1
|
Dyrma S, Pei TT, Liang X, Dong T. Not just passengers: effectors contribute to the assembly of the type VI secretion system as structural building blocks. J Bacteriol 2025; 207:e0045524. [PMID: 39902958 PMCID: PMC11925235 DOI: 10.1128/jb.00455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Protein secretion systems are critical macromolecular machines employed by bacteria to interact with diverse environments and hosts during their life cycle. Cytosolically produced protein effectors are translocated across at least one membrane to the outside of the cells or directly into target cells. In most secretion systems, these effectors are mere passengers in unfolded or folded states. However, the type VI secretion system (T6SS) stands out as a powerful contractile device that requires some of its effectors as structural components. This review aims to provide an updated view of the diverse functions of effectors, especially focusing on their roles in T6SS assembly, the implications for T6SS engineering, and the potential of recently developed T6SS models to study effector-T6SS association.
Collapse
Affiliation(s)
- Sherina Dyrma
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tong-Tong Pei
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoye Liang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Fridman CM, Keppel K, Rudenko V, Altuna-Alvarez J, Albesa-Jové D, Bosis E, Salomon D. A new class of type VI secretion system effectors can carry two toxic domains and are recognized through the WHIX motif for export. PLoS Biol 2025; 23:e3003053. [PMID: 40096082 DOI: 10.1371/journal.pbio.3003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/28/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Gram-negative bacteria employ the type VI secretion system (T6SS) to deliver toxic effectors into neighboring cells and outcompete rivals. Although many effectors have been identified, their secretion mechanism often remains unknown. Here, we describe WHIX, a domain sufficient to mediate the secretion of effectors via the T6SS. Remarkably, we find WHIX in T6SS effectors that contain a single toxic domain, as well as in effectors that contain two distinct toxic domains fused to either side of WHIX. We demonstrate that the latter, which we name double-blade effectors, require two cognate immunity proteins to antagonize their toxicity. Furthermore, we show that WHIX can be used as a chassis for T6SS-mediated secretion of multiple domains. Our findings reveal a new class of polymorphic T6SS cargo effectors with a unique secretion domain that can deploy two toxic domains in one shot, possibly reducing recipients' ability to defend themselves.
Collapse
Affiliation(s)
- Chaya Mushka Fridman
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kinga Keppel
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vladislav Rudenko
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jon Altuna-Alvarez
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Leioa, Spain
| | - David Albesa-Jové
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Sachar K, Kanarek K, Colautti J, Kim Y, Bosis E, Prehna G, Salomon D, Whitney JC. A conserved chaperone protein is required for the formation of a noncanonical type VI secretion system spike tip complex. J Biol Chem 2025; 301:108242. [PMID: 39880087 PMCID: PMC11883445 DOI: 10.1016/j.jbc.2025.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Type VI secretion systems (T6SSs) are dynamic protein nanomachines found in Gram-negative bacteria that deliver toxic effector proteins into target cells in a contact-dependent manner. Prior to secretion, many T6SS effector proteins require chaperones and/or accessory proteins for proper loading onto the structural components of the T6SS apparatus. However, despite their established importance, the precise molecular function of several T6SS accessory protein families remains unclear. In this study, we set out to characterize the DUF2169 family of T6SS accessory proteins. Using gene co-occurrence analyses, we find that DUF2169-encoding genes strictly co-occur with genes encoding T6SS spike complexes formed by valine-glycine repeat protein G (VgrG) and DUF4150 domains. Although structurally similar to Pro-Ala-Ala-Arg (PAAR) domains, "PAAR-like" DUF4150 domains lack PAAR motifs and instead contain a conserved PIPY motif, leading us to designate them PIPY domains. Next, we present both genetic and biochemical evidence that PIPY domains require a cognate DUF2169 protein to form a functional T6SS spike complex with VgrG. This contrasts with canonical PAAR proteins, which bind VgrG on their own to form functional spike complexes. By solving the first crystal structure of a DUF2169 protein, we show that this T6SS accessory protein adopts a novel protein fold. Furthermore, biophysical and structural modeling data suggest that DUF2169 contains a dynamic loop that physically interacts with a hydrophobic patch on the surface of its cognate PIPY domain. Based on these findings, we propose a model whereby DUF2169 proteins function as molecular chaperones that maintain VgrG-PIPY spike complexes in a secretion-competent state prior to their export by the T6SS apparatus.
Collapse
Affiliation(s)
- Kartik Sachar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Katarzyna Kanarek
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jake Colautti
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, USA
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Zakharzhevskaya NB, Shagaleeva OY, Kashatnikova DA, Goncharov AO, Evsyutina DV, Kardonsky DA, Vorobeva EA, Silantiev AS, Kazakova VD, Kolesnikova IV, Butenko IO, Vanyushkina AA, Smirnova SV, Chaplin AV, Efimov BA. Proteogenomic annotation of T6SS components identified in Bacteroides fragilis secretome. Front Microbiol 2025; 16:1495971. [PMID: 40008042 PMCID: PMC11854122 DOI: 10.3389/fmicb.2025.1495971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction Bacteroides fragilis (Bf)'s T6SS locus has been characterized and shown to have functional activity in competition experiments. It has been demonstrated that symbiont nontoxigenic Bf strains have a more effective "weapon" effect on pathogenic Bf, which is realized through the activity of effector-immune (E-I) protein pairs. Intensive study of the T6SS structure has led to an understanding of certain issues related to its functional activity, but the exact regulatory mechanisms of E-I protein pair activity remain unclear. Proteomic annotation of T6SS components and detailed descriptions of all immune-effector pairs are currently available. In this research, we performed detailed proteogenomic analysis and subsequent proteomic annotation of the T6SS components of the toxigenic Bf BOB25. Material and methods Fractionated cells, cultivated media and vesicles were prepared for proteome analysis by HPLC-MS/MS. Proteogenomic annotation and comparative genomic study of the T6SS loci of the toxigenic Bf BOB25 were carried out by comparison with the reference genomes of the following Bf strains: JIM10, NCTC 9343 and 638R. Results According to the data obtained, T6SS components were represented in all types of the analysed samples. The following components of the T6SS were identified in culture media and cells: ClpV (TssH), TssK, TssC, TssB, Hcp (TssD), and TetR. The predicted effector protein AKA51715.1 (VU15_08315) was also detected in media. The greatest amount of T6SS proteins, including the Hcp protein, was detected in the vesicle samples, which was also observed by TEM. Potential effectors, including AKA51715.1 (VU15_08315), AKA51716.1 (VU15_08320), AKA51728.1 (VU15_08385) and the immune protein AKA51727.1 (VU15_08380), were detected in vesicles. Discussion The presence of the immune and effector proteins in the Bf secretome indicates the high activity of the T6SS without bacterial competition. It is possible that the T6SS is also used by bacteria to regulate population size by altering the activity of different repertoires of E-I pairs.
Collapse
Affiliation(s)
- Natalya B. Zakharzhevskaya
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Olga Yu Shagaleeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria A. Kashatnikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anton O. Goncharov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Dmitry A. Kardonsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Elizaveta A. Vorobeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Artemiy S. Silantiev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Viktoria D. Kazakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina V. Kolesnikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ivan O. Butenko
- Research Institute for Systems Biology and Medicine, Moscow, Russia
| | - Anna A. Vanyushkina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Svetlana V. Smirnova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrei V. Chaplin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris A. Efimov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Habich A, Chaves Vargas V, Robinson LA, Allsopp LP, Unterweger D. Distribution of the four type VI secretion systems in Pseudomonas aeruginosa and classification of their core and accessory effectors. Nat Commun 2025; 16:888. [PMID: 39837841 PMCID: PMC11751169 DOI: 10.1038/s41467-024-54649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 11/14/2024] [Indexed: 01/23/2025] Open
Abstract
Bacterial type VI secretion systems (T6SSs) are puncturing molecular machines that transport effector proteins to kill microbes, manipulate eukaryotic cells, or facilitate nutrient uptake. How and why T6SS machines and effectors differ within a species is not fully understood. Here, we applied molecular population genetics to the T6SSs in a global population of the opportunistic pathogen Pseudomonas aeruginosa. We reveal varying occurrence of up to four distinct T6SS machines. Moreover, we define conserved core T6SS effectors, likely critical for the biology of P. aeruginosa, and accessory effectors that can exhibit mutual exclusivity between strains. By ancestral reconstruction, we observed dynamic changes in the gain and loss of effector genes in the species' evolutionary history. Our work highlights the potential importance of T6SS intraspecific diversity in bacterial ecology and evolution.
Collapse
Affiliation(s)
- Antonia Habich
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Verónica Chaves Vargas
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Luca A Robinson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Luke P Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel Unterweger
- Institute for Experimental Medicine, Kiel University, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
6
|
Colautti J, Kelly SD, Whitney JC. Specialized killing across the domains of life by the type VI secretion systems of Pseudomonas aeruginosa. Biochem J 2025; 482:1-15. [PMID: 39774785 DOI: 10.1042/bcj20230240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Type VI secretion systems (T6SSs) are widespread bacterial protein secretion machines that inject toxic effector proteins into nearby cells, thus facilitating both bacterial competition and virulence. Pseudomonas aeruginosa encodes three evolutionarily distinct T6SSs that each export a unique repertoire of effectors. Owing to its genetic tractability, P. aeruginosa has served as a model organism for molecular studies of the T6SS. However, P. aeruginosa is also an opportunistic pathogen and ubiquitous environmental organism that thrives in a wide range of habitats. Consequently, studies of its T6SSs have provided insight into the role these systems play in the diverse lifestyles of this species. In this review, we discuss recent advances in understanding the regulation and toxin repertoire of each of the three P. aeruginosa T6SSs. We argue that these T6SSs serve distinct physiological functions; whereas one system is a dedicated defensive weapon for interbacterial antagonism, the other two T6SSs appear to function primarily during infection. We find support for this model in examining the signalling pathways that control the expression of each T6SS and co-ordinate the activity of these systems with other P. aeruginosa behaviours. Furthermore, we discuss the effector repertoires of each T6SS and connect the mechanisms by which these effectors kill target cells to the ecological conditions under which their respective systems are activated. Understanding the T6SSs of P. aeruginosa in the context of this organism's diverse lifestyles will provide insight into the physiological roles these secretion systems play in this remarkably adaptable bacterium.
Collapse
Affiliation(s)
- Jake Colautti
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Steven D Kelly
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
7
|
Halvorsen TM, Schroeder KA, Jones AM, Hammarlöf D, Low DA, Koskiniemi S, Hayes CS. Contact-dependent growth inhibition (CDI) systems deploy a large family of polymorphic ionophoric toxins for inter-bacterial competition. PLoS Genet 2024; 20:e1011494. [PMID: 39591464 PMCID: PMC11630599 DOI: 10.1371/journal.pgen.1011494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/10/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Contact-dependent growth inhibition (CDI) is a widespread form of inter-bacterial competition mediated by CdiA effector proteins. CdiA is presented on the inhibitor cell surface and delivers its toxic C-terminal region (CdiA-CT) into neighboring bacteria upon contact. Inhibitor cells also produce CdiI immunity proteins, which neutralize CdiA-CT toxins to prevent auto-inhibition. Here, we describe a diverse group of CDI ionophore toxins that dissipate the transmembrane potential in target bacteria. These CdiA-CT toxins are composed of two distinct domains based on AlphaFold2 modeling. The C-terminal ionophore domains are all predicted to form five-helix bundles capable of spanning the cell membrane. The N-terminal "entry" domains are variable in structure and appear to hijack different integral membrane proteins to promote toxin assembly into the lipid bilayer. The CDI ionophores deployed by E. coli isolates partition into six major groups based on their entry domain structures. Comparative sequence analyses led to the identification of receptor proteins for ionophore toxins from groups 1 & 3 (AcrB), group 2 (SecY) and groups 4 (YciB). Using forward genetic approaches, we identify novel receptors for the group 5 and 6 ionophores. Group 5 exploits homologous putrescine import proteins encoded by puuP and plaP, and group 6 toxins recognize di/tripeptide transporters encoded by paralogous dtpA and dtpB genes. Finally, we find that the ionophore domains exhibit significant intra-group sequence variation, particularly at positions that are predicted to interact with CdiI. Accordingly, the corresponding immunity proteins are also highly polymorphic, typically sharing only ~30% sequence identity with members of the same group. Competition experiments confirm that the immunity proteins are specific for their cognate ionophores and provide no protection against other toxins from the same group. The specificity of this protein interaction network provides a mechanism for self/nonself discrimination between E. coli isolates.
Collapse
Affiliation(s)
- Tiffany M. Halvorsen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Kaitlin A. Schroeder
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Allison M. Jones
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Disa Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - David A. Low
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Christopher S. Hayes
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
8
|
Aoun N, Georgoulis SJ, Avalos JK, Grulla KJ, Miqueo K, Tom C, Lowe-Power TM. A pangenomic atlas reveals eco-evolutionary dynamics that shape type VI secretion systems in plant-pathogenic Ralstonia. mBio 2024; 15:e0032324. [PMID: 39191402 PMCID: PMC11481896 DOI: 10.1128/mbio.00323-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Soilborne Ralstonia solanacearum species complex (RSSC) pathogens disrupt microbial communities as they invade roots and fatally wilt plants. RSSC pathogens secrete antimicrobial toxins using a type VI secretion system (T6SS). To investigate how evolution and ecology have shaped the T6SS of these bacterial pathogens, we analyzed the T6SS gene content and architecture across the RSSC and their evolutionary relatives. Our analysis reveals that two ecologically similar Burkholderiaceae taxa, xylem-pathogenic RSSC and Paracidovorax, have convergently evolved to wield large arsenals of T6SS toxins. To understand the mechanisms underlying genomic enrichment of T6SS toxins, we compiled an atlas of 1,066 auxiliary T6SS toxin clusters ("aux" clusters) across 99 high-quality RSSC genomes. We classified 25 types of aux clusters with toxins that predominantly target lipids, nucleic acids, or unknown cellular substrates. The aux clusters were located in diverse genetic neighborhoods and had complex phylogenetic distributions, suggesting frequent horizontal gene flow. Phages and other mobile genetic elements account for most of the aux cluster acquisition on the chromosome but very little on the megaplasmid. Nevertheless, RSSC genomes were more enriched in aux clusters on the megaplasmid. Although the single, ancestral T6SS was broadly conserved in the RSSC, the T6SS has been convergently lost in atypical, non-soilborne lineages. Overall, our data suggest dynamic interplay between the lifestyle of RSSC lineages and the evolution of T6SSes with robust arsenals of toxins. This pangenomic atlas poises the RSSC as an emerging, tractable model to understand the role of the T6SS in shaping pathogen populations.IMPORTANCEWe explored the eco-evolutionary dynamics that shape the inter-microbial warfare mechanisms of a globally significant plant pathogen, the Ralstonia solanacearum species complex. We discovered that most Ralstonia wilt pathogens have evolved extensive and diverse repertoires of type VI secretion system-associated antimicrobial toxins. These expansive toxin arsenals potentially enhance the ability of Ralstonia pathogens to invade plant microbiomes, enabling them to rapidly colonize and kill their host plants. We devised a classification system to categorize the Ralstonia toxins. Interestingly, many of the toxin gene clusters are encoded on mobile genetic elements, including prophages, which may be mutualistic symbionts that enhance the inter-microbial competitiveness of Ralstonia wilt pathogens. Moreover, our findings suggest that the convergent loss of this multi-gene trait contributes to genome reduction in two vector-transmitted lineages of Ralstonia pathogens. Our findings demonstrate that the interplay between microbial ecology and pathogen lifestyle shapes the evolution of a genetically complex antimicrobial weapon.
Collapse
Affiliation(s)
- Nathalie Aoun
- Department of Plant Pathology, University of California, Davis, California, USA
| | | | - Jason K. Avalos
- Department of Plant Pathology, University of California, Davis, California, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Kimberly J. Grulla
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Kasey Miqueo
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Cloe Tom
- Department of Plant Pathology, University of California, Davis, California, USA
| | | |
Collapse
|
9
|
Jensen SJ, Cuthbert BJ, Garza-Sánchez F, Helou CC, de Miranda R, Goulding CW, Hayes CS. Advanced glycation end-product crosslinking activates a type VI secretion system phospholipase effector protein. Nat Commun 2024; 15:8804. [PMID: 39394186 PMCID: PMC11470151 DOI: 10.1038/s41467-024-53075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Advanced glycation end-products (AGE) are a pervasive form of protein damage implicated in the pathogenesis of neurodegenerative disease, atherosclerosis and diabetes mellitus. Glycation is typically mediated by reactive dicarbonyl compounds that accumulate in all cells as toxic byproducts of glucose metabolism. Here, we show that AGE crosslinking is harnessed to activate an antibacterial phospholipase effector protein deployed by the type VI secretion system of Enterobacter cloacae. Endogenous methylglyoxal reacts with a specific arginine-lysine pair to tether the N- and C-terminal α-helices of the phospholipase domain. Substitutions at these positions abrogate both crosslinking and toxic phospholipase activity, but in vitro enzyme function can be restored with an engineered disulfide that covalently links the N- and C-termini. Thus, AGE crosslinking serves as a bona fide post-translation modification to stabilize phospholipase structure. Given the ubiquity of methylglyoxal in prokaryotic and eukaryotic cells, these findings suggest that glycation may be exploited more generally to stabilize other proteins. This alternative strategy to fortify tertiary structure could be particularly advantageous in the cytoplasm, where redox potentials preclude disulfide bond formation.
Collapse
Affiliation(s)
- Steven J Jensen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA
| | - Bonnie J Cuthbert
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA
| | - Colette C Helou
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Rodger de Miranda
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, 92697, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA.
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, 93106, USA.
| |
Collapse
|
10
|
Hayes BK, Harper M, Venugopal H, Lewis JM, Wright A, Lee HC, Steele JR, Steer DL, Schittenhelm RB, Boyce JD, McGowan S. Structure of a Rhs effector clade domain provides mechanistic insights into type VI secretion system toxin delivery. Nat Commun 2024; 15:8709. [PMID: 39379370 PMCID: PMC11461821 DOI: 10.1038/s41467-024-52950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
The type VI secretion system (T6SS) is a molecular machine utilised by many Gram-negative bacteria to deliver antibacterial toxins into adjacent cells. Here we present the structure of Tse15, a T6SS Rhs effector from the nosocomial pathogen Acinetobacter baumannii. Tse15 forms a triple layered β-cocoon Rhs domain with an N-terminal α-helical clade domain and an unfolded C-terminal toxin domain inside the Rhs cage. Tse15 is cleaved into three domains, through independent auto-cleavage events involving aspartyl protease activity for toxin self-cleavage and a nucleophilic glutamic acid for N-terminal clade cleavage. Proteomic analyses identified that significantly more peptides from the N-terminal clade and toxin domains were secreted than from the Rhs cage, suggesting toxin delivery often occurs without the cage. We propose the clade domain acts as an internal chaperone to mediate toxin tethering to the T6SS machinery. Conservation of the clade domain in other Gram-negative bacteria suggests this may be a common mechanism for delivery.
Collapse
Affiliation(s)
- Brooke K Hayes
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia
| | - Marina Harper
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Jessica M Lewis
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia
| | - Amy Wright
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia
| | - Han-Chung Lee
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Joel R Steele
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David L Steer
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - John D Boyce
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia.
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia.
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia.
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
11
|
Matte LM, Genal AV, Landolt EF, Danka ES. T6SS in plant pathogens: unique mechanisms in complex hosts. Infect Immun 2024; 92:e0050023. [PMID: 39166846 PMCID: PMC11385963 DOI: 10.1128/iai.00500-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Type VI secretion systems (T6SSs) are complex molecular machines that allow bacteria to deliver toxic effector proteins to neighboring bacterial and eukaryotic cells. Although initial work focused on the T6SS as a virulence mechanism of human pathogens, the field shifted to examine the use of T6SSs for interbacterial competition in various environments, including in the plant rhizosphere. Genes encoding the T6SS are estimated to be found in a quarter of all Gram-negative bacteria and are especially highly represented in Proteobacteria, a group which includes the most important bacterial phytopathogens. Many of these pathogens encode multiple distinct T6SS gene clusters which can include the core components of the apparatus as well as effector proteins. The T6SS is deployed by pathogens at multiple points as they colonize their hosts and establish an infection. In this review, we describe what is known about the use of T6SS by phytopathogens against plant hosts and non-plant organisms, keeping in mind that the structure of plants requires unique mechanisms of attack that are distinct from the mechanisms used for interbacterial interactions and against animal hosts. While the interactions of specific effectors (such as phospholipases, endonucleases, peptidases, and amidases) with targets have been well described in the context of interbacterial competition and in some eukaryotic interactions, this review highlights the need for future studies to assess the activity of phytobacterial T6SS effectors against plant cells.
Collapse
Affiliation(s)
- Lexie M. Matte
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Abigail V. Genal
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Emily F. Landolt
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Elizabeth S. Danka
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| |
Collapse
|
12
|
George M, Narayanan S, Tejada-Arranz A, Plack A, Basler M. Initiation of H1-T6SS dueling between Pseudomonas aeruginosa. mBio 2024; 15:e0035524. [PMID: 38990002 PMCID: PMC11323562 DOI: 10.1128/mbio.00355-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
The Type VI secretion system (T6SS) is a multicomponent apparatus, present in many Gram-negative bacteria, which can inhibit bacterial prey in various ecological niches. Pseudomonas aeruginosa assembles one of its three T6SS (H1-T6SS) to respond to attacks from adjacent competing bacteria. Surprisingly, repeated assemblies of the H1-T6SS, termed dueling, were described in a monoculture in the absence of an attacker strain; however, the underlying mechanism was unknown. Here, we explored the role of H2-T6SS of P. aeruginosa in triggering H1-T6SS assembly. We show that H2-T6SS inactivation in P. aeruginosa causes a significant reduction in H1-T6SS dueling and that H2-T6SS activity directly triggers retaliation by the H1-T6SS. Intraspecific competition experiments revealed that elimination of H2-T6SS in non-immune prey cells conferred protection from H1-T6SS. Moreover, we show that the H1-T6SS response is triggered independently of the characterized lipase effectors of the H2-T6SS, as well as those of Acinetobacter baylyi and Vibrio cholerae. Our results suggest that H1-T6SS response to H2-T6SS in P. aeruginosa can impact intraspecific competition, particularly when the H1-T6SS effector-immunity pairs differ between strains, and could determine the outcome of multistrain colonization.IMPORTANCEThe opportunistic pathogen Pseudomonas aeruginosa harbors three different Type VI secretion systems (H1, H2, and H3-T6SS), which can translocate toxins that can inhibit bacterial competitors or inflict damage to eukaryotic host cells. Unlike the unregulated T6SS assembly in other Gram-negative bacteria, the H1-T6SS in P. aeruginosa is precisely assembled as a response to various cell damaging attacks from neighboring bacterial cells. Surprisingly, it was observed that neighboring P. aeruginosa cells repeatedly assemble their H1-T6SS toward each other. Mechanisms triggering this "dueling" behavior between sister cells were unknown. In this report, we used a combination of microscopy, genetic and intraspecific competition experiments to show that H2-T6SS initiates H1-T6SS dueling. Our study highlights the interplay between different T6SS clusters in P. aeruginosa, which may influence the outcomes of multistrain competition in various ecological settings such as biofilm formation and colonization of cystic fibrosis lungs.
Collapse
Affiliation(s)
- M. George
- Biozentrum, University of Basel, Basel, Switzerland
| | - S. Narayanan
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - A. Plack
- Biozentrum, University of Basel, Basel, Switzerland
| | - M. Basler
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Bier SB, Toska J, Zhao W, Suthianthong P, Proespraiwong P, Robins WP, Mekalanos J. A coordinated attack by a bacterial secretion system and a small molecule drives prey specificity. Commun Biol 2024; 7:958. [PMID: 39117895 PMCID: PMC11310501 DOI: 10.1038/s42003-024-06637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Vibrio species are recognized for their role in food- and water-borne diseases in humans, fish, and aquatic invertebrates. We screened bacterial strains isolated from raw food shrimp for those that are bactericidal to Vibrio strains. Here we identify and characterize Aeromonas dhakensis strain A603 which shows robust bactericidal activity specifically towards Vibrio and related taxa but less potency toward other Gram-negative species. Using the A603 genome and genetic analysis, we show that two antibacterial mechanisms account for its vibriocidal activity -- a highly potent Type Six Secretion System (T6SS) and biosynthesis of a vibriocidal phenazine-like small molecule, named here as Ad-Phen. Further analysis indicates coregulation between Ad-Phen and a pore-forming T6SS effector TseC, which potentiates V. cholerae to killing by Ad-Phen.
Collapse
Affiliation(s)
- S B Bier
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - J Toska
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - W Zhao
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease. The Sixth Affiliated Hospital, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - P Suthianthong
- Charoen Pokphand Foods PCL. Aquatic Animal Health Research Center, Samutsakorn, Thailand
| | - P Proespraiwong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - W P Robins
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - J Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Che S, Sun C, Yang L, Zhou M, Xia L, Yan J, Jiang M, Wang J, Wang H, Zhao W, Toth I, Hu B, Guo T, Fan J. T6SS and T4SS Redundantly Secrete Effectors to Govern the Virulence and Bacterial Competition in Pectobacterium PccS1. PHYTOPATHOLOGY 2024; 114:1926-1939. [PMID: 38749069 DOI: 10.1094/phyto-11-23-0455-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Previous studies revealed that the type VI secretion system (T6SS) has an essential role in bacterial competition and virulence in many gram-negative bacteria. However, the role of T6SS in virulence in Pectobacterium atrosepticum remains controversial. We examined a closely related strain, PccS1, and discovered that its T6SS comprises a single-copy cluster of 17 core genes with a higher identity to homologs from P. atrosepticum. Through extensive phenotypic and functional analyses of over 220 derivatives of PccS1, we found that three of the five VgrGs could be classified into group I VgrGs. These VgrGs interacted with corresponding DUF4123 domain proteins, which were secreted outside of the membrane and were dependent on either the T6SS or type IV secretion system (T4SS). This interaction directly governed virulence and competition. Meanwhile, supernatant proteomic analyses with strains defective in the T6SS and/or T4SS confirmed that effectors, such as FhaB, were secreted redundantly to control the virulence and suppress host callose deposition in the course of infection. Notably, this redundant secretion mechanism between the T6SS and T4SS is believed to be the first of its kind in bacteria.
Collapse
Affiliation(s)
- Shu Che
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Chen Sun
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuke Yang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Zhou
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyan Xia
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingyuan Yan
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyi Jiang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaju Wang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Wang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Institute of Agricultural Science of Suzhou, Taihu Lake District, Suzhou 215155, China
| | - Wenjun Zhao
- CAIQ Center for Biosafety, Sanya 572024, China
| | - Ian Toth
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Baishi Hu
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Guo
- Southern Breeding Administrate Office of Hainan Province, Sanya 572000, China
| | - Jiaqin Fan
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Sun Y, Wang L, Zhang M, Jie J, Guan Q, Fu J, Chu X, Chen D, Li C, Song L, Luo ZQ. Acinetobacter nosocomialis utilizes a unique type VI secretion system to promote its survival in niches with prey bacteria. mBio 2024; 15:e0146824. [PMID: 38916378 PMCID: PMC11253628 DOI: 10.1128/mbio.01468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Pathogenic bacteria of the Acinetobacter genus pose a severe threat to human health worldwide due to their strong adaptability, tolerance, and antibiotic resistance. Most isolates of these bacteria harbor a type VI secretion system (T6SS) that allows them to outcompete co-residing microorganisms, but whether this system is involved in acquiring nutrients from preys remains less studied. In this study, we found that Ab25, a clinical isolate of Acinetobacter nosocomialis, utilizes a T6SS to kill taxonomically diverse microorganisms, including bacteria and fungi. The T6SS of Ab25 is constitutively expressed, and among the three predicted effectors, T6e1, a member of the RHS effector family, contributes the most for its antimicrobial activity. T6e1 undergoes self-cleavage, and a short carboxyl fragment with nuclease activity is sufficient to kill target cells via T6SS injection. Interestingly, strain Ab25 encodes an orphan VgrG protein, which when overexpressed blocks the firing of its T6SS. In niches such as dry plastic surfaces, the T6SS promotes prey microorganism-dependent survival of Ab25. These results reveal that A. nosocomialis employs T6SSs that are highly diverse in their regulation and effector composition to gain a competitive advantage in environments with scarce nutrient supply and competing microbes.IMPORTANCEThe type VI secretion system (T6SS) plays an important role in bacterial adaptation to environmental challenges. Members of the Acinetobacter genus, particularly A. baumannii and A. nosocomialis, are notorious for their multidrug resistance and their ability to survive in harsh environments. In contrast to A. baumannii, whose T6SS has been well-studied, few research works have focused on A. nosocomialis. In this study, we found that an A. nosocomialis strain utilizes a contitutively active T6SS to kill diverse microorganisms, including bacteria and fungi. Although T6SS structural proteins of A. nosocomialis are similar to those of A. baumannii, the effector repertoire differs greatly. Interestingly, the T6SS of the A. nosocomialis strain codes for an ophan VgrG protein, which blocks the firing of the system when overexpressed, suggesting the existence of a new regulatory mechanism for the T6SS. Importantly, although the T6SS does not provide an advantage when the bacterium is grown in nutrient-rich medium, it allows A. nosocomialis to survive better in dry surfaces that contain co-existing bacteria. Our results suggest that killing of co-residing microorganisms may increase the effectiveness of strategies designed to reduce the fitness of Acinetobacter bacteria by targeting their T6SS.
Collapse
Affiliation(s)
- Yu Sun
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
- Department of Gastroenterology, Endoscopy center, The First Hospital of Jilin University, Changchun, China
| | - Lidong Wang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Ming Zhang
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Jing Jie
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Qingtian Guan
- Bioinformatics Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Dong Chen
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Chunxiuli Li
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
16
|
Avila‐Cobian LF, De Benedetti S, Hoshino H, Nguyen VT, El‐Araby AM, Sader S, Hu DD, Cole SL, Kim C, Fisher JF, Champion MM, Mobashery S. Lytic transglycosylase Slt of Pseudomonas aeruginosa as a periplasmic hub protein. Protein Sci 2024; 33:e5038. [PMID: 38864725 PMCID: PMC11168074 DOI: 10.1002/pro.5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 μM) include PBPs (PBP1a, KD = 0.07 μM; PBP5 = 0.4 μM); other lytic transglycosylases (SltB2, KD = 0.09 μM; RlpA, KD = 0.4 μM); a type VI secretion system effector (Tse5, KD = 0.3 μM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 μM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.
Collapse
Affiliation(s)
- Luis F. Avila‐Cobian
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Stefania De Benedetti
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Hidekazu Hoshino
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Van T. Nguyen
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Amr M. El‐Araby
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Safaa Sader
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Daniel D. Hu
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Sara L. Cole
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Choon Kim
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew M. Champion
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
17
|
Zhang GL, Wang ZC, Li CP, Chen DP, Li ZR, Li Y, Ouyang GP. Discovery of tryptanthrin analogues bearing F and piperazine moieties as novel phytopathogenic antibacterial and antiviral agents. PEST MANAGEMENT SCIENCE 2024; 80:1026-1038. [PMID: 37842924 DOI: 10.1002/ps.7834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Plant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV). RESULTS Bioassay results indicated that compounds 6a-6l displayed excellent antibacterial activities in vitro and 6a-6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half-maximal effective concentration (EC50 ) of 1.26 μg mL-1 , compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 μg mL-1 ) and thiodiazole copper (TC; EC50 = 73.3 μg mL-1 ). Meanwhile, 6a also had the best antiviral activity at 500 μg mL-1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo. CONCLUSION Compound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guang-Long Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhen-Chao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Cheng-Peng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Dan-Ping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Zhu-Rui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yan Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Gui-Ping Ouyang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| |
Collapse
|
18
|
Santos MNM, Pintor KL, Hsieh PY, Cheung YW, Sung LK, Shih YL, Lai EM. Agrobacteria deploy two classes of His-Me finger superfamily nuclease effectors exerting different antibacterial capacities against specific bacterial competitors. Front Microbiol 2024; 15:1351590. [PMID: 38426053 PMCID: PMC10902643 DOI: 10.3389/fmicb.2024.1351590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
The type VI secretion system (T6SS) assembles into a contractile nanomachine to inject effectors across bacterial membranes for secretion. The Agrobacterium tumefaciens species complex is a group of soil inhabitants and phytopathogens that deploys T6SS as an antibacterial weapon against bacterial competitors at both inter-species and intra-species levels. The A. tumefaciens strain 1D1609 genome encodes one main T6SS gene cluster and four vrgG genes (i.e., vgrGa-d), each encoding a spike protein as an effector carrier. A previous study reported that vgrGa-associated gene 2, named v2a, encodes a His-Me finger nuclease toxin (also named HNH/ENDO VII nuclease), contributing to DNase-mediated antibacterial activity. However, the functions and roles of other putative effectors remain unknown. In this study, we identified vgrGc-associated gene 2 (v2c) that encodes another His-Me finger nuclease but with a distinct Serine Histidine Histidine (SHH) motif that differs from the AHH motif of V2a. We demonstrated that the ectopic expression of V2c caused growth inhibition, plasmid DNA degradation, and cell elongation in Escherichia coli using DNAse activity assay and fluorescence microscopy. The cognate immunity protein, V3c, neutralizes the DNase activity and rescues the phenotypes of growth inhibition and cell elongation. Ectopic expression of V2c DNase-inactive variants retains the cell elongation phenotype, while V2a induces cell elongation in a DNase-mediated manner. We also showed that the amino acids of conserved SHH and HNH motifs are responsible for the V2c DNase activity in vivo and in vitro. Notably, V2c also mediated the DNA degradation and cell elongation of the target cell in the context of interbacterial competition. Importantly, V2a and V2c exhibit different capacities against different bacterial species and function synergistically to exert stronger antibacterial activity against the soft rot phytopathogen, Dickeya dadantii.
