1
|
Anderson AC, Malloch T, Clarke AJ. From structure to function: Decoding peptidoglycan O-acetylation in pathogenic bacteria. Carbohydr Res 2025; 554:109517. [PMID: 40393299 DOI: 10.1016/j.carres.2025.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
Numerous pathogenic and non-pathogenic bacteria modulate the structure of their cell wall to escape the action of lytic enzymes that target it, threatening cell integrity. Of these modifications, the most taxonomically widespread is the addition of an acetyl to the C6 hydroxyl group of muramyl residues within the essential cell-wall heteropolymer peptidoglycan. This modification is found in many clinically important pathogens, including the WHO priority pathogens Neisseria gonorrhoeae, Staphylococcus aureus, Enterococcus faecium, and Streptococcus pneumoniae. In this review, we summarize the last 60 years of discoveries about the genetics, biochemistry, structural biology, and cellular metabolism that underlie this enigmatic bacterial self-defence mechanism.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tyler Malloch
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
2
|
Anderson AC, Schultz BJ, Snow ED, Brott AS, Stangherlin S, Malloch T, London JR, Walker S, Clarke AJ. The mechanism of peptidoglycan O-acetylation in Gram-negative bacteria typifies bacterial MBOAT-SGNH acyltransferases. J Biol Chem 2025; 301:108531. [PMID: 40280421 DOI: 10.1016/j.jbc.2025.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Bacterial cell envelope polymers are commonly modified with acyl groups that provide fitness advantages. Many polymer acylation pathways involve pairs of membrane-bound O-acyltransferase (MBOAT) and SGNH family proteins. As an example, the MBOAT protein PatA and the SGNH protein PatB are required in Gram-negative bacteria for peptidoglycan O-acetylation. The mechanism for how MBOAT-SGNH transferases move acyl groups from acyl-CoA donors made in the cytoplasm to extracellular polymers is unclear. Using the peptidoglycan O-acetyltransferase proteins PatAB, we explore the mechanism of MBOAT-SGNH pairs. We find that the MBOAT protein PatA catalyzes auto-acetylation of an invariant Tyr residue in its conserved C-terminal hexapeptide motif. We also show that PatB can use a synthetic hexapeptide containing an acetylated tyrosine to donate an acetyl group to a peptidoglycan mimetic. Finally, we report the structure of PatB, finding that it has structural features that shape its activity as an O-acetyltransferase and distinguish it from other SGNH esterases and hydrolases. Taken together, our results support a model for peptidoglycan acylation in which a tyrosine-containing peptide at the MBOAT's C-terminus shuttles an acyl group from the MBOAT active site to the SGNH active site, where it is transferred to peptidoglycan. This model likely applies to other systems containing MBOAT-SGNH pairs, such as those that O-acetylate alginate, cellulose, and secondary cell wall polysaccharides.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bailey J Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric D Snow
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashley S Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stefen Stangherlin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Tyler Malloch
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Jalen R London
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada; Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| |
Collapse
|
3
|
Schultz BJ, Walker S. Acyltransferases that Modify Cell Surface Polymers Across the Membrane. Biochemistry 2025; 64:1728-1749. [PMID: 40171682 PMCID: PMC12021268 DOI: 10.1021/acs.biochem.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cell surface oligosaccharides and related polymers are commonly decorated with acyl esters that alter their structural properties and influence their interactions with other molecules. In many cases, these esters are added to polymers that are already positioned on the extracytoplasmic side of a membrane, presenting cells with a chemical challenge because the high-energy acyl donors used for these modifications are made in the cytoplasm. How activated acyl groups are passed from the cytoplasm to extra-cytoplasmic polymers has been a longstanding question. Recent mechanistic work has shown that many bacterial acyl transfer pathways operate by shuttling acyl groups through two covalent intermediates to their final destination on an extracellular polymer. Key to these and other pathways are cross-membrane acyltransferases─enzymes that catalyze transfer of acyl groups from a donor on one side of the membrane to a recipient on the other side. Here we review what has been learned recently about how cross-membrane acyltransferases in polymer acylation pathways function, highlighting the chemical and biosynthetic logic used by two key protein families, membrane-bound O-acyltransferases (MBOATs) and acyltransferase-3 (AT3) proteins. We also point out outstanding questions and avenues for further exploration.
Collapse
Affiliation(s)
- Bailey J. Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Anderson AC, Schultz BJ, Snow ED, Brott AS, Stangherlin S, Malloch T, London JR, Walker S, Clarke AJ. The mechanism of peptidoglycan O-acetylation in Gram-negative bacteria typifies bacterial MBOAT-SGNH acyltransferases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613324. [PMID: 39345430 PMCID: PMC11429678 DOI: 10.1101/2024.09.17.613324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bacterial cell envelope polymers are commonly modified with acyl groups that provide fitness advantages. Many polymer acylation pathways involve pairs of membrane-bound O-acyltransferase (MBOAT) and SGNH family proteins. As an example, the MBOAT protein PatA and the SGNH protein PatB are required in Gram-negative bacteria for peptidoglycan O-acetylation. The mechanism for how MBOAT-SGNH transferases move acyl groups from acyl-CoA donors made in the cytoplasm to extracellular polymers is unclear. Using the peptidoglycan O-acetyltransferase proteins PatAB, we explore the mechanism of MBOAT-SGNH pairs. We find that the MBOAT protein PatA catalyzes auto-acetylation of an invariant Tyr residue in its conserved C-terminal hexapeptide motif. We also show that PatB can use a synthetic hexapeptide containing an acetylated tyrosine to donate an acetyl group to a peptidoglycan mimetic. Finally, we report the structure of PatB, finding that it has structural features that shape its activity as an O-acetyltransferase and distinguish it from other SGNH esterases and hydrolases. Taken together, our results support a model for peptidoglycan acylation in which a tyrosine-containing peptide at the MBOAT's C-terminus shuttles an acyl group from the MBOAT active site to the SGNH active site, where it is transferred to peptidoglycan. This model likely applies to other systems containing MBOAT-SGNH pairs, such as those that O-acetylate alginate, cellulose, and secondary cell wall polysaccharides. The use of an acyl-tyrosine intermediate for MBOAT-SGNH acyl transfer is also shared with AT3-SGNH proteins, a second major group of acyltransferases that modify cell envelope polymers.
Collapse
Affiliation(s)
- Alexander C. Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Bailey J. Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eric D. Snow
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ashley S. Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Stefen Stangherlin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Tyler Malloch
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, Ontario Canada N2L 3C5
| | - Jalen R. London
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, Ontario Canada N2L 3C5
| |
Collapse
|
5
|
Burnett AJN, Rodriguez E, Constable S, Lowrance B, Fish M, Weadge JT. WssI from the Gram-Negative Bacterial Cellulose Synthase is an O-acetyltransferase that Acts on Cello-oligomers with Several Acetyl Donor Substrates. J Biol Chem 2023:104849. [PMID: 37224964 PMCID: PMC10302187 DOI: 10.1016/j.jbc.2023.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
In microbial biofilms, bacterial cells are encased in a self-produced matrix of polymers (e.g., exopolysaccharides) that enable surface adherence and protect against environmental stressors. For example, the wrinkly spreader phenotype of Pseudomonas fluorescens colonizes food/water sources and human tissue to form robust biofilms that can spread across surfaces. This biofilm largely consists of bacterial cellulose produced by the cellulose synthase proteins encoded by the wss operon, which also occurs in other species, including pathogenic Achromobacter species. Although phenotypic mutant analysis of the wssFGHI genes has previously shown that they are responsible for acetylation of bacterial cellulose, their specific roles remain unknown and distinct from the recently identified cellulose phosphoethanolamine modification found in other species. Here we have purified the C-terminal soluble form of WssI from P. fluorescens and A. insuavis and demonstrated acetyl-esterase activity with chromogenic substrates. The kinetic parameters (kcat/KM values of 13 and 8.0 M-1∙ s-1, respectively) indicate that these enzymes are up to four times more catalytically efficient than the closest characterized homolog, AlgJ from the alginate synthase. Unlike AlgJ and its cognate alginate polymer, WssI also demonstrated acetyltransferase activity onto cellulose oligomers (e.g., cellotetraose to cellohexaose) with multiple acetyl-donor substrates (pNP-Ac, MU-Ac and acetyl-CoA). Finally, a high-throughput screen identified three low micromolar WssI inhibitors that may be useful for chemically interrogating cellulose acetylation and biofilm formation.
Collapse
Affiliation(s)
| | - Emily Rodriguez
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Shirley Constable
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Brian Lowrance
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Michael Fish
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
6
|
Anderson AC, Stangherlin S, Pimentel KN, Weadge JT, Clarke AJ. The SGNH hydrolase family: a template for carbohydrate diversity. Glycobiology 2022; 32:826-848. [PMID: 35871440 PMCID: PMC9487903 DOI: 10.1093/glycob/cwac045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
The substitution and de-substitution of carbohydrate materials are important steps in the biosynthesis and/or breakdown of a wide variety of biologically important polymers. The SGNH hydrolase superfamily is a group of related and well-studied proteins with a highly conserved catalytic fold and mechanism composed of 16 member families. SGNH hydrolases can be found in vertebrates, plants, fungi, bacteria, and archaea, and play a variety of important biological roles related to biomass conversion, pathogenesis, and cell signaling. The SGNH hydrolase superfamily is chiefly composed of a diverse range of carbohydrate-modifying enzymes, including but not limited to the carbohydrate esterase families 2, 3, 6, 12 and 17 under the carbohydrate-active enzyme classification system and database (CAZy.org). In this review, we summarize the structural and functional features that delineate these subfamilies of SGNH hydrolases, and which generate the wide variety of substrate preferences and enzymatic activities observed of these proteins to date.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G2W1, Canada
| | - Stefen Stangherlin
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo N2L3C5, Canada
| | - Kyle N Pimentel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G2W1, Canada
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo N2L3C5, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G2W1, Canada
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo N2L3C5, Canada
| |
Collapse
|
7
|
Guo CW, Chen KT, You TY, Lin CC, Cheng WC. Synthesis and Evaluation of Diverse N-Substituted Disaccharide Dipeptides for Human NOD2 Stimulation Activity. Chem Asian J 2021; 17:e202101169. [PMID: 34951523 DOI: 10.1002/asia.202101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Indexed: 11/08/2022]
Abstract
A new strategy for the preparation of distinct N -substituted muropeptides is described. Different orthogonally N -protected disaccharide thioglycosides were designed and synthesized. Among them, compound 4 , qualified as a key intermediate, was utilized for further chemical transformations to develop a series of diverse N -substituted-glucosaminyl N -substituted-muramyl dipeptides (GMDPs). These unique muropeptides were applied for the study of human NOD2 stimulation. Intriguingly, structural modification of the MurNAc residue to N -non-substituted muramic acid (MurNH 2 ) in GMDP dramatically impaired NOD2 stimulatory activity, but GMDPs possessing the glucosamine residue with a free amino group retained NOD2 stimulation activity. This work is the first study to illustrate the impact of both N -substituents of GMDPs on immunostimulatory activities of human NOD2.
Collapse
Affiliation(s)
- Chih-Wei Guo
- Academia Sinica, Genomics Research Center, 128 Sec. 2, Academia Road, Nankang, 11529, Taipei, TAIWAN
| | - Kuo-Ting Chen
- National Dong Hwa University, Department of Chemistry, 1, Sec. 2, Da Hsueh Road, Shoufeng, 974301, Hualien, TAIWAN
| | - Ting-Yun You
- Academia Sinica, Genomics Research Center, 128 Sec. 2, Academia Road, Nankang, 11529, Taipei, TAIWAN
| | - Chun-Cheng Lin
- National Tsing Hua University, Department of Chemistry, 101, Sec. 2, Kuang-Fu Road, 300044, Hsinchu, TAIWAN
| | - Wei-Chieh Cheng
- Academia sinica, Genomics research center, 128, Academia road, sec 2,, 115, Taipei, TAIWAN
| |
Collapse
|
8
|
Acetylation of Surface Carbohydrates in Bacterial Pathogens Requires Coordinated Action of a Two-Domain Membrane-Bound Acyltransferase. mBio 2020; 11:mBio.01364-20. [PMID: 32843546 PMCID: PMC7448272 DOI: 10.1128/mbio.01364-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acyltransferase-3 (AT3) domain-containing membrane proteins are involved in O-acetylation of a diverse range of carbohydrates across all domains of life. In bacteria they are essential in processes including symbiosis, resistance to antimicrobials, and biosynthesis of antibiotics. Their mechanism of action, however, is poorly characterized. We analyzed two acetyltransferases as models for this important family of membrane proteins, which modify carbohydrates on the surface of the pathogen Salmonella enterica, affecting immunogenicity, virulence, and bacteriophage resistance. We show that when these AT3 domains are fused to a periplasmic partner domain, both domains are required for substrate acetylation. The data show conserved elements in the AT3 domain and unique structural features of the periplasmic domain. Our data provide a working model to probe the mechanism and function of the diverse and important members of the widespread AT3 protein family, which are required for biologically significant modifications of cell-surface carbohydrates. Membrane bound acyltransferase-3 (AT3) domain-containing proteins are implicated in a wide range of carbohydrate O-acyl modifications, but their mechanism of action is largely unknown. O-antigen acetylation by AT3 domain-containing acetyltransferases of Salmonella spp. can generate a specific immune response upon infection and can influence bacteriophage interactions. This study integrates in situ and in vitro functional analyses of two of these proteins, OafA and OafB (formerly F2GtrC), which display an “AT3-SGNH fused” domain architecture, where an integral membrane AT3 domain is fused to an extracytoplasmic SGNH domain. An in silico-inspired mutagenesis approach of the AT3 domain identified seven residues which are fundamental for the mechanism of action of OafA, with a particularly conserved motif in TMH1 indicating a potential acyl donor interaction site. Genetic and in vitro evidence demonstrate that the SGNH domain is both necessary and sufficient for lipopolysaccharide acetylation. The structure of the periplasmic SGNH domain of OafB identified features not previously reported for SGNH proteins. In particular, the periplasmic portion of the interdomain linking region is structured. Significantly, this region constrains acceptor substrate specificity, apparently by limiting access to the active site. Coevolution analysis of the two domains suggests possible interdomain interactions. Combining these data, we propose a refined model of the AT3-SGNH proteins, with structurally constrained orientations of the two domains. These findings enhance our understanding of how cells can transfer acyl groups from the cytoplasm to specific extracellular carbohydrates.
Collapse
|
9
|
Martínez-Guitián M, Vázquez-Ucha JC, Álvarez-Fraga L, Conde-Pérez K, Vallejo JA, Perina A, Bou G, Poza M, Beceiro A. Global Transcriptomic Analysis During Murine Pneumonia Infection Reveals New Virulence Factors in Acinetobacter baumannii. J Infect Dis 2020; 223:1356-1366. [DOI: 10.1093/infdis/jiaa522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Infections caused by multidrug-resistant pathogens such as Acinetobacter baumannii constitute a major health problem worldwide. In this study we present a global in vivo transcriptomic analysis of A. baumannii isolated from the lungs of mice with pneumonia infection.
Methods
Mice were infected with A. baumannii ATCC 17978 and AbH12O-A2 strains and the total bacterial RNA were analyzed by RNA sequencing. Lists of differentially expressed genes were obtained and 14 of them were selected for gene deletion and further analysis.
Results
Transcriptomic analysis revealed a specific gene expression profile in A. baumannii during lung infection with upregulation of genes involved in iron acquisition and host invasion. Mutant strains lacking feoA, mtnN, yfgC, basB, hisF, oatA, and bfnL showed a significant loss of virulence in murine pneumonia. A decrease in biofilm formation, adherence to human epithelial cells, and growth rate was observed in selected mutants.
Conclusions
This study provides an insight into A. baumannii gene expression profile during murine pneumonia infection. Data revealed that 7 in vivo upregulated genes were involved in virulence and could be considered new therapeutic targets.
Collapse
Affiliation(s)
- Marta Martínez-Guitián
- Servicio de Microbiología del Complejo Hospitalario Universitario, Instituto de Investigación Biomédica, Centro de Investigaciones Científicas Avanzadas, Universidad de A Coruña, A Coruña, Spain
| | - Juan C Vázquez-Ucha
- Servicio de Microbiología del Complejo Hospitalario Universitario, Instituto de Investigación Biomédica, Centro de Investigaciones Científicas Avanzadas, Universidad de A Coruña, A Coruña, Spain
| | - Laura Álvarez-Fraga
- Servicio de Microbiología del Complejo Hospitalario Universitario, Instituto de Investigación Biomédica, Centro de Investigaciones Científicas Avanzadas, Universidad de A Coruña, A Coruña, Spain
| | - Kelly Conde-Pérez
- Servicio de Microbiología del Complejo Hospitalario Universitario, Instituto de Investigación Biomédica, Centro de Investigaciones Científicas Avanzadas, Universidad de A Coruña, A Coruña, Spain
| | - Juan A Vallejo
- Servicio de Microbiología del Complejo Hospitalario Universitario, Instituto de Investigación Biomédica, Centro de Investigaciones Científicas Avanzadas, Universidad de A Coruña, A Coruña, Spain
| | | | - Germán Bou
- Servicio de Microbiología del Complejo Hospitalario Universitario, Instituto de Investigación Biomédica, Centro de Investigaciones Científicas Avanzadas, Universidad de A Coruña, A Coruña, Spain
| | - Margarita Poza
- Servicio de Microbiología del Complejo Hospitalario Universitario, Instituto de Investigación Biomédica, Centro de Investigaciones Científicas Avanzadas, Universidad de A Coruña, A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario, Instituto de Investigación Biomédica, Centro de Investigaciones Científicas Avanzadas, Universidad de A Coruña, A Coruña, Spain
| |
Collapse
|
10
|
Do T, Page JE, Walker S. Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. J Biol Chem 2020; 295:3347-3361. [PMID: 31974163 DOI: 10.1074/jbc.rev119.010155] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria account for 1000-fold more biomass than humans. They vary widely in shape and size. The morphological diversity of bacteria is due largely to the different peptidoglycan-based cell wall structures that encase bacterial cells. Although the basic structure of peptidoglycan is highly conserved, consisting of long glycan strands that are cross-linked by short peptide chains, the mature cell wall is chemically diverse. Peptidoglycan hydrolases and cell wall-tailoring enzymes that regulate glycan strand length, the degree of cross-linking, and the addition of other modifications to peptidoglycan are central in determining the final architecture of the bacterial cell wall. Historically, it has been difficult to biochemically characterize these enzymes that act on peptidoglycan because suitable peptidoglycan substrates were inaccessible. In this review, we discuss fundamental aspects of bacterial cell wall synthesis, describe the regulation and diverse biochemical and functional activities of peptidoglycan hydrolases, and highlight recently developed methods to make and label defined peptidoglycan substrates. We also review how access to these substrates has now enabled biochemical studies that deepen our understanding of how bacterial cell wall enzymes cooperate to build a mature cell wall. Such improved understanding is critical to the development of new antibiotics that disrupt cell wall biogenesis, a process essential to the survival of bacteria.
Collapse
Affiliation(s)
- Truc Do
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Julia E Page
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
11
|
Zhong R, Cui D, Richardson EA, Phillips DR, Azadi P, Lu G, Ye ZH. Cytosolic Acetyl-CoA Generated by ATP-Citrate Lyase Is Essential for Acetylation of Cell Wall Polysaccharides. PLANT & CELL PHYSIOLOGY 2020; 61:64-75. [PMID: 31503286 DOI: 10.1093/pcp/pcz178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/04/2019] [Indexed: 05/12/2023]
Abstract
Plant cell wall polysaccharides, including xylan, glucomannan, xyloglucan and pectin, are often acetylated. Although a number of acetyltransferases responsible for the acetylation of some of these polysaccharides have been biochemically characterized, little is known about the source of acetyl donors and how acetyl donors are translocated into the Golgi, where these polysaccharides are synthesized. In this report, we investigated roles of ATP-citrate lyase (ACL) that generates cytosolic acetyl-CoA in cell wall polysaccharide acetylation and effects of simultaneous mutations of four Reduced Wall Acetylation (RWA) genes on acetyl-CoA transport into the Golgi in Arabidopsis thaliana. Expression analyses of genes involved in the generation of acetyl-CoA in different subcellular compartments showed that the expression of several ACL genes responsible for cytosolic acetyl-CoA synthesis was elevated in interfascicular fiber cells and induced by secondary wall-associated transcriptional activators. Simultaneous downregulation of the expression of ACL genes was demonstrated to result in a substantial decrease in the degree of xylan acetylation and a severe alteration in secondary wall structure in xylem vessels. In addition, the degree of acetylation of other cell wall polysaccharides, including glucomannan, xyloglucan and pectin, was also reduced. Moreover, Golgi-enriched membrane vesicles isolated from the rwa1/2/3/4 quadruple mutant were found to exhibit a drastic reduction in acetyl-CoA transport activity compared with the wild type. These findings indicate that cytosolic acetyl-CoA generated by ACL is essential for cell wall polysaccharide acetylation and RWAs are required for its transport from the cytosol into the Golgi.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dongtao Cui
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | | | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Grace Lu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Brott AS, Sychantha D, Clarke AJ. Assays for the Enzymes Catalyzing the O-Acetylation of Bacterial Cell Wall Polysaccharides. Methods Mol Biol 2019; 1954:115-136. [PMID: 30864128 DOI: 10.1007/978-1-4939-9154-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The polysaccharides that comprise bacterial cell walls are commonly O-acetylated. This modification confers resistance to hydrolases of innate immune systems and/or controls endogenous autolytic activity. Herein, we present protocols for the compositional analysis of bacterial cell wall O-acetylation, and assays for monitoring O-acetyltransferases and O-acetylesterases. The assays are amenable for the development of high-throughput screens in search of inhibitors of the respective enzymes.
Collapse
Affiliation(s)
- Ashley S Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - David Sychantha
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
13
|
Brott AS, Clarke AJ. Peptidoglycan O-Acetylation as a Virulence Factor: Its Effect on Lysozyme in the Innate Immune System. Antibiotics (Basel) 2019; 8:E94. [PMID: 31323733 PMCID: PMC6783866 DOI: 10.3390/antibiotics8030094] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 11/16/2022] Open
Abstract
The peptidoglycan sacculus of both Gram-positive and Gram-negative bacteria acts as a protective mesh and provides structural support around the entirety of the cell. The integrity of this structure is of utmost importance for cell viability and so naturally is the first target for attack by the host immune system during bacterial infection. Lysozyme, a muramidase and the first line of defense of the innate immune system, targets the peptidoglycan sacculus hydrolyzing the β-(1→4) linkage between repeating glycan units, causing lysis and the death of the invading bacterium. The O-acetylation of N-acetylmuramoyl residues within peptidoglycan precludes the productive binding of lysozyme, and in doing so renders it inactive. This modification has been shown to be an important virulence factor in pathogens such as Staphylococcus aureus and Neisseria gonorrhoeae and is currently being investigated as a novel target for anti-virulence therapies. This article reviews interactions made between peptidoglycan and the host immune system, specifically with respect to lysozyme, and how the O-acetylation of the peptidoglycan interrupts these interactions, leading to increased pathogenicity.
Collapse
Affiliation(s)
- Ashley S Brott
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Anthony J Clarke
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
14
|
The hydrolase LpqI primes mycobacterial peptidoglycan recycling. Nat Commun 2019; 10:2647. [PMID: 31201321 PMCID: PMC6572805 DOI: 10.1038/s41467-019-10586-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Growth and division by most bacteria requires remodelling and cleavage of their cell wall. A byproduct of this process is the generation of free peptidoglycan (PG) fragments known as muropeptides, which are recycled in many model organisms. Bacteria and hosts can harness the unique nature of muropeptides as a signal for cell wall damage and infection, respectively. Despite this critical role for muropeptides, it has long been thought that pathogenic mycobacteria such as Mycobacterium tuberculosis do not recycle their PG. Herein we show that M. tuberculosis and Mycobacterium bovis BCG are able to recycle components of their PG. We demonstrate that the core mycobacterial gene lpqI, encodes an authentic NagZ β-N-acetylglucosaminidase and that it is essential for PG-derived amino sugar recycling via an unusual pathway. Together these data provide a critical first step in understanding how mycobacteria recycle their peptidoglycan. Bacterial growth and division require remodelling of the cell wall, which generates free peptidoglycan fragments. Here, Moynihan et al. show that Mycobacterium tuberculosis can recycle components of their peptidoglycan, and characterise a crucial enzyme required for this process.
Collapse
|
15
|
Brott AS, Jones CS, Clarke AJ. Development of a High Throughput Screen for the Identification of Inhibitors of Peptidoglycan O-Acetyltransferases, New Potential Antibacterial Targets. Antibiotics (Basel) 2019; 8:E65. [PMID: 31137799 PMCID: PMC6627197 DOI: 10.3390/antibiotics8020065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/02/2022] Open
Abstract
The O-acetylation of peptidoglycan occurs in many Gram-negative and most Gram-positive pathogens and this modification to the essential wall polymer controls the lytic activity of the autolysins, particularly the lytic transglycosylases, and inhibits that of the lysozymes of innate immunity systems. As such, the peptidoglycan O-acetyltransferases PatA/B and OatA are recognized as virulence factors. In this study, we present the high throughput screening of small compound libraries to identify the first known inhibitors of these enzymes. The fluorometric screening assay developed involved monitoring the respective O-acetyltransferases as esterases using 4-methylumbelliferylacetate as substrate. Pilot screens of 3921 compounds validated the usefulness of the HTS protocol. A number of potential inhibitors were identified amongst a total of 145,000 low molecular-weight compounds, some of which were common to both enzymes, while others were unique to each. After eliminating a number of false positives in secondary screens, dose response curves confirmed the apparent specificity of a benzothiazolyl-pyrazolo-pyridine as an inhibitor of Neisseria gonorrhoeae PatB, and several coumarin-based compounds as inhibitors of both this PatB and OatA from Staphylococcus aureus. The benzothiazolyl-pyrazolo-pyridine was determined to be a non-competitive inhibitor of PatB with a Ki of 126 µM. At 177 µg/mL and close to its solubility limit, this compound caused a 90% reduction in growth of N. gonorrhoeae, while growth of Escherichia coli, a bacterium that lacks PatB and, hence, does not produce O-acetylated peptidoglycan, was unaffected. These data provide preliminary proof of concept that peptidoglycan O-acetyltransferases would serve as useful antibacterial targets.
Collapse
Affiliation(s)
- Ashley S Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Carys S Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
16
|
Zhong R, Cui D, Ye ZH. Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains. PLANTA 2018; 248:1159-1171. [PMID: 30083810 DOI: 10.1007/s00425-018-2972-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 05/26/2023]
Abstract
AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are O-acetyltransferases acetylating fucosylated galactose residues on xyloglucan and AXY9 does not directly catalyze O-acetylation of xyloglucan but exhibits weak acetylesterase activity. Xyloglucan is a major hemicellulose that cross-links cellulose in the primary walls of dicot plants and the galactose (Gal) residues on its side chains can be mono- and di-O-acetylated. In Arabidopsis thaliana, mutations of three AXY (altered xyloglucan) genes, AXY4, AXY4L and AXY9, have previously been shown to cause a reduction in xyloglucan acetylation, but their biochemical functions remain to be investigated. In this report, we demonstrated that recombinant proteins of AXY4/XGOAT1 (xyloglucan O-acetyltransferase1), AXY4L/XGOAT2 and their close homologs from Populus trichocarpa, PtrXGOATs, displayed O-acetyltransferase activities transferring acetyl groups from acetyl CoA onto xyloglucan oligomers. Structural analysis of XGOAT-catalyzed reaction products revealed that XGOATs mediated predominantly 6-O-monoacetylation and a much lesser degree of 3-O and 4-O-monoacetylation and 4,6-di-O-acetylation of Gal residues on xyloglucan side chains. XGOATs appeared to preferentially acetylate fucosylated Gal residues with little activity toward non-fucosylated Gal residues. Mutations of the conserved amino acid residues in the GDS and DXXH motifs in AXY4/XGOAT1 resulted in a drastic reduction in its ability to transfer acetyl groups onto xyloglucan oligomers. In addition, although recombinant AXY9 was unable to transfer acetyl groups from acetyl CoA onto xyloglucan oligomers, it was catalytically active as demonstrated by its weak acetylesterase activity that was also exhibited by AXY4/XGOAT1 and AXY4L/XGOAT2. Furthermore, we showed that the AXY8 fucosidase was able to hydrolyze fucosyl residues from both non-acetylated and acetylated xyloglucan oligomers. These findings provide biochemical evidence that AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are xyloglucan O-acetyltransferases catalyzing acetyl transfer onto fucosylated Gal residues on xyloglucan side chains and the defucosylation of these acetylated side chains by apoplastic AXY8 generates side chains with acetylated, non-fucosylated Gal residues.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dongtao Cui
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
17
|
Sychantha D, Brott AS, Jones CS, Clarke AJ. Mechanistic Pathways for Peptidoglycan O-Acetylation and De-O-Acetylation. Front Microbiol 2018; 9:2332. [PMID: 30327644 PMCID: PMC6174289 DOI: 10.3389/fmicb.2018.02332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
The post-synthetic O-acetylation of the essential component of bacterial cell walls, peptidoglycan (PG), is performed by many pathogenic bacteria to help them evade the lytic action of innate immunity responses. Occurring at the C-6 hydroxyl of N-acetylmuramoyl residues, this modification to the glycan backbone of PG sterically blocks the activity of lysozymes. As such, the enzyme responsible for this modification in Gram-positive bacteria is recognized as a virulence factor. With Gram-negative bacteria, the O-acetylation of PG provides a means of control of their autolysins at the substrate level. In this review, we discuss the pathways for PG O-acetylation and de-O-acetylation and the structure and function relationship of the O-acetyltransferases and O-acetylesterases that catalyze these reactions. The current understanding of their mechanisms of action is presented and the prospects of targeting these systems for the development of novel therapeutics are explored.
Collapse
Affiliation(s)
| | | | | | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
The increase of O-acetylation and N-deacetylation in cell wall promotes acid resistance and nisin production through improving cell wall integrity in Lactococcus lactis. ACTA ACUST UNITED AC 2018; 45:813-825. [DOI: 10.1007/s10295-018-2052-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/28/2018] [Indexed: 01/15/2023]
Abstract
Abstract
Cell wall is closely related to bacterial robustness and adsorption capacity, playing crucial roles in nisin production in Lactococcus lactis. Peptidoglycan (PG), the essential component of cell wall, is usually modified with MurNAc O-acetylation and GlcNAc N-deacetylation, catalyzed by YvhB and XynD, respectively. In this study, increasing the two modifications in L. lactis F44 improved autolysis resistance by decreasing the susceptibility to PG hydrolases. Furthermore, both modifications were positively associated with overall cross-linkage, contributing to cell wall integrity. The robust cell wall rendered the yvhB/xynD-overexpression strains more acid resistant, leading to the increase of nisin production in fed-batch fermentations by 63.7 and 62.9%, respectively. Importantly, the structural alterations also reduced nisin adsorption capacity, resulting in reduction of nisin loss. More strikingly, the co-overexpression strain displayed the highest nisin production (76.3% higher than F44). Our work provides a novel approach for achieving nisin overproduction via extensive cell wall remodeling.
Collapse
|
19
|
Moynihan PJ. The lasting impact of the 2013 Beveridge poster award. Can J Microbiol 2018; 64:645. [PMID: 30169129 DOI: 10.1139/cjm-2017-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Patrick J Moynihan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England
| |
Collapse
|
20
|
Sychantha D, Little DJ, Chapman RN, Boons GJ, Robinson H, Howell PL, Clarke AJ. PatB1 is an O-acetyltransferase that decorates secondary cell wall polysaccharides. Nat Chem Biol 2017; 14:79-85. [DOI: 10.1038/nchembio.2509] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/29/2017] [Indexed: 11/09/2022]
|
21
|
In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA). PLoS Pathog 2017; 13:e1006667. [PMID: 29077761 PMCID: PMC5697884 DOI: 10.1371/journal.ppat.1006667] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/21/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022] Open
Abstract
The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain. We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens. Multi-drug resistance amongst important human pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and drug-resistant Streptococcus pneumoniae (DRSP), continues to challenge clinicians and threaten the lives of infected patients. Of the several approaches being taken to address this serious issue is the development of antagonists that render the bacterial infection more susceptible to the defensive enzymes and proteins of our innate immunity systems. One such target is the enzyme O-acetyltransferase A (OatA). This extracellular enzyme modifies the essential bacterial cell wall component peptidoglycan and thereby makes it resistant to the lytic action of lysozyme, our first line of defense against invading pathogens. In this study, we present the first biochemical and structural characterization of OatA. Using both the S. aureus and S. pneumoniae enzymes as model systems, we demonstrate that OatA has unique substrate specificities. We also show that the catalytic domain of OatA is a structural homolog of a well-studied superfamily of hydrolases. It uses a catalytic triad of Ser-His-Asp to transfer acetyl groups specifically to the C-6 hydroxyl group of muramoyl residues within peptidoglycan. This information on the structure and function relationship of OatA is important for the future development of effective inhibitors which may serve as antivirulence agents.
Collapse
|
22
|
Wang Y, Lazor KM, DeMeester KE, Liang H, Heiss TK, Grimes CL. Postsynthetic Modification of Bacterial Peptidoglycan Using Bioorthogonal N-Acetylcysteamine Analogs and Peptidoglycan O-Acetyltransferase B. J Am Chem Soc 2017; 139:13596-13599. [PMID: 28898061 PMCID: PMC5837961 DOI: 10.1021/jacs.7b06820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacteria have the natural ability to install protective postsynthetic modifications onto its bacterial peptidoglycan (PG), the coat woven into bacterial cell wall. Peptidoglycan O-acetyltransferase B (PatB) catalyzes the O-acetylation of PG in Gram (-) bacteria, which aids in bacterial survival, as it prevents autolysins such as lysozyme from cleaving the PG. We explored the mechanistic details of PatB's acetylation function and determined that PatB has substrate specificity for bioorthgonal short N-acetyl cysteamine (SNAc) donors. A variety of functionality including azides and alkynes were installed on tri-N-acetylglucosamine (NAG)3, a PG mimic, as well as PG isolated from various Gram (+) and Gram (-) bacterial species. The bioorthogonal modifications protect the isolated PG against lysozyme degradation in vitro. We further demonstrate that this postsynthetic modification of PG can be extended to use click chemistry to fluorescently label the mature PG in whole bacterial cells of Bacillus subtilis. Modifying PG postsynthetically can aid in the development of antibiotics and immune modulators by expanding the understanding of how PG is processed by lytic enzymes.
Collapse
Affiliation(s)
- Yiben Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Klare M. Lazor
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kristen E. DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Hai Liang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Tyler K. Heiss
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- Department of Biological Chemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
23
|
Ragland SA, Schaub RE, Hackett KT, Dillard JP, Criss AK. Two lytic transglycosylases in Neisseria gonorrhoeae impart resistance to killing by lysozyme and human neutrophils. Cell Microbiol 2016; 19. [PMID: 27597434 DOI: 10.1111/cmi.12662] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023]
Abstract
Symptomatic infection by Neisseria gonorrhoeae (Gc) produces a potent inflammatory response, resulting in a neutrophil-rich exudate. A population of Gc can survive the killing activities of neutrophils for reasons not completely understood. Unlike other Gram-negative bacteria, Gc releases monomeric peptidoglycan (PG) extracellularly, dependent on two nonessential, nonredundant lytic transglycosylases (LTs), LtgA and LtgD. PG released by LtgA and LtgD can stimulate host immune responses. We report that ΔltgAΔltgD Gc were decreased in survival in the presence of primary human neutrophils but otherwise grew equally to wild-type Gc. Adding PG monomer failed to alter ΔltgAΔltgD Gc survival. Thus, LTs protect Gc from neutrophils independently of monomer release. We found two reasons to explain decreased survival of the double LT mutant. First, ΔltgAΔltgD Gc was more sensitive to the neutrophil antimicrobial proteins lysozyme and neutrophil elastase, but not others. Sensitivity to lysozyme correlated with decreased Gc envelope integrity. Second, exposure of neutrophils to ΔltgAΔltgD Gc increased the release of neutrophil granule contents extracellularly and into Gc phagosomes. We conclude that LtgA and LtgD protect Gc from neutrophils by contributing to envelope integrity and limiting bacterial exposure to select granule-localized antimicrobial proteins. These observations are the first to link bacterial degradation by lysozyme to increased neutrophil activation.
Collapse
Affiliation(s)
- Stephanie A Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Ryan E Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Kathleen T Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, 22908, USA
| |
Collapse
|
24
|
Schaub RE, Chan YA, Lee M, Hesek D, Mobashery S, Dillard JP. Lytic transglycosylases LtgA and LtgD perform distinct roles in remodeling, recycling and releasing peptidoglycan in Neisseria gonorrhoeae. Mol Microbiol 2016; 102:865-881. [PMID: 27608412 DOI: 10.1111/mmi.13496] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
Neisseria gonorrhoeae releases peptidoglycan (PG) fragments during infection that provoke a large inflammatory response and, in pelvic inflammatory disease, this response leads to the death and sloughing of ciliated cells of the Fallopian tube. We characterized the biochemical functions and localization of two enzymes responsible for the release of proinflammatory PG fragments. The putative lytic transglycosylases LtgA and LtgD were shown to create the 1,6-anhydromuramyl moieties, and both enzymes were able to digest a small, synthetic tetrasaccharide dipeptide PG fragment into the cognate 1,6-anhydromuramyl-containing reaction products. Degradation of tetrasaccharide PG fragments by LtgA is the first demonstration of a family 1 lytic transglycosylase exhibiting this activity. