1
|
Sacchini S. Neurodegenerative Diseases: What Can Be Learned from Toothed Whales? Neurosci Bull 2025; 41:326-338. [PMID: 39485652 PMCID: PMC11794736 DOI: 10.1007/s12264-024-01310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity, physiology, and architecture of neural cells. Many studies have demonstrated neurodegeneration in different animals. In the case of Alzheimer's disease (AD), spontaneous animal models should display two neurohistopathological hallmarks: the deposition of β-amyloid and the arrangement of neurofibrillary tangles. However, no natural animal models that fulfill these conditions have been reported and most research into AD has been performed using transgenic rodents. Recent studies have also demonstrated that toothed whales - homeothermic, long-lived, top predatory marine mammals - show neuropathological signs of AD-like pathology. The neuropathological hallmarks in these cetaceans could help to better understand their endangered health as well as neurodegenerative diseases in humans. This systematic review analyzes all the literature published to date on this trending topic and the proposed causes for neurodegeneration in these iconic marine mammals are approached in the context of One Health/Planetary Health and translational medicine.
Collapse
Affiliation(s)
- Simona Sacchini
- Department of Morphology, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de San Cristóbal, c/ Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
2
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Orekhova K, Testori C, Giorda F, Grattarola C, Mattioda V, Di Guardo G, Corona C, Castagnaro M, Sierra E, Casalone C, Favole A, Centelleghe C, Mazzariol S. Amyloid-β and phosphorylated tau screening in bottlenose dolphin (Tursiops truncatus) and striped dolphin (Stenella coeruleoalba) brains from Italy reveals distinct immunohistochemical patterns correlating with age and co-morbidity. PLoS One 2024; 19:e0314085. [PMID: 39591474 PMCID: PMC11594424 DOI: 10.1371/journal.pone.0314085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cetacean brains are uniquely adapted to diving, but can be affected by diseases and exposure to toxins, triggering neurodegenerative processes that may cause stranding. Some species exhibit a significant post-reproductive lifespan (PRLS), increasing the likelihood of observing cumulative and age-related pathology. Immunohistochemistry against amyloid-β and hyperphosphorylated tau proteins is increasingly implemented to assess Alzheimer's Disease-like neuropathology in cetaceans, but comparisons between geographically distinct populations, animals of different age groups, sex, and with concomitant pathologies are lacking. We tested 43 cetaceans' (30 Tursiops truncatus; 13 Stenella coeruleoalba) parietal cortex, our most consistently archived cerebral tissue, in immunohistochemical analyses with amyloid-β oligomer 42 (Aβ-42) and hyperphosphorylated tau (pTau AT180 and AT8) antibodies. Aβ-42 antibody cross-reacted with plaques in three aged bottlenose and two aged striped dolphins, but was more often detected within neurons, glia, and blood vessels of all the dolphins. Histoscore comparisons between dolphins of different ages, sexes, and pathologies revealed significant correlations between older age, viral infections, and plaque presence. Protozoan cysts cross-reacted with Aβ-42 antibody. pTau signal was observed as single foci in neurons and neuropil in two young and two aged bottlenose dolphins. To our knowledge, this study is the first of its kind for the Mediterranean region and will help establish baseline understanding of physiological and pathological expression of proteins associated with human neurodegenerative disease in cetacean brains.
Collapse
Affiliation(s)
- Ksenia Orekhova
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (Padova), Italy
| | - Camilla Testori
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Carla Grattarola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Virginia Mattioda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, University of Teramo, Località Piano d’Accio, Teramo, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (Padova), Italy
| | - Eva Sierra
- Institute of Animal Health, University of Las Palmas de Gran Canaria, Arucas, Las Palmas, Spain
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Alessandra Favole
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (Padova), Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (Padova), Italy
| |
Collapse
|
4
|
Kumar M, Swanson N, Ray S, Buch S, Saraswathi V, Sil S. Astrocytes in Amyloid Generation and Alcohol Metabolism: Implications of Alcohol Use in Neurological Disorder(s). Cells 2024; 13:1173. [PMID: 39056755 PMCID: PMC11274690 DOI: 10.3390/cells13141173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
As per the National Survey on Drug Use and Health, 10.5% of Americans aged 12 years and older are suffering from alcohol use disorder, with a wide range of neurological disorders. Alcohol-mediated neurological disorders can be linked to Alzheimer's-like pathology, which has not been well studied. We hypothesize that alcohol exposure can induce astrocytic amyloidosis, which can be corroborated by the neurological disorders observed in alcohol use disorder. In this study, we demonstrated that the exposure of astrocytes to ethanol resulted in an increase in Alzheimer's disease markers-the amyloid precursor protein, Aβ1-42, and the β-site-cleaving enzyme; an oxidative stress marker-4HNE; proinflammatory cytokines-TNF-α, IL1β, and IL6; lncRNA BACE1-AS; and alcohol-metabolizing enzymes-alcohol dehydrogenase, aldehyde dehydrogenase-2, and cytochrome P450 2E1. A gene-silencing approach confirmed the regulatory role of lncRNA BACE1-AS in amyloid generation, alcohol metabolism, and neuroinflammation. This report is the first to suggest the involvement of lncRNA BACE1-AS in alcohol-induced astrocytic amyloid generation and alcohol metabolism. These findings will aid in developing therapies targeting astrocyte-mediated neurological disorders and cognitive deficits in alcohol users.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalie Swanson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Viswanathan Saraswathi
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Sokol DK, Lahiri DK. Neurodevelopmental disorders and microcephaly: how apoptosis, the cell cycle, tau and amyloid-β precursor protein APPly. Front Mol Neurosci 2023; 16:1201723. [PMID: 37808474 PMCID: PMC10556256 DOI: 10.3389/fnmol.2023.1201723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023] Open
Abstract
Recent studies promote new interest in the intersectionality between autism spectrum disorder (ASD) and Alzheimer's Disease. We have reported high levels of Amyloid-β Precursor Protein (APP) and secreted APP-alpha (sAPPa ) and low levels of amyloid-beta (Aβ) peptides 1-40 and 1-42 (Aβ40, Aβ42) in plasma and brain tissue from children with ASD. A higher incidence of microcephaly (head circumference less than the 3rd percentile) associates with ASD compared to head size in individuals with typical development. The role of Aβ peptides as contributors to acquired microcephaly in ASD is proposed. Aβ may lead to microcephaly via disruption of neurogenesis, elongation of the G1/S cell cycle, and arrested cell cycle promoting apoptosis. As the APP gene exists on Chromosome 21, excess Aβ peptides occur in Trisomy 21-T21 (Down's Syndrome). Microcephaly and some forms of ASD associate with T21, and therefore potential mechanisms underlying these associations will be examined in this review. Aβ peptides' role in other neurodevelopmental disorders that feature ASD and acquired microcephaly are reviewed, including dup 15q11.2-q13, Angelman and Rett syndrome.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Section of Pediatrics, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Frackowiak J, Mazur-Kolecka B. Intraneuronal accumulation of amyloid-β peptides as the pathomechanism linking autism and its co-morbidities: epilepsy and self-injurious behavior - the hypothesis. Front Mol Neurosci 2023; 16:1160967. [PMID: 37305553 PMCID: PMC10250631 DOI: 10.3389/fnmol.2023.1160967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with enhanced processing of amyloid-β precursor protein (APP) by secretase-α, higher blood levels of sAPPα and intraneuronal accumulation of N-terminally truncated Aβ peptides in the brain cortex - mainly in the GABAergic neurons expressing parvalbumin - and subcortical structures. Brain Aβ accumulation has been also described in epilepsy-the frequent ASD co-morbidity. Furthermore, Aβ peptides have been shown to induce electroconvulsive episodes. Enhanced production and altered processing of APP, as well as accumulation of Aβ in the brain are also frequent consequences of traumatic brain injuries which result from self-injurious behaviors, another ASD co-morbidity. We discuss distinct consequences of accumulation of Aβ in the neurons and synapses depending on the Aβ species, their posttranslational modifications, concentration, level of aggregation and oligomerization, as well as brain structures, cell types and subcellular structures where it occurs. The biological effects of Aβ species which are discussed in the context of the pathomechanisms of ASD, epilepsy, and self-injurious behavior include modulation of transcription-both activation and repression; induction of oxidative stress; activation and alteration of membrane receptors' signaling; formation of calcium channels causing hyper-activation of neurons; reduction of GABAergic signaling - all of which lead to disruption of functions of synapses and neuronal networks. We conclude that ASD, epilepsy, and self-injurious behaviors all contribute to the enhanced production and accumulation of Aβ peptides which in turn cause and enhance dysfunctions of the neuronal networks that manifest as autism clinical symptoms, epilepsy, and self-injurious behaviors.
Collapse
|
7
|
Moreira DA, Santos SD, Leiro V, Pêgo AP. Dendrimers and Derivatives as Multifunctional Nanotherapeutics for Alzheimer's Disease. Pharmaceutics 2023; 15:pharmaceutics15041054. [PMID: 37111540 PMCID: PMC10140951 DOI: 10.3390/pharmaceutics15041054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. It affects more than 30 million people worldwide and costs over US$ 1.3 trillion annually. AD is characterized by the brain accumulation of amyloid β peptide in fibrillar structures and the accumulation of hyperphosphorylated tau aggregates in neurons, both leading to toxicity and neuronal death. At present, there are only seven drugs approved for the treatment of AD, of which only two can slow down cognitive decline. Moreover, their use is only recommended for the early stages of AD, meaning that the major portion of AD patients still have no disease-modifying treatment options. Therefore, there is an urgent need to develop efficient therapies for AD. In this context, nanobiomaterials, and dendrimers in particular, offer the possibility of developing multifunctional and multitargeted therapies. Due to their intrinsic characteristics, dendrimers are first-in-class macromolecules for drug delivery. They have a globular, well-defined, and hyperbranched structure, controllable nanosize and multivalency, which allows them to act as efficient and versatile nanocarriers of different therapeutic molecules. In addition, different types of dendrimers display antioxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-prion, and most importantly for the AD field, anti-amyloidogenic properties. Therefore, dendrimers can not only be excellent nanocarriers, but also be used as drugs per se. Here, the outstanding properties of dendrimers and derivatives that make them excellent AD nanotherapeutics are reviewed and critically discussed. The biological properties of several dendritic structures (dendrimers, derivatives, and dendrimer-like polymers) that enable them to be used as drugs for AD treatment will be pointed out and the chemical and structural characteristics behind those properties will be analysed. The reported use of these nanomaterials as nanocarriers in AD preclinical research is also presented. Finally, future perspectives and challenges that need to be overcome to make their use in the clinic a reality are discussed.
Collapse
Affiliation(s)
- Débora A Moreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia D Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Fertan E, Gendron WH, Wong AA, Hanson GM, Brown RE, Weaver ICG. Noncanonical regulation of imprinted gene Igf2 by amyloid-beta 1-42 in Alzheimer's disease. Sci Rep 2023; 13:2043. [PMID: 36739453 PMCID: PMC9899226 DOI: 10.1038/s41598-023-29248-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Reduced insulin-like growth factor 2 (IGF2) levels in Alzheimer's disease (AD) may be the mechanism relating age-related metabolic disorders to dementia. Since Igf2 is an imprinted gene, we examined age and sex differences in the relationship between amyloid-beta 1-42 (Aβ42) accumulation and epigenetic regulation of the Igf2/H19 gene cluster in cerebrum, liver, and plasma of young and old male and female 5xFAD mice, in frontal cortex of male and female AD and non-AD patients, and in HEK293 cell cultures. We show IGF2 levels, Igf2 expression, histone acetylation, and H19 ICR methylation are lower in females than males. However, elevated Aβ42 levels are associated with Aβ42 binding to Igf2 DMR2, increased DNA and histone methylation, and a reduction in Igf2 expression and IGF2 levels in 5xFAD mice and AD patients, independent of H19 ICR methylation. Cell culture results confirmed the binding of Aβ42 to Igf2 DMR2 increased DNA and histone methylation, and reduced Igf2 expression. These results indicate an age- and sex-related causal relationship among Aβ42 levels, epigenomic state, and Igf2 expression in AD and provide a potential mechanism for Igf2 regulation in normal and pathological conditions, suggesting IGF2 levels may be a useful diagnostic biomarker for Aβ42 targeted AD therapies.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - William H Gendron
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Gabrielle M Hanson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
9
|
Saluri M, Leppert A, Gese GV, Sahin C, Lama D, Kaldmäe M, Chen G, Elofsson A, Allison TM, Arsenian-Henriksson M, Johansson J, Lane DP, Hällberg BM, Landreh M. A "grappling hook" interaction connects self-assembly and chaperone activity of Nucleophosmin 1. PNAS NEXUS 2023; 2:pgac303. [PMID: 36743470 PMCID: PMC9896144 DOI: 10.1093/pnasnexus/pgac303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
How the self-assembly of partially disordered proteins generates functional compartments in the cytoplasm and particularly in the nucleus is poorly understood. Nucleophosmin 1 (NPM1) is an abundant nucleolar protein that forms large oligomers and undergoes liquid-liquid phase separation by binding RNA or ribosomal proteins. It provides the scaffold for ribosome assembly but also prevents protein aggregation as part of the cellular stress response. Here, we use aggregation assays and native mass spectrometry (MS) to examine the relationship between the self-assembly and chaperone activity of NPM1. We find that oligomerization of full-length NPM1 modulates its ability to retard amyloid formation in vitro. Machine learning-based structure prediction and cryo-electron microscopy reveal fuzzy interactions between the acidic disordered region and the C-terminal nucleotide-binding domain, which cross-link NPM1 pentamers into partially disordered oligomers. The addition of basic peptides results in a tighter association within the oligomers, reducing their capacity to prevent amyloid formation. Together, our findings show that NPM1 uses a "grappling hook" mechanism to form a network-like structure that traps aggregation-prone proteins. Nucleolar proteins and RNAs simultaneously modulate the association strength and chaperone activity, suggesting a mechanism by which nucleolar composition regulates the chaperone activity of NPM1.
Collapse
Affiliation(s)
- Mihkel Saluri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | | | | | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden,Structural Biology and NMR laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Margit Kaldmäe
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge,, Sweden
| | - Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, 114 19 Stockholm, Sweden
| | - Timothy M Allison
- Biomolecular Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Upper Riccarton, Christchurch 8041, New Zealand
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge,, Sweden
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | | | | |
Collapse
|
10
|
Hao Y, Xie B, Fu X, Xu R, Yang Y. New Insights into lncRNAs in Aβ Cascade Hypothesis of Alzheimer's Disease. Biomolecules 2022; 12:biom12121802. [PMID: 36551230 PMCID: PMC9775548 DOI: 10.3390/biom12121802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, but its pathogenesis is not fully understood, and effective drugs to treat or reverse the progression of the disease are lacking. Long noncoding RNAs (lncRNAs) are abnormally expressed and deregulated in AD and are closely related to the occurrence and development of AD. In addition, the high tissue specificity and spatiotemporal specificity make lncRNAs particularly attractive as diagnostic biomarkers and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in AD is essential for developing new treatment strategies. In this review, we discuss the unique regulatory functions of lncRNAs in AD, ranging from Aβ production to clearance, with a focus on their interaction with critical molecules. Additionally, we highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets in AD and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Yitong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoshu Fu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Rong Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
11
|
Gezen-Ak D, Yurttaş Z, Çamoǧlu T, Dursun E. Could Amyloid-β 1-42 or α-Synuclein Interact Directly with Mitochondrial DNA? A Hypothesis. ACS Chem Neurosci 2022; 13:2803-2812. [PMID: 36125124 PMCID: PMC9542719 DOI: 10.1021/acschemneuro.2c00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The amyloid β (Aβ) and the α-synuclein (α-syn) are shown to be translocated into mitochondria. Even though their roles are widely investigated in pathological conditions, information on the presence and functions of Aβ and α-syn in mitochondria in endogenous levels is somewhat limited. We hypothesized that endogenous Aβ fragments or α-syn could interact with mitochondrial DNA (mtDNA) directly or influence RNAs or transcription factors in mitochondria and change the mtDNA transcription profile. In this review, we summarized clues of these possible interactions.
Collapse
Affiliation(s)
| | | | | | - Erdinç Dursun
- E.D.: email, ; phone, +90 212 414 30 00/68025, +90 533 339
98 82
| |
Collapse
|
12
|
Chanda K, Jana NR, Mukhopadhyay D. Long non-coding RNA MALAT1 protects against Aβ 1-42 induced toxicity by regulating the expression of receptor tyrosine kinase EPHA2 via quenching miR-200a/26a/26b in Alzheimer's disease. Life Sci 2022; 302:120652. [PMID: 35598655 DOI: 10.1016/j.lfs.2022.120652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Altered expressions of Receptor Tyrosine Kinases (RTK) and non-coding (nc) RNAs are known to regulate the pathophysiology of Alzheimer's disease (AD). However, specific understanding of the roles played, especially the mechanistic and functional roles, by long ncRNAs in AD is still elusive. Using mouse tissue qPCR assays we observe changes in the expression levels of 41 lncRNAs in AD mice of which only 7 genes happen to have both human orthologs and AD associations. Post validation of these 7 human lncRNA genes, MEG3 and MALAT1 shows consistent and significant decrease in AD cell, animal models and human AD brain tissues, but MALAT1 showed a more pronounced decrease. Using bioinformatics, qRT-PCR, RNA FISH and RIP techniques, we could establish MALAT1 as an interactor and regulator of miRs-200a, -26a and -26b, all of which are naturally elevated in AD. We could further show that these miRNAs target the RTK EPHA2 and several of its downstream effectors. Expectedly EPHA2 over expression protects against Aβ1-42 induced cytotoxicity. Transiently knocking down MALAT1 validates these unique regulatory facets of AD at the miRNA and protein levels. Although the idea of sponging of miRNAs by lncRNAs in other pathologies is gradually gaining credibility, this novel MALAT1- miR-200a/26a/26b - EPHA2 regulation mechanism in the context of AD pathophysiology promises to become a significant strategy in controlling the disease.
Collapse
Affiliation(s)
- Kaushik Chanda
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Kolkata 700 064, India; Department of Neuroscience, UF Scripps Biomedical Research, 120 Scripps Way, Jupiter, FL 33458, United States of America
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122 050, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Kolkata 700 064, India.
| |
Collapse
|
13
|
Rauskolb S, Andreska T, Fries S, von Collenberg CR, Blum R, Monoranu CM, Villmann C, Sendtner M. Insulin-like growth factor 5 associates with human Aß plaques and promotes cognitive impairment. Acta Neuropathol Commun 2022; 10:68. [PMID: 35513854 PMCID: PMC9074221 DOI: 10.1186/s40478-022-01352-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Risk factors such as dysregulation of Insulin-like growth factor (IGF) signaling have been linked to Alzheimer's disease. Here we show that Insulin-like Growth Factor Binding Protein 5 (Igfbp5), an inhibitory binding protein for insulin-like growth factor 1 (Igf-1) accumulates in hippocampal pyramidal neurons and in amyloid plaques in brains of Alzheimer patients. We investigated the pathogenic relevance of this finding with transgenic mice overexpressing Igfbp5 in pyramidal neurons of the brain. Neuronal overexpression of Igfbp5 prevents the training-induced increase of hippocampal and cortical Bdnf expression and reduces the effects of exercise on memory retention, but not on learning acquisition. Hence, elevated IGFBP5 expression could be responsible for some of the early cognitive deficits that occur during the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Stefanie Rauskolb
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Sophie Fries
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Cora Ruedt von Collenberg
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany.
| |
Collapse
|
14
|
Tan CJ, Basak R, Yadav I, van Kan JA, Arluison V, van der Maarel JRC. Mobility of Bacterial Protein Hfq on dsDNA: Role of C-Terminus-Mediated Transient Binding. J Phys Chem B 2022; 126:1477-1482. [PMID: 35166115 DOI: 10.1021/acs.jpcb.1c10234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mobility of protein is fundamental in the machinery of life. Here, we have investigated the effect of DNA binding in conjunction with DNA segmental fluctuation (internal motion) of the bacterial Hfq master regulator devoid of its amyloid C-terminus domain. Hfq is one of the most abundant nucleoid associated proteins that shape the bacterial chromosome and is involved in several aspects of nucleic acid metabolism. Fluorescence microscopy has been used to track a C-terminus domain lacking mutant form of Hfq on double-stranded DNA, which is stretched by confinement to a rectangular nanofluidic channel. The mobility of the mutant is strongly accelerated with respect to the wild-type variant. Furthermore, it shows a reverse dependence on the internal motion of DNA, in that slower motion results in slower protein diffusion. The results demonstrate the subtle role of DNA internal motion in controlling the mobility of a nucleoid associated protein, and, in particular, the importance of transient binding and moving DNA strands out of the way.
Collapse
Affiliation(s)
- Chuan Jie Tan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Rajib Basak
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Indresh Yadav
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Véronique Arluison
- Université de Paris, UFR SDV, Paris 75006, France.,Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette 91191, France
| | | |
Collapse
|
15
|
Maeshiba M, Kajiya H, Tsutsumi T, Migita K, Goto-T K, Kono Y, Tsuzuki T, Ohno J. Occlusal disharmony transiently decrease cognition via cognitive suppressor molecules and partially restores cognitive ability via clearance molecules. Biochem Biophys Res Commun 2022; 594:74-80. [DOI: 10.1016/j.bbrc.2022.01.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
|
16
|
Busi F, Turbant F, Waeytens J, El Hamoui O, Wien F, Arluison V. Evaluation of Amyloid Inhibitor Efficiency to Block Bacterial Survival. Methods Mol Biol 2022; 2538:145-163. [PMID: 35951299 DOI: 10.1007/978-1-0716-2529-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amyloid inhibitors, such as the green tea compound epigallocatechin gallate EGCG, apomorphine or curlicide, have antibacterial properties. Conversely, antibiotics such as tetracycline derivatives or rifampicin also affect eukaryotic amyloids formation and may be used to treat neurodegenerative diseases. This opens the possibility for existing drugs to be repurposed in view of new therapy, targeting amyloid-like proteins from eukaryotes to prokaryotes and conversely. Here we present how to evaluate the effect of these amyloid-forming inhibitors on bacterial amyloid self-assemblies in vitro and on bacterial survival. The different approaches possible are presented.
Collapse
Affiliation(s)
- Florent Busi
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France.
- Université Paris Cité, Paris, France.
| | - Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, Université Paris Saclay, CEA Saclay, Gif-sur-Yvette, France
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Omar El Hamoui
- DISCO Beamline, Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, Gif-sur-Yvette, France
| | - Frank Wien
- DISCO Beamline, Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, Gif-sur-Yvette, France
| | - Véronique Arluison
- Université Paris Cité, Paris, France
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, Université Paris Saclay, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Xu J, Li D, Lu Y, Zheng TY. Aβ monomers protect lens epithelial cells against oxidative stress by upregulating CDC25B. Free Radic Biol Med 2021; 175:161-170. [PMID: 34478836 DOI: 10.1016/j.freeradbiomed.2021.08.242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022]
Abstract
Our previous studies showed high β-amyloid (Aβ) expression levels in the nuclei of the lens epithelial cells (LECs) of healthy subjects and revealed that Aβ monomers could protect LECs from oxidative damage. Here, we further explored the mechanism by which Aβ monomers act as transcription factors to regulate the oxidative stress of LECs through high-throughput studies. First, we compared the Aβ-binding sites in the lens epithelia (LE) of age-related cataract patients with those in the LE of healthy donors via chromatin immunoprecipitation-sequencing (ChIP-seq), and we identified comparable numbers (1648 and 1445, respectively) of Aβ peaks. Then, the KEGG tool was used for gene function enrichment analysis of these genes, which were more highly enriched in healthy LE. Combining the literature review with these KEGG analysis results, in the current study, we chose four target genes related to oxidative stress, namely, CDC25B, SOS2, CTNNA1 and Cox6a1. Then, ChIP-PCR assays, dual-luciferase reporter assays, real-time PCR and Western blotting were performed to validate the regulatory effects of Aβ on these targets. Our data suggested that Aβ monomers could upregulate the mRNA and protein expression levels of CDC25B in LECs. We also confirmed that Aβ monomers could activate the Akt/Nrf2 pathway in a CDC25B-dependent manner by knockdown experiments in cultured LECs. Furthermore, we performed functional verification of the CDC25B-mediated protective effects of Aβ monomers against oxidative stress. We observed that Aβ monomers significantly improved the antioxidant capacity (the GSH level, SOD activity and total antioxidant capacity) and decreased the oxidative stress (the ROS and MDA levels) of LECs, while CDC25B knockdown decreased the antioxidant effects of Aβ, disrupting redox homeostasis. Therefore, we propose that Aβ monomers activate the Akt/Nrf2 pathway by upregulating CDC25B expression, increase various downstream antioxidant enzyme levels, maintain peroxidation-antioxidant homeostasis in LECs, and prevent the cell damage caused by oxidative stress.
Collapse
Affiliation(s)
- Jie Xu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China
| | - Dan Li
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China
| | - Yi Lu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China.
| | - Tian-Yu Zheng
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China.
| |
Collapse
|
18
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
19
|
D’Andrea L, Stringhi R, Di Luca M, Marcello E. Looking at Alzheimer's Disease Pathogenesis from the Nuclear Side. Biomolecules 2021; 11:biom11091261. [PMID: 34572474 PMCID: PMC8467578 DOI: 10.3390/biom11091261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder representing the most common form of dementia. It is biologically characterized by the deposition of extracellular amyloid-β (Aβ) senile plaques and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein. The key protein in AD pathogenesis is the amyloid precursor protein (APP), which is cleaved by secretases to produce several metabolites, including Aβ and APP intracellular domain (AICD). The greatest genetic risk factor associated with AD is represented by the Apolipoprotein E ε4 (APOE ε4) allele. Importantly, all of the above-mentioned molecules that are strictly related to AD pathogenesis have also been described as playing roles in the cell nucleus. Accordingly, evidence suggests that nuclear functions are compromised in AD. Furthermore, modulation of transcription maintains cellular homeostasis, and alterations in transcriptomic profiles have been found in neurodegenerative diseases. This report reviews recent advancements in the AD players-mediated gene expression. Aβ, tau, AICD, and APOE ε4 localize in the nucleus and regulate the transcription of several genes, part of which is involved in AD pathogenesis, thus suggesting that targeting nuclear functions might provide new therapeutic tools for the disease.
