1
|
O'Boyle B, Yeung W, Lu JD, Katiyar S, Yaron-Barir TM, Johnson JL, Cantley LC, Kannan N. An atlas of bacterial serine-threonine kinases reveals functional diversity and key distinctions from eukaryotic kinases. Sci Signal 2025; 18:eadt8686. [PMID: 40327749 DOI: 10.1126/scisignal.adt8686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
Bacterial serine-threonine kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity and are evolutionarily related to the druggable eukaryotic STKs. A deeper understanding of how bacterial STKs differ from their eukaryotic counterparts and how they have evolved to regulate diverse bacterial signaling functions is crucial for advancing the discovery and development of new antibiotic therapies. Here, we classified more than 300,000 bacterial STK sequences from the NCBI RefSeq nonredundant and UniProt protein databases into 35 canonical and seven pseudokinase families on the basis of the patterns of evolutionary constraints in the conserved catalytic domain and flanking regulatory domains. Through statistical comparisons, we identified features distinguishing bacterial STKs from eukaryotic STKs, including an arginine residue in a regulatory helix (C helix) that dynamically couples the ATP- and substrate-binding lobes of the kinase domain. Biochemical and peptide library screens demonstrated that evolutionarily constrained residues contributed to substrate specificity and kinase activation in the Mycobacterium tuberculosis kinase PknB. Together, these findings open previously unidentified avenues for investigating bacterial STK functions in cellular signaling and for developing selective bacterial STK inhibitors.
Collapse
Affiliation(s)
- Brady O'Boyle
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Jason D Lu
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Samiksha Katiyar
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
O'Boyle B, Yeung W, Lu JD, Katiyar S, Yaron-Barir TM, Johnson JL, Cantley LC, Kannan N. Atlas of the Bacterial Serine-Threonine Kinases expands the functional diversity of the kinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632604. [PMID: 39868133 PMCID: PMC11760699 DOI: 10.1101/2025.01.12.632604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Bacterial serine-threonine protein kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity. They are evolutionarily related to the druggable eukaryotic STKs. However, an incomplete knowledge of how bacterial STKs differ from their eukaryotic counterparts and how they have diverged to regulate diverse bacterial signaling functions presents a bottleneck in targeting them for drug discovery efforts. Here, we classified over 300,000 bacterial STK sequences from the NCBI RefSeq non-redundant and UniProt protein databases into 35 canonical and seven non-canonical (pseudokinase) families based on the patterns of evolutionary constraints in the conserved catalytic domain and flanking regulatory domains. Through statistical comparisons, we identified distinguishing features of bacterial STKs, including a distinctive arginine residue in a regulatory helix (C-Helix) that dynamically couples ATP and substrate binding lobes of the kinase domain. Biochemical and peptide-library screens demonstrated that constrained residues contribute to substrate specificity and kinase activation in the Mycobacterium tuberculosis kinase PknB. Collectively, these findings open new avenues for investigating bacterial STK functions in cellular signaling and for the development of selective bacterial STK inhibitors.
Collapse
|
3
|
Nurkanto A, Masrukhin, Erdian Tampubolon JC, Ewaldo MF, Putri AL, Ratnakomala S, Setiawan R, Fathoni A, Palupi KD, Rahmawati Y, Waluyo D, Prabandari EE, Pujiyanto S, Sumii Y, Agusta A, Shibata N, Matsumoto S, Nozaki T. Exploring Indonesian actinomycete extracts for anti-tubercular compounds: Integrating inhibition assessment, genomic analysis, and prediction of its target by molecular docking. Heliyon 2024; 10:e35648. [PMID: 39170210 PMCID: PMC11336835 DOI: 10.1016/j.heliyon.2024.e35648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Tuberculosis (TB) is the foremost cause of infectious fatality globally. The primary global challenge in combatting TB lies in addressing the emergence of drug-resistant variants of the disease. However, the number of newly approved agents for treating TB has remained remarkably low over recent decades. Hence, research endeavors for discovering novel anti-TB agents are always needed. In the present study, we screened over 1,500 culture extracts from actinomycetes isolated in Indonesia for their inhibitory activity against Mycobacterium smegmatis used as a surrogate in the primary screening. The initial screening yielded approximately 6.2 % hit extracts, with a selection criterion of >80 % growth inhibition. The confirmed hit extracts were subsequently subjected to growth inhibition assay against Mycobacterium bovis and Mycobacterium tuberculosis. Approximately 20 % of the hit extracts that showed growth inhibition also exhibited efficacy against M. bovis BCG and M. tuberculosis H37Rv pathogenic strain. An active compound was successfully purified from a large-scale culture of the most potent representative extract by high-performance liquid chromatography and thin-layer chromatography. The structure of the active compound was elucidated by mass spectrometry and nuclear magnetic resonance. This compound displayed structural similarities to actinomycin group and exhibited robust inhibition, with IC50 values of 0.74, 0.02, and 0.07 μg/mL against M. smegmatis, M. bovis, and M. tuberculosis, respectively. The Actinomycetes strain A612, which produced the active compound, was taxonomically classified by phylogenetic analysis of 16s rRNA gene and whole genome sequencing data as Streptomyces parvus. Computational genome analysis utilizing anti-SMASH 7.0 unveiled that S. parvus A612 strain harbors 40 biosynthetic gene clusters with the potential to produce 16 known (with >70 % similarity) and 24 unknown compounds. A non-ribosomal peptide synthesis (NRPS) gene cluster associated with actinomycin D biosynthesis was also identified, boasting an 85 % similarity. Molecular docking analysis of actinomycin D and 21 potential M. tuberculosis targets revealed possible interactions with multiple targets. The purified active compound inhibited recombinant M. tuberculosis shikimate kinase (MtSK), which validated the results obtained from the docking analysis.
Collapse
Affiliation(s)
- Arif Nurkanto
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Masrukhin
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Muhammad Farrel Ewaldo
- Master's Programme in Biomedical Science, Faculty of Medicine, University of Indonesia, West Java, Indonesia
| | - Ade Lia Putri
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Shanti Ratnakomala
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Ruby Setiawan
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Ahmad Fathoni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Kartika Dyah Palupi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Yulia Rahmawati
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Danang Waluyo
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Erwahyuni Endang Prabandari
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Sri Pujiyanto
- Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Central Java, Indonesia
| | - Yuji Sumii
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Andria Agusta
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Norio Shibata
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, University of Airlangga, Surabaya, East Java, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Grunfeld N, Levine E, Libby E. Experimental measurement and computational prediction of bacterial Hanks-type Ser/Thr signaling system regulatory targets. Mol Microbiol 2024; 122:152-164. [PMID: 38167835 PMCID: PMC11219531 DOI: 10.1111/mmi.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Bacteria possess diverse classes of signaling systems that they use to sense and respond to their environments and execute properly timed developmental transitions. One widespread and evolutionarily ancient class of signaling systems are the Hanks-type Ser/Thr kinases, also sometimes termed "eukaryotic-like" due to their homology with eukaryotic kinases. In diverse bacterial species, these signaling systems function as critical regulators of general cellular processes such as metabolism, growth and division, developmental transitions such as sporulation, biofilm formation, and virulence, as well as antibiotic tolerance. This multifaceted regulation is due to the ability of a single Hanks-type Ser/Thr kinase to post-translationally modify the activity of multiple proteins, resulting in the coordinated regulation of diverse cellular pathways. However, in part due to their deep integration with cellular physiology, to date, we have a relatively limited understanding of the timing, regulatory hierarchy, the complete list of targets of a given kinase, as well as the potential regulatory overlap between the often multiple kinases present in a single organism. In this review, we discuss experimental methods and curated datasets aimed at elucidating the targets of these signaling pathways and approaches for using these datasets to develop computational models for quantitative predictions of target motifs. We emphasize novel approaches and opportunities for collecting data suitable for the creation of new predictive computational models applicable to diverse species.
Collapse
Affiliation(s)
- Noam Grunfeld
- Department of Bioengineering, Northeastern University, Boston MA USA
| | - Erel Levine
- Department of Bioengineering, Northeastern University, Boston MA USA
- Department of Chemical Engineering, Northeastern University, Boston MA USA
| | - Elizabeth Libby
- Department of Bioengineering, Northeastern University, Boston MA USA
| |
Collapse
|
5
|
Bundhoo E, Ghoorah AW, Jaufeerally-Fakim Y. Large-scale Pan Genomic Analysis of Mycobacterium tuberculosis Reveals Key Insights Into Molecular Evolutionary Rate of Specific Processes and Functions. Evol Bioinform Online 2024; 20:11769343241239463. [PMID: 38532808 PMCID: PMC10964447 DOI: 10.1177/11769343241239463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), an infectious disease that is a major killer worldwide. Due to selection pressure caused by the use of antibacterial drugs, Mtb is characterised by mutational events that have given rise to multi drug resistant (MDR) and extensively drug resistant (XDR) phenotypes. The rate at which mutations occur is an important factor in the study of molecular evolution, and it helps understand gene evolution. Within the same species, different protein-coding genes evolve at different rates. To estimate the rates of molecular evolution of protein-coding genes, a commonly used parameter is the ratio dN/dS, where dN is the rate of non-synonymous substitutions and dS is the rate of synonymous substitutions. Here, we determined the estimated rates of molecular evolution of select biological processes and molecular functions across 264 strains of Mtb. We also investigated the molecular evolutionary rates of core genes of Mtb by computing the dN/dS values, and estimated the pan genome of the 264 strains of Mtb. Our results show that the cellular amino acid metabolic process and the kinase activity function evolve at a significantly higher rate, while the carbohydrate metabolic process evolves at a significantly lower rate for M. tuberculosis. These high rates of evolution correlate well with Mtb physiology and pathogenicity. We further propose that the core genome of M. tuberculosis likely experiences varying rates of molecular evolution which may drive an interplay between core genome and accessory genome during M. tuberculosis evolution.
Collapse
Affiliation(s)
- Eshan Bundhoo
- Department of Agricultural & Food Science, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Anisah W Ghoorah
- Department of Digital Technologies, Faculty of Information, Communication & Digital Technologies, University of Mauritius, Reduit, Mauritius
| | - Yasmina Jaufeerally-Fakim
- Department of Agricultural & Food Science, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| |
Collapse
|
6
|
Primo LMDG, Roque-Borda CA, Carnero Canales CS, Caruso IP, de Lourenço IO, Colturato VMM, Sábio RM, de Melo FA, Vicente EF, Chorilli M, da Silva Barud H, Barbugli PA, Franzyk H, Hansen PR, Pavan FR. Antimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of Mycobacterium tuberculosis. Carbohydr Polym 2024; 323:121449. [PMID: 37940311 DOI: 10.1016/j.carbpol.2023.121449] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (MTB) and is the leading cause of death from infectious diseases in the World. The search for new antituberculosis drugs is a high priority, since several drug-resistant TB-strains have emerged. Many nanotechnology strategies are being explored to repurpose or revive drugs. An interesting approach is to graft antimicrobial peptides (AMPs) to antibiotic-loaded nanoparticles. The objective of the present work was to determine the anti-MTB activity of rifampicin-loaded N-acetylcysteine-chitosan-based nanoparticles (NPs), conjugated with the AMP Ctx(Ile21)-Ha; against clinical isolates (multi- and extensively-drug resistant) and the H37Rv strain. The modified chitosan and drug-loaded NPs were characterized with respect to their physicochemical stability and their antimycobacterial profile, which showed potent inhibition (MIC values <0.977 μg/mL) by the latter. Furthermore, their accumulation within macrophages and cytotoxicity were determined. To understand the possible mechanisms of action, an in silico study of the peptide against MTB membrane receptors was performed. The results presented herein demonstrate that antibiotic-loaded NPs grafted with an AMP can be a powerful tool for revitalizing drugs against multidrug-resistant M. tuberculosis strains, by launching multiple attacks against MTB. This approach could potentially serve as a novel treatment strategy for various long-term diseases requiring extended treatment periods.
Collapse
Affiliation(s)
- Laura Maria Duran Gleriani Primo
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Shleider Carnero Canales
- Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas bioquímicas y biotecnológicas, Universidad Católica de Santa María, Arequipa, Peru
| | - Icaro Putinhon Caruso
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Isabella Ottenio de Lourenço
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Vitória Maria Medalha Colturato
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Fernando Alves de Melo
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Hernane da Silva Barud
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
7
|
Malakar B, Chauhan K, Sanyal P, Naz S, Kalam H, Vivek-Ananth RP, Singh LV, Samal A, Kumar D, Nandicoori VK. Phosphorylation of CFP10 modulates Mycobacterium tuberculosis virulence. mBio 2023; 14:e0123223. [PMID: 37791794 PMCID: PMC10653824 DOI: 10.1128/mbio.01232-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Secreted virulence factors play a critical role in bacterial pathogenesis. Virulence effectors not only help bacteria to overcome the host immune system but also aid in establishing infection. Mtb, which causes tuberculosis in humans, encodes various virulence effectors. Triggers that modulate the secretion of virulence effectors in Mtb are yet to be fully understood. To gain mechanistic insight into the secretion of virulence effectors, we performed high-throughput proteomic studies. With the help of system-level protein-protein interaction network analysis and empirical validations, we unravelled a link between phosphorylation and secretion. Taking the example of the well-known virulence factor of CFP10, we show that the dynamics of CFP10 phosphorylation strongly influenced bacterial virulence and survival ex vivo and in vivo. This study presents the role of phosphorylation in modulating the secretion of virulence factors.
Collapse
Affiliation(s)
- Basanti Malakar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Komal Chauhan
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Priyadarshini Sanyal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Centre for Cellular and Molecular Biology Campus, Hyderabad, India
| | - Saba Naz
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Haroon Kalam
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - R. P. Vivek-Ananth
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Lakshya Veer Singh
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Dhiraj Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vinay Kumar Nandicoori
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Centre for Cellular and Molecular Biology Campus, Hyderabad, India
| |
Collapse
|
8
|
Mahajan PS, Girigosavi P, Chauware V, Mokashi ND, Nema V. Issues with the current drugs for Mycobacterium tuberculosis cure and potential of cell envelope proteins for new drug discovery. Indian J Tuberc 2023; 70:286-296. [PMID: 37562902 DOI: 10.1016/j.ijtb.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 08/12/2023]
Abstract
Mycobacterium tuberculosis has been the smartest pathogen ever and a challenge to drug development. Its replicative machinery is unique, so targeting the same for killing the pathogen remains a challenge. Our body typically throws out the drugs before they see the bacterium multiply. The pathogen has also learned how to remove drugs from its internal chambers and not allow them to reach their targets. Another strategy for Mtb is the mutation of the targets to reject drug binding and bypass the drug's inhibitory actions. In this review, we tried to explore possible targets on the outer side of the bacterial cell. We have also explored if those targets are promising enough and if there are drugs or inhibitors available. We also discuss the essential proteins and why they remain to be a good target. We concluded that the cell envelope has got a few proteins that can be targeted in isolation or maybe along with other machinery while making the outer environment more conducive for penetration of current drugs or newly proposed drugs.
Collapse
Affiliation(s)
- Pratik S Mahajan
- Division of Molecular Biology, ICMR-National AIDS Research Institute, Pune, 411026, India
| | - Payal Girigosavi
- Division of Molecular Biology, ICMR-National AIDS Research Institute, Pune, 411026, India
| | - Vijay Chauware
- Division of Molecular Biology, ICMR-National AIDS Research Institute, Pune, 411026, India
| | - Nitin D Mokashi
- Postgraduate Institute, Yashwantrao Chavan Memorial Hospital, Pune, 411018, India
| | - Vijay Nema
- Division of Molecular Biology, ICMR-National AIDS Research Institute, Pune, 411026, India.
| |
Collapse
|
9
|
Adefisayo OO, Curtis ER, Smith CM. Mycobacterial Genetic Technologies for Probing the Host-Pathogen Microenvironment. Infect Immun 2023; 91:e0043022. [PMID: 37249448 PMCID: PMC10269127 DOI: 10.1128/iai.00430-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is one of the oldest and most successful pathogens in the world. Diverse selective pressures encountered within host cells have directed the evolution of unique phenotypic traits, resulting in the remarkable evolutionary success of this largely obligate pathogen. Despite centuries of study, the genetic repertoire utilized by Mtb to drive virulence and host immune evasion remains to be fully understood. Various genetic approaches have been and continue to be developed to tackle the challenges of functional gene annotation and validation in an intractable organism such as Mtb. In vitro and ex vivo systems remain the primary approaches to generate and confirm hypotheses that drive a general understanding of mycobacteria biology. However, it remains of great importance to characterize genetic requirements for successful infection within a host system as in vitro and ex vivo studies fail to fully replicate the complex microenvironment experienced by Mtb. In this review, we evaluate the employment of the mycobacterial genetic toolkit to probe the host-pathogen interface by surveying the current state of mycobacterial genetic studies within host systems, with a major focus on the murine model. Specifically, we discuss the different ways that these tools have been utilized to examine various aspects of infection, including bacterial survival/virulence, bacterial evasion of host immunity, and development of novel antibacterial/vaccine strategies.
Collapse
Affiliation(s)
| | - Erin R. Curtis
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Clare M. Smith
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
10
|
Qureshi KA, Azam F, Fatmi MQ, Imtiaz M, Prajapati DK, Rai PK, Jaremko M, Emwas AH, Elhassan GO. In vitro and in silico evaluations of actinomycin X 2and actinomycin D as potent anti-tuberculosis agents. PeerJ 2023; 11:e14502. [PMID: 36935926 PMCID: PMC10022501 DOI: 10.7717/peerj.14502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/10/2022] [Indexed: 03/11/2023] Open
Abstract
Background Multidrug-resistant tuberculosis (MDR-TB) is one of the world's most devastating contagious diseases and is caused by the MDR-Mycobacterium tuberculosis (MDR-Mtb) bacteria. It is therefore essential to identify novel anti-TB drug candidates and target proteins to treat MDR-TB. Here, in vitro and in silico studies were used to investigate the anti-TB potential of two newly sourced actinomycins, actinomycin-X2 (act-X2) and actinomycin-D (act-D), from the Streptomyces smyrnaeus strain UKAQ_23 (isolated from the Jubail industrial city of Saudi Arabia). Methods The anti-TB activity of the isolated actinomycins was assessed in vitro using the Mtb H37Ra, Mycobacterium bovis (BCG), and Mtb H37Rv bacterial strains, using the Microplate Alamar Blue Assay (MABA) method. In silico molecular docking studies were conducted using sixteen anti-TB drug target proteins using the AutoDock Vina 1.1.2 tool. The molecular dynamics (MD) simulations for both actinomycins were then performed with the most suitable target proteins, using the GROningen MAchine For Chemical Simulations (GROMACS) simulation software (GROMACS 2020.4), with the Chemistry at HARvard Macromolecular Mechanics 36m (CHARMM36m) forcefield for proteins and the CHARMM General Force Field (CGenFF) for ligands. Results In vitro results for the Mtb H37Ra, BCG, and Mtb H37Rv strains showed that act-X2 had minimum inhibitory concentration (MIC) values of 1.56 ± 0.0, 1.56 ± 0.0, and 2.64 ± 0.07 µg/mL and act-D had MIC values of 1.56 ± 0.0, 1.56 ± 0.0, and 1.80 ± 0.24 µg/mL respectively. The in silico molecular docking results showed that protein kinase PknB was the preferred target for both actinomycins, while KasA and pantothenate synthetase were the least preferred targets for act-X2and act-D respectively. The molecular dynamics (MD) results demonstrated that act-X2 and act-D remained stable inside the binding region of PknB throughout the simulation period. The MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) binding energy calculations showed that act-X2 was more potent than act-D. Conclusion In conclusion, our results suggest that both actinomycins X2 and D are highly potent anti-TB drug candidates. We show that act-X2is better able to antagonistically interact with the protein kinase PknB target than act-D, and thus has more potential as a new anti-TB drug candidate.
Collapse
Affiliation(s)
- Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Al-Qassim, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Al-Qassim, Saudi Arabia
| | | | - Mahrukh Imtiaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Dinesh Kumar Prajapati
- Department of Biotechnology, Faculty of Biosciences, Invertis University, Bareilly, Uttar Pradesh, India
| | - Pankaj Kumar Rai
- Department of Biotechnology, Faculty of Biosciences, Invertis University, Bareilly, Uttar Pradesh, India
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gamal Osman Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Al-Qassim, Saudi Arabia
| |
Collapse
|
11
|
Sharma S, Chikhale R, Shinde N, Khan AM, Gupta VK. Targeting dormant phenotype acquired mycobacteria using natural products by exploring its important targets: In vitro and in silico studies. Front Cell Infect Microbiol 2023; 13:1111997. [PMID: 37033483 PMCID: PMC10080046 DOI: 10.3389/fcimb.2023.1111997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The dormant phenotype of Mycobacterium tuberculosis that develops during infection poses a major challenge in disease treatment, since these bacilli show tolerance to front-line drugs. An in vitro hypoxia dormancy model was established, which produced phenotypically dormant Mycobacterium smegmatis after prolonged incubation under conditions of low oxygen, low pH, and nutrient limitation. Bacilli in this model displayed the classical dormancy characters, including loss of acid fastness, altered morphology, and, most importantly, tolerance to front-line drugs. The dormant form of M. smegmatis was treated with drugs and phytomolecules. Three phytomolecules exhibited activity against dormant bacilli, as shown by lack of regrowth in solid and liquid media. Further investigation of dormancy-active hits was carried out using in silico approaches to understand the druggable targets of these phytomolecules in dormant bacilli. For this study, molecular docking, molecular dynamics simulations (MDS), and molecular mechanics-generalized born solvent accessibility (MM-GBSA)-based binding energy (ΔGbind) calculations were performed. Five different targets, namely, isocitrate lyase (ICL), GMP synthase, LuxR, DosR, and serine/threonine protein kinase (STPK), from M. smegmatis and M. tuberculosis were studied in details. DosR and STPK were found to be the common targets in both the species that were more prone to the phytomolecules. The standard DosR inhibitor, HC104A, showed a lower dock score and binding energy of -4.27 and -34.50 kcal/mol, respectively, compared to the natural products under study. The phytomolecule, icariin, showed better docking score (dock score = -5.92 kcal/mol with and binding energy ΔGbind= -52.96 kcal/mol) with DosR compared to known DosR inhibitor, HC104A (dock score = -4.27 kcal/mol and binding energy ΔGbind = -34.50 kcal/mol). Similarly, the known STPK inhibitor MRCT67127 showed a lower dock score and binding energy of -4.25 and -29.43 kcal/mol, respectively, compared to the phytomolecule, icariin (dock score = -5.74 kcal/mol and ΔGbind= -43.41 kcal/mol). These compounds might ultimately lead to new therapeutics or may be useful as adjuvants to the first-line drugs to reduce the lengthy anti-TB therapy in the future.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Rupesh Chikhale
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
- Department of Pharmaceutical & Biological Chemistry, School of Pharmacy, University College London, London, United Kingdom
| | - Nivedita Shinde
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - A M Khan
- Division of Clinical Trials and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Vivek Kumar Gupta
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
12
|
Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms 2022; 10:microorganisms10122334. [PMID: 36557586 PMCID: PMC9784227 DOI: 10.3390/microorganisms10122334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Both latent and active TB infections are caused by a heterogeneous population of mycobacteria, which includes actively replicating and dormant bacilli in different proportions. Dormancy substantially affects M. tuberculosis drug tolerance and TB clinical management due to a significant decrease in the metabolic activity of bacilli, which leads to the complexity of both the diagnosis and the eradication of bacilli. Most diagnostic approaches to latent infection deal with a subpopulation of active M. tuberculosis, underestimating the contribution of dormant bacilli and leading to limited success in the fight against latent TB. Moreover, active TB appears not only as a primary form of infection but can also develop from latent TB, when resuscitation from dormancy is followed by bacterial multiplication, leading to disease progression. To win against latent infection, the identification of the Achilles' heel of dormant M. tuberculosis is urgently needed. Regulatory mechanisms and metabolic adaptation to growth arrest should be studied using in vitro and in vivo models that adequately imitate latent TB infection in macroorganisms. Understanding the mechanisms underlying M. tuberculosis dormancy and resuscitation may provide clues to help control latent infection, reduce disease severity in patients, and prevent pathogen transmission in the population.