Collapse
Affiliation(s)
- Mary Nia M. Santos
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
- Aquaculture Research and Development Division, Department of Agriculture-National Fisheries Research and Development Institute (DA-NFRDI), Manila, Philippines
| | | | - Pei-Yu Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yee-Wai Cheung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Li-Kang Sung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
19
|
González-Magaña A, Tascón I, Altuna-Alvarez J, Queralt-Martín M, Colautti J, Velázquez C, Zabala M, Rojas-Palomino J, Cárdenas M, Alcaraz A, Whitney JC, Ubarretxena-Belandia I, Albesa-Jové D. Structural and functional insights into the delivery of a bacterial Rhs pore-forming toxin to the membrane. Nat Commun 2023; 14:7808. [PMID: 38016939 PMCID: PMC10684867 DOI: 10.1038/s41467-023-43585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Bacterial competition is a significant driver of toxin polymorphism, which allows continual compensatory evolution between toxins and the resistance developed to overcome their activity. Bacterial Rearrangement hot spot (Rhs) proteins represent a widespread example of toxin polymorphism. Here, we present the 2.45 Å cryo-electron microscopy structure of Tse5, an Rhs protein central to Pseudomonas aeruginosa type VI secretion system-mediated bacterial competition. This structural insight, coupled with an extensive array of biophysical and genetic investigations, unravels the multifaceted functional mechanisms of Tse5. The data suggest that interfacial Tse5-membrane binding delivers its encapsulated pore-forming toxin fragment to the target bacterial membrane, where it assembles pores that cause cell depolarisation and, ultimately, bacterial death.
Collapse
Affiliation(s)
- Amaia González-Magaña
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Igor Tascón
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Jon Altuna-Alvarez
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - Jake Colautti
- Department of Biochemistry and Biomedical Sciences, Michael DeGroote Institute for Infectious Disease Research, and David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Carmen Velázquez
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Maialen Zabala
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Jessica Rojas-Palomino
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - Marité Cárdenas
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, Michael DeGroote Institute for Infectious Disease Research, and David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - David Albesa-Jové
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain.
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
20
|
Zhang N, Ye F, Wang Y, Liu R, Huang Z, Chen C, Liu L, Kang X, Dong S, Rajaofera MJN, Zhu C, Zhang L, Zhou Y, Xiong Y, Xia Q. Role of type VI secretion system protein TssJ-3 in virulence and intracellular survival of Burkholderia pseudomallei. Biochem Biophys Res Commun 2023; 682:397-406. [PMID: 37852065 DOI: 10.1016/j.bbrc.2023.09.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
TssJ-3 is an outer-membrane lipoprotein and is one of the key components of the type VI secretion system in Burkholderia pseudomallei. TssJ translocates effector proteins to target cells to induce innate immune response in the host. However, the tssJ gene has not been identified in B. pseudomallei and its function in this bacterium has not yet been characterized. tssJ-3 knockout and tssJ-3-complemented B. pseudomallei strains were constructed to determine the effects of tssJ-3 on bacterial growth, biofilm formation, flagellum synthesis, motility, host cell infection, and gene expression in B. pseudomallei. We found that the ΔtssJ-3 mutant strain of B. pseudomallei showed significantly suppressed biofilm formation, flagellum synthesis, bacterial growth, motility, and bacterial invasion into host cells (A549 cells). Furthermore, the ΔtssJ-3 mutation downregulated multiple key genes, including biofilm and flagellum-related genes in B. pseudomallei and induced interleukin-8 gene expression in host cells. These results suggest that tssJ-3, an important gene controlling TssJ-3 protein expression, has regulatory effects on biofilm formation and flagellum synthesis in B. pseudomallei. In addition, B. pseudomallei-derived tssJ-3 contributes to cell infiltration and intracellular replication. This study provides a molecular basis of tssJ-3 for developing therapeutic strategies against B. pseudomallei infections.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Fengqin Ye
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Yanshuang Wang
- The Second Affiliated Hospital of Hainan Medical University, China
| | - Rui Liu
- The Second Affiliated Hospital of Hainan Medical University, China
| | - Zhenyan Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Chuizhe Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Lin Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Xun Kang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Sufang Dong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Mamy Jayne Nelly Rajaofera
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Chuanlong Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Liyuan Zhang
- The Second Affiliated Hospital of Hainan Medical University, China
| | - Yanling Zhou
- Department of Pediatrics, The Fourth People's Hospital of Haikou City, China.
| | - Yu Xiong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China.
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
21
|
Durán D, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Martín M. An Orphan VrgG Auxiliary Module Related to the Type VI Secretion Systems from Pseudomonas ogarae F113 Mediates Bacterial Killing. Genes (Basel) 2023; 14:1979. [PMID: 38002922 PMCID: PMC10671463 DOI: 10.3390/genes14111979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
The model rhizobacterium Pseudomonas ogarae F113, a relevant plant growth-promoting bacterium, encodes three different Type VI secretion systems (T6SS) in its genome. In silico analysis of its genome revealed the presence of a genetic auxiliary module containing a gene encoding an orphan VgrG protein (VgrG5a) that is not genetically linked to any T6SS structural cluster, but is associated with genes encoding putative T6SS-related proteins: a possible adaptor Tap protein, followed by a putative effector, Tfe8, and its putative cognate immunity protein, Tfi8. The bioinformatic analysis of the VgrG5a auxiliary module has revealed that this cluster is only present in several subgroups of the P. fluorescens complex of species. An analysis of the mutants affecting the vgrG5a and tfe8 genes has shown that the module is involved in bacterial killing. To test whether Tfe8/Tfi8 constitute an effector-immunity pair, the genes encoding Tfe8 and Tfi8 were cloned and expressed in E. coli, showing that the ectopic expression of tfe8 affected growth. The growth defect was suppressed by tfi8 ectopic expression. These results indicate that Tfe8 is a bacterial killing effector, while Tfi8 is its cognate immunity protein. The Tfe8 protein sequence presents homology to the proteins of the MATE family involved in drug extrusion. The Tfe8 effector is a membrane protein with 10 to 12 transmembrane domains that could destabilize the membranes of target cells by the formation of pores, revealing the importance of these effectors for bacterial interaction. Tfe8 represents a novel type of a T6SS effector present in pseudomonads.
Collapse
Affiliation(s)
- David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - David Vazquez-Arias
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| |
Collapse
|
22
|
Tassinari M, Rudzite M, Filloux A, Low HH. Assembly mechanism of a Tad secretion system secretin-pilotin complex. Nat Commun 2023; 14:5643. [PMID: 37704603 PMCID: PMC10499894 DOI: 10.1038/s41467-023-41200-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
The bacterial Tight adherence Secretion System (TadSS) assembles surface pili that drive cell adherence, biofilm formation and bacterial predation. The structure and mechanism of the TadSS is mostly unknown. This includes characterisation of the outer membrane secretin through which the pilus is channelled and recruitment of its pilotin. Here we investigate RcpA and TadD lipoprotein from Pseudomonas aeruginosa. Light microscopy reveals RcpA colocalising with TadD in P. aeruginosa and when heterologously expressed in Escherichia coli. We use cryogenic electron microscopy to determine how RcpA and TadD assemble a secretin channel with C13 and C14 symmetries. Despite low sequence homology, we show that TadD shares a similar fold to the type 4 pilus system pilotin PilF. We establish that the C-terminal four residues of RcpA bind TadD - an interaction essential for secretin formation. The binding mechanism between RcpA and TadD appears distinct from known secretin-pilotin pairings in other secretion systems.
Collapse
Affiliation(s)
- Matteo Tassinari
- Department of Infectious Disease, Imperial College, London, SW7 2AZ, UK
- Human Technopole, Milan, Italy
| | - Marta Rudzite
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Alain Filloux
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
23
|
Kanarek K, Fridman CM, Bosis E, Salomon D. The RIX domain defines a class of polymorphic T6SS effectors and secreted adaptors. Nat Commun 2023; 14:4983. [PMID: 37591831 PMCID: PMC10435454 DOI: 10.1038/s41467-023-40659-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Bacteria use the type VI secretion system (T6SS) to deliver toxic effectors into bacterial or eukaryotic cells during interbacterial competition, host colonization, or when resisting predation. Identifying effectors is a challenging task, as they lack canonical secretion signals or universally conserved domains. Here, we identify a protein domain, RIX, that defines a class of polymorphic T6SS cargo effectors. RIX is widespread in the Vibrionaceae family and is located at N-termini of proteins containing diverse antibacterial and anti-eukaryotic toxic domains. We demonstrate that RIX-containing proteins are delivered via T6SS into neighboring cells and that RIX is necessary and sufficient for T6SS-mediated secretion. In addition, RIX-containing proteins can enable the T6SS-mediated delivery of other cargo effectors by a previously undescribed mechanism. The identification of RIX-containing proteins significantly enlarges the repertoire of known T6SS effectors, especially those with anti-eukaryotic activities. Furthermore, our findings also suggest that T6SSs may play an underappreciated role in the interactions between vibrios and eukaryotes.
Collapse
Affiliation(s)
- Katarzyna Kanarek
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chaya Mushka Fridman
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel.
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Allsopp LP, Bernal P. Killing in the name of: T6SS structure and effector diversity. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001367. [PMID: 37490402 PMCID: PMC10433429 DOI: 10.1099/mic.0.001367] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The life of bacteria is challenging, to endure bacteria employ a range of mechanisms to optimize their environment, including deploying the type VI secretion system (T6SS). Acting as a bacterial crossbow, this system delivers effectors responsible for subverting host cells, killing competitors and facilitating general secretion to access common goods. Due to its importance, this lethal machine has been evolutionarily maintained, disseminated and specialized to fulfil these vital functions. In fact, T6SS structural clusters are present in over 25 % of Gram-negative bacteria, varying in number from one to six different genetic clusters per organism. Since its discovery in 2006, research on the T6SS has rapidly progressed, yielding remarkable breakthroughs. The identification and characterization of novel components of the T6SS, combined with biochemical and structural studies, have revealed fascinating mechanisms governing its assembly, loading, firing and disassembly processes. Recent findings have also demonstrated the efficacy of this system against fungal and Gram-positive cells, expanding its scope. Ongoing research continues to uncover an extensive and expanding repertoire of T6SS effectors, the genuine mediators of T6SS function. These studies are shedding light on new aspects of the biology of prokaryotic and eukaryotic organisms. This review provides a comprehensive overview of the T6SS, highlighting recent discoveries of its structure and the diversity of its effectors. Additionally, it injects a personal perspective on avenues for future research, aiming to deepen our understanding of this combative system.
Collapse
Affiliation(s)
- Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| |
Collapse
|
25
|
Rudzite M, Subramoni S, Endres RG, Filloux A. Effectiveness of Pseudomonas aeruginosa type VI secretion system relies on toxin potency and type IV pili-dependent interaction. PLoS Pathog 2023; 19:e1011428. [PMID: 37253075 PMCID: PMC10281587 DOI: 10.1371/journal.ppat.1011428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/20/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023] Open
Abstract
The type VI secretion system (T6SS) is an antibacterial weapon that is used by numerous Gram-negative bacteria to gain competitive advantage by injecting toxins into adjacent prey cells. Predicting the outcome of a T6SS-dependent competition is not only reliant on presence-absence of the system but instead involves a multiplicity of factors. Pseudomonas aeruginosa possesses 3 distinct T6SSs and a set of more than 20 toxic effectors with diverse functions including disruption of cell wall integrity, degradation of nucleic acids or metabolic impairment. We generated a comprehensive collection of mutants with various degrees of T6SS activity and/or sensitivity to each individual T6SS toxin. By imaging whole mixed bacterial macrocolonies, we then investigated how these P. aeruginosa strains gain a competitive edge in multiple attacker/prey combinations. We observed that the potency of single T6SS toxin varies significantly from one another as measured by monitoring the community structure, with some toxins acting better in synergy or requiring a higher payload. Remarkably the degree of intermixing between preys and attackers is also key to the competition outcome and is driven by the frequency of contact as well as the ability of the prey to move away from the attacker using type IV pili-dependent twitching motility. Finally, we implemented a computational model to better understand how changes in T6SS firing behaviours or cell-cell contacts lead to population level competitive advantages, thus providing conceptual insight applicable to all types of contact-based competition.
Collapse
Affiliation(s)
- Marta Rudzite
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Robert G. Endres
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
26
|
Brown PJB, Chang JH, Fuqua C. Agrobacterium tumefaciens: a Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology. J Bacteriol 2023; 205:e0000523. [PMID: 36892285 PMCID: PMC10127608 DOI: 10.1128/jb.00005-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Agrobacterium tumefaciens incites the formation of readily visible macroscopic structures known as crown galls on plant tissues that it infects. Records from biologists as early as the 17th century noted these unusual plant growths and began examining the basis for their formation. These studies eventually led to isolation of the infectious agent, A. tumefaciens, and decades of study revealed the remarkable mechanisms by which A. tumefaciens causes crown gall through stable horizontal genetic transfer to plants. This fundamental discovery generated a barrage of applications in the genetic manipulation of plants that is still under way. As a consequence of the intense study of A. tumefaciens and its role in plant disease, this pathogen was developed as a model for the study of critical processes that are shared by many bacteria, including host perception during pathogenesis, DNA transfer and toxin secretion, bacterial cell-cell communication, plasmid biology, and more recently, asymmetric cell biology and composite genome coordination and evolution. As such, studies of A. tumefaciens have had an outsized impact on diverse areas within microbiology and plant biology that extend far beyond its remarkable agricultural applications. In this review, we attempt to highlight the colorful history of A. tumefaciens as a study system, as well as current areas that are actively demonstrating its value and utility as a model microorganism.
Collapse
Affiliation(s)
- Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
27
|
Pérez-Lorente AI, Molina-Santiago C, de Vicente A, Romero D. Sporulation Activated via σ W Protects Bacillus from a Tse1 Peptidoglycan Hydrolase Type VI Secretion System Effector. Microbiol Spectr 2023; 11:e0504522. [PMID: 36916921 PMCID: PMC10100999 DOI: 10.1128/spectrum.05045-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Within bacterial communities, community members engage in interactions employing diverse offensive and defensive tools to reach coexistence. Extracellular-matrix production and sporulation are defensive mechanisms used by Bacillus subtilis cells when they interact with Pseudomonas chlororaphis strains expressing a type VI secretion system (T6SS). Here, we define Tse1 as the main toxin mobilized by the Pseudomonas chlororaphis T6SS that triggers sporulation in Bacillus subtilis. We characterize Tse1 as a peptidoglycan hydrolase that indirectly alters the dynamics and functionality of the Bacillus cell membrane. We also delineate the response of Bacillus cells to Tse1, which through the coordinated actions of the extracellular sigma factor σW and the cytoplasmic histidine kinases KinA and KinB, culminates in activation of the sporulation cascade. We propose that this cellular developmental response permits bacilli to defend against the toxicity of T6SS-mobilized Tse1 effector. IMPORTANCE The study of bacterial interactions is helping to define species-specific strategies used to modulate the competition dynamics underlying the development of community compositions. In this study, we deciphered the role of Pseudomonas T6SS when competing with Bacillus and the mechanism by which a T6SS-toxin modifies Bacillus physiology. We found that Pseudomonas triggers Bacillus sporulation by injecting through T6SS a toxin that we called Tse1. We found that Tse1 is a hydrolase that degrades Bacillus peptidoglycan and indirectly damages Bacillus membrane functionality. In addition, we demonstrated the mechanism by which Bacillus cells increase the sporulation rate upon recognition of the presence of Tse1. Interestingly, asporogenic Bacillus cells are more sensitive to T6SS activity, which led us to propose sporulation as a last resort of bacilli to overcome this family of toxins.
Collapse
Affiliation(s)
- Alicia I. Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
28
|
Hespanhol JT, Karman L, Sanchez-Limache DE, Bayer-Santos E. Intercepting biological messages: Antibacterial molecules targeting nucleic acids during interbacterial conflicts. Genet Mol Biol 2023; 46:e20220266. [PMID: 36880694 PMCID: PMC9990079 DOI: 10.1590/1678-4685-gmb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/25/2022] [Indexed: 03/08/2023] Open
Abstract
Bacteria live in polymicrobial communities and constantly compete for resources. These organisms have evolved an array of antibacterial weapons to inhibit the growth or kill competitors. The arsenal comprises antibiotics, bacteriocins, and contact-dependent effectors that are either secreted in the medium or directly translocated into target cells. During bacterial antagonistic encounters, several cellular components important for life become a weak spot prone to an attack. Nucleic acids and the machinery responsible for their synthesis are well conserved across the tree of life. These molecules are part of the information flow in the central dogma of molecular biology and mediate long- and short-term storage for genetic information. The aim of this review is to summarize the diversity of antibacterial molecules that target nucleic acids during antagonistic interbacterial encounters and discuss their potential to promote the emergence antibiotic resistance.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Lior Karman
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | | | - Ethel Bayer-Santos
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
29
|
Luo J, Chu X, Jie J, Sun Y, Guan Q, Li D, Luo ZQ, Song L. Acinetobacter baumannii Kills Fungi via a Type VI DNase Effector. mBio 2023; 14:e0342022. [PMID: 36625573 PMCID: PMC9973263 DOI: 10.1128/mbio.03420-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Many Gram-negative bacteria deploy a type VI secretion system (T6SS) to inject toxins into target cells to promote their survival and replication in complex environments. Here, we report that Acinetobacter baumannii uses its T6SS to kill fungi and that the effector TafE (ACX60_15365) is responsible for such killing. Although ectopically expressed TafE is toxic to both Escherichia coli and Saccharomyces cerevisiae, deletion of tafE only affects the antifungal activity of A. baumannii. We demonstrate that TafE is a DNase capable of targeting the nuclei of yeast cells and that an Ntox15 domain is essential for its ability to degrade DNA. Furthermore, our findings show that A. baumannii is protected from the toxicity of TafE by elaborating the immunity protein TaeI (ACX60_15360), which antagonizes the activity of the effector by direct binding. The discovery of A. baumannii T6SS effectors capable of killing multiple taxonomically distinct microbes has shed light on a mechanism of the high-level fitness of this pathogen in environments characterized by scarce nutrients and the potential presence of diverse microorganisms. IMPORTANCE Acinetobacter baumannii is an increasing important nosocomial pathogen that is difficult to combat due to its ability to survive in harsh environments and the emergence of isolates that are resistant to multiple antibiotics. A better understanding of the mechanism underlying the toughness of A. baumannii may identify its Achilles' heel, which will facilitate the development of novel preventive and treatment measures. In this study, our findings show that A. baumannii kills fungi with the DNase effector TafE injected into competitor cells by its type VI secretion system. A. baumannii is protected from the activity of TafE by the immunity protein TaeI, which inactivates the effector by direct binding. Our results suggest that inactivation of its T6SS or effectors may reduce the fitness of A. baumannii and increase the effectiveness of treatment by means such as antibiotics. Furthermore, our finding suggests that targeted degradation of TaeI may be an effective strategy to kill A. baumannii.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jing Jie
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yu Sun
- The First Hospital of Jilin University, Changchun, China
| | - Qingtian Guan
- The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Lei Song
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Liang X, Zheng HY, Zhao YJ, Zhang YQ, Pei TT, Cui Y, Tang MX, Xu P, Dong T. VgrG Spike Dictates PAAR Requirement for the Assembly of the Type VI Secretion System. J Bacteriol 2023; 205:e0035622. [PMID: 36655996 PMCID: PMC9945574 DOI: 10.1128/jb.00356-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Widely employed by Gram-negative pathogens for competition and pathogenesis, the type six protein secretion system (T6SS) can inject toxic effectors into neighboring cells through the penetration of a spear-like structure comprising a long Hcp tube and a VgrG-PAAR spike complex. The cone-shaped PAAR is believed to sharpen the T6SS spear for penetration but it remains unclear why PAAR is required for T6SS functions in some bacteria but dispensable in others. Here, we report the conditional requirement of PAAR for T6SS functions in Aeromonas dhakensis, an emerging human pathogen that may cause severe bacteremia. By deleting the two PAAR paralogs, we show that PAAR is not required for T6SS secretion, bacterial killing, or specific effector delivery in A. dhakensis. By constructing combinatorial PAAR and vgrG deletions, we demonstrate that deletion of individual PAAR moderately reduced T6SS functions but double or triple deletions of PAAR in the vgrG deletion mutants severely impaired T6SS functions. Notably, the auxiliary-cluster-encoded PAAR2 and VgrG3 are less critical than the main-cluster-encoded PAAR1 and VgrG1&2 proteins to T6SS functions. In addition, PAAR1 but not PAAR2 contributes to antieukaryotic virulence in amoeba. Our data suggest that, for a multi-PAAR T6SS, the variable role of PAAR paralogs correlates with the VgrG-spike composition that collectively dictates T6SS assembly. IMPORTANCE Gram-negative bacteria often encode multiple paralogs of the cone-shaped PAAR that sits atop the VgrG-spike and is thought to sharpen the spear-like T6SS puncturing device. However, it is unclear why PAAR is required for the assembly of some but not all T6SSs and why there are multiple PAARs if they are not required. Our data delineate a VgrG-mediated conditional requirement for PAAR and suggest a core-auxiliary relationship among different PAAR-VgrG modules that may have been acquired sequentially by the T6SS during evolution.
Collapse
Affiliation(s)
- Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jie Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qiu Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Xuan Tang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
31
|
The Anti-Listeria Activity of Pseudomonas fluorescens Isolated from the Horticultural Environment in New Zealand. Pathogens 2023; 12:pathogens12020349. [PMID: 36839621 PMCID: PMC9960311 DOI: 10.3390/pathogens12020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Beneficial bacteria with antibacterial properties are attractive alternatives to chemical-based antibacterial or bactericidal agents. Our study sourced such bacteria from horticultural produce and environments to explore the mechanisms of their antimicrobial properties. Five strains of Pseudomonas fluorescens were studied that possessed antibacterial activity against the pathogen Listeria monocytogenes. The vegetative culture of these strains (Pseudomonas fluorescens-PFR46I06, Pseudomonas fluorescens-PFR46H06, Pseudomonas fluorescens-PFR46H07, Pseudomonas fluorescens-PFR46H08 and Pseudomonas fluorescens-PFR46H09) were tested against Listeria monocytogenes (n = 31), Listeria seeligeri (n = 1) and Listeria innocua (n = 1) isolated from seafood and horticultural sources and from clinical cases (n = 2) using solid media coculture and liquid media coculture. All Listeria strains were inhibited by all strains of P. fluorescens; however, P. fluorescens-PFR46H07, P. fluorescens-PFR46H08 and P. fluorescens-PFR46H09 on solid media showed good inhibition, with average zones of inhibition of 14.8 mm, 15.1 mm and 18.2 mm, respectively, and the other two strains and P. fluorescens-PFR46H09 had a significantly greater zone of inhibition than the others (p < 0.05). There was no inhibition observed in liquid media coculture or in P. fluorescens culture supernatants against Listeria spp. by any of the P. fluorescens strains. Therefore, we hypothesized that the structural apparatus that causes cell-to-cell contact may play a role in the ejection of ant-listeria molecules on solid media to inhibit Listeria isolates, and we investigated the structural protein differences using whole-cell lysate proteomics. We paid special attention to the type VI secretion system (TSS-T6SS) for the transfer of effector proteins or bacteriocins. We found significant differences in the peptide profiles and protein summaries between these isolates' lysates, and PFR46H06 and PFR46H07 possessed the fewest secretion system structural proteins (12 and 11, respectively), while PFR46H08 and PFR46H09 had 18 each. P. fluorescens-PFR46H09, which showed the highest antimicrobial effect, had nine tss-T6SS structural proteins compared to only four in the other three strains.
Collapse
|
32
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
33
|
Salvà-Serra F, Jaén-Luchoro D, Marathe NP, Adlerberth I, Moore ERB, Karlsson R. Responses of carbapenemase-producing and non-producing carbapenem-resistant Pseudomonas aeruginosa strains to meropenem revealed by quantitative tandem mass spectrometry proteomics. Front Microbiol 2023; 13:1089140. [PMID: 36845973 PMCID: PMC9948630 DOI: 10.3389/fmicb.2022.1089140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with increasing incidence of multidrug-resistant strains, including resistance to last-resort antibiotics, such as carbapenems. Resistances are often due to complex interplays of natural and acquired resistance mechanisms that are enhanced by its large regulatory network. This study describes the proteomic responses of two carbapenem-resistant P. aeruginosa strains of high-risk clones ST235 and ST395 to subminimal inhibitory concentrations (sub-MICs) of meropenem by identifying differentially regulated proteins and pathways. Strain CCUG 51971 carries a VIM-4 metallo-β-lactamase or 'classical' carbapenemase; strain CCUG 70744 carries no known acquired carbapenem-resistance genes and exhibits 'non-classical' carbapenem-resistance. Strains were cultivated with different sub-MICs of meropenem and analyzed, using quantitative shotgun proteomics based on tandem mass tag (TMT) isobaric labeling, nano-liquid chromatography tandem-mass spectrometry and complete genome sequences. Exposure of strains to sub-MICs of meropenem resulted in hundreds of differentially regulated proteins, including β-lactamases, proteins associated with transport, peptidoglycan metabolism, cell wall organization, and regulatory proteins. Strain CCUG 51971 showed upregulation of intrinsic β-lactamases and VIM-4 carbapenemase, while CCUG 70744 exhibited a combination of upregulated intrinsic β-lactamases, efflux pumps, penicillin-binding proteins and downregulation of porins. All components of the H1 type VI secretion system were upregulated in strain CCUG 51971. Multiple metabolic pathways were affected in both strains. Sub-MICs of meropenem cause marked changes in the proteomes of carbapenem-resistant strains of P. aeruginosa exhibiting different resistance mechanisms, involving a wide range of proteins, many uncharacterized, which might play a role in the susceptibility of P. aeruginosa to meropenem.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain,*Correspondence: Francisco Salvà-Serra, ✉
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | | | - Ingegerd Adlerberth
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Nanoxis Consulting AB, Gothenburg, Sweden,Roger Karlsson, ✉
| |
Collapse
|
34
|
Robinson LA, Collins ACZ, Murphy RA, Davies JC, Allsopp LP. Diversity and prevalence of type VI secretion system effectors in clinical Pseudomonas aeruginosa isolates. Front Microbiol 2023; 13:1042505. [PMID: 36687572 PMCID: PMC9846239 DOI: 10.3389/fmicb.2022.1042505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and a major driver of morbidity and mortality in people with Cystic Fibrosis (CF). The Type VI secretion system (T6SS) is a molecular nanomachine that translocates effectors across the bacterial membrane into target cells or the extracellular environment enabling intermicrobial interaction. P. aeruginosa encodes three T6SS clusters, the H1-, H2- and H3-T6SS, and numerous orphan islands. Genetic diversity of T6SS-associated effectors in P. aeruginosa has been noted in reference strains but has yet to be explored in clinical isolates. Here, we perform a comprehensive bioinformatic analysis of the pangenome and T6SS effector genes in 52 high-quality clinical P. aeruginosa genomes isolated from CF patients and housed in the Personalised Approach to P. aeruginosa strain repository. We confirm that the clinical CF isolate pangenome is open and principally made up of accessory and unique genes that may provide strain-specific advantages. We observed genetic variability in some effector/immunity encoding genes and show that several well-characterised vgrG and PAAR islands are absent from numerous isolates. Our analysis shows clear evidence of disruption to T6SS genomic loci through transposon, prophage, and mobile genetic element insertions. We identified an orphan vgrG island in P. aeruginosa strain PAK and five clinical isolates using in silico analysis which we denote vgrG7, predicting a gene within this cluster to encode a Tle2 lipase family effector. Close comparison of T6SS loci in clinical isolates compared to reference P. aeruginosa strain PAO1 revealed the presence of genes encoding eight new T6SS effectors with the following putative functions: cytidine deaminase, lipase, metallopeptidase, NADase, and pyocin. Finally, the prevalence of characterised and putative T6SS effectors were assessed in 532 publicly available P. aeruginosa genomes, which suggests the existence of accessory effectors. Our in silico study of the P. aeruginosa T6SS exposes a level of genetic diversity at T6SS genomic loci not seen to date within P. aeruginosa, particularly in CF isolates. As understanding the effector repertoire is key to identifying the targets of T6SSs and its efficacy, this comprehensive analysis provides a path for future experimental characterisation of these mediators of intermicrobial competition and host manipulation.
Collapse
Affiliation(s)
- Luca A. Robinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alice C. Z. Collins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ronan A. Murphy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
35
|
Yang Y, Pan D, Tang Y, Li J, Zhu K, Yu Z, Zhu L, Wang Y, Chen P, Li C. H3-T6SS of Pseudomonas aeruginosa PA14 contributes to environmental adaptation via secretion of a biofilm-promoting effector. STRESS BIOLOGY 2022; 2:55. [PMID: 37676573 PMCID: PMC10442045 DOI: 10.1007/s44154-022-00078-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/11/2022] [Indexed: 09/08/2023]
Abstract
Microbial species often occur in complex communities and exhibit intricate synergistic and antagonistic interactions. To avoid predation and compete for favorable niches, bacteria have evolved specialized protein secretion systems. The type VI secretion system (T6SS) is a versatile secretion system widely distributed among Gram-negative bacteria that translocates effectors into target cells or the extracellular milieu via various physiological processes. Pseudomonas aeruginosa is an opportunistic pathogen responsible for many diseases, and it has three independent T6SSs (H1-, H2-, and H3-T6SS). In this study, we found that the H3-T6SS of highly virulent P. aeruginosa PA14 is negatively regulated by OxyR and OmpR, which are global regulatory proteins of bacterial oxidative and acid stress. In addition, we identified a H3-T6SS effector PA14_33970, which is located upstream of VgrG3. PA14_33970 interacted directly with VgrG3 and translocated into host cells. Moreover, we found that H3-T6SS and PA14_33970 play crucial roles in oxidative, acid, and osmotic stress resistance, as well as in motility and biofilm formation. PA14_33970 was identified as a new T6SS effector promoting biofilm formation and thus named TepB. Furthermore, we found that TepB contributes to the virulence of P. aeruginosa PA14 toward Caenorhabditis elegans. Overall, our study indicates that H3-T6SS and its biofilm-promoting effector TepB are regulated by OxyR and OmpR, both of which are important for adaptation of P. aeruginosa PA14 to multiple stressors, providing insights into the regulatory mechanisms and roles of T6SSs in P. aeruginosa.
Collapse
Affiliation(s)
- Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Damin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanan Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kaixiang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zonglan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
36
|
Multiple T6SSs, Mobile Auxiliary Modules, and Effectors Revealed in a Systematic Analysis of the Vibrio parahaemolyticus Pan-Genome. mSystems 2022; 7:e0072322. [PMID: 36226968 PMCID: PMC9765294 DOI: 10.1128/msystems.00723-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type VI secretion systems (T6SSs) play a major role in interbacterial competition and in bacterial interactions with eukaryotic cells. The distribution of T6SSs and the effectors they secrete vary between strains of the same bacterial species. Therefore, a pan-genome investigation is required to better understand the T6SS potential of a bacterial species of interest. Here, we performed a comprehensive, systematic analysis of T6SS gene clusters and auxiliary modules found in the pan-genome of Vibrio parahaemolyticus, an emerging pathogen widespread in marine environments. We identified 4 different T6SS gene clusters within genomes of this species; two systems appear to be ancient and widespread, whereas the other 2 systems are rare and appear to have been more recently acquired via horizontal gene transfer. In addition, we identified diverse T6SS auxiliary modules containing putative effectors with either known or predicted toxin domains. Many auxiliary modules are possibly horizontally shared between V. parahaemolyticus genomes, since they are flanked by DNA mobility genes. We further investigated a DUF4225-containing protein encoded on an Hcp auxiliary module, and we showed that it is an antibacterial T6SS effector that exerts its toxicity in the bacterial periplasm, leading to cell lysis. Computational analyses of DUF4225 revealed a widespread toxin domain associated with various toxin delivery systems. Taken together, our findings reveal a diverse repertoire of T6SSs and auxiliary modules in the V. parahaemolyticus pan-genome, as well as novel T6SS effectors and toxin domains that can play a major role in the interactions of this species with other cells. IMPORTANCE Gram-negative bacteria employ toxin delivery systems to mediate their interactions with neighboring cells. Vibrio parahaemolyticus, an emerging pathogen of humans and marine animals, was shown to deploy antibacterial toxins into competing bacteria via the type VI secretion system (T6SS). Here, we analyzed 1,727 V. parahaemolyticus genomes and revealed the pan-genome T6SS repertoire of this species, including the T6SS gene clusters, horizontally shared auxiliary modules, and toxins. We also identified a role for a previously uncharacterized domain, DUF4225, as a widespread antibacterial toxin associated with diverse toxin delivery systems.
Collapse
|
37
|
González-Magaña A, Altuna J, Queralt-Martín M, Largo E, Velázquez C, Montánchez I, Bernal P, Alcaraz A, Albesa-Jové D. The P. aeruginosa effector Tse5 forms membrane pores disrupting the membrane potential of intoxicated bacteria. Commun Biol 2022; 5:1189. [PMID: 36335275 PMCID: PMC9637101 DOI: 10.1038/s42003-022-04140-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
The type VI secretion system (T6SS) of Pseudomonas aeruginosa injects effector proteins into neighbouring competitors and host cells, providing a fitness advantage that allows this opportunistic nosocomial pathogen to persist and prevail during the onset of infections. However, despite the high clinical relevance of P. aeruginosa, the identity and mode of action of most P. aeruginosa T6SS-dependent effectors remain to be discovered. Here, we report the molecular mechanism of Tse5-CT, the toxic auto-proteolytic product of the P. aeruginosa T6SS exported effector Tse5. Our results demonstrate that Tse5-CT is a pore-forming toxin that can transport ions across the membrane, causing membrane depolarisation and bacterial death. The membrane potential regulates a wide range of essential cellular functions; therefore, membrane depolarisation is an efficient strategy to compete with other microorganisms in polymicrobial environments.