Collapse
|
20
|
Gezen-Ak D, Alaylıoğlu M, Genç G, Şengül B, Keskin E, Sordu P, Güleç ZEK, Apaydın H, Bayram-Gürel Ç, Ulutin T, Yılmazer S, Ertan S, Dursun E. Altered Transcriptional Profile of Mitochondrial DNA-Encoded OXPHOS Subunits, Mitochondria Quality Control Genes, and Intracellular ATP Levels in Blood Samples of Patients with Parkinson's Disease. J Alzheimers Dis 2021; 74:287-307. [PMID: 32007957 DOI: 10.3233/jad-191164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunctions are significant contributors to neurodegeneration. One result or a cause of mitochondrial dysfunction might be the disruption of mtDNA transcription. Limited data indicated an altered expression of mtDNA encoded transcripts in Alzheimer's disease (AD) or Parkinson's disease (PD). The number of mitochondria is high in cells with a high energy demand, such as muscle or nerve cells. AD or PD involves increased risk of cardiomyopathy, suggesting that mitochondrial dysfunction might be systemic. If it is systemic, we should observe it in different cell types. Given that, we wanted to investigate any disruption in the regulation of mtDNA encoded gene expression in addition to PINK1, PARKIN, and ATP levels in peripheral blood samples of PD cases who are affected by a neurodegenerative disorder that is very well known by its mitochondrial aspects. Our results showed for the first time that: 1) age of onset > 50 PD sporadic (PDS) cases: mtDNA transcription and quality control genes were affected; 2) age of onset <50 PDS cases: only mtDNA transcription was affected; and 3) PD cases with familial background: only quality control genes were affected. mtDNA copy number was not a confounder. Intracellular ATP levels of PD case subgroups were significantly higher than those of healthy subjects. We suggest that a systemic dysregulation of transcription of mtDNA or mitochondrial quality control genes might result in the development of a sporadic form of the disease. Additionally, ATP elevation might be an independent compensatory and response mechanism. Hyperactive cells in AD and PD require further investigation.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Alaylıoğlu
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gençer Genç
- Department of Neurology, Şişli Etfal Training and Research Hospital, Istanbul, Turkey
| | - Büşra Şengül
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ebru Keskin
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pelin Sordu
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep Ece Kaya Güleç
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hülya Apaydın
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Çiğdem Bayram-Gürel
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Selma Yılmazer
- Department of Medical Biology, Faculty of Medicine, Altınbaş University, Istanbul, Turkey
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul, Turkey
| | - Erdinç Dursun
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
21
|
Turbant F, Hamoui OE, Partouche D, Sandt C, Busi F, Wien F, Arluison V. Identification and characterization of the Hfq bacterial amyloid region DNA interactions. BBA ADVANCES 2021; 1:100029. [PMID: 37082015 PMCID: PMC10074921 DOI: 10.1016/j.bbadva.2021.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid amyloid proteins interactions have been observed in the past few years. These interactions often promote protein aggregation. Nevertheless, molecular basis and physiological consequences of these interactions are still poorly understood. Additionally, it is unknown whether the nucleic acid promotes the formation of self-assembly due to direct interactions or indirectly via sequences surrounding the amyloid region. Here we focus our attention on a bacterial amyloid, Hfq. This protein is a pleiotropic bacterial regulator that mediates many aspects of nucleic acids metabolism. The protein notably mediates mRNA stability and translation efficiency by using stress-related small non coding regulatory RNA. In addition, Hfq, thanks to its amyloid C-terminal region, binds and compacts DNA. A combination of experimental methodologies, including synchrotron radiation circular dichroism (SRCD), gel shift assay and infrared (FTIR) spectroscopy have been used to probe the interaction of Hfq C-terminal region with DNA. We clearly identify important amino acids in this region involved in DNA binding and polymerization properties. This allows to understand better how this bacterial amyloid interacts with DNA. Possible functional consequence to answer to stresses are discussed.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Omar El Hamoui
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - David Partouche
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Christophe Sandt
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Florent Busi
- Université de Paris, UFR Sciences du vivant, 75006 Paris cedex, France
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
- Corresponding author.
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Université de Paris, UFR Sciences du vivant, 75006 Paris cedex, France
- Corresponding author.
| |
Collapse
|
22
|
Li Z, Rasmussen LJ. TIP60 in aging and neurodegeneration. Ageing Res Rev 2020; 64:101195. [PMID: 33091598 DOI: 10.1016/j.arr.2020.101195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic modification of chromatin, including histone methylation and acetylation, plays critical roles in eukaryotic cells and has a significant impact on chromatin structure/accessibility, gene regulation and, susceptibility to aging, neurodegenerative disease, cancer, and other age-related diseases. This article reviews the current advances on TIP60/KAT5, a major histone acetyltransferase with diverse functions in eukaryotes, with emphasis on its regulation of autophagy, proteasome-dependent protein turnover, RNA transcription, DNA repair, circadian rhythms, learning and memory, and other neurological functions implicated in aging and neurodegeneration. Moreover, the promising therapeutic potential of TIP60 is discussed to target Alzheimer's disease and other neurological diseases.
Collapse
|
23
|
Sacchini S, Díaz-Delgado J, Espinosa de Los Monteros A, Paz Y, Bernaldo de Quirós Y, Sierra E, Arbelo M, Herráez P, Fernández A. Amyloid-beta peptide and phosphorylated tau in the frontopolar cerebral cortex and in the cerebellum of toothed whales: aging versus hypoxia. Biol Open 2020; 9:bio054734. [PMID: 33037014 PMCID: PMC7657478 DOI: 10.1242/bio.054734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022] Open
Abstract
Hypoxia could be a possible risk factor for neurodegenerative alterations in cetaceans' brain. Among toothed whales, the beaked whales are particularly cryptic and routinely dive deeper than 1000 m for about 1 h in order to hunt squids and fishes. Samples of frontal cerebral and cerebellar cortex were collected from nine animals, representing six different species of the suborder Odontoceti. Immunohistochemical analysis employed anti-β-amyloid (Aβ) and anti-neurofibrillary tangle (NFT) antibodies. Six of nine (67%) animals showed positive immunolabeling for Aβ and/or NFT. The most striking findings were intranuclear Aβ immunopositivity in cerebral cortical neurons and NFT immunopositivity in cerebellar Purkinje neurons with granulovacuolar degeneration. Aβ plaques were also observed in one elderly animal. Herein, we present immunohistopathological findings classic of Alzheimer's and other neurodegenerative diseases in humans. Our findings could be linked to hypoxic phenomena, as they were more extensive in beaked whales. Despite their adaptations, cetaceans could be vulnerable to sustained and repetitive brain hypoxia.
Collapse
Affiliation(s)
- Simona Sacchini
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Josué Díaz-Delgado
- Laboratory of Wildlife Comparative Pathology (LAPCOM), School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-270 SP, Brazil
- Texas A&M Veterinary Medical Diagnostic Laboratory, Pathology Division, College Station, TX 77843, USA
| | - Antonio Espinosa de Los Monteros
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Yania Paz
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Eva Sierra
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Pedro Herráez
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| |
Collapse
|
24
|
Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathol 2020; 140:417-447. [PMID: 32728795 PMCID: PMC7498448 DOI: 10.1007/s00401-020-02196-w] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Tau and amyloid beta (Aβ) are the prime suspects for driving pathology in Alzheimer's disease (AD) and, as such, have become the focus of therapeutic development. Recent research, however, shows that these proteins have been highly conserved throughout evolution and may have crucial, physiological roles. Such functions may be lost during AD progression or be unintentionally disrupted by tau- or Aβ-targeting therapies. Tau has been revealed to be more than a simple stabiliser of microtubules, reported to play a role in a range of biological processes including myelination, glucose metabolism, axonal transport, microtubule dynamics, iron homeostasis, neurogenesis, motor function, learning and memory, neuronal excitability, and DNA protection. Aβ is similarly multifunctional, and is proposed to regulate learning and memory, angiogenesis, neurogenesis, repair leaks in the blood-brain barrier, promote recovery from injury, and act as an antimicrobial peptide and tumour suppressor. This review will discuss potential physiological roles of tau and Aβ, highlighting how changes to these functions may contribute to pathology, as well as the implications for therapeutic development. We propose that a balanced consideration of both the physiological and pathological roles of tau and Aβ will be essential for the design of safe and effective therapeutics.
Collapse
Affiliation(s)
- Sarah A. Kent
- Translational Neuroscience PhD Programme, Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Claire S. Durrant
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| |
Collapse
|
25
|
Akerman SC, Hossain S, Shobo A, Zhong Y, Jourdain R, Hancock MA, George K, Breton L, Multhaup G. Neurodegenerative Disease-Related Proteins within the Epidermal Layer of the Human Skin. J Alzheimers Dis 2020; 69:463-478. [PMID: 31006686 DOI: 10.3233/jad-181191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is increasing evidence suggesting that amyloidogenic proteins might form deposits in non-neuronal tissues in neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. However, the detection of these aggregation-prone proteins within the human skin has been controversial. Using immunohistochemistry (IHC) and mass spectrometry tissue imaging (MALDI-MSI), fresh frozen human skin samples were analyzed for the expression and localization of neurodegenerative disease-related proteins. While α-synuclein was detected throughout the epidermal layer of the auricular samples (IHC and MALDI-MSI), tau and Aβ34 were also localized to the epidermal layer (IHC). In addition to Aβ peptides of varying length (e.g., Aβ40, Aβ42, Aβ34), we also were able to detect inflammatory markers within the same sample sets (e.g., thymosin β-4, psoriasin). While previous literature has described α-synuclein in the nucleus of neurons (e.g., Parkinson's disease), our current detection of α-synuclein in the nucleus of skin cells is novel. Imaging of α-synuclein or tau revealed that their presence was similar between the young and old samples in our present study. Future work may reveal differences relevant for diagnosis between these proteins at the molecular level (e.g., age-dependent post-translational modifications). Our novel detection of Aβ34 in human skin suggests that, just like in the brain, it may represent a stable intermediate of the Aβ40 and Aβ42 degradation pathway.
Collapse
Affiliation(s)
- S Can Akerman
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Shireen Hossain
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Adeola Shobo
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Yifei Zhong
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | | | - Mark A Hancock
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Kelly George
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Lionel Breton
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.,L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Gerhard Multhaup
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Frackowiak J, Mazur-Kolecka B, Mehta P, Wegiel J. Enhanced accumulation of N-terminally truncated Aβ with and without pyroglutamate-11 modification in parvalbumin-expressing GABAergic neurons in idiopathic and dup15q11.2-q13 autism. Acta Neuropathol Commun 2020; 8:58. [PMID: 32345355 PMCID: PMC7189730 DOI: 10.1186/s40478-020-00923-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Autism, the most frequent neurodevelopmental disorder of a very complex etiopathology, is associated with dysregulation of cellular homeostatic mechanisms, including processing of amyloid-β precursor protein (APP). Products of APP processing — N-terminally truncated amyloid-β peptide (N-tr-Aβ) species — are accumulated in autism in neurons and glia in the cortex, cerebellum, and subcortical structures of the brain. This process in neurons is correlated with increased oxidative stress. Because abnormally high levels of N-tr-Aβ are detected in only a fraction of neurons in the prefrontal cortex, we applied immunocytochemical staining and confocal microscopy in autopsy brain material from idiopathic and chromosome 15q11.2-q13 duplication (dup-15) autism to measure the load of N-tr-Aβ in the cells and synapses and to identify the subpopulation of neurons affected by these pathophysiological processes. The peptides accumulated in autism are N-terminally truncated; therefore, we produced a new antibody against Aβ truncated at N-terminal amino acid 11 modified to pyroglutamate to evaluate the presence and distribution of this peptide species in autism. We also quantified and characterized the oligomerization patterns of the Aβ-immunoreactive peptides in autism and control frozen brain samples. We provide morphological evidence, that in idiopathic and dup-15 autism, accumulation of N-tr-Aβ with and without pyroglutamate-11 modified N-terminus affects mainly the parvalbumin-expressing subpopulation of GABAergic neurons. N-tr-Aβ peptides are accumulated in neurons’ cytoplasm and nucleus as well as in GABAergic synapses. Aβ peptides with both C-terminus 40 and 42 were detected by immunoblotting in frozen cortex samples, in the form of dimers and complexes of the molecular sizes of 18-24kD and 32-34kD. We propose that deposition of N-tr-Aβ specifically affects the functions of the parvalbumin-expressing GABAergic neurons and results in a dysregulation of brain excitatory–inhibitory homeostasis in autism. This process may be the target of new therapies.
Collapse
|
27
|
Neuroprotection against Amyloid- β-Induced DNA Double-Strand Breaks Is Mediated by Multiple Retinoic Acid-Dependent Pathways. Neural Plast 2020; 2020:9369815. [PMID: 32256561 PMCID: PMC7109576 DOI: 10.1155/2020/9369815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we have investigated the role of all-trans-retinoic acid (RA) as a neuroprotective agent against Aβ1-42-induced DNA double-strand breaks (DSBs) in neuronal SH-SY5Y and astrocytic DI TNC1 cell lines and in murine brain tissues, by single-cell gel electrophoresis. We showed that RA does not only repair Aβ1-42-induced DSBs, as already known, but also prevents their occurrence. This effect is independent of that of other antioxidants studied, such as vitamin C, and appears to be mediated, at least in part, by changes in expression, not of the RARα, but of the PPARβ/δ and of antiamyloidogenic proteins, such as ADAM10, implying a decreased production of endogenous Aβ. Whereas Aβ1-42 needs transcription and translation for DSB production, RA protects against Aβ1-42-induced DSBs at the posttranslational level through both the RARα/β/γ and PPARβ/δ receptors as demonstrated by using specific antagonists. Furthermore, it could be shown by a proximity ligation assay that the PPARβ/δ-RXR interactions, not the RARα/β/γ-RXR interactions, increased in the cells when a 10 min RA treatment was followed by a 20 min Aβ1-42 treatment. Thus, the PPARβ/δ receptor, known for its antiapoptotic function, might for these short-time treatments play a role in neuroprotection via PPARβ/δ-RXR heterodimerization and possibly expression of antiamyloidogenic genes. Overall, this study shows that RA can not only repair Aβ1-42-induced DSBs but also prevent them via the RARα/β/γ and PPARβ/δ receptors. It suggests that the RA-dependent pathways belong to an anti-DSB Adaptative Gene Expression (DSB-AGE) system that can be targeted by prevention strategies to preserve memory in Alzheimer's disease and aging.
Collapse
|
28
|
β-Amyloid Peptide: the Cell Compartment Multi-faceted Interaction in Alzheimer's Disease. Neurotox Res 2019; 37:250-263. [PMID: 31811589 DOI: 10.1007/s12640-019-00116-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/29/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most widespread form of dementia, characterized by memory loss and reduction of cognitive functions that strongly interfere with normal daily life. Numerous evidences show that aggregates of the amyloid beta peptide, formed by 39 to 42 amino acid residues (Aβ39-43), from soluble small oligomers to large fibrils are characteristic markers of this pathology. However, AD is a complex disease and its neurodegenerative molecular mechanism is not yet fully understood. Growing evidence suggests a link between Aβ polymorphic nature, oligomers and fibrils, and specific mechanisms of neurodegeneration. The Aβ variable nature and its multiplicity of interactions with different proteins and organelles reflect the complexity of this pathology. In this review, we analyze the effects of the interaction between Aβ peptide and different cellular compartments in relation to the different kinds and sizes of amyloid aggregates. In particular, Aβ interaction with different cell structures such as the plasma membrane, mitochondria, lysosomes, nucleus, and endoplasmic reticulum is discussed. Further, we analyze the Aβ peptide ability to modify the structure and function of the target organelle, inducing alteration of its physiological role thus contributing to the pathological event. Dysfunction of cellular components terminating with the activation of the cellular death mechanism and subsequent neurodegeneration is also taken into consideration.
Collapse
|
29
|
Wien F, Martinez D, Le Brun E, Jones NC, Vrønning Hoffmann S, Waeytens J, Berbon M, Habenstein B, Arluison V. The Bacterial Amyloid-Like Hfq Promotes In Vitro DNA Alignment. Microorganisms 2019; 7:microorganisms7120639. [PMID: 31816864 PMCID: PMC6956100 DOI: 10.3390/microorganisms7120639] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
The Hfq protein is reported to be involved in environmental adaptation and virulence of several bacteria. In Gram-negative bacteria, Hfq mediates the interaction between regulatory noncoding RNAs and their target mRNAs. Besides these RNA-related functions, Hfq is also associated with DNA and is a part of the bacterial chromatin. Its precise role in DNA structuration is, however, unclear and whether Hfq plays a direct role in DNA-related processes such as replication or recombination is controversial. In previous works, we showed that Escherichia coli Hfq, or more precisely its amyloid-like C-terminal region (CTR), induces DNA compaction into a condensed form. In this paper, we evidence a new property for Hfq; precisely we show that its CTR influences double helix structure and base tilting, resulting in a strong local alignment of nucleoprotein Hfq:DNA fibers. The significance of this alignment is discussed in terms of chromatin structuration and possible functional consequences on evolutionary processes and adaptation to environment.
Collapse
Affiliation(s)
- Frank Wien
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
- Correspondence: (F.W.); (V.A.); Tel.: +33-(0)1-69-35-96-65 (F.W.); +33-(0)1-69-08-32-82 (V.A.)
| | - Denis Martinez
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Etienne Le Brun
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
| | - Nykola C. Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, B1050 Bruxelles, Belgique;
- Laboratoire de Chimie Physique d’Orsay, CNRS UMR8000, Université Paris-Sud, Université Paris-Saclay 91400 Orsay, France
| | - Melanie Berbon
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
- Université de Paris, UFR Sciences du vivant, 35 rue Hélène Brion, 75205 Paris cedex, France
- Correspondence: (F.W.); (V.A.); Tel.: +33-(0)1-69-35-96-65 (F.W.); +33-(0)1-69-08-32-82 (V.A.)
| |
Collapse
|
30
|
Durand D, Turati J, Rudi MJ, Ramírez D, Saba J, Caruso C, Carniglia L, von Bernhardi R, Lasaga M. Unraveling the β-amyloid clearance by astrocytes: Involvement of metabotropic glutamate receptor 3, sAPPα, and class-A scavenger receptor. Neurochem Int 2019; 131:104547. [DOI: 10.1016/j.neuint.2019.104547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
|
31
|
Jiang H, Jayadev S, Lardelli M, Newman M. A Review of the Familial Alzheimer's Disease Locus PRESENILIN 2 and Its Relationship to PRESENILIN 1. J Alzheimers Dis 2019; 66:1323-1339. [PMID: 30412492 DOI: 10.3233/jad-180656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PRESENILIN 1 (PSEN1) and PRESENILIN 2 (PSEN2) genes are loci for mutations causing familial Alzheimer's disease (fAD). However, the function of these genes and how they contribute to fAD pathogenesis has not been fully determined. This review provides a summary of the overlapping and independent functions of the PRESENILINS with a focus on the lesser studied PSEN2. As a core component of the γ-secretase complex, the PSEN2 protein is involved in many γ-secretase-related physiological activities, including innate immunity, Notch signaling, autophagy, and mitochondrial function. These physiological activities have all been associated with AD progression, indicating that PSEN2 plays a particular role in AD pathogenesis.
