1
|
DeWeese DE, Everett MP, Babicz JT, Daruwalla A, Solomon EI, Kiser PD. Spectroscopy and crystallography define carotenoid oxygenases as a new subclass of mononuclear non-heme Fe II enzymes. J Biol Chem 2025; 301:108444. [PMID: 40147775 PMCID: PMC12051055 DOI: 10.1016/j.jbc.2025.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Carotenoid cleavage dioxygenases (CCDs) are non-heme FeII enzymes that catalyze the oxidative cleavage of alkene bonds in carotenoids, stilbenoids, and related compounds. How these enzymes control the reaction of dioxygen (O2) with their alkene substrates is unclear. Here, we apply spectroscopy in conjunction with X-ray crystallography to define the iron coordination geometry of a model CCD, CAO1 (Neurospora crassa carotenoid oxygenase 1), in its resting state and following substrate binding and coordination sphere substitutions. Resting CAO1 exhibits a five-coordinate (5C), square pyramidal FeII center that undergoes steric distortion toward a trigonal bipyramidal geometry in the presence of piceatannol. Titrations with the O2-analog, nitric oxide, show a >100-fold increase in iron-nitric oxide affinity upon substrate binding, defining a crucial role for the substrate in activating the FeII site for O2 reactivity. The importance of the 5C FeII structure for reactivity was probed through mutagenesis of the second-sphere Thr151 residue of CAO1, which occludes ligand binding at the sixth coordination position. A T151G substitution resulted in the conversion of the iron center to a six-coordinate state and a 135-fold reduction in apparent catalytic efficiency toward piceatannol compared with the wildtype enzyme. Substrate complexation resulted in partial six-coordinate to 5C conversion, indicating solvent dissociation from the iron center. Additional substitutions at this site demonstrated a general functional importance of the occluding residue within the CCD superfamily. Taken together, these data suggest an ordered mechanism of CCD catalysis occurring via substrate-promoted solvent replacement by O2. CCDs thus represent a new class of mononuclear non-heme FeII enzymes.
Collapse
Affiliation(s)
- Dory E DeWeese
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Michael P Everett
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, California, USA
| | - Jeffrey T Babicz
- Department of Chemistry, Stanford University, Stanford, California, USA; SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - Anahita Daruwalla
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, California, USA
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California, USA; SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA.
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, California, USA; Research Service, VA Long Beach Healthcare System, Long Beach, California, USA.
| |
Collapse
|
2
|
Zhang S, Li X, Wang Y, Yan L, Wei J, Liu Y. Computational Study of the C5-Hydroxylation Mechanism Catalyzed by the Diiron Monooxygenase PtmU3 as Part of the Platensimycin Biosynthesis. Inorg Chem 2021; 60:17783-17796. [PMID: 34762413 DOI: 10.1021/acs.inorgchem.1c02407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PtmU3 is a newly identified nonheme diiron monooxygenase, which installs a C-5 β-hydroxyl group into the C-19 CoA-ester intermediate involved in the biosynthesis of unique diterpene-derived scaffolds of platensimycin and platencin. PtmU3 possesses a noncanonical diiron active site architecture of a saturated six-coordinate iron center and lacks the μ-oxo bridge. Although the hydroxylation process is a simple reaction for nonheme mononuclear iron-dependent enzymes, how PtmU3 employs the diiron center to catalyze the H-abstraction and OH-rebound is still unknown. In particular, the electronic characteristic of diiron is also unclear. To understand the catalytic mechanism of PtmU3, we constructed two reactant models in which both the Fe1II-Fe2III-superoxo and Fe1II-Fe2IV═O are considered to trigger the H-abstraction and performed a series of quantum mechanics/molecular mechanics calculations. Our calculation results reveal that PtmU3 is a special monooxygenase, that is, both atoms of the dioxygen molecule can be incorporated into two molecules of the substrate by the successive reactions. In the first-round reaction, PtmU3 uses the Fe1II-Fe2III-superoxo to install a hydroxyl group into the substrate, generating the high-reactive Fe1II-Fe2IV═O complex. In the second-round reaction, the Fe1II-Fe2IV═O species is responsible for the hydroxylation of another molecule of the substrate. In the diiron center, Fe2 adopts the high spin state (S = 5/2) during the catalysis, whereas for Fe1, in addition to its structural role, it may also play an assistant role for Fe1 catalysis. In the two successive OH-installing steps, the H-abstraction is always the rate-liming step. E241 and D308 not only act as bridging ligands to connect two Fe ions but also take part in the electron reorganization. Owing to the high reactivity of Fe1II-Fe2IV═O compared to Fe1II-Fe2III-superoxo, besides the C5-hydroxylation, the C3- or C18-hydroxylation was also calculated to be feasible.
Collapse
Affiliation(s)
- Shiqing Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Lijuan Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
3
|
Abstract
Carotenoid cleavage dioxygenases (CCDs) constitute a superfamily of enzymes that are found in all domains of life where they play key roles in the metabolism of carotenoids and apocarotenoids as well as certain phenylpropanoids such as resveratrol. Interest in these enzymes stems not only from their biological importance but also from their remarkable catalytic properties including their regioselectivity, their ability to accommodate diverse substrates, and the additional activities (e.g., isomerase) that some of these enzyme possess. X-ray crystallography is a key experimental approach that has allowed detailed investigation into the structural basis behind the interesting biochemical features of these enzymes. Here, we describe approaches used by our lab that have proven successful in generating single crystals of these enzymes in resting or ligand-bound states for high-resolution X-ray diffraction analysis.