Collapse
Affiliation(s)
- Amaia González-Magaña
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
| | - Jon Altuna
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - Eneko Largo
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
- Departamento de Inmunología, Microbiología y Parasitología, University of the Basque Country, 48940, Leioa, Spain
| | - Carmen Velázquez
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
| | - Itxaso Montánchez
- Departamento de Inmunología, Microbiología y Parasitología, University of the Basque Country, 48940, Leioa, Spain
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - David Albesa-Jové
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
38
|
Abstract
Gram-negative bacteria often employ the type VI secretion system (T6SS) to deliver diverse cocktails of antibacterial effectors into rival bacteria. In many cases, even when the identity of the delivered effectors is known, their toxic activity and mechanism of secretion are not. Here, we investigate VPA1263, a Vibrio parahaemolyticus T6SS effector that belongs to a widespread class of polymorphic effectors containing a MIX domain. We reveal a C-terminal DNase toxin domain belonging to the HNH nuclease superfamily, and we show that it mediates the antibacterial toxicity of this effector during bacterial competition. Furthermore, we demonstrate that the VPA1263 MIX domain is necessary for T6SS-mediated secretion and intoxication of recipient bacteria. These results are the first indication of a functional role for MIX domains in T6SS secretion. IMPORTANCE Specialized protein delivery systems are used during bacterial competition to deploy cocktails of toxins that target conserved cellular components. Although numerous toxins have been revealed, the activity of many remains unknown. In this study, we investigated such a toxin from the pathogen Vibrio parahaemolyticus. Our findings indicate that the toxin employs a DNase domain to intoxicate competitors. We also show that a domain used as a marker for secreted toxins is required for secretion of the toxin via a type VI secretion system.
Collapse
|
39
|
Hespanhol JT, Sanchez-Limache DE, Nicastro GG, Mead L, Llontop EE, Chagas-Santos G, Farah CS, de Souza RF, Galhardo RDS, Lovering AL, Bayer-Santos E. Antibacterial T6SS effectors with a VRR-Nuc domain are structure-specific nucleases. eLife 2022; 11:e82437. [PMID: 36226828 PMCID: PMC9635880 DOI: 10.7554/elife.82437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/09/2022] [Indexed: 11/21/2022] Open
Abstract
The type VI secretion system (T6SS) secretes antibacterial effectors into target competitors. Salmonella spp. encode five phylogenetically distinct T6SSs. Here, we characterize the function of the SPI-22 T6SS of Salmonella bongori showing that it has antibacterial activity and identify a group of antibacterial T6SS effectors (TseV1-4) containing an N-terminal PAAR-like domain and a C-terminal VRR-Nuc domain encoded next to cognate immunity proteins with a DUF3396 domain (TsiV1-4). TseV2 and TseV3 are toxic when expressed in Escherichia coli and bacterial competition assays confirm that TseV2 and TseV3 are secreted by the SPI-22 T6SS. Phylogenetic analysis reveals that TseV1-4 are evolutionarily related to enzymes involved in DNA repair. TseV3 recognizes specific DNA structures and preferentially cleave splayed arms, generating DNA double-strand breaks and inducing the SOS response in target cells. The crystal structure of the TseV3:TsiV3 complex reveals that the immunity protein likely blocks the effector interaction with the DNA substrate. These results expand our knowledge on the function of Salmonella pathogenicity islands, the evolution of toxins used in biological conflicts, and the endogenous mechanisms regulating the activity of these toxins.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | | | | | - Liam Mead
- Department of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Edgar Enrique Llontop
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão PauloBrazil
| | - Gustavo Chagas-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | - Chuck Shaker Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão PauloBrazil
| | - Robson Francisco de Souza
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | - Rodrigo da Silva Galhardo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | - Andrew L Lovering
- Department of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| |
Collapse
|
40
|
Cui Y, Pei TT, Liang X, Li H, Zheng HY, Dong T. Heterologous Assembly of the Type VI Secretion System Empowers Laboratory Escherichia coli with Antimicrobial and Cell Penetration Capabilities. Appl Environ Microbiol 2022; 88:e0130522. [PMID: 36154120 PMCID: PMC9552605 DOI: 10.1128/aem.01305-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
The synthetic biology toolbox has amassed a vast number of diverse functional modules, but protein translocation modules for cell penetration and cytosol-to-cytosol delivery remain relatively scarce. The type VI secretion system (T6SS), commonly found in many Gram-negative pathogens, functions as a contractile device to translocate protein toxins to prokaryotic and eukaryotic cells. Here, we have assembled the T6SS of Aeromonas dhakensis, an opportunistic waterborne pathogen, in the common laboratory strain Escherichia coli BL21(DE3). We constructed a series of plasmids (pT6S) carrying the T6SS structural and effector genes under native or tetracycline-inducible promoters, the latter for controlled expression. Using fluorescence microscopy and biochemical analyses, we demonstrate a functional T6SS in E. coli capable of secreting proteins directly into the cytosol of neighboring bacteria and outcompeting a number of drug-resistant pathogens. The heterologous assembly of T6SS not only confers the lab workhorse E. coli with the cytosol-to-cytosol protein delivery capability but also demonstrates the potential for harnessing the T6SS of various pathogens for general protein delivery and antibacterial applications. IMPORTANCE The T6SS is a powerful and versatile protein delivery system. However, the complexity of its macromolecular structure and gene regulation makes it not a trivial task to reconstitute the T6SSs of pathogens in a nonpathogenic host. In this study, we have assembled an inducible T6SS in E. coli BL21(DE3) and demonstrated its functions in protein delivery and antimicrobial activities. The engineered T6SS empowers E. coli to deliver protein cargos into a wide range of prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
41
|
Robinson L, Liaw J, Omole Z, Corcionivoschi N, Hachani A, Gundogdu O. In silico investigation of the genus Campylobacter type VI secretion system reveals genetic diversity in organization and putative effectors. Microb Genom 2022; 8:mgen000898. [PMID: 36314601 PMCID: PMC9676060 DOI: 10.1099/mgen.0.000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/11/2022] [Indexed: 01/25/2023] Open
Abstract
Bacterial type VI secretion systems (T6SSs) are contractile nanomachines that deliver proteinic substrates into target prokaryotic or eukaryotic cells and the surrounding milieu. The genus Campylobacter encompasses 39 recognized species and 13 subspecies, with many belonging to a group known as ‘emerging Campylobacter pathogens’. Within Campylobacter , seven species have been identified to harbour a complete T6SS cluster but have yet to be comparatively assessed. In this study, using systematic bioinformatics approaches and the T6SS-positive Campylobacter jejuni 488 strain as a reference, we explored the genus-wide prevalence, similarity and make-up of the T6SS amongst 372 publicly available ‘complete’ Campylobacter genomes. Our analyses predict that approximately one-third of Campylobacter species possess a T6SS. We also putatively report the first identification of a T6SS in four species: Campylobacter cuniculorum, Campylobacter helveticus, Campylobacter armoricus and Campylobacter ornithocola . The Campylobacter T6SSs cluster into three distinct organizations (I–III), of which two break down into further variants. Thirty T6SS-containing genomes were found to harbour more than one vgrG gene, with Campylobacter lari strain NCTC 11845 possessing five. Analysis of the C. jejuni Pathogenicity Island-1 confirmed its conservation amongst T6SS-positive C. jejuni strains, as well as highlighting its diverse genetic composition, including additional putative effector–immunity pairs (e.g. PoNe and DUF1911 domains). Effector–immunity pairs were also observed neighbouring vgrG s in several other Campylobacter species, in addition to putative genes encoding nucleases, lysozymes, ATPases and a ferric ATP-binding cassette uptake system. These observations highlight the diverse genetic make-up of the T6SS within Campylobacter and provide further evidence of its role in pathogenesis.
Collapse
Affiliation(s)
- Luca Robinson
- National Heart and Lung Institute, Imperial College London, London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, UK
- Bioengineering of Animal Resources, University of Life Sciences – King Mihai I of Romania from Timisoara, Timisoara, Romania
| | - Abderrahman Hachani
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
42
|
An ADP-ribosyltransferase toxin kills bacterial cells by modifying structured non-coding RNAs. Mol Cell 2022; 82:3484-3498.e11. [PMID: 36070765 DOI: 10.1016/j.molcel.2022.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
ADP-ribosyltransferases (ARTs) were among the first identified bacterial virulence factors. Canonical ART toxins are delivered into host cells where they modify essential proteins, thereby inactivating cellular processes and promoting pathogenesis. Our understanding of ARTs has since expanded beyond protein-targeting toxins to include antibiotic inactivation and DNA damage repair. Here, we report the discovery of RhsP2 as an ART toxin delivered between competing bacteria by a type VI secretion system of Pseudomonas aeruginosa. A structure of RhsP2 reveals that it resembles protein-targeting ARTs such as diphtheria toxin. Remarkably, however, RhsP2 ADP-ribosylates 2'-hydroxyl groups of double-stranded RNA, and thus, its activity is highly promiscuous with identified cellular targets including the tRNA pool and the RNA-processing ribozyme, ribonuclease P. Consequently, cell death arises from the inhibition of translation and disruption of tRNA processing. Overall, our data demonstrate a previously undescribed mechanism of bacterial antagonism and uncover an unprecedented activity catalyzed by ART enzymes.
Collapse
|
43
|
do Nascimento Soares T, Silva Valadares V, Cardoso Amorim G, de Mattos Lacerda de Carvalho M, Berrêdo‐Pinho M, Ceneviva Lacerda Almeida F, Mascarello Bisch P, Batista PR, Miranda Santos Lery L. The C‐terminal extension of
VgrG4
from
Klebsiella pneumoniae
remodels host cell microfilaments. Proteins 2022; 90:1655-1668. [PMID: 35430767 PMCID: PMC9542434 DOI: 10.1002/prot.26344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen, which concerns public health systems worldwide, as multiple antibiotic‐resistant strains are frequent. One of its pathogenicity factors is the Type VI Secretion System (T6SS), a macromolecular complex assembled through the bacterial membranes. T6SS injects effector proteins inside target cells. Such effectors confer competitive advantages or modulate the target cell signaling and metabolism to favor bacterial infection. The VgrG protein is a T6SS core component. It may present a variable C‐terminal domain carrying an additional effector function. Kp52.145 genome encodes three VgrG proteins, one of them with a C‐terminal extension (VgrG4‐CTD). VgrG4‐CTD is 138 amino acids long, does not contain domains of known function, but is conserved in some Klebsiella, and non‐Klebsiella species. To get insights into its function, recombinant VgrG4‐CTD was used in pulldown experiments to capture ligands from macrophages and lung epithelial cells. A total of 254 proteins were identified: most of them are ribosomal proteins. Cytoskeleton‐associated and proteins involved in the phagosome maturation pathway were also identified. We further showed that VgrG4‐CTD binds actin and induces actin remodeling in macrophages. This study presents novel clues on the role of K. pneumoniae T6SS in pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Marcia Berrêdo‐Pinho
- Laboratório de Microbiologia Celular Instituto Oswaldo Cruz Rio de Janeiro Brazil
| | - Fábio Ceneviva Lacerda Almeida
- Centro Nacional de Ressonância Magnética Nuclear Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Paulo Mascarello Bisch
- Laboratório de Física‐Biológica Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | | | |
Collapse
|
44
|
Antimicrobial peptide S100A12 (calgranulin C) inhibits growth, biofilm formation, pyoverdine secretion and suppresses type VI secretion system in Pseudomonas aeruginosa. Microb Pathog 2022; 169:105654. [PMID: 35753599 DOI: 10.1016/j.micpath.2022.105654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and is the major cause of corneal infections in India and worldwide. The increase in antimicrobial resistance among Pseudomonas has prompted rise in significant research to develop alternative therapeutics. Antimicrobial peptides (AMPs) are considered as potent alternatives to combat bacterial infections. In this study, we investigated the role of S100A12, a host defense peptide, against PAO1 and an ocular clinical isolate. Increased expression of S100A12 was observed in corneal tissues obtained from Pseudomonas keratitis patients by immunohistochemistry. S100A12 significantly inhibited growth of Pseudomonas in vitro as determined from colony forming units. Furthermore, recombinant S100A12 reduced the corneal opacity and the bacterial load in a mouse model of Pseudomonas keratitis. Transcriptome changes in PAO1 in response to S100A12 was investigated using RNA sequencing. The pathway analysis of transcriptome data revealed that S100A12 inhibits expression of genes involved in pyoverdine synthesis and biofilm formation. It also impedes several important pathways like redox, pyocyanin synthesis and type 6 secretion system (T6SS). The transcriptome data was further validated by checking the expression of several affected genes by quantitative PCR. Our study sheds light on how S100A12 impacts Pseudomonas and that it might have the potential to be used as therapeutic intervention in addition to antibiotics to combat infection in future.
