1
|
Osipov AV, Starkov VG, Tsetlin VI, Utkin YN. Cobra Three-Finger Toxins Interact with RNA and DNA: Nucleic Acids as Their Putative Biological Targets. Int J Mol Sci 2025; 26:4291. [PMID: 40362528 PMCID: PMC12072136 DOI: 10.3390/ijms26094291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Three-finger toxins (TFTs), including neurotoxins and cytotoxins, form one of the largest families of snake venom proteins and interact with various biological targets. Neurotoxins target proteinaceous receptors while cytotoxins interact mainly with the lipids of cell membranes and to a lesser extent with carbohydrates. However, no data about the interaction of TFTs with nucleic acids can be found. To detect this interaction, we applied spectrophotometry, ion-paired HPLC and electrophoretic mobility shift assay (EMSA). Using spectrophotometry, we found that TFTs from cobra venom increased the optical density of an RNA solution in a time-dependent manner indicating toxin interaction with RNA. A decrease in the net negative charge of the RNA molecule upon interaction with neurotoxin II from cobra venom was revealed by ion-pair HPLC. EMSA showed decreased electrophoretic mobility of both RNA and DNA upon addition of different TFTs including the non-conventional cobra toxin WTX and water-soluble recombinant human three-finger protein lynx1. We suggest that the interaction with nucleic acids may be a common property of TFTs, and some biological effects of TFTs, for example, cytotoxin-induced apoptosis in cancer cell lines, may be mediated by interaction with nucleic acids.
Collapse
Affiliation(s)
| | | | | | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (A.V.O.); (V.G.S.); (V.I.T.)
| |
Collapse
|
2
|
Van Pottelberge R, Matthessen R, Salem S, Goffin B, Oien N, Bharti P, Ripley D. Importance of RNase monitoring during large-scale manufacturing and analysis of mRNA-LNP based vaccines. J Pharm Sci 2025; 114:1520-1528. [PMID: 39414076 DOI: 10.1016/j.xphs.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Ribonucleases (RNases) are ubiquitous in nature, being able to cleave a wide range of polyribonucleotides. While the presence of microbial and viral contamination in sterile manufacturing is highly studied and controlled, there are no standardized practices for evaluating RNase in the production facility. Since the COVID-19 pandemic, mRNA-LNP based vaccines have become part of routine large-scale manufacturing. The unstable nature of mRNA poses new challenges to safeguard the working efficacy of mRNA - Lipid nanoparticle (LNP) based vaccines or therapeutics, where the presence of RNase in the formulation process could have a profound impact on the mRNA integrity. In this article, lessons learned are presented with respect to the evaluation of RNase contamination during LNP drug product formulation and analysis. Using sensitive detection methods, the potential presence of RNase in the manufacturing of mRNA-LNPs was investigated. Additionally, capillary gel electrophoresis (CGE) data, used to measure mRNA integrity, demonstrate the quality of the active mRNA substance and importance of suitable RNase control strategies. The results and cases presented in this paper should pave the way forward for evaluation and control strategies dedicated to mRNA-LNP based vaccines and therapeutics.
Collapse
Affiliation(s)
- Robbe Van Pottelberge
- Global Technology & Engineering, Manufacturing Science & Technology - Experimental Pilot Plant, Pfizer Manufacturing, Rijksweg 12, 2870 Puurs-Sint-Amands, Belgium.
| | - Roman Matthessen
- Global Technology & Engineering, Manufacturing Science & Technology - Experimental Pilot Plant, Pfizer Manufacturing, Rijksweg 12, 2870 Puurs-Sint-Amands, Belgium
| | - Shauna Salem
- Analytical Research and Development, Pfizer, Andover, USA
| | - Ben Goffin
- Global Technology & Engineering, Manufacturing Science & Technology - Experimental Pilot Plant, Pfizer Manufacturing, Rijksweg 12, 2870 Puurs-Sint-Amands, Belgium
| | - Nancee Oien
- Drug Product Manufacturing Technology, Pfizer, Kalamazoo, MI, USA
| | | | - David Ripley
- Analytical Research and Development, Pfizer, Andover, USA
| |
Collapse
|
3
|
Shlyakhovenko V, Samoylenko O, Verbinenko A, Ganusevich I. ROLE OF RIBONUCLEASES IN THE REGULATION OF IMMUNE RESPONSE. Exp Oncol 2024; 46:192-201. [PMID: 39704462 DOI: 10.15407/exp-oncology.2024.03.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Indexed: 12/21/2024]
Abstract
Ribonucleases (RNases) perform many different functions in living systems. They are responsible for the formation and processing of various ribonucleic acids (RNAs), including the messenger RNA and all types of microRNAs, and determine the duration of the existence of different RNAs in the cell and extracellular environment. RNases are ubiquitously expressed in many tissue types. This short review discusses the major types and main functions of RNases, their homeostatic functions, influence of transcription, immunomodulation, and the role of extracellular RNases in the immune defense mechanisms.