Collapse
Affiliation(s)
- Anahita Daruwalla
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, United States
| | - Xuewu Sui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, United States; Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine School of Medicine, Irvine, CA, United States; Research Service, VA Long Beach Healthcare System, Long Beach, CA, United States.
| |
Collapse
|
4
|
Shi G, Gu L, Jung H, Chung WJ, Koo S. Apocarotenals of Phenolic Carotenoids for Superior Antioxidant Activities. ACS OMEGA 2021; 6:25096-25108. [PMID: 34604688 PMCID: PMC8482777 DOI: 10.1021/acsomega.1c04432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 05/11/2023]
Abstract
A series of para-phenolic carotenes 1 with ortho- and meta-substitutions were respectively prepared utilizing the benzenesulfonyl protection method, which demonstrated the importance of the ring substituents on their effective conjugation, evaluated by their UV absorption values. The corresponding apo-12'-carotenals 2 were devised to improve the conjugation effect of the para-phenolic radical with the polyene chain by the conjugated aldehyde group. Apo-12'-carotenals 2b and 2c without ortho-substituents exhibited superior antioxidant activities to their corresponding symmetrical carotenes 1 as well as β-carotene and apo-12'-β-carotenal in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assays.
Collapse
Affiliation(s)
- Gaosheng Shi
- Department
of Energy Science and Technology, Myongji
University, Myongji-Ro 116, Cheoin-Gu, Yongin, Gyeonggi-Do 17058, Korea
| | - Lina Gu
- Department
of Energy Science and Technology, Myongji
University, Myongji-Ro 116, Cheoin-Gu, Yongin, Gyeonggi-Do 17058, Korea
- School
of Pharmacy, East China University of Science
and Technology, Meilong
Road 130, Shanghai 200237, P. R. China
| | - Hyunuk Jung
- Department
of Energy Science and Technology, Myongji
University, Myongji-Ro 116, Cheoin-Gu, Yongin, Gyeonggi-Do 17058, Korea
| | - Wook-Jin Chung
- Department
of Energy Science and Technology, Myongji
University, Myongji-Ro 116, Cheoin-Gu, Yongin, Gyeonggi-Do 17058, Korea
| | - Sangho Koo
- Department
of Energy Science and Technology, Myongji
University, Myongji-Ro 116, Cheoin-Gu, Yongin, Gyeonggi-Do 17058, Korea
- School
of Pharmacy, East China University of Science
and Technology, Meilong
Road 130, Shanghai 200237, P. R. China
- Department
of Chemistry, Myongji University, Myongji-Ro 116, Cheoin-Gu, Yongin, Gyeonggi-Do 17058, Korea
| |
Collapse
|
5
|
Blum E, Zhang J, Zaluski J, Einstein DE, Korshin EE, Kubas A, Gruzman A, Tochtrop GP, Kiser PD, Palczewski K. Rational Alteration of Pharmacokinetics of Chiral Fluorinated and Deuterated Derivatives of Emixustat for Retinal Therapy. J Med Chem 2021; 64:8287-8302. [PMID: 34081480 DOI: 10.1021/acs.jmedchem.1c00279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recycling of all-trans-retinal to 11-cis-retinal through the visual cycle is a fundamental metabolic pathway in the eye. A potent retinoid isomerase (RPE65) inhibitor, (R)-emixustat, has been developed and tested in several clinical trials; however, it has not received regulatory approval for use in any specific retinopathy. Rapid clearance of this drug presents challenges to maintaining concentrations in eyes within a therapeutic window. To address this pharmacokinetic inadequacy, we rationally designed and synthesized a series of emixustat derivatives with strategically placed fluorine and deuterium atoms to slow down the key metabolic transformations known for emixustat. Crystal structures and quantum chemical analysis of RPE65 in complex with the most potent emixustat derivatives revealed the structural and electronic bases for how fluoro substituents can be favorably accommodated within the active site pocket of RPE65. We found a close (∼3.0 Å) F-π interaction that is predicted to contribute ∼2.4 kcal/mol to the overall binding energy.
Collapse
Affiliation(s)
- Eliav Blum
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Jianye Zhang
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California 92697, United States
| | - Jordan Zaluski
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - David E Einstein
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States.,Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, United States
| | - Edward E Korshin
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California 92697, United States.,Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States.,Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, United States
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California 92697, United States.,Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
6
|
Bandara S, Thomas LD, Ramkumar S, Khadka N, Kiser PD, Golczak M, von Lintig J. The Structural and Biochemical Basis of Apocarotenoid Processing by β-Carotene Oxygenase-2. ACS Chem Biol 2021; 16:480-490. [PMID: 33600157 DOI: 10.1021/acschembio.0c00832] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammals, carotenoids are converted by two carotenoid cleavage oxygenases into apocarotenoids, including vitamin A. Although knowledge about β-carotene oxygenase-1 (BCO1) and vitamin A metabolism has tremendously increased, the function of β-carotene oxygenase-2 (BCO2) remains less well-defined. We here studied the role of BCO2 in the metabolism of long chain β-apocarotenoids, which recently emerged as putative regulatory molecules in mammalian biology. We showed that recombinant murine BCO2 converted the alcohol, aldehyde, and carboxylic acid of a β-apocarotenoid substrate by oxidative cleavage at position C9,C10 into a β-ionone and a diapocarotenoid product. Chain length variation (C20 to C40) and ionone ring site modifications of the apocarotenoid substrate did not impede catalytic activity or alter the regioselectivity of the double bond cleavage by BCO2. Isotope labeling experiments revealed that the double bond cleavage of an apocarotenoid followed a dioxygenase reaction mechanism. Structural modeling and site directed mutagenesis identified amino acid residues in the substrate tunnel of BCO2 that are critical for apocarotenoid binding and catalytic processing. Mice deficient for BCO2 accumulated apocarotenoids in their livers, indicating that the enzyme engages in apocarotenoid metabolism. Together, our study provides novel structural and functional insights into BCO2 catalysis and establishes the enzyme as a key component of apocarotenoid homeostasis in mice.
Collapse
Affiliation(s)
| | | | | | | | - Philip D. Kiser
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States
- Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California 90822, United States
| | | | | |
Collapse
|
7
|
Poliakov E, Uppal S, Rogozin IB, Gentleman S, Redmond TM. Evolutionary aspects and enzymology of metazoan carotenoid cleavage oxygenases. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158665. [PMID: 32061750 PMCID: PMC7423639 DOI: 10.1016/j.bbalip.2020.158665] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
The carotenoids are terpenoid fat-soluble pigments produced by plants, algae, and several bacteria and fungi. They are ubiquitous components of animal diets. Carotenoid cleavage oxygenase (CCO) superfamily members are involved in carotenoid metabolism and are present in all kingdoms of life. Throughout the animal kingdom, carotenoid oxygenases are widely distributed and they are completely absent only in two unicellular organisms, Monosiga and Leishmania. Mammals have three paralogs 15,15'-β-carotene oxygenase (BCO1), 9',10'-β-carotene oxygenase (BCO2) and RPE65. The first two enzymes are classical carotenoid oxygenases: they cleave carbon‑carbon double bonds and incorporate two atoms of oxygen in the substrate at the site of cleavage. The third, RPE65, is an unusual family member, it is the retinoid isomerohydrolase in the visual cycle that converts all-trans-retinyl ester into 11-cis-retinol. Here we discuss evolutionary aspects of the carotenoid cleavage oxygenase superfamily and their enzymology to deduce what insight we can obtain from their evolutionary conservation.
Collapse
Affiliation(s)
- Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sheetal Uppal
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Susan Gentleman
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Structural basis for carotenoid cleavage by an archaeal carotenoid dioxygenase. Proc Natl Acad Sci U S A 2020; 117:19914-19925. [PMID: 32747548 DOI: 10.1073/pnas.2004116117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apocarotenoids are important signaling molecules generated from carotenoids through the action of carotenoid cleavage dioxygenases (CCDs). These enzymes have a remarkable ability to cleave carotenoids at specific alkene bonds while leaving chemically similar sites within the polyene intact. Although several bacterial and eukaryotic CCDs have been characterized, the long-standing goal of experimentally visualizing a CCD-carotenoid complex at high resolution to explain this exquisite regioselectivity remains unfulfilled. CCD genes are also present in some archaeal genomes, but the encoded enzymes remain uninvestigated. Here, we address this knowledge gap through analysis of a metazoan-like archaeal CCD from Candidatus Nitrosotalea devanaterra (NdCCD). NdCCD was active toward β-apocarotenoids but did not cleave bicyclic carotenoids. It exhibited an unusual regiospecificity, cleaving apocarotenoids solely at the C14'-C13' alkene bond to produce β-apo-14'-carotenals. The structure of NdCCD revealed a tapered active site cavity markedly different from the broad active site observed for the retinal-forming Synechocystis apocarotenoid oxygenase (SynACO) but similar to the vertebrate retinoid isomerase RPE65. The structure of NdCCD in complex with its apocarotenoid product demonstrated that the site of cleavage is defined by interactions along the substrate binding cleft as well as selective stabilization of reaction intermediates at the scissile alkene. These data on the molecular basis of CCD catalysis shed light on the origins of the varied catalytic activities found in metazoan CCDs, opening the possibility of modifying their activity through rational chemical or genetic approaches.
Collapse
|
9
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Daruwalla A, Kiser PD. Structural and mechanistic aspects of carotenoid cleavage dioxygenases (CCDs). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158590. [PMID: 31874225 DOI: 10.1016/j.bbalip.2019.158590] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/03/2023]
Abstract
Carotenoid cleavage dioxygenases (CCDs) comprise a superfamily of mononuclear non-heme iron proteins that catalyze the oxygenolytic fission of alkene bonds in carotenoids to generate apocarotenoid products. Some of these enzymes exhibit additional activities such as carbon skeleton rearrangement and trans-cis isomerization. The group also includes a subfamily of enzymes that split the interphenyl alkene bond in molecules such as resveratrol and lignostilbene. CCDs are involved in numerous biological processes ranging from production of light-sensing chromophores to degradation of lignin derivatives in pulping waste sludge. These enzymes exhibit unique features that distinguish them from other families of non-heme iron enzymes. The distinctive properties and biological importance of CCDs have stimulated interest in their modes of catalysis. Recent structural, spectroscopic, and computational studies have helped clarify mechanistic aspects of CCD catalysis. Here, we review these findings emphasizing common and unique properties of CCDs that enable their variable substrate specificity and regioselectivity. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Anahita Daruwalla
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, United States of America.
| |
Collapse
|
11
|
Khadka N, Farquhar ER, Hill HE, Shi W, von Lintig J, Kiser PD. Evidence for distinct rate-limiting steps in the cleavage of alkenes by carotenoid cleavage dioxygenases. J Biol Chem 2019; 294:10596-10606. [PMID: 31138651 DOI: 10.1074/jbc.ra119.007535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/24/2019] [Indexed: 11/06/2022] Open
Abstract
Carotenoid cleavage dioxygenases (CCDs) use a nonheme Fe(II) cofactor to split alkene bonds of carotenoid and stilbenoid substrates. The iron centers of CCDs are typically five-coordinate in their resting states, with solvent occupying an exchangeable site. The involvement of this iron-bound solvent in CCD catalysis has not been experimentally addressed, but computational studies suggest two possible roles. 1) Solvent dissociation provides a coordination site for O2, or 2) solvent remains bound to iron but changes its equilibrium position to allow O2 binding and potentially acts as a proton source. To test these predictions, we investigated isotope effects (H2O versus D2O) on two stilbenoid-cleaving CCDs, Novosphingobium aromaticivorans oxygenase 2 (NOV2) and Neurospora crassa carotenoid oxygenase 1 (CAO1), using piceatannol as a substrate. NOV2 exhibited an inverse isotope effect (k H/k D ∼ 0.6) in an air-saturated buffer, suggesting that solvent dissociates from iron during the catalytic cycle. By contrast, CAO1 displayed a normal isotope effect (k H/k D ∼ 1.7), suggesting proton transfer in the rate-limiting step. X-ray absorption spectroscopy on NOV2 and CAO1 indicated that the protonation states of the iron ligands are unchanged within pH 6.5-8.5 and that the Fe(II)-aquo bond is minimally altered by substrate binding. We pinpointed the origin of the differential kinetic behaviors of NOV2 and CAO1 to a single amino acid difference near the solvent-binding site of iron, and X-ray crystallography revealed that the substitution alters binding of diffusible ligands to the iron center. We conclude that solvent-iron dissociation and proton transfer are both associated with the CCD catalytic mechanism.
Collapse
Affiliation(s)
- Nimesh Khadka
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Erik R Farquhar
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973.,Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4988, and
| | - Hannah E Hill
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wuxian Shi
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973.,Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4988, and
| | - Johannes von Lintig
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Philip D Kiser
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, .,Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| |
Collapse
|
12
|
Choi EH, Suh S, Sander CL, Hernandez CJO, Bulman ER, Khadka N, Dong Z, Shi W, Palczewski K, Kiser PD. Insights into the pathogenesis of dominant retinitis pigmentosa associated with a D477G mutation in RPE65. Hum Mol Genet 2019; 27:2225-2243. [PMID: 29659842 DOI: 10.1093/hmg/ddy128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
RPE65 is the essential trans-cis isomerase of the classical retinoid (visual) cycle. Mutations in RPE65 give rise to severe retinal dystrophies, most of which are associated with loss of protein function and recessive inheritance. The only known exception is a c.1430G>A (D477G) mutation that gives rise to dominant retinitis pigmentosa with delayed onset and choroidal and macular involvement. Position 477 is distant from functionally critical regions of RPE65. Hence, the mechanism of D477G pathogenicity remains unclear, although protein misfolding and aggregation mechanisms have been suggested. We characterized a D477G knock-in mouse model which exhibited mild age-dependent changes in retinal structure and function. Immunoblot analysis of protein extracts from the eyes of these knock-in mice demonstrated the presence of ubiquitinated RPE65 and reduced RPE65 expression. We observed an accumulation of retinyl esters in the knock-in mice as well as a delay in rhodopsin regeneration kinetics and diminished electroretinography responses, indicative of RPE65 functional impairment induced by the D477G mutation in vivo. However, a cell line expressing D477G RPE65 revealed protein expression levels, cellular localization and retinoid isomerase activity comparable to cells expressing wild-type protein. Structural analysis of an RPE65 chimera suggested that the D477G mutation does not perturb protein folding or tertiary structure. Instead, the mutation generates an aggregation-prone surface that could induce cellular toxicity through abnormal complex formation as suggested by crystal packing analysis. These results indicate that a toxic gain-of-function induced by the D477G RPE65 substitution may play a role in the pathogenesis of this form of dominant retinitis pigmentosa.
Collapse
Affiliation(s)
- Elliot H Choi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Susie Suh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christopher L Sander
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christian J Ortiz Hernandez
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,University of Puerto Rico at Humacao, Humacao, PR, USA
| | - Elizabeth R Bulman
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Nimesh Khadka
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhiqian Dong
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Polgenix Inc., Cleveland, OH 44106, USA
| | - Wuxian Shi
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Philip D Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Wang D, Gardinier JR, Lindeman SV. Iron( ii) tetrafluoroborate complexes of new tetradentate C-scorpionates as catalysts for the oxidative cleavage of trans-stilbene with H 2O 2. Dalton Trans 2019; 48:14478-14489. [DOI: 10.1039/c9dt02829c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Iron(ii) complexes of two new tetradentate C-scorpionate ligands are characterized. Both catalyze stilbene cleavage using either H2O2 or a O2/photocatalyst oxidant.
Collapse
Affiliation(s)
- Denan Wang
- Department of Chemistry
- Marquette University
- Milwaukee
- USA
| | | | | |
Collapse
|
14
|
Efficient biotransformation of isoeugenol to vanillin in recombinant strains of Escherichia coli by using engineered isoeugenol monooxygenase and sol-gel chitosan membrane. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Sui X, Farquhar ER, Hill HE, von Lintig J, Shi W, Kiser PD. Preparation and characterization of metal-substituted carotenoid cleavage oxygenases. J Biol Inorg Chem 2018; 23:887-901. [PMID: 29946976 PMCID: PMC6060882 DOI: 10.1007/s00775-018-1586-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/20/2018] [Indexed: 11/26/2022]
Abstract
Carotenoid cleavage oxygenases (CCO) are non-heme iron enzymes that catalyze oxidative cleavage of alkene bonds in carotenoid and stilbenoid substrates. Previously, we showed that the iron cofactor of CAO1, a resveratrol-cleaving member of this family, can be substituted with cobalt to yield a catalytically inert enzyme useful for trapping active site-bound stilbenoid substrates for structural characterization. Metal substitution may provide a general method for identifying the natural substrates for CCOs in addition to facilitating structural and biophysical characterization of CCO-carotenoid complexes under normal aerobic conditions. Here, we demonstrate the general applicability of cobalt substitution in a prototypical carotenoid cleaving CCO, apocarotenoid oxygenase (ACO) from Synechocystis. Among the non-native divalent metals investigated, cobalt was uniquely able to stably occupy the ACO metal binding site and inhibit catalysis. Analysis by X-ray crystallography and X-ray absorption spectroscopy demonstrate that the Co(II) forms of both ACO and CAO1 exhibit a close structural correspondence to the native Fe(II) enzyme forms. Hence, cobalt substitution is an effective strategy for generating catalytically inert but structurally intact forms of CCOs.
Collapse
Affiliation(s)
- Xuewu Sui
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Erik R Farquhar
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106-4988, USA
| | - Hannah E Hill
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Wuxian Shi
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106-4988, USA
| | - Philip D Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E 101st Street, Cleveland, OH, 44106, USA.
- Research Service, Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH, 44106, USA.
| |
Collapse
|
16
|
de Ancos B, Sánchez-Moreno C, Zacarías L, Rodrigo MJ, Sáyago Ayerdí S, Blancas Benítez FJ, Domínguez Avila JA, González-Aguilar GA. Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of ‘Ataulfo’ mango by-products. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9830-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Li J, Banerjee A, Hasse TA, Loloee R, Biros SM, Staples RJ, Chavez FA. Synthesis and reactivity of a 4His enzyme model complex. RSC Adv 2017; 7:50713-50719. [PMID: 29147561 PMCID: PMC5683714 DOI: 10.1039/c7ra09456f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new iron(II) complex has been prepared and characterized. [Fe(TrIm)4(OTf)2] (1, TrIm = 1-Tritylimidazole). The solid state structure of 1 has been determined by X-ray crystallography. Compound 1 crystallizes in triclinic space group P1̄, with a = 13.342(7) Å, b = 13.5131(7) Å and c = 13.7025(7) Å. The iron center resides in distorted octahedral geometry coordinated to four equatorial imidazole groups and two axial triflate oxygens groups. The complex is high spin between 20 K and 300 K as indicated by variable field variable temperature magnetic measurements. A fit of the magnetic data yielded g = 2.24 and D = -0.80 cm-1. A large HOMO-LUMO gap energy (3.89 eV) exists for 1 indicating high stability. Addition of H2O2 or t BuOOH to 1 results in formation of an oxygenated intermediate which upon decomposition results in oxidation of the trityl substituent on the imidazole ligand.
Collapse
Affiliation(s)
- Jia Li
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA, , Ph: (248) 370-4092
| | - Atanu Banerjee
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA, , Ph: (248) 370-4092
| | - Timothy A Hasse
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA, , Ph: (248) 370-4092
| | - Reza Loloee
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - Shannon M Biros
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ferman A Chavez
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA, , Ph: (248) 370-4092
| |
Collapse
|
18
|
Sui X, Weitz AC, Farquhar ER, Badiee M, Banerjee S, von Lintig J, Tochtrop GP, Palczewski K, Hendrich MP, Kiser PD. Structure and Spectroscopy of Alkene-Cleaving Dioxygenases Containing an Atypically Coordinated Non-Heme Iron Center. Biochemistry 2017; 56:2836-2852. [PMID: 28493664 DOI: 10.1021/acs.biochem.7b00251] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carotenoid cleavage oxygenases (CCOs) are non-heme iron enzymes that catalyze scission of alkene groups in carotenoids and stilbenoids to form biologically important products. CCOs possess a rare four-His iron center whose resting-state structure and interaction with substrates are incompletely understood. Here, we address this knowledge gap through a comprehensive structural and spectroscopic study of three phyletically diverse CCOs. The crystal structure of a fungal stilbenoid-cleaving CCO, CAO1, reveals strong similarity between its iron center and those of carotenoid-cleaving CCOs, but with a markedly different substrate-binding cleft. These enzymes all possess a five-coordinate high-spin Fe(II) center with resting-state Fe-His bond lengths of ∼2.15 Å. This ligand set generates an iron environment more electropositive than those of other non-heme iron dioxygenases as observed by Mössbauer isomer shifts. Dioxygen (O2) does not coordinate iron in the absence of substrate. Substrates bind away (∼4.7 Å) from the iron and have little impact on its electronic structure, thus excluding coordination-triggered O2 binding. However, substrate binding does perturb the spectral properties of CCO Fe-NO derivatives, indicating proximate organic substrate and O2-binding sites, which might influence Fe-O2 interactions. Together, these data provide a robust description of the CCO iron center and its interactions with substrates and substrate mimetics that illuminates commonalities as well as subtle and profound structural differences within the CCO family.
Collapse
Affiliation(s)
- Xuewu Sui
- Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Erik R Farquhar
- National Synchrotron Light Source-II, Brookhaven National Laboratory , Upton, New York 11973, United States.,Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106-4988, United States
| | - Mohsen Badiee
- Department of Chemistry, Case Western Reserve University , 2080 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14850, United States.,Northeastern Collaborative Access Team, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University , 2080 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University , 1819 East 101st Street, Cleveland, Ohio 44106, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Philip D Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.,Research Service, Louis Stokes Cleveland VA Medical Center , 10701 East Boulevard, Cleveland, Ohio 44106, United States
| |
Collapse
|
19
|
Bruno M, Vermathen M, Alder A, Wüst F, Schaub P, van der Steen R, Beyer P, Ghisla S, Al-Babili S. Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions. FEBS Lett 2017; 591:792-800. [PMID: 28186640 DOI: 10.1002/1873-3468.12593] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
Strigolactones are a new class of phytohormones synthesized from carotenoids via carlactone. The complex structure of carlactone is not easily deducible from its precursor, a cis-configured β-carotene cleavage product, and is thus formed via a poorly understood series of reactions and molecular rearrangements, all catalyzed by only one enzyme, the carotenoid cleavage dioxygenase 8 (CCD8). Moreover, the reactions leading to carlactone are expected to form a second, yet unidentified product. In this study, we used 13 C and 18 O-labeling to shed light on the reactions catalyzed by CCD8. The characterization of the resulting carlactone by LC-MS and NMR, and the identification of the assumed, less accessible second product allowed us to formulate a minimal reaction mechanism for carlactone generation.
Collapse
Affiliation(s)
- Mark Bruno
- Faculty of Biology, University of Freiburg, Germany
| | - Martina Vermathen
- Department of Chemistry and Biochemistry, University of Bern, Switzerland
| | - Adrian Alder
- Faculty of Biology, University of Freiburg, Germany
| | - Florian Wüst
- Faculty of Biology, University of Freiburg, Germany
| | | | | | - Peter Beyer
- Faculty of Biology, University of Freiburg, Germany
| | - Sandro Ghisla
- Department of Biology, University of Konstanz, Germany
| | - Salim Al-Babili
- Faculty of Biology, University of Freiburg, Germany
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
20
|
McAndrew RP, Sathitsuksanoh N, Mbughuni MM, Heins RA, Pereira JH, George A, Sale KL, Fox BG, Simmons BA, Adams PD. Structure and mechanism of NOV1, a resveratrol-cleaving dioxygenase. Proc Natl Acad Sci U S A 2016; 113:14324-14329. [PMID: 27911781 PMCID: PMC5167157 DOI: 10.1073/pnas.1608917113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stilbenes are diphenyl ethene compounds produced naturally in a wide variety of plant species and some bacteria. Stilbenes are also derived from lignin during kraft pulping. Stilbene cleavage oxygenases (SCOs) cleave the central double bond of stilbenes, forming two phenolic aldehydes. Here, we report the structure of an SCO. The X-ray structure of NOV1 from Novosphingobium aromaticivorans was determined in complex with its substrate resveratrol (1.89 Å), its product vanillin (1.75 Å), and without any bound ligand (1.61 Å). The enzyme is a seven-bladed β-propeller with an iron cofactor coordinated by four histidines. In all three structures, dioxygen is observed bound to the iron in a side-on fashion. These structures, along with EPR analysis, allow us to propose a mechanism in which a ferric-superoxide reacts with substrate activated by deprotonation of a phenol group at position 4 of the substrate, which allows movement of electron density toward the central double bond and thus facilitates reaction with the ferric superoxide electrophile. Correspondingly, NOV1 cleaves a wide range of other stilbene-like compounds with a 4'-OH group, offering potential in processing some solubilized fragments of lignin into monomer aromatic compounds.
Collapse
Affiliation(s)
- Ryan P McAndrew
- Joint BioEnergy Institute, Emeryville, CA 94608;
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Noppadon Sathitsuksanoh
- Joint BioEnergy Institute, Emeryville, CA 94608
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292
| | - Michael M Mbughuni
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706
| | - Richard A Heins
- Joint BioEnergy Institute, Emeryville, CA 94608
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551
| | - Jose H Pereira
- Joint BioEnergy Institute, Emeryville, CA 94608
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Anthe George
- Joint BioEnergy Institute, Emeryville, CA 94608
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551
| | - Kenneth L Sale
- Joint BioEnergy Institute, Emeryville, CA 94608
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551
| | - Brian G Fox
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, CA 94608;
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, CA 94720
| |
Collapse
|
21
|
Sui X, Zhang J, Golczak M, Palczewski K, Kiser PD. Key Residues for Catalytic Function and Metal Coordination in a Carotenoid Cleavage Dioxygenase. J Biol Chem 2016; 291:19401-12. [PMID: 27453555 PMCID: PMC5016679 DOI: 10.1074/jbc.m116.744912] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/15/2016] [Indexed: 12/31/2022] Open
Abstract
Carotenoid cleavage dioxygenases (CCDs) are non-heme iron-containing enzymes found in all domains of life that generate biologically important apocarotenoids. Prior studies have revealed a critical role for a conserved 4-His motif in forming the CCD iron center. By contrast, the roles of other active site residues in catalytic function, including maintenance of the stringent regio- and stereo-selective cleavage activity, typically exhibited by these enzymes have not been thoroughly investigated. Here, we examined the functional and structural importance of active site residues in an apocarotenoid-cleaving oxygenase (ACO) from Synechocystis Most active site substitutions variably lowered maximal catalytic activity without markedly affecting the Km value for the all-trans-8'-apocarotenol substrate. Native C15-C15' cleavage activity was retained in all ACO variants examined suggesting that multiple active site residues contribute to the enzyme's regioselectivity. Crystallographic analysis of a nearly inactive W149A-substituted ACO revealed marked disruption of the active site structure, including loss of iron coordination by His-238 apparently from an altered conformation of the conserved second sphere Glu-150 residue. Gln- and Asp-150-substituted versions of ACO further confirmed the structural/functional requirement for a Glu side chain at this position, which is homologous to Glu-148 in RPE65, a site in which substitution to Asp has been associated with loss of enzymatic function in Leber congenital amaurosis. The novel links shown here between ACO active site structure and catalytic activity could be broadly applicable to other CCD members and provide insights into the molecular pathogenesis of vision loss associated with an RPE65 point mutation.
Collapse
Affiliation(s)
- Xuewu Sui
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University and
| | - Jianye Zhang
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University and
| | - Marcin Golczak
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University and
| | - Krzysztof Palczewski
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University and
| | - Philip D Kiser
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University and Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| |
Collapse
|
22
|
de Lera ÁR, Krezel W, Rühl R. An Endogenous Mammalian Retinoid X Receptor Ligand, At Last! ChemMedChem 2016; 11:1027-37. [PMID: 27151148 DOI: 10.1002/cmdc.201600105] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/15/2016] [Indexed: 12/27/2022]
Abstract
9-cis-Retinoic acid was identified and claimed to be the endogenous ligand of the retinoid X receptors (RXRs) in 1992. Since then, the endogenous presence of this compound has never been rigorously confirmed. Instead, concerns have been raised by other groups that have reported that 9-cis-retinoic acid is undetectable or that its presence occurs at very low levels. Furthermore, these low levels could not satisfactorily explain the physiological activation of RXR. Alternative ligands, among them various lipids, have also been identified, but also did not fulfill criteria for rigorous endogenous relevance, and their consideration as bona fide endogenous mammalian RXR ligand has likewise been questioned. Recently, novel studies claim that the saturated analogue 9-cis-13,14-dihydroretinoic acid functions as an endogenous physiologically relevant mammalian RXR ligand.
Collapse
Affiliation(s)
- Ángel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale, U964, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404, Illkirch, France
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary.,MTA-DE, Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Hungary
| |
Collapse
|
23
|
Chen Q, van der Steen JB, Dekker HL, Ganapathy S, de Grip WJ, Hellingwerf KJ. Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803. Metab Eng 2016; 35:83-94. [PMID: 26869136 DOI: 10.1016/j.ymben.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/11/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023]
Abstract
Retinal-based photosynthesis may contribute to the free energy conversion needed for growth of an organism carrying out oxygenic photosynthesis, like a cyanobacterium. After optimization, this may even enhance the overall efficiency of phototrophic growth of such organisms in sustainability applications. As a first step towards this, we here report on functional expression of the archetype proteorhodopsin in Synechocystis sp. PCC 6803. Upon use of the moderate-strength psbA2 promoter, holo-proteorhodopsin is expressed in this cyanobacterium, at a level of up to 10(5) molecules per cell, presumably in a hexameric quaternary structure, and with approximately equal distribution (on a protein-content basis) over the thylakoid and the cytoplasmic membrane fraction. These results also demonstrate that Synechocystis sp. PCC 6803 has the capacity to synthesize all-trans-retinal. Expressing a substantial amount of a heterologous opsin membrane protein causes a substantial growth retardation Synechocystis, as is clear from a strain expressing PROPS, a non-pumping mutant derivative of proteorhodopsin. Relative to this latter strain, proteorhodopsin expression, however, measurably stimulates its growth.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B van der Steen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Sui X, Golczak M, Zhang J, Kleinberg KA, von Lintig J, Palczewski K, Kiser PD. Utilization of Dioxygen by Carotenoid Cleavage Oxygenases. J Biol Chem 2015; 290:30212-23. [PMID: 26499794 PMCID: PMC4683246 DOI: 10.1074/jbc.m115.696799] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/22/2015] [Indexed: 11/06/2022] Open
Abstract
Carotenoid cleavage oxygenases (CCOs) are non-heme, Fe(II)-dependent enzymes that participate in biologically important metabolic pathways involving carotenoids and apocarotenoids, including retinoids, stilbenes, and related compounds. CCOs typically catalyze the cleavage of non-aromatic double bonds by dioxygen (O2) to form aldehyde or ketone products. Expressed only in vertebrates, the RPE65 sub-group of CCOs catalyzes a non-canonical reaction consisting of concerted ester cleavage and trans-cis isomerization of all-trans-retinyl esters. It remains unclear whether the former group of CCOs functions as mono- or di-oxygenases. Additionally, a potential role for O2 in catalysis by the RPE65 group of CCOs has not been evaluated to date. Here, we investigated the pattern of oxygen incorporation into apocarotenoid products of Synechocystis apocarotenoid oxygenase. Reactions performed in the presence of (18)O-labeled water and (18)O2 revealed an unambiguous dioxygenase pattern of O2 incorporation into the reaction products. Substitution of Ala for Thr at position 136 of apocarotenoid oxygenase, a site predicted to govern the mono- versus dioxygenase tendency of CCOs, greatly reduced enzymatic activity without altering the dioxygenase labeling pattern. Reevaluation of the oxygen-labeling pattern of the resveratrol-cleaving CCO, NOV2, previously reported to be a monooxygenase, using a purified enzyme sample revealed that it too is a dioxygenase. We also demonstrated that bovine RPE65 is not dependent on O2 for its cleavage/isomerase activity. In conjunction with prior research, the results of this study resolve key issues regarding the utilization of O2 by CCOs and indicate that dioxygenase activity is a feature common among double bond-cleaving CCOs.
Collapse
Affiliation(s)
- Xuewu Sui
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4956 and
| | - Marcin Golczak
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4956 and
| | - Jianye Zhang
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4956 and
| | - Katie A Kleinberg
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4956 and
| | - Johannes von Lintig
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4956 and
| | - Krzysztof Palczewski
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4956 and
| | - Philip D Kiser
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4956 and the Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| |
Collapse
|
25
|
Babino D, Palczewski G, Widjaja-Adhi MAK, Kiser PD, Golczak M, von Lintig J. Characterization of the Role of β-Carotene 9,10-Dioxygenase in Macular Pigment Metabolism. J Biol Chem 2015; 290:24844-57. [PMID: 26307071 DOI: 10.1074/jbc.m115.668822] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 12/22/2022] Open
Abstract
A family of enzymes collectively referred to as carotenoid cleavage oxygenases is responsible for oxidative conversion of carotenoids into apocarotenoids, including retinoids (vitamin A and its derivatives). A member of this family, the β-carotene 9,10-dioxygenase (BCO2), converts xanthophylls to rosafluene and ionones. Animals deficient in BCO2 highlight the critical role of the enzyme in carotenoid clearance as accumulation of these compounds occur in tissues. Inactivation of the enzyme by a four-amino acid-long insertion has recently been proposed to underlie xanthophyll concentration in the macula of the primate retina. Here, we focused on comparing the properties of primate and murine BCO2s. We demonstrate that the enzymes display a conserved structural fold and subcellular localization. Low temperature expression and detergent choice significantly affected binding and turnover rates of the recombinant enzymes with various xanthophyll substrates, including the unique macula pigment meso-zeaxanthin. Mice with genetically disrupted carotenoid cleavage oxygenases displayed adipose tissue rather than eye-specific accumulation of supplemented carotenoids. Studies in a human hepatic cell line revealed that BCO2 is expressed as an oxidative stress-induced gene. Our studies provide evidence that the enzymatic function of BCO2 is conserved in primates and link regulation of BCO2 gene expression with oxidative stress that can be caused by excessive carotenoid supplementation.
Collapse
Affiliation(s)
- Darwin Babino
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Grzegorz Palczewski
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - M Airanthi K Widjaja-Adhi
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Philip D Kiser
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and the Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Marcin Golczak
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Johannes von Lintig
- From the Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| |
Collapse
|
26
|
Kiser PD, Zhang J, Badiee M, Li Q, Shi W, Sui X, Golczak M, Tochtrop GP, Palczewski K. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision. Nat Chem Biol 2015; 11:409-15. [PMID: 25894083 PMCID: PMC4433804 DOI: 10.1038/nchembio.1799] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/24/2015] [Indexed: 11/20/2022]
Abstract
Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive because of uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for the treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligand positioned in an adjacent pocket. With the geometry of the RPE65-substrate complex clarified, we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. These data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules.
Collapse
Affiliation(s)
- Philip D. Kiser
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Jianye Zhang
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Mohsen Badiee
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Qingjiang Li
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Wuxian Shi
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973
- Case Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Xuewu Sui
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Marcin Golczak
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Gregory P. Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
27
|
The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls. Arch Biochem Biophys 2015; 572:126-133. [DOI: 10.1016/j.abb.2015.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/22/2022]
|