Collapse
|
13
|
Protocol for ex vivo competition and sequencing of mycobacterium isolated from infected guinea pigs. STAR Protoc 2022; 3:101804. [PMID: 36340884 PMCID: PMC9630790 DOI: 10.1016/j.xpro.2022.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We describe steps for gDNA isolation from mycobacterium strains isolated from guinea pig lungs. We detail steps for infection of guinea pigs with Mycobacterium tuberculosis, followed by in vitro growth, gDNA isolation, and whole genome sequencing. We also describe an ex vivo competition experiment to determine the selective advantage of one strain over another. We include details for WGS and mutation spectrum analysis. The protocol can be used to identify mutations that arise in other pathogenic bacteria. For complete details on the use and execution of this protocol, please refer to Naz et al. (2021). Steps for the guinea pig infection experiment with Mycobacterium Steps for genomic DNA isolation from Mtb grown in vitro and in vivo Steps for WGS and mutation spectrum analysis Optimized protocol for competition experiment ex vivo
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
14
|
Identification of serine/threonine kinases that regulate metabolism and sporulation in Clostridium beijerinckii. Appl Microbiol Biotechnol 2022; 106:7563-7575. [DOI: 10.1007/s00253-022-12234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/17/2022] [Accepted: 10/07/2022] [Indexed: 11/02/2022]
|
15
|
Li H, Li T, Hu Q, Yao Z, Li L, Huang Q, Zhou R. Inhibitors targeting the autophosphorylation of serine/threonine kinase of Streptococcus suis show potent antimicrobial activity. Front Microbiol 2022; 13:990091. [PMID: 36118193 PMCID: PMC9478340 DOI: 10.3389/fmicb.2022.990091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global concern threatening public health. Developing novel antibiotics is one of the effective strategies to tackle AMR. Serine/threonine kinases (STKs) have been recently shown to play critical roles in the physiology and pathogenesis of several important bacterial pathogens which are regarded as a promising antimicrobial drug target. We previously reported the roles of STK in the regulation of bacterial cell division, metabolism, and pathogenesis in Streptococcus suis, an important zoonotic bacterial pathogen. In this study, we firstly identified the Thr167 and Ser175 residues in the activation loop of S. suis STK (ssSTK) as the kinase autophosphorylation sites. Phenotyping results demonstrated that the autophosphorylation deficient strain resembled the stk deletion strain showing essentiality for bacterial growth in minimal medium, abnormal morphology, and decreased virulence when compared with the wild-type S. suis SC19 strain. Based on these findings, we established an ssSTK inhibitor screening approach by measuring the growth of S. suis in a minimal medium and testing the autophosphorylation inhibition by measuring the consumption of ATP in an enzymatic reaction by ssSTK. A series of inhibitors against ssSTK are identified from a commercial kinase inhibitors library, including Staurosporine, K252a, AT9283, and APY29. These inhibitors showed antimicrobial activity in vitro. Moreover, by using Galleria mellonella larvae infection assay, compound APY29 displayed in vivo efficacy against S. suis infection. Additionally, it was predicted by molecular docking that these inhibitors could interact with ssSTK. Collectively, our data illustrated the essential roles of ssSTK autophosphorylation in the physiology and pathogenicity of S. suis and consider these inhibitors as promising antimicrobial lead compounds.
Collapse
Affiliation(s)
- Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiming Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
- *Correspondence: Qi Huang,
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
- The HZAU-HVSEN Institute, Wuhan, China
- Rui Zhou,
| |
Collapse
|
16
|
Hanwarinroj C, Thongdee P, Sukchit D, Taveepanich S, Kamsri P, Punkvang A, Ketrat S, Saparpakorn P, Hannongbua S, Suttisintong K, Kittakoop P, Spencer J, Mulholland AJ, Pungpo P. In silico design of novel quinazoline-based compounds as potential Mycobacterium tuberculosis PknB inhibitors through 2D and 3D-QSAR, molecular dynamics simulations combined with pharmacokinetic predictions. J Mol Graph Model 2022; 115:108231. [PMID: 35667143 DOI: 10.1016/j.jmgm.2022.108231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
Serine/threonine protein kinase B (PknB) is essential to Mycobacterium tuberculosis (M. tuberculosis) cell division and metabolism and a potential anti-tuberculosis drug target. Here we apply Hologram Quantitative Structure Activity Relationship (HQSAR) and three-dimensional QSAR (Comparative Molecular Similarity Indices Analysis (CoMSIA)) methods to investigate structural requirements for PknB inhibition by a series of previously described quinazoline derivatives. PknB binding of quinazolines was evaluated by molecular dynamics (MD) simulations of the catalytic domain and binding energies calculated by Molecular Mechanics/Poisson Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) methods. Evaluation of a training set against experimental data showed both HQSAR and CoMSIA models to reliably predict quinazoline binding to PknB, and identified the quinazoline core and overall hydrophobicity as the major contributors to affinity. Calculated binding energies also agreed with experiment, and MD simulations identified hydrogen bonds to Glu93 and Val95, and hydrophobic interactions with Gly18, Phe19, Gly20, Val25, Thr99 and Met155, as crucial to PknB binding. Based on these results, additional quinazolines were designed and evaluated in silico, with HQSAR and CoMSIA models identifying sixteen compounds, with predicted PknB binding superior to the template, whose activity spectra and physicochemical, pharmacokinetic, and anti-M. tuberculosis properties were assessed. Compound, D060, bearing additional ortho- and meta-methyl groups on its R2 substituent, was superior to template regarding PknB inhibition and % caseum fraction unbound, and equivalent in other aspects, although predictions identified hepatotoxicity as a likely issue with the quinazoline series. These data provide a structural basis for rational design of quinazoline derivatives with more potent PknB inhibitory activity as candidate anti-tuberculosis agents.
Collapse
Affiliation(s)
- Chayanin Hanwarinroj
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Paptawan Thongdee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Darunee Sukchit
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Somjintana Taveepanich
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Sombat Ketrat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Prasat Kittakoop
- Chulabhorn Research Institute, 10210, Bangkok, Thailand; Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, 10210, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10210, Thailand
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
17
|
Progress and Impact of Latin American Natural Product Databases. Biomolecules 2022; 12:biom12091202. [PMID: 36139041 PMCID: PMC9496143 DOI: 10.3390/biom12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products (NPs) are a rich source of structurally novel molecules, and the chemical space they encompass is far from being fully explored. Over history, NPs have represented a significant source of bioactive molecules and have served as a source of inspiration for developing many drugs on the market. On the other hand, computer-aided drug design (CADD) has contributed to drug discovery research, mitigating costs and time. In this sense, compound databases represent a fundamental element of CADD. This work reviews the progress toward developing compound databases of natural origin, and it surveys computational methods, emphasizing chemoinformatic approaches to profile natural product databases. Furthermore, it reviews the present state of the art in developing Latin American NP databases and their practical applications to the drug discovery area.
Collapse
|
18
|
Investigating the Antituberculosis Activity of Selected Commercial Essential Oils and Identification of Active Constituents Using a Biochemometrics Approach and In Silico Modeling. Antibiotics (Basel) 2022; 11:antibiotics11070948. [PMID: 35884202 PMCID: PMC9311982 DOI: 10.3390/antibiotics11070948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis which has become prevalent due to the emergence of resistant M. tuberculosis strains. The use of essential oils (EOs) as potential anti-infective agents to treat microbial infections, including TB, offers promise due to their long historical use and low adverse effects. The current study aimed to investigate the in vitro anti-TB activity of 85 commercial EOs, and identify compounds responsible for the activity, using a biochemometrics approach. A microdilution assay was used to determine the antimycobacterial activity of the EOs towards some non-pathogenic Mycobacterium strains. In parallel, an Alamar blue assay was used to investigate antimycobacterial activity towards the pathogenic M. tuberculosis strain. Chemical profiling of the EOs was performed using gas chromatography-mass spectrometry (GC-MS) analysis. Biochemometrics filtered out putative biomarkers using orthogonal projections to latent structures discriminant analysis (OPLS-DA). In silico modeling was performed to identify potential therapeutic targets of the active biomarkers. Broad-spectrum antimycobacterial activity was observed for Cinnamomum zeylanicum (bark) (MICs = 1.00, 0.50, 0.25 and 0.008 mg/mL) and Levisticum officinale (MICs = 0.50, 0.5, 0.5 and 0.004 mg/mL) towards M. smegmatis, M. fortuitum, M. gordonae and M. tuberculosis, respectively. Biochemometrics predicted cinnamaldehyde, thymol and eugenol as putative biomarkers. Molecular docking demonstrated that cinnamaldehyde could serve as a scaffold for developing a novel class of antimicrobial compounds by targeting FtsZ and PknB from M. tuberculosis.
Collapse
|
19
|
Cerezo-Cortés MI, Rodríguez-Castillo JG, Mata-Espinosa DA, Bini EI, Barrios-Payan J, Zatarain-Barrón ZL, Anzola JM, Cornejo-Granados F, Ochoa-Leyva A, Del Portillo P, Murcia MI, Hernández-Pando R. Close Related Drug-Resistance Beijing Isolates of Mycobacterium tuberculosis Reveal a Different Transcriptomic Signature in a Murine Disease Progression Model. Int J Mol Sci 2022; 23:ijms23095157. [PMID: 35563545 PMCID: PMC9100210 DOI: 10.3390/ijms23095157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) lineage 2/Beijing is associated with high virulence and drug resistance worldwide. In Colombia, the Beijing genotype has circulated since 1997, predominantly on the pacific coast, with the Beijing-Like SIT-190 being more prevalent. This genotype conforms to a drug-resistant cluster and shows a fatal outcome in patients. To better understand virulence determinants, we performed a transcriptomic analysis with a Beijing-Like SIT-190 isolate (BL-323), and Beijing-Classic SIT-1 isolate (BC-391) in progressive tuberculosis (TB) murine model. Bacterial RNA was extracted from mice lungs on days 3, 14, 28, and 60. On average, 0.6% of the total reads mapped against MTB genomes and of those, 90% against coding genes. The strains were independently associated as determined by hierarchical cluster and multidimensional scaling analysis. Gene ontology showed that in strain BL-323 enriched functions were related to host immune response and hypoxia, while proteolysis and protein folding were enriched in the BC-391 strain. Altogether, our results suggested a differential bacterial transcriptional program when evaluating these two closely related strains. The data presented here could potentially impact the control of this emerging, highly virulent, and drug-resistant genotype.
