm birth is a significant obstetric problem leading to neonatal morbidity and mortality. Current tocolytics are not completely effective and novel targets may afford a therapeutic benefit. OBJECTIVE To determine whether the anoctamin (ANO) family, including the calcium-activated chloride channel ANO1, is present in pregnant human uterine smooth muscle (USM) and whether pharmacological and genetic modulation of ANO1 modulates USM contraction. METHODS Reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunohistochemical staining were done to determine which members of the ANO family are expressed in human USM. Uterine smooth muscle strips were studied in an organ bath to determine whether ANO1 antagonists inhibit oxytocin-induced USM contractions. Anoctamin 1 small interfering RNA (siRNA) knockdown was performed to determine its effect on filamentous-/globular (F/G)-actin ratio, a measurement of actin polymerization's role in promoting smooth muscle contraction. RESULTS Messenger RNA (mRNA) encoding all members of the ANO family (except ANO7) are expressed in pregnant USM tissue. Anoctamin 1 mRNA expression was decreased 15.2-fold in pregnant USM compared to nonpregnant. Anoctamin 1 protein is expressed in pregnant human USM tissue. Functional organ bath studies with pregnant human USM tissue demonstrated that the ANO1 antagonist benzbromarone attenuates the force and frequency of oxytocin-induced contractions. In human USM cells, siRNA knockdown of ANO1 decreases F-/G-actin ratios. CONCLUSION Multiple members of the ANO family, including the calcium-activated chloride channel ANO1, are expressed in human USM. Antagonism of ANO1 by pharmacological inhibition and genetic knockdown leads to an attenuation of contraction in pregnant human USM. Anoctamin 1 is a potentially novel target for tocolysis.
Collapse
Affiliation(s)
- Jennifer Danielsson
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Joy Vink
- 2 Department of Obstetrics and Gynecology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Shunsuke Hyuga
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Xiao Wen Fu
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hiromi Funayama
- 3 Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ronald Wapner
- 2 Department of Obstetrics and Gynecology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrew M Blanks
- 4 Cell and Developmental Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - George Gallos
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
45
|
Guan L, Song Y, Gao J, Gao J, Wang K. Inhibition of calcium-activated chloride channel ANO1 suppresses proliferation and induces apoptosis of epithelium originated cancer cells. Oncotarget 2018; 7:78619-78630. [PMID: 27732935 PMCID: PMC5346664 DOI: 10.18632/oncotarget.12524] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/01/2016] [Indexed: 11/25/2022] Open
Abstract
ANO1, a calcium-activated chloride channel, has been reported to be amplified or overexpressed in tissues of several cancers. However, reports on its roles in tumor progression obtained from cancer cell lines are inconsistent, suggesting that the role of ANO1 in tumorigenesis is likely dependent on either its expression level or cell-type expressing ANO1. To investigate the biological roles of ANO1 in different tumor cells, we, in this study, selected several cancer cell lines and a normal HaCaT cell line with high expression levels of ANO1, and examined the function of ANO1 in these cells using approaches of lentiviral knockdown and pharmacological inhibition. We found that ANO1 knockdown significantly inhibited cell proliferation and induced cell apoptosis in either tumor cell lines or normal HaCaT cell line. Moreover, silencing ANO1 arrested cancer cells at G1 phase of cell cycle. Treatment with ANO1 inhibitor CaCCinh-A01 reduced cell viability in a dose-dependent manner. Furthermore, both ANO1 inhibitors CaCCinh-A01 and T16Ainh-A01 significantly suppressed cell migration. Our findings show that ANO1 overexpression promotes cancer cell proliferation and migration; and genetic or pharmacological inhibition of ANO1 induces apoptosis and cell cycle arrest at G1 phase in different types of epithelium-originated cancer cells.
Collapse
Affiliation(s)
- Lizhao Guan
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Yan Song
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Jian Gao
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Jianjun Gao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China
| | - KeWei Wang
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China.,Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China
| |
Collapse
|
46
|
Bae JS, Park JY, Park SH, Ha SH, An AR, Noh SJ, Kwon KS, Jung SH, Park HS, Kang MJ, Jang KY. Expression of ANO1/DOG1 is associated with shorter survival and progression of breast carcinomas. Oncotarget 2017; 9:607-621. [PMID: 29416639 PMCID: PMC5787493 DOI: 10.18632/oncotarget.23078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/14/2017] [Indexed: 01/04/2023] Open
Abstract
The expression of ANO1 is considered to have diagnostic specificity for gastrointestinal stromal tumors. However, its function as a calcium-activated chloride channel suggests that the expression of ANO1 is not restricted to gastrointestinal stromal tumors. Recently, it has been reported that ANO1 has roles in the progression of human malignant tumors. However, the role of ANO1 in breast carcinoma has been controversial. Therefore, we investigated the expression of ANO1 in 139 breast carcinoma patients and the role of ANO1 in vitro. The immunohistochemical expression of ANO1 was significantly associated with the expression of β-catenin, cyclin D1, MMP9, snail, and E-cadherin. Especially, ANO1 expression was an independent indicator of poor prognosis of shorter overall survival and relapse-free survival of breast carcinoma patients by multivariate analysis. In MCF7 and MDA-MB-231 breast carcinoma cells, inhibition of ANO1 with T16Ainh-A01 or siRNA for ANO1 significantly suppressed the proliferation of cells. Knock-down of ANO1 with siRNA induced G0/G1 cell cycle arrest and significantly inhibited the invasiveness of breast carcinoma cells. Knock-down of ANO1 decreased the expression of β-catenin, cyclin D1, MMP9, snail, and N-cadherin, and increased the expression of E-cadherin. In conclusion, this study demonstrates that ANO1 expression is an indicator of poor prognosis of breast carcinoma patients and suggests that ANO1 might be a therapeutic target for breast carcinoma patients with ANO1-positive tumors and poor prognosis.
Collapse
Affiliation(s)
- Jun Sang Bae
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Jeong Yeol Park
- Department of Forensic Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Sang Hoon Ha
- Division of Biotechnology, Chonbuk National University, Iksan, Republic of Korea
| | - Ae Ri An
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Sang Jae Noh
- Department of Forensic Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Keun Sang Kwon
- Department of Preventive Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Myoung Jae Kang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| |
Collapse
|
47
|
Godse NR, Khan N, Yochum ZA, Gomez-Casal R, Kemp C, Shiwarski DJ, Seethala RS, Kulich S, Seshadri M, Burns TF, Duvvuri U. TMEM16A/ANO1 Inhibits Apoptosis Via Downregulation of Bim Expression. Clin Cancer Res 2017; 23:7324-7332. [PMID: 28899969 DOI: 10.1158/1078-0432.ccr-17-1561] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/27/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022]
Abstract
Purpose: TMEM16A is a calcium-activated chloride channel that is amplified in a variety of cancers, including 30% of head and neck squamous cell carcinomas (HNSCCs), raising the possibility of an anti-apoptotic role in malignant cells. This study investigated this using a multimodal, translational investigation.Experimental Design: Combination of (i) in vitro HNSCC cell culture experiments assessing cell viability, apoptotic activation, and protein expression (ii) in vivo studies assessing similar outcomes, and (iii) molecular and staining analysis of human HNSCC samples.Results: TMEM16A expression was found to correlate with greater tumor size, increased Erk 1/2 activity, less Bim expression, and less apoptotic activity overall in human HNSCC. These findings were corroborated in subsequent in vitro and in vivo studies and expanded to include a cisplatin-resistant phenotype with TMEM16A overexpression. A cohort of 41 patients with laryngeal cancer demonstrated that cases that recurred after chemoradiation failure were associated with a greater TMEM16A overexpression rate than HNSCC that did not recur.Conclusions: Ultimately, this study implicates TMEM16A as a contributor to tumor progression by limiting apoptosis and as a potential biomarker of more aggressive disease. Clin Cancer Res; 23(23); 7324-32. ©2017 AACR.
Collapse
Affiliation(s)
- Neal R Godse
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Nayel Khan
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Zachary A Yochum
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roberto Gomez-Casal
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Carolyn Kemp
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Daniel J Shiwarski
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,VA Pittsburgh Health System, Pittsburgh, Pennsylvania
| | - Raja S Seethala
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott Kulich
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mukund Seshadri
- Department of Head and Neck Surgery, Roswell Park Cancer Institute, Buffalo, New York
| | - Timothy F Burns
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Umamaheswar Duvvuri
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,VA Pittsburgh Health System, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, Xiao Q. Cell-specific mechanisms of TMEM16A Ca 2+-activated chloride channel in cancer. Mol Cancer 2017; 16:152. [PMID: 28893247 PMCID: PMC5594453 DOI: 10.1186/s12943-017-0720-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023] Open
Abstract
TMEM16A (known as anoctamin 1) Ca2+-activated chloride channel is overexpressed in many tumors. TMEM16A overexpression can be caused by gene amplification in many tumors harboring 11q13 amplification. TMEM16A expression is also controlled in many cancer cells via transcriptional regulation, epigenetic regulation and microRNAs. In addition, TMEM16A activates different signaling pathways in different cancers, e.g. the EGFR and CAMKII signaling in breast cancer, the p38 and ERK1/2 signaling in hepatoma, the Ras-Raf-MEK-ERK1/2 signaling in head and neck squamous cell carcinoma and bladder cancer, and the NFκB signaling in glioma. Furthermore, TMEM16A overexpression has been reported to promote, inhibit, or produce no effects on cell proliferation and migration in different cancer cells. Since TMEM16A exerts different roles in different cancer cells via activation of distinct signaling pathways, we try to develop the idea that TMEM16A regulates cancer cell proliferation and migration in a cell-dependent mechanism. The cell-specific role of TMEM16A may depend on the cellular environment that is predetermined by TMEM16A overexpression mechanisms specific for a particular cancer type. TMEM16A may exert its cell-specific role via its associated protein networks, phosphorylation by different kinases, and involvement of different signaling pathways. In addition, we discuss the role of TMEM16A channel activity in cancer, and its clinical use as a prognostic and predictive marker in different cancers. This review highlights the cell-type specific mechanisms of TMEM16A in cancer, and envisions the promising use of TMEM16A inhibitors as a potential treatment for TMEM16A-overexpressing cancers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Liang Zou
- Department of Anesthesiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| |
Collapse
|
49
|
Affiliation(s)
- George M. Burslem
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
50
|
Truong EC, Phuan PW, Reggi AL, Ferrera L, Galietta LJ, Levy SE, Moises AC, Cil O, Diez-Cecilia E, Lee S, Verkman AS, Anderson MO. Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A). J Med Chem 2017; 60:4626-4635. [PMID: 28493701 PMCID: PMC5516794 DOI: 10.1021/acs.jmedchem.7b00020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transmembrane protein 16A (TMEM16A), also called anoctamin 1 (ANO1), is a calcium-activated chloride channel expressed widely mammalian cells, including epithelia, vascular smooth muscle tissue, electrically excitable cells, and some tumors. TMEM16A inhibitors have been proposed for treatment of disorders of epithelial fluid and mucus secretion, hypertension, asthma, and possibly cancer. Herein we report, by screening, the discovery of 2-acylaminocycloalkylthiophene-3-carboxylic acid arylamides (AACTs) as inhibitors of TMEM16A and analysis of 48 synthesized analogs (10ab-10bw) of the original AACT compound (10aa). Structure-activity studies indicated the importance of benzene substituted as 2- or 4-methyl, or 4-fluoro, and defined the significance of thiophene substituents and size of the cycloalkylthiophene core. The most potent compound (10bm), which contains an unusual bromodifluoroacetamide at the thiophene 2-position, had IC50 of ∼30 nM, ∼3.6-fold more potent than the most potent previously reported TMEM16A inhibitor 4 (Ani9), and >10-fold improved metabolic stability. Direct and reversible inhibition of TMEM16A by 10bm was demonstrated by patch-clamp analysis. AACTs may be useful as pharmacological tools to study TMEM16A function and as potential drug development candidates.
Collapse
Affiliation(s)
- Eric C. Truong
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Puay W. Phuan
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Amanda L. Reggi
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Loretta Ferrera
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, ITALY
| | - Luis J.V. Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), ITALY
| | - Sarah E. Levy
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Alannah C. Moises
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Onur Cil
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Elena Diez-Cecilia
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Sujin Lee
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Marc O. Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| |
Collapse
|