Collapse
|
45
|
Filloux A. Bacterial protein secretion systems: Game of types. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35536734 DOI: 10.1099/mic.0.001193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein trafficking across the bacterial envelope is a process that contributes to the organisation and integrity of the cell. It is the foundation for establishing contact and exchange between the environment and the cytosol. It helps cells to communicate with one another, whether they establish symbiotic or competitive behaviours. It is instrumental for pathogenesis and for bacteria to subvert the host immune response. Understanding the formation of envelope conduits and the manifold strategies employed for moving macromolecules across these channels is a fascinating playground. The diversity of the nanomachines involved in this process logically resulted in an attempt to classify them, which is where the protein secretion system types emerged. As our knowledge grew, so did the number of types, and their rightful nomenclature started to be questioned. While this may seem a semantic or philosophical issue, it also reflects scientific rigour when it comes to assimilating findings into textbooks and science history. Here I give an overview on bacterial protein secretion systems, their history, their nomenclature and why it can be misleading for newcomers in the field. Note that I do not try to suggest a new nomenclature. Instead, I explore the reasons why naming could have escaped our control and I try to reiterate basic concepts that underlie protein trafficking cross membranes.
Collapse
Affiliation(s)
- Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
46
|
Li Y, Yan X, Tao Z. Two Type VI Secretion DNase Effectors are Utilized for Interbacterial Competition in the Fish Pathogen Pseudomonas plecoglossicida. Front Microbiol 2022; 13:869278. [PMID: 35464968 PMCID: PMC9020831 DOI: 10.3389/fmicb.2022.869278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas plecoglossicida is a facultative fish pathogen that possesses three distinct type VI secretion systems (named T6SS-1, T6SS-2, and T6SS-3). Our previous work indicated that only T6SS-2 of P. plecoglossicida mediates interbacterial competition. However, the antibacterial T6SS effectors and their functions are unclear. Here, we reported two T6SS effectors that mediate antibacterial activity. We first identified four putative antibacterial effectors (denoted as Txe1, Txe2, Txe3, and Txe4) and their cognate immunity proteins encoded in P. plecoglossicida strain XSDHY-P by analyzing the regions downstream of three vgrG genes. We showed that the growth of Escherichia coli cells expressing Txe1, Txe2, and Txe4 was inhibited, and these three effectors exhibited nuclease activity in vivo. The interbacterial competition assays with single- or multi-effector deletion mutants as attackers revealed that Txe1 was the predominant T6SS toxin of P. plecoglossicida strain XSDHY-P mediating the interbacterial killing. This work contributes to our understanding of bacterial effectors involved in the interbacterial competition.
Collapse
Affiliation(s)
- Yanyan Li
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China
| | - Xiaojun Yan
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China
| | - Zhen Tao
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
47
|
Boak EN, Kirolos S, Pan H, Pierson LS, Pierson EA. The Type VI Secretion Systems in Plant-Beneficial Bacteria Modulate Prokaryotic and Eukaryotic Interactions in the Rhizosphere. Front Microbiol 2022; 13:843092. [PMID: 35464916 PMCID: PMC9022076 DOI: 10.3389/fmicb.2022.843092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/04/2022] [Indexed: 01/15/2023] Open
Abstract
Rhizosphere colonizing plant growth promoting bacteria (PGPB) increase their competitiveness by producing diffusible toxic secondary metabolites, which inhibit competitors and deter predators. Many PGPB also have one or more Type VI Secretion System (T6SS), for the delivery of weapons directly into prokaryotic and eukaryotic cells. Studied predominantly in human and plant pathogens as a virulence mechanism for the delivery of effector proteins, the function of T6SS for PGPB in the rhizosphere niche is poorly understood. We utilized a collection of Pseudomonas chlororaphis 30-84 mutants deficient in one or both of its two T6SS and/or secondary metabolite production to examine the relative importance of each T6SS in rhizosphere competence, bacterial competition, and protection from bacterivores. A mutant deficient in both T6SS was less persistent than wild type in the rhizosphere. Both T6SS contributed to competitiveness against other PGPB or plant pathogenic strains not affected by secondary metabolite production, but only T6SS-2 was effective against strains lacking their own T6SS. Having at least one T6SS was also essential for protection from predation by several eukaryotic bacterivores. In contrast to diffusible weapons that may not be produced at low cell density, T6SS afford rhizobacteria an additional, more immediate line of defense against competitors and predators.
Collapse
Affiliation(s)
- Emily N. Boak
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Sara Kirolos
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Huiqiao Pan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
48
|
Zhao H, Clevenger AL, Coburn PS, Callegan MC, Rybenkov V. Condensins are essential for Pseudomonas aeruginosa corneal virulence through their control of lifestyle and virulence programs. Mol Microbiol 2022; 117:937-957. [PMID: 35072315 PMCID: PMC9512581 DOI: 10.1111/mmi.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/01/2022]
Abstract
Pseudomonas aeruginosa is a significant opportunistic pathogen responsible for numerous human infections. Its high pathogenicity resides in a diverse array of virulence factors and an ability to adapt to hostile environments. We report that these factors are tied to the activity of condensins, SMC and MksBEF, which primarily function in structural chromosome maintenance. This study revealed that both proteins are required for P. aeruginosa virulence during corneal infection. The reduction in virulence was traced to broad changes in gene expression. Transcriptional signatures of smc and mksB mutants were largely dissimilar and non-additive, with the double mutant displaying a distinct gene expression profile. Affected regulons included those responsible for lifestyle control, primary metabolism, surface adhesion and biofilm growth, iron and sulfur assimilation, and numerous virulence factors, including type 3 and type 6 secretion systems. The in vitro phenotypes of condensin mutants mirrored their transcriptional profiles and included impaired production and secretion of multiple virulence factors, growth deficiencies under nutrient limiting conditions, and altered c-di-GMP signaling. Notably, c-di-GMP mediated some but not all transcriptional responses of the mutants. Thus, condensins are integrated into the control of multiple genetic programs related to epigenetic and virulent behavior of P. aeruginosa.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - April L. Clevenger
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Phillip S. Coburn
- Department of Ophthalmology, the University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., PA-418, Oklahoma City, OK73104, USA
| | - Michelle C. Callegan
- Department of Ophthalmology, the University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., PA-418, Oklahoma City, OK73104, USA
| | - Valentin Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| |
Collapse
|
49
|
Pei T, Kan Y, Wang Z, Tang M, Li H, Yan S, Cui Y, Zheng H, Luo H, Liang X, Dong T. Delivery of an Rhs-family nuclease effector reveals direct penetration of the gram-positive cell envelope by a type VI secretion system in Acidovorax citrulli. MLIFE 2022; 1:66-78. [PMID: 38818323 PMCID: PMC10989746 DOI: 10.1002/mlf2.12007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/16/2021] [Indexed: 06/01/2024]
Abstract
The type VI secretion system (T6SS) is a double-tubular nanomachine widely found in gram-negative bacteria. Its spear-like Hcp tube is capable of penetrating a neighboring cell for cytosol-to-cytosol protein delivery. However, gram-positive bacteria have been considered impenetrable to such T6SS action. Here we report that the T6SS of a plant pathogen, Acidovorax citrulli (AC), could deliver an Rhs-family nuclease effector RhsB to kill not only gram-negative but also gram-positive bacteria. Using bioinformatic, biochemical, and genetic assays, we systematically identified T6SS-secreted effectors and determined that RhsB is a crucial antibacterial effector. RhsB contains an N-terminal PAAR domain, a middle Rhs domain, and an unknown C-terminal domain. RhsB is subject to self-cleavage at both its N- and C-terminal domains and its secretion requires the upstream-encoded chaperone EagT2 and VgrG3. The toxic C-terminus of RhsB exhibits DNase activities and such toxicity is neutralized by either of the two downstream immunity proteins, RimB1 and RimB2. Deletion of rhsB significantly impairs the ability of killing Bacillus subtilis while ectopic expression of immunity proteins RimB1 or RimB2 confers protection. We demonstrate that the AC T6SS not only can effectively outcompete Escherichia coli and B. subtilis in planta but also is highly potent in killing other bacterial and fungal species. Collectively, these findings highlight the greatly expanded capabilities of T6SS in modulating microbiome compositions in complex environments.
Collapse
Affiliation(s)
- Tong‐Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yumin Kan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zeng‐Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ming‐Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuangquan Yan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hao‐Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Department of Immunology and MicrobiologySchool of Life Sciences, Southern University of Science and TechnologyGuangdongChina
| |
Collapse
|
50
|
Allsopp LP, Collins ACZ, Hawkins E, Wood TE, Filloux A. RpoN/Sfa2-dependent activation of the Pseudomonas aeruginosa H2-T6SS and its cognate arsenal of antibacterial toxins. Nucleic Acids Res 2022; 50:227-243. [PMID: 34928327 PMCID: PMC8855297 DOI: 10.1093/nar/gkab1254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa uses three type six secretion systems (H1-, H2- and H3-T6SS) to manipulate its environment, subvert host cells and for microbial competition. These T6SS machines are loaded with a variety of effectors/toxins, many being associated with a specific VgrG. How P. aeruginosa transcriptionally coordinates the main T6SS clusters and the multiple vgrG islands spread through the genome is unknown. Here we show an unprecedented level of control with RsmA repressing most known T6SS-related genes. Moreover, each of the H2- and H3-T6SS clusters encodes a sigma factor activator (SFA) protein called, Sfa2 and Sfa3, respectively. SFA proteins are enhancer binding proteins necessary for the sigma factor RpoN. Using a combination of RNA-seq, ChIP-seq and molecular biology approaches, we demonstrate that RpoN coordinates the T6SSs of P. aeruginosa by activating the H2-T6SS but repressing the H1- and H3-T6SS. Furthermore, RpoN and Sfa2 control the expression of the H2-T6SS-linked VgrGs and their effector arsenal to enable very effective interbacterial killing. Sfa2 is specific as Sfa3 from the H3-T6SS cannot complement loss of Sfa2. Our study further delineates the regulatory mechanisms that modulate the deployment of an arsenal of T6SS effectors likely enabling P. aeruginosa to adapt to a range of environmental conditions.
Collapse
Affiliation(s)
- Luke P Allsopp
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
- National Heart and Lung Institute, Imperial College
London, London, UK
| | - Alice C Z Collins
- National Heart and Lung Institute, Imperial College
London, London, UK
| | - Eleanor Hawkins
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| | - Thomas E Wood
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| |
Collapse
|