Collapse
Affiliation(s)
- María Irene Cerezo-Cortés
- Laboratorio de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.I.C.-C.); (J.G.R.-C.)
| | - Juan Germán Rodríguez-Castillo
- Laboratorio de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.I.C.-C.); (J.G.R.-C.)
| | - Dulce Adriana Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (D.A.M.-E.); (E.I.B.); (J.B.-P.); (Z.L.Z.-B.)
| | - Estela Isabel Bini
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (D.A.M.-E.); (E.I.B.); (J.B.-P.); (Z.L.Z.-B.)
| | - Jorge Barrios-Payan
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (D.A.M.-E.); (E.I.B.); (J.B.-P.); (Z.L.Z.-B.)
| | - Zyanya Lucia Zatarain-Barrón
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (D.A.M.-E.); (E.I.B.); (J.B.-P.); (Z.L.Z.-B.)
| | - Juan Manuel Anzola
- Grupo de Biotecnología Molecular, Grupo de Bioinformática y Biología Computacional, Corporación CorpoGen, Bogotá 110311, Colombia; (J.M.A.); (P.D.P.)
- Universidad Central, Facultad de Ingeniería y Ciencias Básicas Bogotá, Bogotá 100270, Colombia
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (F.C.-G.); (A.O.-L.)
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (F.C.-G.); (A.O.-L.)
| | - Patricia Del Portillo
- Grupo de Biotecnología Molecular, Grupo de Bioinformática y Biología Computacional, Corporación CorpoGen, Bogotá 110311, Colombia; (J.M.A.); (P.D.P.)
| | - Martha Isabel Murcia
- Laboratorio de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.I.C.-C.); (J.G.R.-C.)
- Correspondence: (M.I.M.); (R.H.-P.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (D.A.M.-E.); (E.I.B.); (J.B.-P.); (Z.L.Z.-B.)
- Correspondence: (M.I.M.); (R.H.-P.)
| |
Collapse
|
20
|
Burastero O, Cabrera M, Lopez ED, Defelipe LA, Arcon JP, Durán R, Marti MA, Turjanski AG. Specificity and Reactivity of Mycobacterium tuberculosis Serine/Threonine Kinases PknG and PknB. J Chem Inf Model 2022; 62:1723-1733. [PMID: 35319884 DOI: 10.1021/acs.jcim.1c01358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis, has 11 eukaryotic-like serine/threonine protein kinases, which play essential roles in cell growth, signal transduction, and pathogenesis. Protein kinase G (PknG) regulates the carbon and nitrogen metabolism by phosphorylation of the glycogen accumulation regulator (GarA) protein at Thr21. Protein kinase B (PknB) is involved in cell wall synthesis and cell shape, as well as phosphorylates GarA but at Thr22. While PknG seems to be constitutively activated and recognition of GarA requires phosphorylation in its unstructured tail, PknB activation is triggered by phosphorylation of its activation loop, which allows binding of the forkhead-associated domain of GarA. In the present work, we used molecular dynamics and quantum-mechanics/molecular mechanics simulations of the catalytically competent complex and kinase activity assays to understand PknG/PknB specificity and reactivity toward GarA. Two hydrophobic residues in GarA, Val24 and Phe25, seem essential for PknG binding and allow specificity for Thr21 phosphorylation. On the other hand, phosphorylated residues in PknB bind Arg26 in GarA and regulate its specificity for Thr22. We also provide a detailed analysis of the free energy profile for the phospho-transfer reaction and show why PknG has a constitutively active conformation not requiring priming phosphorylation in contrast to PknB. Our results provide new insights into these two key enzymes relevant for Mtb and the mechanisms of serine/threonine phosphorylation in bacteria.
Collapse
Affiliation(s)
- Osvaldo Burastero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Marisol Cabrera
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Elias D Lopez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Lucas A Defelipe
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Juan Pablo Arcon
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Rosario Durán
- Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay.,Instituto de Investigaciones BiológicasClemente Estable, 11600 Montevideo, Uruguay
| | - Marcelo A Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Adrian G Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
21
|
King A, Blackledge MS. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem Biol Drug Des 2021; 98:1038-1064. [PMID: 34581492 PMCID: PMC8616828 DOI: 10.1111/cbdd.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| |
Collapse
|
22
|
Nagarajan SN, Lenoir C, Grangeasse C. Recent advances in bacterial signaling by serine/threonine protein kinases. Trends Microbiol 2021; 30:553-566. [PMID: 34836791 DOI: 10.1016/j.tim.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been nearly three decades since the discovery of the first bacterial serine/threonine protein kinase (STPK). Since then, a blend of technological advances has led to the characterization of a multitude of STPKs and phosphorylation substrates in several bacterial species that finely regulate intricate signaling cascades. Years of intense research from several laboratories have demonstrated unexpected roles for serine/threonine phosphorylation, regulating not only bacterial growth and cell division but also antibiotic persistence, virulence and infection, metabolism, chromosomal biology, and cellular differentiation. This review aims to provide an account of the most recent and significant developments in this up and growing field in microbiology.
Collapse
Affiliation(s)
- Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Cassandra Lenoir
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
23
|
Vieira TF, Martins FG, Moreira JP, Barbosa T, Sousa SF. In Silico Identification of Possible Inhibitors for Protein Kinase B (PknB) of Mycobacterium tuberculosis. Molecules 2021; 26:6162. [PMID: 34684743 PMCID: PMC8541300 DOI: 10.3390/molecules26206162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
With tuberculosis still being one of leading causes of death in the world and the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), researchers have been seeking to find further therapeutic strategies or more specific molecular targets. PknB is one of the 11 Ser/Thr protein kinases of Mtb and is responsible for phosphorylation-mediated signaling, mainly involved in cell wall synthesis, cell division and metabolism. With the amount of structural information available and the great interest in protein kinases, PknB has become an attractive target for drug development. This work describes the optimization and application of an in silico computational protocol to find new PknB inhibitors. This multi-level computational approach combines protein-ligand docking, structure-based virtual screening, molecular dynamics simulations and free energy calculations. The optimized protocol was applied to screen a large dataset containing 129,650 molecules, obtained from the ZINC/FDA-Approved database, Mu.Ta.Lig Virtual Chemotheca and Chimiothèque Nationale. It was observed that the most promising compounds selected occupy the adenine-binding pocket in PknB, and the main interacting residues are Leu17, Val26, Tyr94 and Met155. Only one of the compounds was able to move the active site residues into an open conformation. It was also observed that the P-loop and magnesium position loops change according to the characteristics of the ligand. This protocol led to the identification of six compounds for further experimental testing while also providing additional structural information for the design of more specific and more effective derivatives.
Collapse
Affiliation(s)
- Tatiana F. Vieira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (T.F.V.); (F.G.M.); (J.P.M.); (T.B.)
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM-Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Fábio G. Martins
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (T.F.V.); (F.G.M.); (J.P.M.); (T.B.)
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM-Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Joel P. Moreira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (T.F.V.); (F.G.M.); (J.P.M.); (T.B.)
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM-Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Tiago Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (T.F.V.); (F.G.M.); (J.P.M.); (T.B.)
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM-Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Sérgio F. Sousa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (T.F.V.); (F.G.M.); (J.P.M.); (T.B.)
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM-Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
24
|
Kelliher JL, Grunenwald CM, Abrahams RR, Daanen ME, Lew CI, Rose WE, Sauer JD. PASTA kinase-dependent control of peptidoglycan synthesis via ReoM is required for cell wall stress responses, cytosolic survival, and virulence in Listeria monocytogenes. PLoS Pathog 2021; 17:e1009881. [PMID: 34624065 PMCID: PMC8528326 DOI: 10.1371/journal.ppat.1009881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/20/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023] Open
Abstract
Pathogenic bacteria rely on protein phosphorylation to adapt quickly to stress, including that imposed by the host during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are signal transduction systems that sense cell wall integrity and modulate multiple facets of bacterial physiology in response to cell envelope stress. The PASTA kinase in the cytosolic pathogen Listeria monocytogenes, PrkA, is required for cell wall stress responses, cytosolic survival, and virulence, yet its substrates and downstream signaling pathways remain incompletely defined. We combined orthogonal phosphoproteomic and genetic analyses in the presence of a β-lactam antibiotic to define PrkA phosphotargets and pathways modulated by PrkA. These analyses synergistically highlighted ReoM, which was recently identified as a PrkA target that influences peptidoglycan (PG) synthesis, as an important phosphosubstrate during cell wall stress. We find that deletion of reoM restores cell wall stress sensitivities and cytosolic survival defects of a ΔprkA mutant to nearly wild-type levels. While a ΔprkA mutant is defective for PG synthesis during cell wall stress, a double ΔreoM ΔprkA mutant synthesizes PG at rates similar to wild type. In a mouse model of systemic listeriosis, deletion of reoM in a ΔprkA background almost fully restored virulence to wild-type levels. However, loss of reoM alone also resulted in attenuated virulence, suggesting ReoM is critical at some points during pathogenesis. Finally, we demonstrate that the PASTA kinase/ReoM cell wall stress response pathway is conserved in a related pathogen, methicillin-resistant Staphylococcus aureus. Taken together, our phosphoproteomic analysis provides a comprehensive overview of the PASTA kinase targets of an important model pathogen and suggests that a critical role of PrkA in vivo is modulating PG synthesis through regulation of ReoM to facilitate cytosolic survival and virulence. Many antibiotics target bacterial cell wall biosynthesis, justifying continued study of this process and the ways bacteria respond to cell wall insults during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are master regulators of cell wall stress responses in bacteria and are conserved in several major pathogens, including Listeria monocytogenes, Staphylococcus aureus, and Mycobacterium tuberculosis. We previously showed that the PASTA kinase in L. monocytogenes, PrkA, is essential for the response to cell wall stress and for virulence. In this work, we combined proteomic and genetic approaches to identify PrkA substrates in L. monocytogenes. We show that regulation of one candidate from both screens, ReoM, increases synthesis of the cell wall component peptidoglycan and that this regulation is required for pathogenesis. We also demonstrate that the PASTA kinase-ReoM pathway regulates cell wall stress responses in another significant pathogen, methicillin-resistant S. aureus. Additionally, we uncover a PrkA-independent role for ReoM in vivo in L. monocytogenes, suggesting a need for nuanced modulation of peptidoglycan synthesis during infection. Cumulatively, this study provides new insight into how bacterial pathogens control cell wall synthesis during infection.
Collapse
Affiliation(s)
- Jessica L. Kelliher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Caroline M. Grunenwald
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rhiannon R. Abrahams
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - McKenzie E. Daanen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cassandra I. Lew
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Warren E. Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
25
|
Lewin A, Kamal E, Semmler T, Winter K, Kaiser S, Schäfer H, Mao L, Eschenhagen P, Grehn C, Bender J, Schwarz C. Genetic diversification of persistent Mycobacterium abscessus within cystic fibrosis patients. Virulence 2021; 12:2415-2429. [PMID: 34546836 PMCID: PMC8526041 DOI: 10.1080/21505594.2021.1959808] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium (M.) abscessus infections in Cystic Fibrosis (CF) patients cause a deterioration of lung function. Treatment of these multidrug-resistant pathogens is associated with severe side-effects, while frequently unsuccessful. Insight on M. abscessus genomic evolvement during chronic lung infection would be beneficial for improving treatment strategies. A longitudinal study enrolling 42 CF patients was performed at a CF center in Berlin, Germany, to elaborate phylogeny and genomic diversification of in-patient M. abscessus. Eleven of the 42 CF patients were infected with M. abscessus. Five of these 11 patients were infected with global human-transmissible M. abscessus cluster strains. Phylogenetic analysis of 88 genomes from isolates of the 11 patients excluded occurrence of M. abscessus transmission among members of the study group. Genome sequencing and variant analysis of 30 isolates from 11 serial respiratory samples collected over 4.5 years from a chronically infected patient demonstrated accumulation of gene mutations. In total, 53 genes exhibiting non-synonymous variations were identified. Enrichment analysis emphasized genes involved in synthesis of glycopeptidolipids, genes from the embABC (arabinosyltransferase) operon, betA (glucose-methanol-choline oxidoreductase) and choD (cholesterol oxidase). Genetic diversity evolved in a variety of virulence- and resistance-associated genes. The strategy of M. abscessus populations in chronic lung infection is not clonal expansion of dominant variants, but to sustain simultaneously a wide range of genetic variants facilitating adaptation of the population to changing living conditions in the lung. Genomic diversification during chronic infection requires increased attention when new control strategies against M. abscessus infections are explored.