Collapse
Affiliation(s)
- Haowei Jiang
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
32
|
Domínguez-Prieto M, Velasco A, Tabernero A, Medina JM. Endocytosis and Transcytosis of Amyloid-β Peptides by Astrocytes: A Possible Mechanism for Amyloid-β Clearance in Alzheimer's Disease. J Alzheimers Dis 2019; 65:1109-1124. [PMID: 30103329 DOI: 10.3233/jad-180332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid-β (Aβ) peptides, Aβ40, Aβ42, and recently Aβ25 - 35, have been directly implicated in the pathogenesis of Alzheimer's disease (AD). We have previously shown that all three peptides decrease neuronal viability, but Aβ40 also promotes synaptic disassembling. In this work, we have studied the effects of these peptides on astrocytes in primary culture and found that the three Aβ peptides were internalized by astrocytes and significantly decreased astrocyte viability, while increasing ROS production. Aβ peptide internalization is temperature-dependent, a fact that supports the idea that Aβ peptides are actively endocytosed by astrocytes. However, inhibiting caveolae formation by methyl-beta-cyclodextrin or by silencing caveolin-1 with RNA interference did not prevent Aβ endocytosis, which suggests that Aβ peptides do not use caveolae to enter astrocytes. Conversely, inhibition of clathrin-coated vesicle formation by chlorpromazine or by silencing clathrin with RNA interference significantly decreased Aβ internalization and partially reverted the decrease of astrocyte viability caused by the presence of Aβ. These results suggest that Aβ is endocytosed by clathrin-coated vesicles in astrocytes. Aβ-loaded astrocytes, when co-incubated with non-treated astrocytes in separate wells but with the same incubation medium, promoted cell death in non-treated astrocytes; a fact that was associated with the presence of Aβ inside previously unloaded astrocytes. This phenomenon was inhibited by the presence of chlorpromazine in the co-incubation medium. These results suggest that astrocyte may perform Aβ transcytosis, a process that could play a role in the clearance of Aβ peptides from the brain to cerebrospinal fluid.
Collapse
Affiliation(s)
| | - Ana Velasco
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
| | - José M Medina
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
| |
Collapse
|
33
|
Gavello D, Calorio C, Franchino C, Cesano F, Carabelli V, Carbone E, Marcantoni A. Early Alterations of Hippocampal Neuronal Firing Induced by Abeta42. Cereb Cortex 2019; 28:433-446. [PMID: 27999123 DOI: 10.1093/cercor/bhw377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Indexed: 12/11/2022] Open
Abstract
We studied the effect of Amyloid β 1-42 oligomers (Abeta42) on Ca2+ dependent excitability profile of hippocampal neurons. Abeta42 is one of the Amyloid beta peptides produced by the proteolytic processing of the amyloid precursor protein and participates in the initiating event triggering the progressive dismantling of synapses and neuronal circuits. Our experiments on cultured hippocampal network reveal that Abeta42 increases intracellular Ca2+ concentration by 46% and inhibits firing discharge by 19%. More precisely, Abeta42 differently regulates ryanodine (RyRs), NMDA receptors (NMDARs), and voltage gated calcium channels (VGCCs) by increasing Ca2+ release through RyRs and inhibiting Ca2+ influx through NMDARs and VGCCs. The overall increased intracellular Ca2+ concentration causes stimulation of K+ current carried by big conductance Ca2+ activated potassium (BK) channels and hippocampal network firing inhibition. We conclude that Abeta42 alters neuronal function by means of at least 4 main targets: RyRs, NMDARs, VGCCs, and BK channels. The development of selective modulators of these channels may in turn be useful for developing effective therapies that could enhance the quality of life of AD patients during the early onset of the pathology.
Collapse
Affiliation(s)
- Daniela Gavello
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Calorio
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| | - Claudio Franchino
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| | - Federico Cesano
- Department of Chemistry Via Pietro Giuria 7, Torino University, 10125 Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| | - Emilio Carbone
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| | - Andrea Marcantoni
- Department of Drug Science and Technology, Torino University, Corso Raffaello 30, 10125 Torino, Italy
| |
Collapse
|
34
|
Jiang K, Rocha S, Westling A, Kesarimangalam S, Dorfman KD, Wittung-Stafshede P, Westerlund F. Alpha-Synuclein Modulates the Physical Properties of DNA. Chemistry 2018; 24:15685-15690. [PMID: 30102440 PMCID: PMC6217799 DOI: 10.1002/chem.201803933] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 11/06/2022]
Abstract
Fundamental research on Parkinson's disease (PD) most often focuses on the ability of α-synuclein (aS) to form oligomers and amyloids, and how such species promote brain cell death. However, there are indications that aS also plays a gene-regulatory role in the cell nucleus. Here, the interaction between monomeric aS and DNA in vitro has been investigated with single-molecule techniques. Using a nanofluidic channel system, it was discovered that aS binds to DNA and by studying the DNA-protein complexes at different confinements we determined that aS binding increases the persistence length of DNA from 70 to 90 nm at high coverage. By atomic force microscopy it was revealed that at low protein-to-DNA ratio, the aS binding occurs as small protein clusters scattered along the DNA; at high protein-to-DNA ratio, the DNA is fully covered by protein. As DNA-aS interactions may play roles in PD, it is of importance to characterize biophysical properties of such complexes in detail.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Sandra Rocha
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Alvina Westling
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Sriram Kesarimangalam
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | | | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
35
|
The Transcriptional Regulatory Properties of Amyloid Beta 1–42 may Include Regulation of Genes Related to Neurodegeneration. Neuromolecular Med 2018; 20:363-375. [DOI: 10.1007/s12017-018-8498-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/09/2018] [Indexed: 12/19/2022]
|
36
|
Winick-Ng W, Rylett RJ. Into the Fourth Dimension: Dysregulation of Genome Architecture in Aging and Alzheimer's Disease. Front Mol Neurosci 2018. [PMID: 29541020 PMCID: PMC5835833 DOI: 10.3389/fnmol.2018.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed.
Collapse
Affiliation(s)
- Warren Winick-Ng
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - R Jane Rylett
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
37
|
Xu J, Li D, Zheng T, Lu Y. β-amyloid expression in age-related cataract lens epithelia and the effect of β-amyloid on oxidative damage in human lens epithelial cells. Mol Vis 2017; 23:1015-1028. [PMID: 29386875 PMCID: PMC5757856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/25/2017] [Indexed: 11/06/2022] Open
Abstract
Purpose To evaluate the changes in β-amyloid (Aβ) expression in age-related cataract (ARC) lens epithelia and the effect of Aβ on oxidative damage in human lens epithelial cells (HLECs). Methods Specimens of lens epithelia and aqueous humor were obtained from 255 cataract surgery patients and 48 healthy donor eyes. The ARC samples were divided into four groups according to the Lens Opacities Classification System III, with increasing severity from Group I to Group IV. The HLECs were cultured under healthy or oxidative conditions with or without Aβ pretreatment. Western blot, immunofluorescence, real-time PCR, and enzyme-linked immunosorbent assay were performed to detect Aβ and β-amyloid precursor protein (APP) expression. β-secretase activity was analyzed in lens epithelia and HLECs. The effect of Aβ on the viability of HLECs under oxidative conditions was investigated using a cell viability assay. Results Compared with the healthy group, the Aβ 1-42 expression levels in lens epithelia and Aβ 1-40 expression levels in aqueous humor decreased in Groups I, II, and III (p<0.05) but were unchanged in Group IV. In contrast, APP expression levels increased in Groups I, II, and III (p<0.05) compared with those in the healthy group but were unchanged in Group IV. H2O2-treated HLECs exhibited decreased amounts of Aβ 1-42 and increased amounts of APP. β-secretase activity decreased in the lens epithelia of all four subgroups of ARCs compared with that in the lens epithelia of healthy subjects and decreased in H2O2-treated HLECs. Furthermore, treatment with nanomolar concentrations (0.2 nM to 10 nM) of Aβ could protect cell viability from oxidative damage. Conclusions Aβ and APP expression levels exhibited differential changes during the development of ARC, indicating active feedback of this protein processing. Decreased expression of physiologically generated Aβ in the early and mid-stages of ARC development might be one of the potential mechanisms accelerating oxidative stress in HLECs during cataractogenesis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Dan Li
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Tianyu Zheng
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
38
|
Gezen-Ak D, Atasoy IL, Candaş E, Alaylioglu M, Yılmazer S, Dursun E. Vitamin D Receptor Regulates Amyloid Beta 1-42 Production with Protein Disulfide Isomerase A3. ACS Chem Neurosci 2017; 8:2335-2346. [PMID: 28707894 DOI: 10.1021/acschemneuro.7b00245] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The challenge of understanding the biology of neuronal amyloid processing could provide a basis for understanding the amyloid pathology in Alzheimer's disease (AD). Based on our previous studies, we have suggested that AD might be the consequence of a hormonal imbalance in which the critical hormone is vitamin D. The present study primarily focused on the creation of a condition that prevents the genomic or nongenomic action of vitamin D by disrupting vitamin D receptors (VDR or PDIA3/1,25MARRS); the effects of these disruptions on the series of proteins involved in secretases that play a crucial role in amyloid pathology and on amyloid beta (Aβ) production in primary cortical neurons were observed. VDR and PDIA3/1,25MARRS genes were silenced separately or simultaneously in E16 primary rat cortical neurons. The expression of target genes involved in APP processing, including Presenilin1, Presenilin2, Nicastrin, BACE1, ADAM10, and APP, was investigated with qRT-PCR and Western blot in this model. 1,25-Dihydroxyvitamin D3 treatments were used to verify any transcriptional regulation data gathered from siRNA treatments by determining the mRNA expression of the target genes. Immunofluorescence labeling was used for the verification of silencing experiments and intracellular Aβ1-42 production. Extracellular Aβ1-42 level was assessed with ELISA. mRNA and protein expression results showed that 1,25-dihydroxyvitamin D3 might affect the transcriptional regulation of the genes involved in APP processing. The intracellular and extracellular Aβ1-42 measurements in our study support this suggestion. Consequently, we suggest that 1,25-dihydroxyvitamin D3 and its receptors are important parts of the amyloid processing pathway in neurons.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department
of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Irem L. Atasoy
- Department
of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Esin Candaş
- Department
of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Merve Alaylioglu
- Department
of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Selma Yılmazer
- Department
of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Erdinç Dursun
- Department
of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| |
Collapse
|
39
|
Jayne T, Newman M, Verdile G, Sutherland G, Münch G, Musgrave I, Moussavi Nik SH, Lardelli M. Evidence For and Against a Pathogenic Role of Reduced γ-Secretase Activity in Familial Alzheimer's Disease. J Alzheimers Dis 2017; 52:781-99. [PMID: 27060961 DOI: 10.3233/jad-151186] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The majority of mutations causing familial Alzheimer's disease (fAD) have been found in the gene PRESENILIN1 (PSEN1) with additional mutations in the related gene PRESENILIN2 (PSEN2). The best characterized function of PRESENILIN (PSEN) proteins is in γ-secretase enzyme activity. One substrate of γ-secretase is encoded by the gene AMYLOID BETA A4 PRECURSOR PROTEIN (AβPP/APP) that is a fAD mutation locus. AβPP is the source of the amyloid-β (Aβ) peptide enriched in the brains of people with fAD or the more common, late onset, sporadic form of AD, sAD. These observations have resulted in a focus on γ-secretase activity and Aβ as we attempt to understand the molecular basis of AD pathology. In this paper we briefly review some of the history of research on γ-secretase in AD. We then discuss the main ideas regarding the role of γ-secretase and the PSEN genes in this disease. We examine the significance of the "fAD mutation reading frame preservation rule" that applies to PSEN1 and PSEN2 (and AβPP) and look at alternative roles for AβPP and Aβ in fAD. We present a case for an alternative interpretation of published data on the role of γ-secretase activity and fAD-associated mutations in AD pathology. Evidence supports a "PSEN holoprotein multimer hypothesis" where PSEN fAD mutations generate mutant PSEN holoproteins that multimerize with wild type holoprotein and dominantly interfere with an AD-critical function(s) such as autophagy or secretion of Aβ. Holoprotein multimerization may be required for the endoproteolysis that activates PSENs' γ-secretase activity.
Collapse
Affiliation(s)
- Tanya Jayne
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin Health Innovation Research Institute - Biosciences, Faculty of Health Sciences, Curtin University, Kent Street, Bentley, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,McCusker Alzheimer's Disease Research Foundation, Hollywood Private Hospital, Hollywood Medical Centre, Nedlands, WA, Australia
| | - Greg Sutherland
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Gerald Münch
- Molecular Medicine Research Group & School of Medicine, Western Sydney University, Campbelltown NSW, Australia
| | - Ian Musgrave
- Discipline of Pharmacology, School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Seyyed Hani Moussavi Nik
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| |
Collapse
|
40
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
41
|
Hefter D, Draguhn A. APP as a Protective Factor in Acute Neuronal Insults. Front Mol Neurosci 2017; 10:22. [PMID: 28210211 PMCID: PMC5288400 DOI: 10.3389/fnmol.2017.00022] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/16/2017] [Indexed: 12/25/2022] Open
Abstract
Despite its key role in the molecular pathology of Alzheimer’s disease (AD), the physiological function of amyloid precursor protein (APP) is unknown. Increasing evidence, however, points towards a neuroprotective role of this membrane protein in situations of metabolic stress. A key observation is the up-regulation of APP following acute (stroke, cardiac arrest) or chronic (cerebrovascular disease) hypoxic-ischemic conditions. While this mechanism may increase the risk or severity of AD, APP by itself or its soluble extracellular fragment APPsα can promote neuronal survival. Indeed, different animal models of acute hypoxia-ischemia, traumatic brain injury (TBI) and excitotoxicity have revealed protective effects of APP or APPsα. The underlying mechanisms involve APP-mediated regulation of calcium homeostasis via NMDA receptors (NMDAR), voltage-gated calcium channels (VGCC) or internal calcium stores. In addition, APP affects the expression of survival- or apoptosis-related genes as well as neurotrophic factors. In this review, we summarize the current understanding of the neuroprotective role of APP and APPsα and possible implications for future research and new therapeutic strategies.
Collapse
Affiliation(s)
- Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg UniversityHeidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
42
|
Zhou L, Liu J, Dong D, Wei C, Wang R. Dynamic alteration of neprilysin and endothelin-converting enzyme in age-dependent APPswe/PS1dE9 mouse model of Alzheimer's disease. Am J Transl Res 2017; 9:184-196. [PMID: 28123645 PMCID: PMC5250715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Imbalance of Aβ production and Aβ removal leads to Aβ accumulation. Aβ degrading enzyme (including neprilysin-NEP, endothelin converting enzyme-ECE) as a therapeutic strategy for lowering brain Aβ deposition has attracted increasing attention. In this study, we investigated alteration of age and region-dependent in APP/PS1 double transgenic mice (3, 6, 9, 12 months) and their age-matched wild type mice including the ability of spatial memory, Aβ deposits, the protein expression, location and activity of NEP and ECE. Our data demonstrated that, as compared with wild type mice, APP/PS1 mice displayed significant cognitive deficit at 9 month revealed by obviously longer in the latency and distance to find the platform and shorter in time spent and swimming distance in the target quadrant. Aβ40 and Aβ42 levels exhibited a significant increase with age in the cerebral cortex and hippocampus of APP/PS1 mice after 6 month, compared with their age-matched wild type mice. And Aβ42 levels were significantly higher than Aβ40 levels in the same age of APP/PS1 mice. Furthermore, NEP protein and activity displayed a marked decrease with age in the cerebral cortex and hippocampus of APP/PS1 mice older than 6 month. Slightly different from NEP, ECE protein was up-regulated with age, while ECE activity showed a significantly decrease with age in cortex and hippocampus of APP/PS1 mice older than 6 month. Double immunofluorescence staining also demonstrated that ECE and NEP highly colocalized in cytoplasmic and membrane, and ECE immunoreactivity tended to increase with age in APP/PS1 mice, especially 12 month APP/PS1 mice. Correlation analysis showed the negative correlation between enzyme (NEP or ECE) activity and Aβ levels in the cerebral cortex and hippocampus of APP/PS1 mice, which was correlated with Aβ accumulation. These results indicate NEP rather than ECE plays more important role in resisting Aβ accumulation. The compensatory upregulation of NEP and ECE could balance Aβ metabolism and protect neuronal functions in infant and juvenile mice. These evidence might provide some clues for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Li Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Jianxu Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Dong Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Chunsheng Wei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
43
|
Cissé M, Duplan E, Checler F. The transcription factor XBP1 in memory and cognition: Implications in Alzheimer disease. Mol Med 2017; 22:905-917. [PMID: 28079229 DOI: 10.2119/molmed.2016.00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic region leucine zipper transcription factor isolated two decades ago in a search for regulators of major histocompatibility complex class II gene expression. XBP1 is a very complex protein regulating many physiological functions, including immune system, inflammatory responses, and lipid metabolism. Evidence over the past few years suggests that XBP1 also plays important roles in pathological settings since its activity as transcription factor has profound effects on the prognosis and progression of diseases such as cancer, neurodegeneration, and diabetes. Here we provide an overview on recent advances in our understanding of this multifaceted molecule, particularly in regulating synaptic plasticity and memory function, and the implications in neurodegenerative diseases with emphasis on Alzheimer disease.
Collapse
Affiliation(s)
- Moustapha Cissé
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Eric Duplan
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
44
|
Proteasome regulates turnover of toxic human amylin in pancreatic cells. Biochem J 2016; 473:2655-70. [PMID: 27340132 DOI: 10.1042/bcj20160026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/22/2016] [Indexed: 12/18/2022]
Abstract
Toxic human amylin (hA) oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Although recent studies demonstrated a causal connection between hA uptake and toxicity in pancreatic cells, the mechanism of amylin's clearance following its internalization and its relationship to toxicity is yet to be determined, and hence was investigated here. Using pancreatic rat insulinoma β-cells and human islets as model systems, we show that hA, following its internalization, first accumulates in the cytosol followed by its translocation into nucleus, and to a lesser extent lysosomes, keeping the net cytosolic amylin content low. An increase in hA accumulation in the nucleus of pancreatic cells correlated with its cytotoxicity, suggesting that its excessive accumulation in the nucleus is detrimental. hA interacted with 20S core and 19S lid subunits of the β-cell proteasomal complex, as suggested by immunoprecipitation and confocal microscopy studies, which subsequently resulted in a decrease in the proteasome's proteolytic activity in these cells. In vitro binding and activity assays confirmed an intrinsic and potent ability of amylin to interact with the 20S core complex thereby modulating its proteolytic activity. Interestingly, less toxic and aggregation incapable rat amylin (rA) showed a comparable inhibitory effect on proteasome activity and protein ubiquitination, decoupling amylin aggregation/ toxicity and amylin-induced protein stress. In agreement with these studies, inhibition of proteasomal proteolytic activity significantly increased intracellular amylin content and toxicity. Taken together, our results suggest a pivotal role of proteasomes in amylin's turnover and detoxification in pancreatic cells.
Collapse
|
45
|
Chiarini A, Armato U, Liu D, Dal Prà I. Calcium-Sensing Receptors of Human Neural Cells Play Crucial Roles in Alzheimer's Disease. Front Physiol 2016; 7:134. [PMID: 27199760 PMCID: PMC4844916 DOI: 10.3389/fphys.2016.00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/28/2016] [Indexed: 12/21/2022] Open
Abstract
In aged subjects, late-onset Alzheimer's disease (LOAD) starts in the lateral entorhinal allocortex where a failure of clearance mechanisms triggers an accumulation of neurotoxic amyloid-β42 oligomers (Aβ42-os). In neurons and astrocytes, Aβ42-os enhance the transcription of Aβ precursor protein (APP) and β-secretase/BACE1 genes. Thus, by acting together with γ-secretase, the surpluses of APP and BACE1 amplify the endogenous production of Aβ42-os which pile up, damage mitochondria, and are oversecreted. At the plasmalemma, exogenous Aβ42-os bind neurons' and astrocytes' calcium-sensing receptors (CaSRs) activating a set of intracellular signaling pathways which upkeep Aβ42-os intracellular accumulation and oversecretion by hindering Aβ42-os proteolysis. In addition, Aβ42-os accumulating in the extracellular milieu spread and reach mounting numbers of adjacent and remoter teams of neurons and astrocytes which in turn are recruited, again via Aβ42-os•CaSR-governed mechanisms, to produce and release additional Aβ42-os amounts. This relentless self-sustaining mechanism drives AD progression toward upper cortical areas. Later on accumulating Aβ42-os elicit the advent of hyperphosphorylated (p)-Tau oligomers which acting together with Aβ42-os and other glial neurotoxins cooperatively destroy wider and wider cognition-related cortical areas. In parallel, Aβ42-os•CaSR signals also elicit an excess production and secretion of nitric oxide and vascular endothelial growth factor-A from astrocytes, of Aβ42-os and myelin basic protein from oligodendrocytes, and of proinflammatory cytokines, nitric oxide and (likely) Aβ42-os from microglia. Activated astrocytes and microglia survive the toxic onslaught, whereas neurons and oligodendrocytes increasingly die. However, we have shown that highly selective allosteric CaSR antagonists (calcilytics), like NPS 2143 and NPS 89626, efficiently suppress all the neurotoxic effects Aβ42-os•CaSR signaling drives in cultured cortical untransformed human neurons and astrocytes. In fact, calcilytics increase Aβ42 proteolysis and discontinue the oversecretion of Aβ42-os, nitric oxide, and vascular endothelial growth factor-A from both astrocytes and neurons. Seemingly, calcilytics would also benefit the other types of glial cells and cerebrovascular cells otherwise damaged by the effects of Aβ42-os•CaSR signaling. Thus, given at amnestic minor cognitive impairment (aMCI) or initial symptomatic stages, calcilytics could prevent or terminate the propagation of LOAD neuropathology and preserve human neurons' viability and hence patients' cognitive abilities.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| | - Daisong Liu
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
- Proteomics Laboratory, Institute for Burn Research, Third Military Medical UniversityChongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| |
Collapse
|
46
|
Prade E, Barucker C, Sarkar R, Althoff-Ospelt G, Lopez del Amo JM, Hossain S, Zhong Y, Multhaup G, Reif B. Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer's Disease Amyloid-β Peptide Which Exhibit Reduced Neurotoxicity. Biochemistry 2016; 55:1839-49. [PMID: 26900939 DOI: 10.1021/acs.biochem.5b01272] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease is characterized by deposition of the amyloid β-peptide (Aβ) in brain tissue of affected individuals. In recent years, many potential lead structures have been suggested that can potentially be used for diagnosis and therapy. However, the mode of action of these compounds is so far not understood. Among these small molecules, the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide received a lot of attention. In this manuscript, we characterize the interaction between the monomeric Aβ peptide and the NSAID sulindac sulfide. We find that sulindac sulfide efficiently depletes the pool of toxic oligomers by enhancing the rate of fibril formation. In vitro, sulindac sulfide forms colloidal particles which catalyze the formation of fibrils. Aggregation is immediate, presumably by perturbing the supersaturated Aβ solution. We find that sulindac sulfide induced Aβ aggregates are structurally homogeneous. The C-terminal part of the peptide adopts a β-sheet structure, whereas the N-terminus is disordered. The salt bridge between D23 and K28 is present, similar as in wild type fibril structures. (13)C-(19)F transferred echo double resonance experiments suggest that sulindac sulfide colocalizes with the Aβ peptide in the aggregate.
Collapse
Affiliation(s)
- Elke Prade
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM) , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Christian Barucker
- Department of Pharmacology & Therapeutics, McGill University , 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Riddhiman Sarkar
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM) , Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | - Juan Miguel Lopez del Amo
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Shireen Hossain
- Department of Pharmacology & Therapeutics, McGill University , 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Yifei Zhong
- Department of Pharmacology & Therapeutics, McGill University , 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Gerd Multhaup
- Department of Pharmacology & Therapeutics, McGill University , 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM) , Lichtenbergstrasse 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
47
|
Astaxanthin Protects Primary Hippocampal Neurons against Noxious Effects of Aβ-Oligomers. Neural Plast 2016; 2016:3456783. [PMID: 27034843 PMCID: PMC4791503 DOI: 10.1155/2016/3456783] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/28/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022] Open
Abstract
Increased reactive oxygen species (ROS) generation and the ensuing oxidative stress contribute to Alzheimer's disease pathology. We reported previously that amyloid-β peptide oligomers (AβOs) produce aberrant Ca2+ signals at sublethal concentrations and decrease the expression of type-2 ryanodine receptors (RyR2), which are crucial for hippocampal synaptic plasticity and memory. Here, we investigated whether the antioxidant agent astaxanthin (ATX) protects neurons from AβOs-induced excessive mitochondrial ROS generation, NFATc4 activation, and RyR2 mRNA downregulation. To determine mitochondrial H2O2 production or NFATc4 nuclear translocation, neurons were transfected with plasmids coding for HyperMito or NFATc4-eGFP, respectively. Primary hippocampal cultures were incubated with 0.1 μM ATX for 1.5 h prior to AβOs addition (500 nM). We found that incubation with ATX (≤10 μM) for ≤24 h was nontoxic to neurons, evaluated by the live/dead assay. Preincubation with 0.1 μM ATX also prevented the neuronal mitochondrial H2O2 generation induced within minutes of AβOs addition. Longer exposures to AβOs (6 h) promoted NFATc4-eGFP nuclear translocation and decreased RyR2 mRNA levels, evaluated by detection of the eGFP-tagged fluorescent plasmid and qPCR, respectively. Preincubation with 0.1 μM ATX prevented both effects. These results indicate that ATX protects neurons from the noxious effects of AβOs on mitochondrial ROS production, NFATc4 activation, and RyR2 gene expression downregulation.
Collapse
|
48
|
Cheng F, Bourseau-Guilmain E, Belting M, Fransson LÅ, Mani K. Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction. Glycobiology 2016; 26:623-34. [DOI: 10.1093/glycob/cww007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
|
49
|
Bukar Maina M, Al-Hilaly YK, Serpell LC. Nuclear Tau and Its Potential Role in Alzheimer's Disease. Biomolecules 2016; 6:9. [PMID: 26751496 PMCID: PMC4808803 DOI: 10.3390/biom6010009] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/16/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022] Open
Abstract
Tau protein, found in both neuronal and non-neuronal cells, forms aggregates in neurons that constitutes one of the hallmarks of Alzheimer’s disease (AD). For nearly four decades, research efforts have focused more on tau’s role in physiology and pathology in the context of the microtubules, even though, for over three decades, tau has been localised in the nucleus and the nucleolus. Its nuclear and nucleolar localisation had stimulated many questions regarding its role in these compartments. Data from cell culture, mouse brain, and the human brain suggests that nuclear tau could be essential for genome defense against cellular distress. However, its nature of translocation to the nucleus, its nuclear conformation and interaction with the DNA and other nuclear proteins highly suggest it could play multiple roles in the nucleus. To find efficient tau-based therapies, there is a need to understand more about the functional relevance of the varied cellular distribution of tau, identify whether specific tau transcripts or isoforms could predict tau’s localisation and function and how they are altered in diseases like AD. Here, we explore the cellular distribution of tau, its nuclear localisation and function and its possible involvement in neurodegeneration.
Collapse
Affiliation(s)
- Mahmoud Bukar Maina
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
- Department of Human Anatomy, College of Medical Science, Gombe State University, Gombe 760, Nigeria.
| | - Youssra K Al-Hilaly
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
- Chemistry Department, College of Sciences, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
| |
Collapse
|
50
|
Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function. Sci Rep 2015; 5:15410. [PMID: 26510576 PMCID: PMC4625140 DOI: 10.1038/srep15410] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022] Open
Abstract
The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically “trapping” low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal.
Collapse
|