Collapse
Affiliation(s)
- V Shlyakhovenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O Samoylenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - A Verbinenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - I Ganusevich
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Li YC, Yamaguchi H, Liu YY, Hsu KC, Sun TH, Sun PC, Hung MC. Structural insights into EphA4 unconventional activation from prediction of the EphA4 and its complex with ribonuclease 1. Am J Cancer Res 2022; 12:4865-4878. [PMID: 36381327 PMCID: PMC9641407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 06/16/2023] Open
Abstract
It has been shown that several ribonuclease (RNase) A superfamily proteins serve as ligands of receptor tyrosine kinases (RTKs), representing a new concept for ligand/receptor interaction. Moreover, recent studies indicate high clinical values for this type of ligand/RTK interactions. However, there is no structural report for this new family of ligand/receptor. In an attempt to understand how RNase and RTK may interact, we focused on the RNase1/ephrin type-A receptor 4 (EphA4) complex and predicted their structure by using the state-of-the-art machine learning method, AlphaFold and its derivative method, AF2Complex. In this model, electrostatic force plays an essential role for the specific ligand/receptor interaction. We found the R39 of RNase1 is the key residue for EphA4-binding and activation. Mutation on this residue causes disruption of an essential basic patch, resulting in weaker ligand-receptor association and leading to the loss of activation. By comparing the surface charge distribution of the RNase A superfamily, we found the positively charged residues on the RNase1 surface is more accessible for EphA4 forming salt bridges than other RNases. Furthermore, RNase1 binds to the ligand-binding domain (LBD) of EphA4, which is responsible for the traditional ligand ephrin-binding. Our model reveals the location of RNase1 on EphA4 partially overlaps with that of ephrin-A5, a traditional ligand of EphA4, suggesting steric hindrance as the basis by which the ephrin-A5 precludes interactions of RNase1 with EphA4. Together, our discovery of RNase1/EphA4 interface provides a potential treatment strategy by blocking the RNase1-EphA4 axis.
Collapse
Affiliation(s)
- Yi-Chuan Li
- Department of Biological Science and Technology, China Medical UniversityTaichung, Taiwan
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
| | - Yen-Yi Liu
- Department of Public Health, China Medical UniversityTaichung, Taiwan
- Department of Biology, National Changhua University of EducationChanghua, Taiwan
| | - Kai-Cheng Hsu
- Artificial Intelligence Center for Medical Diagnosis, China Medical University HospitalTaichung, Taiwan
- Department of Medicine, China Medical UniversityTaichung, Taiwan
| | - Ting-Hsuan Sun
- Artificial Intelligence Center for Medical Diagnosis, China Medical University HospitalTaichung, Taiwan
| | - Pei-Chi Sun
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
- Department of Biotechnology, Asia UniversityTaichung, Taiwan
| |
Collapse
|
5
|
Garnett ER, Raines RT. Emerging biological functions of ribonuclease 1 and angiogenin. Crit Rev Biochem Mol Biol 2021; 57:244-260. [PMID: 34886717 DOI: 10.1080/10409238.2021.2004577] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic-type ribonucleases (ptRNases) are a large family of vertebrate-specific secretory endoribonucleases. These enzymes catalyze the degradation of many RNA substrates and thereby mediate a variety of biological functions. Though the homology of ptRNases has informed biochemical characterization and evolutionary analyses, the understanding of their biological roles is incomplete. Here, we review the functions of two ptRNases: RNase 1 and angiogenin. RNase 1, which is an abundant ptRNase with high catalytic activity, has newly discovered roles in inflammation and blood coagulation. Angiogenin, which promotes neovascularization, is now known to play roles in the progression of cancer and amyotrophic lateral sclerosis, as well as in the cellular stress response. Ongoing work is illuminating the biology of these and other ptRNases.
Collapse
Affiliation(s)
- Emily R Garnett
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Windsor IW, Dudley DM, O'Connor DH, Raines RT. Ribonuclease zymogen induces cytotoxicity upon HIV-1 infection. AIDS Res Ther 2021; 18:77. [PMID: 34702287 PMCID: PMC8549155 DOI: 10.1186/s12981-021-00399-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting RNA is a promising yet underdeveloped modality for the selective killing of cells infected with HIV-1. The secretory ribonucleases (RNases) found in vertebrates have cytotoxic ribonucleolytic activity that is kept in check by a cytosolic ribonuclease inhibitor protein, RI. METHODS We engineered amino acid substitutions that enable human RNase 1 to evade RI upon its cyclization into a zymogen that is activated by the HIV-1 protease. In effect, the zymogen has an HIV-1 protease cleavage site between the termini of the wild-type enzyme, thereby positioning a cleavable linker over the active site that blocks access to a substrate. RESULTS The amino acid substitutions in RNase 1 diminish its affinity for RI by 106-fold and confer high toxicity for T-cell leukemia cells. Pretreating these cells with the zymogen leads to a substantial drop in their viability upon HIV-1 infection, indicating specific toxicity toward infected cells. CONCLUSIONS These data demonstrate the utility of ribonuclease zymogens as biologic prodrugs.
Collapse
Affiliation(s)
- Ian W Windsor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
7
|
Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nat Commun 2021; 12:2788. [PMID: 33986289 PMCID: PMC8119676 DOI: 10.1038/s41467-021-23075-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Human ribonuclease 1 (hRNase 1) is critical to extracellular RNA clearance and innate immunity to achieve homeostasis and host defense; however, whether it plays a role in cancer remains elusive. Here, we demonstrate that hRNase 1, independently of its ribonucleolytic activity, enriches the stem-like cell population and enhances the tumor-initiating ability of breast cancer cells. Specifically, secretory hRNase 1 binds to and activates the tyrosine kinase receptor ephrin A4 (EphA4) signaling to promote breast tumor initiation in an autocrine/paracrine manner, which is distinct from the classical EphA4-ephrin juxtacrine signaling through contact-dependent cell-cell communication. In addition, analysis of human breast tumor tissue microarrays reveals a positive correlation between hRNase 1, EphA4 activation, and stem cell marker CD133. Notably, high hRNase 1 level in plasma samples is positively associated with EphA4 activation in tumor tissues from breast cancer patients, highlighting the pathological relevance of the hRNase 1-EphA4 axis in breast cancer. The discovery of hRNase 1 as a secretory ligand of EphA4 that enhances breast cancer stemness suggests a potential treatment strategy by inactivating the hRNase 1-EphA4 axis.
Collapse
|
8
|
Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020; 8:619221. [PMID: 33392206 PMCID: PMC7775424 DOI: 10.3389/fcell.2020.619221] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Sayers J, Wralstad EC, Raines RT. Semisynthesis of Human Ribonuclease-S. Bioconjug Chem 2020; 32:82-87. [PMID: 33296182 DOI: 10.1021/acs.bioconjchem.0c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its conception, the ribonuclease S complex (RNase S) has led to historic discoveries in protein chemistry, enzymology, and related fields. Derived by the proteolytic cleavage of a single peptide bond in bovine pancreatic ribonuclease (RNase A), RNase S serves as a convenient and reliable model system for incorporating unlimited functionality into an enzyme. Applications of the RNase S system in biomedicine and biotechnology have, however, been hindered by two shortcomings: (1) the bovine-derived enzyme could elicit an immune response in humans, and (2) the complex is susceptible to dissociation. Here, we have addressed both limitations in the first semisynthesis of an RNase S conjugate derived from human pancreatic ribonuclease and stabilized by a covalent interfragment cross-link. We anticipate that this strategy will enable unprecedented applications of the "RNase-S" system.
Collapse
Affiliation(s)
- Jessica Sayers
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Evans C Wralstad
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Eller CH, Raines RT. Antimicrobial Synergy of a Ribonuclease and a Peptide Secreted by Human Cells. ACS Infect Dis 2020; 6:3083-3088. [PMID: 33054163 DOI: 10.1021/acsinfecdis.0c00594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LL-37 is a secretory peptide that has antimicrobial activity. Ribonuclease 1 (RNase 1) is a secretory enzyme that is not cytotoxic. We find that human LL-37 and human RNase 1 can act synergistically to kill Gram-negative bacterial cells. In the presence of nontoxic concentrations of LL-37, RNase 1 is toxic to Escherichia coli cells at picomolar levels. Using wild-type RNase 1 and an inactive variant labeled with a fluorophore, we observe the adherence of RNase 1 to E. coli cells and its cellular entry in the presence of LL-37. These data suggest a natural means of modulating the human microbiome via the cooperation of an endogenous peptide (37 residues) and small enzyme (128 residues).
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
12
|
Windsor IW, Graff CJ, Raines RT. Circular zymogens of human ribonuclease 1. Protein Sci 2019; 28:1713-1719. [PMID: 31306518 PMCID: PMC6699097 DOI: 10.1002/pro.3686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Abstract
The endogenous production of enzymes as zymogens provides a means to control catalytic activities. Here, we describe the heterologous production of ribonuclease 1 (RNase 1), which is the most prevalent secretory ribonuclease in humans, as a zymogen. In folded RNase 1, the N and C termini flank the enzymic active site. By using intein-mediated cis-splicing, we created circular proteins in which access to the active site of RNase 1 is obstructed by an amino-acid sequence that is recognized by the HIV-1 protease. Installing a sequence that does not perturb the RNase 1 fold led to only modest inactivation. In contrast, the ancillary truncation of residues from each terminus led to a substantial decrease in the catalytic activity of the zymogen with the maintenance of thermostability. For optimized zymogens, activation by HIV-1 protease led to a > 104 -fold increase in ribonucleolytic activity at a rate comparable to that for the cleavage of endogenous viral substrates. Molecular modeling indicated that these zymogens are inactivated by conformational distortion in addition to substrate occlusion. Because protease levels are elevated in many disease states and ribonucleolytic activity can be cytotoxic, RNase 1 zymogens have potential as generalizable prodrugs.
Collapse
Affiliation(s)
- Ian W. Windsor
- Department of BiochemistryUniversity of Wisconsin−MadisonMadisonWisconsin
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Crystal J. Graff
- Department of BiochemistryUniversity of Wisconsin−MadisonMadisonWisconsin
| | - Ronald T. Raines
- Department of BiochemistryUniversity of Wisconsin−MadisonMadisonWisconsin
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusetts
- Department of ChemistryUniversity of Wisconsin−MadisonMadisonWisconsin
| |
Collapse
|
13
|
Garnett ER, Lomax JE, Mohammed BM, Gailani D, Sheehan JP, Raines RT. Phenotype of ribonuclease 1 deficiency in mice. RNA (NEW YORK, N.Y.) 2019; 25:921-934. [PMID: 31053653 PMCID: PMC6633200 DOI: 10.1261/rna.070433.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/27/2019] [Indexed: 05/06/2023]
Abstract
Biological roles for extracellular RNA (eRNA) have become apparent. For example, eRNA can induce contact activation in blood via activation of the plasma proteases factor XII (FXII) and factor XI (FXI). We sought to reveal the biological role of the secretory enzyme ribonuclease 1 (RNase 1) in an organismal context by generating and analyzing RNase 1 knockout (Rnase1-/-) mice. We found that these mice are viable, healthy, and fertile, though larger than Rnase1+/+ mice. Rnase1-/- plasma contains more RNA than does the plasma of Rnase1+/+ mice. Moreover, the plasma of Rnase1-/- mice clots more rapidly than does wild-type plasma. This phenotype appeared to be due to increased levels of the active form of FXII (FXIIa) in the plasma of Rnase1-/- mice compared to Rnase1+/+ mice, and is consistent with the known effects of eRNA on FXII activation. The apparent activity of FXI in the plasma of Rnase1-/- mice was 1000-fold higher when measured in an assay triggered by a low concentration of tissue factor than in assays based on recalcification, consistent with eRNA enhancing FXI activation by thrombin. These findings suggest that one of the physiological functions of RNase 1 is to degrade eRNA in blood plasma. Loss of this function facilitates FXII and FXI activation, which could have effects on inflammation and blood coagulation. We anticipate that Rnase1-/- mice will be a useful tool for evaluating other hypotheses about the functions of RNase 1 and of eRNA in vivo.
Collapse
Affiliation(s)
- Emily R Garnett
- Graduate Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jo E Lomax
- Graduate Program Molecular and Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Bassem M Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - John P Sheehan
- Department of Medicine/Hematology-Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
14
|
Lee HH, Wang YN, Hung MC. Functional roles of the human ribonuclease A superfamily in RNA metabolism and membrane receptor biology. Mol Aspects Med 2019; 70:106-116. [PMID: 30902663 DOI: 10.1016/j.mam.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 02/08/2023]
Abstract
The human ribonuclease A (hRNase A) superfamily is comprised of 13 members of secretory RNases, most of which are recognized as catabolic enzymes for their ribonucleolytic activity to degrade ribonucleic acids (RNAs) in the extracellular space, where they play a role in innate host defense and physiological homeostasis. Interestingly, human RNases 9-13, which belong to a non-canonical subgroup of the hRNase A superfamily, are ribonucleolytic activity-deficient proteins with unclear biological functions. Moreover, accumulating evidence indicates that secretory RNases, such as human RNase 5, can be internalized into cells facilitated by membrane receptors like the epidermal growth factor receptor to regulate intracellular RNA species, in particular non-coding RNAs, and signaling pathways by either a ribonucleolytic activity-dependent or -independent manner. In this review, we summarize the classical role of hRNase A superfamily in the metabolism of extracellular and intracellular RNAs and update its non-classical function as a cognate ligand of membrane receptors. We further discuss the biological significance and translational potential of using secretory RNases as predictive biomarkers or therapeutic agents in certain human diseases and the pathological settings for future investigations.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
15
|
Ressler VT, Raines RT. Consequences of the Endogenous N-Glycosylation of Human Ribonuclease 1. Biochemistry 2019; 58:987-996. [PMID: 30633504 DOI: 10.1021/acs.biochem.8b01246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonuclease 1 (RNase 1) is the most prevalent human homologue of the archetypal enzyme RNase A. RNase 1 contains sequons for N-linked glycosylation at Asn34, Asn76, and Asn88 and is N-glycosylated at all three sites in vivo. The effect of N-glycosylation on the structure and function of RNase 1 is unknown. By using an engineered strain of the yeast Pichia pastoris, we installed a heptasaccharide (Man5GlcNAc2) on the side chain of Asn34, Asn76, and Asn88 to produce the authentic triglycosylated form of human RNase 1. As a glutamine residue is not a substrate for cellular oligosaccharyltransferase, we used strategic asparagine-to-glutamine substitutions to produce the three diglycosylated and three monoglycosylated forms of RNase 1. We found that the N-glycosylation of RNase 1 at any position attenuates its catalytic activity but enhances both its thermostability and its resistance to proteolysis. N-Glycosylation at Asn34 generates the most active and stable glycoforms, in accord with its sequon being highly conserved among vertebrate species. These data provide new insight on the biological role of the N-glycosylation of a human secretory enzyme.
Collapse
Affiliation(s)
- Valerie T Ressler
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Ronald T Raines
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
16
|
Wang YN, Lee HH, Hung MC. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. J Biomed Sci 2018; 25:83. [PMID: 30449278 PMCID: PMC6241042 DOI: 10.1186/s12929-018-0484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ribonuclease is known to participate in host defense system against pathogens, such as parasites, bacteria, and virus, which results in innate immune response. Nevertheless, its potential impact to host cells remains unclear. Of interest, several ribonucleases do not act as catalytically competent enzymes, suggesting that ribonucleases may be associated with certain intrinsic functions other than their ribonucleolytic activities. Most recently, human pancreatic ribonuclease 5 (hRNase5; also named angiogenin; hereinafter referred to as hRNase5/ANG), which belongs to the human ribonuclease A superfamily, has been demonstrated to function as a ligand of epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase family. As a newly identified EGFR ligand, hRNase5/ANG associates with EGFR and stimulates EGFR and the downstream signaling in a catalytic-independent manner. Notably, hRNase5/ANG, whose level in sera of pancreatic cancer patients, serves as a non-invasive serum biomarker to stratify patients for predicting the sensitivity to EGFR-targeted therapy. Here, we describe the hRNase5/ANG-EGFR pair as an example to highlight a ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases, which are thought as two unrelated protein families associated with distinct biological functions. The notion of serum biomarker-guided EGFR-targeted therapies will also be discussed. Furthering our understanding of this novel ligand-receptor interaction will shed new light on the search of ligands for their cognate receptors, especially those orphan receptors without known ligands, and deepen our knowledge of the fundamental research in membrane receptor biology and the translational application toward the development of precision medicine.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404 Taiwan
| |
Collapse
|
17
|
Thomas SP, Hoang TT, Ressler VT, Raines RT. Human angiogenin is a potent cytotoxin in the absence of ribonuclease inhibitor. RNA (NEW YORK, N.Y.) 2018; 24:1018-1027. [PMID: 29748193 PMCID: PMC6049508 DOI: 10.1261/rna.065516.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/08/2018] [Indexed: 05/13/2023]
Abstract
Angiogenin (ANG) is a secretory ribonuclease that promotes the proliferation of endothelial cells, leading to angiogenesis. This function relies on its ribonucleolytic activity, which is low for simple RNA substrates. Upon entry into the cytosol, ANG is sequestered by the ribonuclease inhibitor protein (RNH1). We find that ANG is a potent cytotoxin for RNH1-knockout HeLa cells, belying its inefficiency as a nonspecific catalyst. The toxicity does, however, rely on the ribonucleolytic activity of ANG and a cytosolic localization, which lead to the accumulation of particular tRNA fragments (tRFs), such as tRF-5 Gly-GCC. These up-regulated tRFs are highly cytotoxic at physiological concentrations. Although ANG is well-known for its promotion of cell growth, our results reveal that ANG can also cause cell death.