Collapse
Affiliation(s)
- Astrid Lewin
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Elisabeth Kamal
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Unit NG 1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katja Winter
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Sandra Kaiser
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Hubert Schäfer
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Lei Mao
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany.,Unit 31 Infectious Disease Data Science Unit, Robert Koch Institute, Berlin, Germany
| | - Patience Eschenhagen
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Grehn
- Department of Pediatrics, Division of Pulmonology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin, Berlin, Germany
| | - Jennifer Bender
- Unit 13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany.,ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Carsten Schwarz
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Natural products from Brazilian biodiversity identified as potential inhibitors of PknA and PknB of M. tuberculosis using molecular modeling tools. Comput Biol Med 2021; 136:104694. [PMID: 34365277 DOI: 10.1016/j.compbiomed.2021.104694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis was discovered in 1882 by Robert Koch but, since its discovery, the tuberculosis (TB) epidemic has endured, being one of the top 10 causes of death worldwide. Drug-resistant TB continues to be a public health threat and bioactive compounds with a new mode of action (MoA) are needed to overcome this. Since natural products are described as important sources for the development of new drugs, the objective of this work was to identify potential ligands from Brazilian natural products (NPs) for M. tuberculosis targets using molecular modeling tools. Using chemogenomics we identified the Serine/Threonine Protein Kinase PknB as a putative target for 13 NPs from a database from Brazilian biodiversity (NuBBE). Literature data supported further investigation of NuBBE105, NuBBE598, NuBBE936, NuBBE964, NuBBE1045, and NuBBE1180 by molecular docking and dynamics. Key interactions were observed with PknB and simulations confirmed stability and favorable binding energies. Considering structural similarity with PknB, we further explored binding of the NPs to PknA, critical for M. tuberculosis survival, and all of them resembled important interactions with the enzyme, showing stable and favorable binding energies, whilst van der Waals interactions seem to play a key role for binding to PknA and PknB. NuBBE936 and NuBBE1180 have already had their antimycobacterial activity reported and our results can provide a basis for their MoA. Finally, the other NPs which have not been tested against M. tuberculosis deserve further investigation, aiming at the discovery of antimycobacterial drug candidates with innovative MoA.
Collapse
|
27
|
Bacillus anthracis chain length, a virulence determinant, is regulated by membrane localized serine/threonine protein kinase PrkC. J Bacteriol 2021; 203:JB.00582-20. [PMID: 33753466 PMCID: PMC8117516 DOI: 10.1128/jb.00582-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthrax is a zoonotic disease caused by Bacillus anthracis, a spore-forming pathogen that displays a chaining phenotype. It has been reported that the chaining phenotype acts as a virulence factor in B. anthracis In this study, we identify a serine/threonine protein kinase of B. anthracis, PrkC, the only kinase localized at the bacteria-host interface, as a determinant of B. anthracis chain length. In vitro, prkC disruption strain (BAS ΔprkC) grew as shorter chains throughout the bacterial growth cycle. A comparative analysis between the parent strain and BAS ΔprkC indicated that the levels of proteins, BslO and Sap, associated with the regulation of the bacterial chain length, were upregulated in BAS ΔprkC BslO is a septal murein hydrolase that catalyzes daughter cell separation and Sap is an S-layer structural protein required for the septal localization of BslO. PrkC disruption also has a significant effect on bacterial growth, cell wall thickness, and septa formation. Upregulation of ftsZ in BAS ΔprkC was also observed. Altogether, our results indicate that PrkC is required for maintaining optimum growth, cell wall homeostasis and most importantly - for the maintenance of the chaining phenotype.IMPORTANCEChaining phenotype acts as a virulence factor in Bacillus anthracis This is the first study that identifies a 'signal transduction protein' with an ability to regulate the chaining phenotype in Bacillus anthracis We show that the disruption of the lone surface-localized serine/threonine protein kinase, PrkC, leads to the shortening of the bacterial chains. We report upregulation of the de-chaining proteins in the PrkC disruption strain. Apart from this, we also report for the first time that PrkC disruption results in an attenuated cell growth, a decrease in the cell wall thickness and aberrant cell septa formation during the logarithmic phase of growth - a growth phase where PrkC is expressed maximally.
Collapse
|
28
|
Naz S, Singh Y, Nandicoori VK. Deletion of serine/threonine-protein kinase pknL from Mycobacterium tuberculosis reduces the efficacy of isoniazid and ethambutol. Tuberculosis (Edinb) 2021; 128:102066. [PMID: 33690080 DOI: 10.1016/j.tube.2021.102066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
Serine/threonine-protein kinases in Mycobacterium tuberculosis (Mtb) form a preeminent regulatory system required to establish and maintain the infection in the host. Herein, we sought to decipher the biological role of PknL with the help of a gene replacement mutant RvΔpknL. Deletion of pknL results in the compromised growth under redox stress. The mutant showed significant survival defects in peritoneal macrophages, a significant decrease in the ability to establish infections and disseminate to the spleen in the murine model of infection. While the absence of pknL has no impact on either MIC or CFUs of ciprofloxacin and rifampicin treated bacilli, it increases the survival ~1.5-2.5 log fold upon isoniazid or ethambutol treatment. Collectively, data suggests that PknL aids in combating stress conditions in vitro, ex vivo, and in vivo and reduces the efficacy of isoniazid and ethambutol.
Collapse
Affiliation(s)
- Saba Naz
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | |
Collapse
|
29
|
Wlodarchak N, Feltenberger JB, Ye Z, Beczkiewicz J, Procknow R, Yan G, King TM, Golden JE, Striker R. Engineering Selectivity for Reduced Toxicity of Bacterial Kinase Inhibitors Using Structure-Guided Medicinal Chemistry. ACS Med Chem Lett 2021; 12:228-235. [PMID: 35035774 PMCID: PMC8757511 DOI: 10.1021/acsmedchemlett.0c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/08/2021] [Indexed: 01/15/2023] Open
Abstract
![]()
Tuberculosis is a
major global public health concern, and new drugs
are needed to combat both the typical form and the increasingly common
drug-resistant form of this disease. The essential tuberculosis kinase
PknB is an attractive drug development target because of its central
importance in several critical signaling cascades. A major hurdle
in kinase inhibitor development is the reduction of toxicity due to
nonspecific kinase activity in host cells. Here a novel class of PknB
inhibitors was developed from hit aminopyrimidine 1 (GW779439X),
which was originally designed for human CDK4 but failed to progress
clinically because of high toxicity and low specificity. Replacing
the pyrazolopyridazine headgroup of the original hit with substituted
pyridine or phenyl headgroups resulted in a reduction of Cdk activity
and a 3-fold improvement in specificity over the human kinome while
maintaining PknB activity. This also resulted in improved microbiological
activity and reduced toxicity in THP-1 cells and zebrafish.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- William S. Middleton Veterans Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, United States.,Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - John B Feltenberger
- University of Wisconsin-Madison Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Zhengqing Ye
- University of Wisconsin-Madison Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jeffrey Beczkiewicz
- Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Rebecca Procknow
- Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Gang Yan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Troy M King
- Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Jennifer E Golden
- University of Wisconsin-Madison Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States.,Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Rob Striker
- William S. Middleton Veterans Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, United States.,Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
30
|
Baptista R, Bhowmick S, Shen J, Mur LAJ. Molecular Docking Suggests the Targets of Anti-Mycobacterial Natural Products. Molecules 2021; 26:475. [PMID: 33477495 PMCID: PMC7831053 DOI: 10.3390/molecules26020475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) is a major global threat, mostly due to the development of antibiotic-resistant forms of Mycobacterium tuberculosis, the causal agent of the disease. Driven by the pressing need for new anti-mycobacterial agents several natural products (NPs) have been shown to have in vitro activities against M. tuberculosis. The utility of any NP as a drug lead is augmented when the anti-mycobacterial target(s) is unknown. To suggest these, we used a molecular reverse docking approach to predict the interactions of 53 selected anti-mycobacterial NPs against known "druggable" mycobacterial targets ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13. The docking scores/binding free energies were predicted and calculated using AutoDock Vina along with physicochemical and structural properties of the NPs, using PaDEL descriptors. These were compared to the established inhibitor (control) drugs for each mycobacterial target. The specific interactions of the bisbenzylisoquinoline alkaloids 2-nortiliacorinine, tiliacorine and 13'-bromotiliacorinine against the targets PknB and DprE1 (-11.4, -10.9 and -9.8 kcal·mol-1; -12.7, -10.9 and -10.3 kcal·mol-1, respectively) and the lignan α-cubebin and Pks13 (-11.0 kcal·mol-1) had significantly superior docking scores compared to controls. Our approach can be used to suggest predicted targets for the NP to be validated experimentally, but these in silico steps are likely to facilitate drug optimization.
Collapse
Affiliation(s)
- Rafael Baptista
- Institute of Biological, Environmental and Rural Sciences, Penglais Campus, Aberystwyth University, Aberystwyth, Wales SY23 2DA, UK; (R.B.); (S.B.)
| | - Sumana Bhowmick
- Institute of Biological, Environmental and Rural Sciences, Penglais Campus, Aberystwyth University, Aberystwyth, Wales SY23 2DA, UK; (R.B.); (S.B.)
| | - Jianying Shen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences, Penglais Campus, Aberystwyth University, Aberystwyth, Wales SY23 2DA, UK; (R.B.); (S.B.)
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
31
|
Djorić D, Minton NE, Kristich CJ. The enterococcal PASTA kinase: A sentinel for cell envelope stress. Mol Oral Microbiol 2020; 36:132-144. [PMID: 32945615 DOI: 10.1111/omi.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Enterococci are Gram-positive, opportunistic pathogens that reside throughout the gastrointestinal tracts of most terrestrial organisms. Enterococci are resistant to many antibiotics, which makes enterococcal infections difficult to treat. Enterococci are also particularly hardy bacteria that can tolerate a variety of environmental stressors. Understanding how enterococci sense and respond to the extracellular environment to enact adaptive biological responses may identify new targets that can be exploited for development of treatments for enterococcal infections. Bacterial eukaryotic-like serine/threonine kinases (eSTKs) and cognate phosphatases (STPs) are important signaling systems that mediate biological responses to extracellular stimuli. Some bacterial eSTKs are transmembrane proteins that contain a series of extracellular repeats of the penicillin-binding and Ser/Thr kinase-associated (PASTA) domain, leading to their designation as "PASTA kinases." Enterococcal genomes encode a single PASTA kinase and its cognate phosphatase. Investigations of the enterococcal PASTA kinase revealed its importance in resistance to antibiotics and other cell wall stresses, in enterococcal colonization of the mammalian gut, clues about its mechanism of signal transduction, and its integration with other enterococcal signal transduction systems. In this review, we describe the current state of knowledge of PASTA kinase signaling in enterococci and describe important gaps that still need to be addressed to provide a better understanding of this important signaling system.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicole E Minton
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
32
|
Olotu FA, Soliman ME. Probing the Highly Disparate Dual Inhibitory Mechanisms of Novel Quinazoline Derivatives against Mycobacterium tuberculosis Protein Kinases A and B. Molecules 2020; 25:E4247. [PMID: 32947886 PMCID: PMC7571077 DOI: 10.3390/molecules25184247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) serine/threonine (Ser/Thr) Protein kinases A (PknA) and B (PknB) have been identified as highly attractive targets for overcoming drug resistant tuberculosis. A recent lead series optimization study yielded compound 33 which exhibited potencies ~1000 times higher than compound 57. This huge discrepancy left us curious to investigate the mechanistic 'dual' (in)activities of the compound using computational methods, as carried out in this study. Findings revealed that 33 stabilized the PknA and B conformations and reduced their structural activities relative to 57. Optimal stability of 33 in the hydrophobic pockets further induced systemic alterations at the P-loops, catalytic loops, helix Cs and DFG motifs of PknA and B. Comparatively, 57 was more surface-bound with highly unstable motions. Furthermore, 33 demonstrated similar binding patterns in PknA and B, involving conserved residues of their binding pockets. Both π and hydrogen interactions played crucial roles in the binding of 33, which altogether culminated in high ΔGs for both proteins. On the contrary, the binding of 57 was characterized by unfavorable interactions with possible repulsive effects on its optimal dual binding to both proteins, as evidenced by the relatively lowered ΔGs. These findings would significantly contribute to the rational structure-based design of novel and highly selective dual inhibitors of Mtb PknA and B.
Collapse
Affiliation(s)
| | - Mahmoud E. Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa;
| |
Collapse
|
33
|
Structure-Based Drug Design for Tuberculosis: Challenges Still Ahead. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-based and computer-aided drug design approaches are commonly considered to have been successful in the fields of cancer and antiviral drug discovery but not as much for antibacterial drug development. The search for novel anti-tuberculosis agents is indeed an emblematic example of this trend. Although huge efforts, by consortiums and groups worldwide, dramatically increased the structural coverage of the Mycobacterium tuberculosis proteome, the vast majority of candidate drugs included in clinical trials during the last decade were issued from phenotypic screenings on whole mycobacterial cells. We developed here three selected case studies, i.e., the serine/threonine (Ser/Thr) kinases—protein kinase (Pkn) B and PknG, considered as very promising targets for a long time, and the DNA gyrase of M. tuberculosis, a well-known, pharmacologically validated target. We illustrated some of the challenges that rational, target-based drug discovery programs in tuberculosis (TB) still have to face, and, finally, discussed the perspectives opened by the recent, methodological developments in structural biology and integrative techniques.
Collapse
|
34
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
35
|
Le NH, Locard-Paulet M, Stella A, Tomas N, Molle V, Burlet-Schiltz O, Daffé M, Marrakchi H. The protein kinase PknB negatively regulates biosynthesis and trafficking of mycolic acids in mycobacteria. J Lipid Res 2020; 61:1180-1191. [PMID: 32487543 DOI: 10.1194/jlr.ra120000747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis and remains one of the most widespread and deadliest bacterial pathogens in the world. A distinguishing feature of mycobacteria that sets them apart from other bacteria is the unique architecture of their cell wall, characterized by various species-specific lipids, most notably mycolic acids (MAs). Therefore, targeted inhibition of enzymes involved in MA biosynthesis, transport, and assembly has been extensively explored in drug discovery. Additionally, more recent evidence suggests that many enzymes in the MA biosynthesis pathway are regulated by kinase-mediated phosphorylation, thus opening additional drug-development opportunities. However, how phosphorylation regulates MA production remains unclear. Here, we used genetic strategies combined with lipidomics and phosphoproteomics approaches to investigate the role of protein phosphorylation in Mycobacterium The results of this analysis revealed that the Ser/Thr protein kinase PknB regulates the export of MAs and promotes the remodeling of the mycobacterial cell envelope. In particular, we identified the essential MmpL3 as a substrate negatively regulated by PknB. Taken together, our findings add to the understanding of how PknB activity affects the mycobacterial MA biosynthesis pathway and reveal the essential role of protein phosphorylation/dephosphorylation in governing lipid metabolism, paving the way for novel antimycobacterial strategies.
Collapse
Affiliation(s)
- Nguyen-Hung Le
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nicolas Tomas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
36
|
Zeng J, Platig J, Cheng TY, Ahmed S, Skaf Y, Potluri LP, Schwartz D, Steen H, Moody DB, Husson RN. Protein kinases PknA and PknB independently and coordinately regulate essential Mycobacterium tuberculosis physiologies and antimicrobial susceptibility. PLoS Pathog 2020; 16:e1008452. [PMID: 32255801 PMCID: PMC7164672 DOI: 10.1371/journal.ppat.1008452] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/17/2020] [Accepted: 03/03/2020] [Indexed: 01/28/2023] Open
Abstract
The Mycobacterium tuberculosis Ser/Thr protein kinases PknA and PknB are essential for growth and have been proposed as possible drug targets. We used a titratable conditional depletion system to investigate the functions of these kinases. Depletion of PknA or PknB or both kinases resulted in growth arrest, shortening of cells, and time-dependent loss of acid-fast staining with a concomitant decrease in mycolate synthesis and accumulation of trehalose monomycolate. Depletion of PknA and/or PknB resulted in markedly increased susceptibility to β-lactam antibiotics, and to the key tuberculosis drug rifampin. Phosphoproteomic analysis showed extensive changes in protein phosphorylation in response to PknA depletion and comparatively fewer changes with PknB depletion. These results identify candidate substrates of each kinase and suggest specific and coordinate roles for PknA and PknB in regulating multiple essential physiologies. These findings support these kinases as targets for new antituberculosis drugs and provide a valuable resource for targeted investigation of mechanisms by which protein phosphorylation regulates pathways required for growth and virulence in M. tuberculosis.
Collapse
Affiliation(s)
- Jumei Zeng
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - John Platig
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Brigham & Women’s Hospital, Harvard Medical School, Boston MA, United States of America
| | - Saima Ahmed
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Yara Skaf
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States of America
| | - Lakshmi-Prasad Potluri
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Daniel Schwartz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States of America
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - D. Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham & Women’s Hospital, Harvard Medical School, Boston MA, United States of America
| | - Robert N. Husson
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
37
|
Baros SS, Blackburn JM, Soares NC. Phosphoproteomic Approaches to Discover Novel Substrates of Mycobacterial Ser/Thr Protein Kinases. Mol Cell Proteomics 2020; 19:233-244. [PMID: 31839597 PMCID: PMC7000118 DOI: 10.1074/mcp.r119.001668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Mycobacterial Ser/Thr protein kinases (STPKs) play a critical role in signal transduction pathways that ultimately determine mycobacterial growth and metabolic adaptation. Identification of key physiological substrates of these protein kinases is, therefore, crucial to better understand how Ser/Thr phosphorylation contributes to mycobacterial environmental adaptation, including response to stress, cell division, and host-pathogen interactions. Various substrate detection methods have been employed with limited success, with direct targets of STPKs remaining elusive. Recently developed mass spectrometry (MS)-based phosphoproteomic approaches have expanded the list of potential STPK substrate identifications, yet further investigation is required to define the most functionally significant phosphosites and their physiological importance. Prior to the application of MS workflows, for instance, GarA was the only known and validated physiological substrate for protein kinase G (PknG) from pathogenic mycobacteria. A subsequent list of at least 28 candidate PknG substrates has since been reported with the use of MS-based analyses. Herein, we integrate and critically review MS-generated datasets available on novel STPK substrates and report new functional and subcellular localization enrichment analyses on novel candidate protein kinase A (PknA), protein kinase B (PknB) and PknG substrates to deduce the possible physiological roles of these kinases. In addition, we assess substrate specificity patterns across different mycobacterial STPKs by analyzing reported sets of phosphopeptides, in order to determine whether novel motifs or consensus regions exist for mycobacterial Ser/Thr phosphorylation sites. This review focuses on MS-based techniques employed for STPK substrate identification in mycobacteria, while highlighting the advantages and challenges of the various applications.
Collapse
Affiliation(s)
- Seanantha S Baros
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Jonathan M Blackburn
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa; Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
38
|
Riggs-Shute SD, Falkinham JO, Yang Z. Construction and Use of Transposon MycoTetOP 2 for Isolation of Conditional Mycobacteria Mutants. Front Microbiol 2020; 10:3091. [PMID: 32038540 PMCID: PMC6985430 DOI: 10.3389/fmicb.2019.03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
Mycobacteria are unique in many aspects of their biology. The development of genetic tools to identify genes critical for their growth by forward genetic analysis holds great promises to advance our understanding of their cellular, physiological and biochemical processes. Here we report the development of a novel transposon, MycoTetOP 2, to aid the identification of such genes by direct transposon mutagenesis. This mariner-based transposon contains nested anhydrotetracycline (ATc)-inducible promoters to drive transcription outward from both of its ends. In addition, it includes the Escherichia coli R6Kγ origin to facilitate the identification of insertion sites. MycoTetOP 2 was placed in a shuttle plasmid with a temperature-sensitive DNA replication origin in mycobacteria. This allows propagation of mycobacteria harboring the plasmid at a permissive temperature. The resulting population of cells can then be subjected to a temperature shift to select for transposon mutants. This transposon and its delivery system, once constructed, were tested in the fast-growing model Mycobacterium smegmatis and 13 mutants with ATc-dependent growth were isolated. The identification of the insertion sites in these mutants led to nine unique genetic loci with genes critical for essential processes in both M. smegmatis and Mycobacterium tuberculosis. These results demonstrate that MycoTetOP 2 and its delivery vector provide valuable tools for the studies of mycobacteria by forward genetics.
Collapse
Affiliation(s)
- Sarah D. Riggs-Shute
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biology, Tidewater Community College, Portsmouth, VA, United States
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
39
|
Kawalek A, Wawrzyniak P, Bartosik AA, Jagura-Burdzy G. Rules and Exceptions: The Role of Chromosomal ParB in DNA Segregation and Other Cellular Processes. Microorganisms 2020; 8:E105. [PMID: 31940850 PMCID: PMC7022226 DOI: 10.3390/microorganisms8010105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
The segregation of newly replicated chromosomes in bacterial cells is a highly coordinated spatiotemporal process. In the majority of bacterial species, a tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target(s) parS sequence(s), facilitates the initial steps of chromosome partitioning. ParB nucleates around parS(s) located in the vicinity of newly replicated oriCs to form large nucleoprotein complexes, which are subsequently relocated by ParA to distal cellular compartments. In this review, we describe the role of ParB in various processes within bacterial cells, pointing out interspecies differences. We outline recent progress in understanding the ParB nucleoprotein complex formation and its role in DNA segregation, including ori positioning and anchoring, DNA condensation, and loading of the structural maintenance of chromosome (SMC) proteins. The auxiliary roles of ParBs in the control of chromosome replication initiation and cell division, as well as the regulation of gene expression, are discussed. Moreover, we catalog ParB interacting proteins. Overall, this work highlights how different bacterial species adapt the DNA partitioning ParAB-parS system to meet their specific requirements.