Collapse
Affiliation(s)
- Sydney P Thomas
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Trish T Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Valerie T Ressler
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
18
|
Lu L, Li J, Moussaoui M, Boix E. Immune Modulation by Human Secreted RNases at the Extracellular Space. Front Immunol 2018; 9:1012. [PMID: 29867984 PMCID: PMC5964141 DOI: 10.3389/fimmu.2018.01012] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
The ribonuclease A superfamily is a vertebrate-specific family of proteins that encompasses eight functional members in humans. The proteins are secreted by diverse innate immune cells, from blood cells to epithelial cells and their levels in our body fluids correlate with infection and inflammation processes. Recent studies ascribe a prominent role to secretory RNases in the extracellular space. Extracellular RNases endowed with immuno-modulatory and antimicrobial properties can participate in a wide variety of host defense tasks, from performing cellular housekeeping to maintaining body fluid sterility. Their expression and secretion are induced in response to a variety of injury stimuli. The secreted proteins can target damaged cells and facilitate their removal from the focus of infection or inflammation. Following tissue damage, RNases can participate in clearing RNA from cellular debris or work as signaling molecules to regulate the host response and contribute to tissue remodeling and repair. We provide here an overall perspective on the current knowledge of human RNases’ biological properties and their role in health and disease. The review also includes a brief description of other vertebrate family members and unrelated extracellular RNases that share common mechanisms of action. A better knowledge of RNase mechanism of actions and an understanding of their physiological roles should facilitate the development of novel therapeutics.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
19
|
Cadwell CR, Scala F, Li S, Livrizzi G, Shen S, Sandberg R, Jiang X, Tolias AS. Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq. Nat Protoc 2017; 12:2531-2553. [PMID: 29189773 PMCID: PMC6422019 DOI: 10.1038/nprot.2017.120] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurons exhibit a rich diversity of morphological phenotypes, electrophysiological properties, and gene-expression patterns. Understanding how these different characteristics are interrelated at the single-cell level has been difficult because of the lack of techniques for multimodal profiling of individual cells. We recently developed Patch-seq, a technique that combines whole-cell patch-clamp recording, immunohistochemistry, and single-cell RNA-sequencing (scRNA-seq) to comprehensively profile single neurons from mouse brain slices. Here, we present a detailed step-by-step protocol, including modifications to the patching mechanics and recording procedure, reagents and recipes, procedures for immunohistochemistry, and other tips to assist researchers in obtaining high-quality morphological, electrophysiological, and transcriptomic data from single neurons. Successful implementation of Patch-seq allows researchers to explore the multidimensional phenotypic variability among neurons and to correlate gene expression with phenotype at the level of single cells. The entire procedure can be completed in ∼2 weeks through the combined efforts of a skilled electrophysiologist, molecular biologist, and biostatistician.
Collapse
Affiliation(s)
- Cathryn R. Cadwell
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Federico Scala
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Shuang Li
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Giulia Livrizzi
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Shan Shen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Rickard Sandberg
- Ludwig Institute for Cancer Research, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Andreas S. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
20
|
Abstract
Individual neurons vary widely in terms of their gene expression, morphology, and electrophysiological properties. While many techniques exist to study single-cell variability along one or two of these dimensions, very few techniques can assess all three features for a single cell. We recently developed Patch-seq, which combines whole-cell patch clamp recording with single-cell RNA-sequencing and immunohistochemistry to comprehensively profile the transcriptomic, morphologic, and physiologic features of individual neurons. Patch-seq can be broadly applied to characterize cell types in complex tissues such as the nervous system, and to study the transcriptional signatures underlying the multidimensional phenotypes of single cells.
Collapse
Affiliation(s)
- Cathryn R Cadwell
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA
| | - Rickard Sandberg
- Ludwig Institute for Cancer Research, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Nobels väg 3, 171 65 Solna, Stockholm, Sweden
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund Street, Suite 1025.18, Houston, Texas, 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA. .,Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA.
| |
Collapse
|
21
|
Comparative functional analysis of ribonuclease 1 homologs: molecular insights into evolving vertebrate physiology. Biochem J 2017; 474:2219-2233. [PMID: 28495858 DOI: 10.1042/bcj20170173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/30/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Pancreatic-type ribonucleases (ptRNases) comprise a class of highly conserved secretory endoribonucleases in vertebrates. The prototype of this enzyme family is ribonuclease 1 (RNase 1). Understanding the physiological roles of RNase 1 is becoming increasingly important, as engineered forms of the enzyme progress through clinical trials as chemotherapeutic agents for cancer. Here, we present an in-depth biochemical characterization of RNase 1 homologs from a broad range of mammals (human, bat, squirrel, horse, cat, mouse, and cow) and nonmammalian species (chicken, lizard, and frog). We discover that the human homolog of RNase 1 has a pH optimum for catalysis, ability to degrade double-stranded RNA, and affinity for cell-surface glycans that are distinctly higher than those of its homologs. These attributes have relevance for human health. Moreover, the functional diversification of the 10 RNase 1 homologs illuminates the regulation of extracellular RNA and other aspects of vertebrate evolution.
Collapse
|
22
|
Jiang J, Kao CY, Papoutsakis ET. How do megakaryocytic microparticles target and deliver cargo to alter the fate of hematopoietic stem cells? J Control Release 2016; 247:1-18. [PMID: 28024915 DOI: 10.1016/j.jconrel.2016.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
Abstract
Megakaryocytic microparticles (MkMPs), the most abundant MPs in circulation, can induce the differentiation of hematopoietic stem and progenitor cells (HSPCs) into functional megakaryocytes. This MkMP capability could be explored for applications in transfusion medicine but also for delivery of nucleic acids and other molecules to HSPCs for targeted molecular therapy. Understanding how MkMPs target, deliver cargo and alter the fate of HSPCs is important for exploring such applications. We show that MkMPs, which are distinct from Mk exosomes (MkExos), target HSPCs with high specificity since they have no effect on other ontologically or physiologically related cells, namely mesenchymal stem cells, endothelial cells or granulocytes. The outcome is also specific: only cells of the megakaryocytic lineage are generated. Observation of intact fluorescently-tagged MkMPs inside HSPCs demonstrates endocytosis as one mechanism of cargo delivery. Fluorescent labeling and scanning electron microscopy (SEM) imaging show that direct fusion of MkMPs into HSPCs is also engaged in cargo delivery. SEM imaging detailed the membrane-fusion process in four stages leading to full adsorption of MkMPs into HSPCs. Furthermore, macropinocytosis and lipid raft-mediated were shown here as mechanisms of MkMP uptake by HSPC. In contrast, the ontologically related platelet-derived MPs (PMPs) cannot be taken up by HSPCs although they bind to and induce HSPC aggregation. We show that platelet-like thrombin activation is apparently responsible for the different biological effects of MkMPs versus PMPs on HSPCs. We show that HSPC uropods are the preferential site for MkMP binding, and that CD54 (ICAM-1), CD11b, CD18 and CD43, localized on HSPC uropods, are involved in MkMP binding to HSPCs. Finally, we show that MkMP RNA is largely responsible for HSPC programming into Mk differentiation.
Collapse
Affiliation(s)
- Jinlin Jiang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Chen-Yuan Kao
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
23
|
Thomas SP, Kim E, Kim JS, Raines RT. Knockout of the Ribonuclease Inhibitor Gene Leaves Human Cells Vulnerable to Secretory Ribonucleases. Biochemistry 2016; 55:6359-6362. [PMID: 27806571 DOI: 10.1021/acs.biochem.6b01003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ribonuclease inhibitor (RNH1) is a cytosolic protein that binds with femtomolar affinity to human ribonuclease 1 (RNase 1) and homologous secretory ribonucleases. RNH1 contains 32 cysteine residues and has been implicated as an antioxidant. Here, we use CRISPR-Cas9 to knock out RNH1 in HeLa cells. We find that cellular RNH1 affords marked protection from the lethal ribonucleolytic activity of RNase 1 but not from oxidants. We conclude that RNH1 protects cytosolic RNA from invading ribonucleases.
Collapse
Affiliation(s)
- Sydney P Thomas
- Graduate Program in Cellular & Molecular Biology, University of Wisconsin-Madison , 1525 Linden Drive, Madison, Wisconsin 53706, United States
| | - Eunji Kim
- Center for Genome Engineering, Institute for Basic Science , Seoul 08826, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science , Seoul 08826, Republic of Korea
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Dentis JL, Schreiber NB, Gilliam JN, Schutz LF, Spicer LJ. Changes in brain ribonuclease (BRB) messenger RNA in granulosa cells (GCs) of dominant vs subordinate ovarian follicles of cattle and the regulation of BRB gene expression in bovine GCs. Domest Anim Endocrinol 2016; 55:32-40. [PMID: 26773365 PMCID: PMC4779677 DOI: 10.1016/j.domaniend.2015.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022]
Abstract
Brain ribonuclease (BRB) is a member of the ribonuclease A superfamily that is constitutively expressed in a range of tissues and is the functional homolog of human ribonuclease 1. This study was designed to characterize BRB gene expression in granulosa cells (GCs) during development of bovine dominant ovarian follicles and to determine the hormonal regulation of BRB in GCs. Estrous cycles of Holstein cows (n = 18) were synchronized, and cows were ovariectomized on either day 3 to 4 or day 5 to 6 after ovulation during dominant follicle growth and selection. Ovaries were collected, follicular fluid (FFL) was aspirated, and GCs were collected for RNA isolation and quantitative polymerase chain reaction. Follicles were categorized as small (1-5 mm; pooled per ovary), medium (5-8 mm; individually collected), or large (8.1-17 mm; individually collected) based on surface diameter. Estradiol (E2) and