Collapse
Affiliation(s)
| | | | | | - Grazyna Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (A.K.); (P.W.); (A.A.B.)
| |
Collapse
|
40
|
Alqaseer K, Turapov O, Barthe P, Jagatia H, De Visch A, Roumestand C, Wegrzyn M, Bartek IL, Voskuil MI, O'Hare HM, Ajuh P, Bottrill AR, Witney AA, Cohen-Gonsaud M, Waddell SJ, Mukamolova GV. Protein kinase B controls Mycobacterium tuberculosis growth via phosphorylation of the transcriptional regulator Lsr2 at threonine 112. Mol Microbiol 2019; 112:1847-1862. [PMID: 31562654 PMCID: PMC6906086 DOI: 10.1111/mmi.14398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 01/23/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is able to persist in the body through months of multi‐drug therapy. Mycobacteria possess a wide range of regulatory proteins, including the protein kinase B (PknB) which controls peptidoglycan biosynthesis during growth. Here, we observed that depletion of PknB resulted in specific transcriptional changes that are likely caused by reduced phosphorylation of the H‐NS‐like regulator Lsr2 at threonine 112. The activity of PknB towards this phosphosite was confirmed with purified proteins, and this site was required for adaptation of Mtb to hypoxic conditions, and growth on solid media. Like H‐NS, Lsr2 binds DNA in sequence‐dependent and non‐specific modes. PknB phosphorylation of Lsr2 reduced DNA binding, measured by fluorescence anisotropy and electrophoretic mobility shift assays, and our NMR structure of phosphomimetic T112D Lsr2 suggests that this may be due to increased dynamics of the DNA‐binding domain. Conversely, the phosphoablative T112A Lsr2 had increased binding to certain DNA sites in ChIP‐sequencing, and Mtb containing this variant showed transcriptional changes that correspond with the change in DNA binding. In summary, PknB controls Mtb growth and adaptations to the changing host environment by phosphorylating the global transcriptional regulator Lsr2.
Collapse
Affiliation(s)
- Kawther Alqaseer
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE2 9HN, UK.,Department of Basic Science, Faculty of Nursing, University of Kufa, Najaf Governorate, P.O. Box 21, Kufa, Najaf, Iraq
| | - Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE2 9HN, UK
| | - Philippe Barthe
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, 34090, Montpellier, France
| | - Heena Jagatia
- Wellcome Trust Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Angélique De Visch
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, 34090, Montpellier, France
| | - Christian Roumestand
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, 34090, Montpellier, France
| | - Malgorzata Wegrzyn
- Core Biotechnology Services, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Iona L Bartek
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Martin I Voskuil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Helen M O'Hare
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE2 9HN, UK.,LISCB, Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Paul Ajuh
- Gemini Biosciences Ltd, Liverpool Science Park, Liverpool, L7 8TX, UK
| | - Andrew R Bottrill
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester, LE1 7RH, UK
| | - Adam A Witney
- Institute for Infection and Immunity, St George's University of London, London, SW17 0RE, UK
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, 34090, Montpellier, France
| | - Simon J Waddell
- Wellcome Trust Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Galina V Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE2 9HN, UK
| |
Collapse
|
41
|
NU-6027 Inhibits Growth of Mycobacterium tuberculosis by Targeting Protein Kinase D and Protein Kinase G. Antimicrob Agents Chemother 2019; 63:AAC.00996-19. [PMID: 31285226 DOI: 10.1128/aac.00996-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/30/2019] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is a global health concern, and this situation has further worsened due to the emergence of drug-resistant strains and the failure of BCG vaccine to impart protection. There is an imperative need to develop highly sensitive, specific diagnostic tools, novel therapeutics, and vaccines for the eradication of TB. In the present study, a chemical screen of a pharmacologically active compound library was performed to identify antimycobacterial compounds. The phenotypic screen identified a few novel small-molecule inhibitors, including NU-6027, a known CDK-2 inhibitor. We demonstrate that NU-6027 inhibits Mycobacterium bovis BCG growth in vitro and also displayed cross-reactivity with Mycobacterium tuberculosis protein kinase D (PknD) and protein kinase G (PknG). Comparative structural and sequence analysis along with docking simulation suggest that the unique binding site stereochemistry of PknG and PknD accommodates NU-6027 more favorably than other M. tuberculosis Ser/Thr protein kinases. Further, we also show that NU-6027 treatment induces the expression of proapoptotic genes in macrophages. Finally, we demonstrate that NU-6027 inhibits M. tuberculosis growth in both macrophage and mouse tissues. Taken together, these results indicate that NU-6027 can be optimized further for the development of antimycobacterial agents.
Collapse
|
42
|
Mori M, Sammartino JC, Costantino L, Gelain A, Meneghetti F, Villa S, Chiarelli LR. An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis. Curr Top Med Chem 2019; 19:646-661. [PMID: 30827246 DOI: 10.2174/1568026619666190227182701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), still remains an urgent global health issue, mainly due to the emergence of multi-drug resistant strains. Therefore, there is a pressing need to develop novel and more efficient drugs to control the disease. In this context, targeting the pathogen virulence factors, and particularly signal mechanisms, seems to be a promising approach. An important transmembrane signaling system in Mtb is represented by receptor-type Serine/ Threonine protein kinases (STPKs). Mtb has 11 different STPKs, two of them, PknA and PknB, are essential. By contrast PknG and PknH are involved in Mtb virulence and adaptation, and are fundamental for the pathogen growth in infection models. Therefore, STPKs represent a very interesting group of pharmacological targets in M. tuberculosis. In this work, the principal inhibitors of the mycobacterial STPKs will be presented and discussed. In particular, medicinal chemistry efforts have been focused on discovering new antimycobacterial compounds, targeting three of these kinases, namely PknA, PknB and PknG. Generally, the inhibitory effect on these enzymes do not correlate with a significant antimycobacterial action in whole-cell assays. However, compounds with activity in the low micromolar range have been obtained, demonstrating that targeting Mtb STPKs could be a new promising strategy for the development of drugs to treat TB infections.
Collapse
Affiliation(s)
- Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - José Camilla Sammartino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Luca Costantino
- Dipartimento Scienze della Vita, Universita degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Laurent Roberto Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
43
|
Park EJ, Kwon YM, Lee JW, Kang HY, Oh JI. Dual control of RegX3 transcriptional activity by SenX3 and PknB. J Biol Chem 2019; 294:11023-11034. [PMID: 31160336 DOI: 10.1074/jbc.ra119.008232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
The mycobacterial SenX3-RegX3 two-component system consists of the SenX3 sensor histidine kinase and its cognate RegX3 response regulator. This system is a phosphorelay-based regulatory system involved in sensing environmental Pi levels and induction of genes required for Pi acquisition under Pi-limiting conditions. Here we demonstrate that overexpression of the kinase domain of Mycobacterium tuberculosis PknB (PknB-KDMtb) inhibits the transcriptional activity of RegX3 of both M. tuberculosis and Mycobacterium smegmatis (RegX3Mtb and RegX3Ms, respectively). Mass spectrometry results, along with those of in vitro phosphorylation and complementation analyses, revealed that PknB kinase activity inhibits the transcriptional activity of RegX3Mtb through phosphorylation events at Thr-100, Thr-191, and Thr-217. Electrophoretic mobility shift assays disclosed that phosphorylation of Thr-191 and Thr-217 abolishes the DNA-binding ability of RegX3Mtb and that Thr-100 phosphorylation likely prevents RegX3Mtb from being activated through conformational changes induced by SenX3-mediated phosphorylation. We propose that the convergence of the PknB and SenX3-RegX3 signaling pathways might enable mycobacteria to integrate environmental Pi signals with the cellular replication state to adjust gene expression in response to Pi availability.
Collapse
Affiliation(s)
- Eun-Jin Park
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Yu-Mi Kwon
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea, and; Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Ho-Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea,.
| |
Collapse
|
44
|
Alsayed SSR, Beh CC, Foster NR, Payne AD, Yu Y, Gunosewoyo H. Kinase Targets for Mycolic Acid Biosynthesis in Mycobacterium tuberculosis. Curr Mol Pharmacol 2019; 12:27-49. [PMID: 30360731 DOI: 10.2174/1874467211666181025141114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mycolic acids (MAs) are the characteristic, integral building blocks for the mycomembrane belonging to the insidious bacterial pathogen Mycobacterium tuberculosis (M.tb). These C60-C90 long α-alkyl-β-hydroxylated fatty acids provide protection to the tubercle bacilli against the outside threats, thus allowing its survival, virulence and resistance to the current antibacterial agents. In the post-genomic era, progress has been made towards understanding the crucial enzymatic machineries involved in the biosynthesis of MAs in M.tb. However, gaps still remain in the exact role of the phosphorylation and dephosphorylation of regulatory mechanisms within these systems. To date, a total of 11 serine-threonine protein kinases (STPKs) are found in M.tb. Most enzymes implicated in the MAs synthesis were found to be phosphorylated in vitro and/or in vivo. For instance, phosphorylation of KasA, KasB, mtFabH, InhA, MabA, and FadD32 downregulated their enzymatic activity, while phosphorylation of VirS increased its enzymatic activity. These observations suggest that the kinases and phosphatases system could play a role in M.tb adaptive responses and survival mechanisms in the human host. As the mycobacterial STPKs do not share a high sequence homology to the human's, there have been some early drug discovery efforts towards developing potent and selective inhibitors. OBJECTIVE Recent updates to the kinases and phosphatases involved in the regulation of MAs biosynthesis will be presented in this mini-review, including their known small molecule inhibitors. CONCLUSION Mycobacterial kinases and phosphatases involved in the MAs regulation may serve as a useful avenue for antitubercular therapy.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Chau C Beh
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Neil R Foster
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
45
|
Labbe BD, Hall CL, Kellogg SL, Chen Y, Koehn O, Pickrum AM, Mirza SP, Kristich CJ. Reciprocal Regulation of PASTA Kinase Signaling by Differential Modification. J Bacteriol 2019; 201:e00016-19. [PMID: 30858297 PMCID: PMC6482931 DOI: 10.1128/jb.00016-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Transmembrane Ser/Thr kinases containing extracellular PASTA (penicillin-binding protein [PBP] and Ser/Thr-associated) domains are ubiquitous among Actinobacteria and Firmicutes species. Such PASTA kinases regulate critical bacterial processes, including antibiotic resistance, cell division, cell envelope homeostasis, and virulence, and are sometimes essential for viability. Previous studies of purified PASTA kinase fragments revealed they are capable of autophosphorylation in vitro, typically at multiple sites on the kinase domain. Autophosphorylation of a specific structural element of the kinase known as the activation loop is thought to enhance kinase activity in response to stimuli. However, the role of kinase phosphorylation at other sites is largely unknown. Moreover, the mechanisms by which PASTA kinases are deactivated once their stimulus has diminished are poorly understood. Enterococcus faecalis is a Gram-positive intestinal bacterium and a major antibiotic-resistant opportunistic pathogen. In E. faecalis, the PASTA kinase IreK drives intrinsic resistance to cell wall-active antimicrobials, and such antimicrobials trigger enhanced phosphorylation of IreK in vivo Here we identify multiple sites of phosphorylation on IreK and evaluate their function in vivo and in vitro While phosphorylation of the IreK activation loop is required for kinase activity, we found that phosphorylation at a site distinct from the activation loop reciprocally modulates IreK activity in vivo, leading to diminished activity (and diminished antimicrobial resistance). Moreover, this site is important for deactivation of IreK in vivo upon removal of an activating stimulus. Our results are consistent with a model in which phosphorylation of IreK at distinct sites reciprocally regulates IreK activity in vivo to promote adaptation to cell wall stresses.IMPORTANCE Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes species and regulate critical processes, including antibiotic resistance, cell division, and cell envelope homeostasis. Previous studies of PASTA kinase fragments revealed autophosphorylation at multiple sites. However, the functional role of autophosphorylation and the relative impacts of phosphorylation at distinct sites are poorly understood. The PASTA kinase of Enterococcus faecalis, IreK, regulates intrinsic resistance to antimicrobials. Here we identify multiple sites of phosphorylation on IreK and show that modification of IreK at distinct sites reciprocally regulates IreK activity and antimicrobial resistance in vivo Thus, these results provide new insights into the mechanisms by which PASTA kinases can regulate critical physiological processes in a wide variety of bacterial species.
Collapse
Affiliation(s)
- Benjamin D Labbe
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Cherisse L Hall
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Stephanie L Kellogg
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Yao Chen
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Olivia Koehn
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Adam M Pickrum
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Shama P Mirza
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
46
|
Kaur P, Rausch M, Malakar B, Watson U, Damle NP, Chawla Y, Srinivasan S, Sharma K, Schneider T, Jhingan GD, Saini D, Mohanty D, Grein F, Nandicoori VK. LipidII interaction with specific residues of Mycobacterium tuberculosis PknB extracytoplasmic domain governs its optimal activation. Nat Commun 2019; 10:1231. [PMID: 30874556 PMCID: PMC6428115 DOI: 10.1038/s41467-019-09223-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/28/2019] [Indexed: 02/08/2023] Open
Abstract
The Mycobacterium tuberculosis kinase PknB is essential for growth and survival of the pathogen in vitro and in vivo. Here we report the results of our efforts to elucidate the mechanism of regulation of PknB activity. The specific residues in the PknB extracytoplasmic domain that are essential for ligand interaction and survival of the bacterium are identified. The extracytoplasmic domain interacts with mDAP-containing LipidII, and this is abolished upon mutation of the ligand-interacting residues. Abrogation of ligand-binding or sequestration of the ligand leads to aberrant localization of PknB. Contrary to the prevailing hypothesis, abrogation of ligand-binding is linked to activation loop hyperphosphorylation, and indiscriminate hyperphosphorylation of PknB substrates as well as other proteins, ultimately causing loss of homeostasis and cell death. We propose that the ligand-kinase interaction directs the appropriate localization of the kinase, coupled to stringently controlled activation of PknB, and consequently the downstream processes thereof. The Mycobacterium tuberculosis kinase PknB regulates essential cell functions via interactions with muropeptides. Here the authors identify interaction sites in the extracytoplasmic PASTA domain and show that abrogation of ligand binding leads to a hyper-activated kinase, causing loss of homeostasis and cell death.
Collapse
Affiliation(s)
- Prabhjot Kaur
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Marvin Rausch
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, 53105, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, 53105, Germany
| | - Basanti Malakar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uchenna Watson
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, 560012, India
| | - Nikhil P Damle
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,BIOSS, Center for Biological Signaling Studies, University of Freiburg, Freiburg, 79104, Germany
| | - Yogesh Chawla
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Microbiology and Immunology, Weill Cornell Medical College, New York, 10065, NY, USA
| | - Sandhya Srinivasan
- Vproteomics, Valerian Chem Private Limited, Green Park Main, New Delhi, 110016, India
| | - Kanika Sharma
- Vproteomics, Valerian Chem Private Limited, Green Park Main, New Delhi, 110016, India
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, 53105, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, 53105, Germany
| | - Gagan Deep Jhingan
- Vproteomics, Valerian Chem Private Limited, Green Park Main, New Delhi, 110016, India
| | - Deepak Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, 560012, India
| | - Debasisa Mohanty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, 53105, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, 53105, Germany
| | | |
Collapse
|
47
|
Wlodarchak N, Teachout N, Beczkiewicz J, Procknow R, Schaenzer AJ, Satyshur K, Pavelka M, Zuercher W, Drewry D, Sauer JD, Striker R. In Silico Screen and Structural Analysis Identifies Bacterial Kinase Inhibitors which Act with β-Lactams To Inhibit Mycobacterial Growth. Mol Pharm 2018; 15:5410-5426. [PMID: 30285456 PMCID: PMC6648700 DOI: 10.1021/acs.molpharmaceut.8b00905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
New tools and concepts are needed to combat antimicrobial resistance. Actinomycetes and firmicutes share several eukaryotic-like Ser/Thr kinases (eSTK) that offer antibiotic development opportunities, including PknB, an essential mycobacterial eSTK. Despite successful development of potent biochemical PknB inhibitors by many groups, clinically useful microbiologic activity has been elusive. Additionally, PknB kinetics are not fully described, nor are structures with specific inhibitors available to inform inhibitor design. We used computational modeling with available structural information to identify human kinase inhibitors predicted to bind PknB, and we selected hits based on drug-like characteristics intended to increase the likelihood of cell entry. The computational model suggested a family of inhibitors, the imidazopyridine aminofurazans (IPAs), bind PknB with high affinity. We performed an in-depth characterization of PknB and found that these inhibitors biochemically inhibit PknB, with potency roughly following the predicted models. A novel X-ray structure confirmed that the inhibitors bound as predicted and made favorable protein contacts with the target. These inhibitors also have antimicrobial activity toward mycobacteria and nocardia. We demonstrated that the inhibitors are uniquely potentiated by β-lactams but not antibiotics traditionally used to treat mycobacteria, consistent with PknB's role in sensing cell wall stress. This is the first demonstration in the phylum actinobacteria that some β-lactam antibiotics could be more effective if paired with a PknB inhibitor. Collectively, our data show that in silico modeling can be used as a tool to discover promising drug leads, and the inhibitors we discovered can act with clinically relevant antibiotics to restore their efficacy against bacteria with limited treatment options.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Nathan Teachout
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Jeffrey Beczkiewicz
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Rebecca Procknow
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Adam J. Schaenzer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 4203 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Kenneth Satyshur
- Small Molecule Screening Facility, Carbone Cancer Center, University of Wisconsin-Madison, 1111Highland Ave., Madison, WI 53705
| | - Martin Pavelka
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14620
| | - William Zuercher
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, SGC Center for Chemical Biology, 120 Mason Farm Rd., Chapel Hill, NC 27599
| | - David Drewry
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, SGC Center for Chemical Biology, 120 Mason Farm Rd., Chapel Hill, NC 27599
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 4203 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Rob Striker
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706,William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terr., Madison, WI 53705,To whom correspondence should be addressed Rob Striker, Department of Medicine, University of Wisconsin-Madison, 3301 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706, 608-263-2994,
| |
Collapse
|
48
|
Schaenzer AJ, Wlodarchak N, Drewry DH, Zuercher WJ, Rose WE, Ferrer CA, Sauer JD, Striker R. GW779439X and Its Pyrazolopyridazine Derivatives Inhibit the Serine/Threonine Kinase Stk1 and Act As Antibiotic Adjuvants against β-Lactam-Resistant Staphylococcus aureus. ACS Infect Dis 2018; 4:1508-1518. [PMID: 30059625 PMCID: PMC6779124 DOI: 10.1021/acsinfecdis.8b00136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As antibiotic resistance rises, there is a need for strategies such as antibiotic adjuvants to conserve already-established antibiotics. A family of bacterial kinases known as the penicillin-binding-protein and serine/threonine kinase-associated (PASTA) kinases has attracted attention as targets for antibiotic adjuvants for β-lactams. Here, we report that the pyrazolopyridazine GW779439X sensitizes methicillin-resistant Staphylococcus aureus (MRSA) to various β-lactams through inhibition of the PASTA kinase Stk1. GW779439X potentiates β-lactam activity against multiple MRSA and MSSA isolates, including the sensitization of a ceftaroline-resistant isolate to ceftaroline. In silico modeling was used to guide the synthesis of GW779439X derivatives. The presence and orientation of GW779439X's methylpiperazine moiety was crucial for robust biochemical and microbiologic activity. Taken together, our data provide a proof of concept for developing the pyrazolopyridazines as selective Stk1 inhibitors which act across S. aureus isolates.
Collapse
Affiliation(s)
- Adam J. Schaenzer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
| | - Nathan Wlodarchak
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
| | - David H. Drewry
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - William J. Zuercher
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Warren E. Rose
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Carla A. Ferrer
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Rob Striker
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
- Department of Medicine, W. S. Middleton Memorial Veteran’s Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, United States
| |
Collapse
|
49
|
Chaurasiya SK. Tuberculosis: Smart manipulation of a lethal host. Microbiol Immunol 2018; 62:361-379. [PMID: 29687912 DOI: 10.1111/1348-0421.12593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a global threat to human health. Development of drug resistance and co-infection with HIV has increased the morbidity and mortality caused by TB. Macrophages serve as primary defense against microbial infections, including TB. Upon recognition and uptake of mycobacteria, macrophages initiate a series of events designed to lead to generation of effective immune responses and clearance of infection. However, pathogenic mycobacteria utilize multiple mechanisms for manipulating macrophage responses to protect itself from being killed and to survive within these cells that are designed to kill them. The outcomes of mycobacterial infection are determined by several host- and pathogen-related factors. Significant advancements in understanding mycobacterial pathogenesis have been made in recent years. In this review, some of the important factors/mechanisms regulating mycobacterial survival inside macrophages are discussed.
Collapse
Affiliation(s)
- Shivendra K Chaurasiya
- Host-pathogen Interaction and Signal Transduction Laboratory, Department of Microbiology, School of Biological Sciences, Dr. Hari Singh Gour University, Sagar, MP-470003, India
| |
Collapse
|
50
|
Turapov O, Forti F, Kadhim B, Ghisotti D, Sassine J, Straatman-Iwanowska A, Bottrill AR, Moynihan PJ, Wallis R, Barthe P, Cohen-Gonsaud M, Ajuh P, Vollmer W, Mukamolova GV. Two Faces of CwlM, an Essential PknB Substrate, in Mycobacterium tuberculosis. Cell Rep 2018; 25:57-67.e5. [PMID: 30282038 PMCID: PMC6180346 DOI: 10.1016/j.celrep.2018.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/11/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis claims >1 million lives annually, and its causative agent Mycobacterium tuberculosis is a highly successful pathogen. Protein kinase B (PknB) is reported to be critical for mycobacterial growth. Here, we demonstrate that PknB-depleted M. tuberculosis can replicate normally and can synthesize peptidoglycan in an osmoprotective medium. Comparative phosphoproteomics of PknB-producing and PknB-depleted mycobacteria identify CwlM, an essential regulator of peptidoglycan synthesis, as a major PknB substrate. Our complementation studies of a cwlM mutant of M. tuberculosis support CwlM phosphorylation as a likely molecular basis for PknB being essential for mycobacterial growth. We demonstrate that growing mycobacteria produce two forms of CwlM: a non-phosphorylated membrane-associated form and a PknB-phosphorylated cytoplasmic form. Furthermore, we show that the partner proteins for the phosphorylated and non-phosphorylated forms of CwlM are FhaA, a fork head-associated domain protein, and MurJ, a proposed lipid II flippase, respectively. From our results, we propose a model in which CwlM potentially regulates both the biosynthesis of peptidoglycan precursors and their transport across the cytoplasmic membrane.
Collapse
Affiliation(s)
- Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Francesca Forti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Baleegh Kadhim
- Leicester Tuberculosis Research Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK; Biology Department, College of Science, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
| | - Daniela Ghisotti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Jad Sassine
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Anna Straatman-Iwanowska
- Electron Microscopy Facility, Core Biotechnology Services, University of Leicester, Leicester LE1 7RH, UK
| | - Andrew R Bottrill
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester LE1 7RH, UK
| | - Patrick J Moynihan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Russell Wallis
- Leicester Tuberculosis Research Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK; The Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, UK
| | - Philippe Barthe
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, Montpellier 34090, France
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, Montpellier 34090, France
| | - Paul Ajuh
- Gemini Biosciences, Liverpool Science Park, Liverpool L3 5TF, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Galina V Mukamolova
- Leicester Tuberculosis Research Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK.
| |
Collapse
|