progesterone (P4) levels were measured by radioimmunoassay (RIA) in FFL. Abundance of BRB messenger RNA (mRNA) in GCs was 8.6- to 11.8-fold greater (P < 0.05) in small (n = 31), medium (n = 66), and large (n = 33) subordinate E2-inactive (FFL E2 < P4) follicles than in large (n = 16) dominant E2-active (FFL E2 > P4) follicles. In the largest 4 follicles, GCs BRB mRNA abundance was negatively correlated (P < 0.01) with FFL E2 (r = -0.65) and E2:P4 ratio (r = -0.46). In experiment 2, GCs from large (8-22 mm diameter) and small (1-5 mm diameter) follicles were treated with insulin-like growth factor 1 (IGF1; 0 or 30 ng/mL) and/or tumor necrosis factor alpha (0 or 30 ng/mL); IGF1 increased (P < 0.05) BRB mRNA abundance, and tumor necrosis factor alpha decreased (P < 0.001) the IGF1-induced BRB mRNA abundance in large-follicle GCs. In experiment 3 to 6, E2, follicle-stimulating hormone, fibroblast growth factor 9, cortisol, wingless 3A, or sonic hedgehog did not affect (P > 0.10) abundance of BRB mRNA in GCs; thyroxine and luteinizing hormone increased (P < 0.05), whereas prostaglandin E2 (PGE2) decreased (P < 0.05) BRB mRNA abundance in small-follicle GCs. Treatment of small-follicle GCs with recombinant human RNase1 increased (P < 0.05) GCs numbers and E2 production. In conclusion, BRB is a hormonally and developmentally regulated gene in bovine GCs and may regulate E2 production during follicular growth in cattle.
Collapse
Affiliation(s)
- J L Dentis
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - J N Gilliam
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L F Schutz
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
25
|
Eller C, Chao TY, Singarapu KK, Ouerfelli O, Yang G, Markley JL, Danishefsky SJ, Raines RT. Human Cancer Antigen Globo H Is a Cell-Surface Ligand for Human Ribonuclease 1. ACS CENTRAL SCIENCE 2015; 1:181-190. [PMID: 26405690 PMCID: PMC4571170 DOI: 10.1021/acscentsci.5b00164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 05/08/2023]
Abstract
Pancreatic-type ribonucleases are secretory enzymes that catalyze the cleavage of RNA. Recent efforts have endowed the homologues from cow (RNase A) and human (RNase 1) with toxicity for cancer cells, leading to a clinical trial. The basis for the selective toxicity of ribonuclease variants for cancerous versus noncancerous cells has, however, been unclear. A screen for RNase A ligands in an array of mammalian cell-surface glycans revealed strong affinity for a hexasaccharide, Globo H, that is a tumor-associated antigen and the basis for a vaccine in clinical trials. The affinity of RNase A and RNase 1 for immobilized Globo H is in the low micromolar-high nanomolar range. Moreover, reducing the display of Globo H on the surface of human breast adenocarcinoma cells with a small-molecule inhibitor of biosynthesis or a monoclonal antibody antagonist decreases the toxicity of an RNase 1 variant. Finally, heteronuclear single quantum coherence (HSQC) NMR spectroscopy showed that RNase 1 interacts with Globo H by using residues that are distal from the enzymic active site. The discovery that a systemic human ribonuclease binds to a moiety displayed on human cancer cells links two clinical paradigms and suggests a mechanism for innate resistance to cancer.
Collapse
Affiliation(s)
- Chelcie
H. Eller
- Department of Biochemistry, National Magnetic Resonance Facility
at Madison, and Department of Chemistry, University of
Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Tzu-Yuan Chao
- Department of Biochemistry, National Magnetic Resonance Facility
at Madison, and Department of Chemistry, University of
Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kiran K. Singarapu
- Department of Biochemistry, National Magnetic Resonance Facility
at Madison, and Department of Chemistry, University of
Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Ouathek Ouerfelli
- Organic Synthesis Core
Facility and Laboratory for Bioorganic Chemistry, Memorial
Sloan Kettering Cancer Center, New York, New York 10021, United States
| | - Guangbin Yang
- Organic Synthesis Core
Facility and Laboratory for Bioorganic Chemistry, Memorial
Sloan Kettering Cancer Center, New York, New York 10021, United States
| | - John L. Markley
- Department of Biochemistry, National Magnetic Resonance Facility
at Madison, and Department of Chemistry, University of
Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Samuel J. Danishefsky
- Organic Synthesis Core
Facility and Laboratory for Bioorganic Chemistry, Memorial
Sloan Kettering Cancer Center, New York, New York 10021, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ronald T. Raines
- Department of Biochemistry, National Magnetic Resonance Facility
at Madison, and Department of Chemistry, University of
Wisconsin—Madison, Madison, Wisconsin 53706, United States
- E-mail:
| |
Collapse
|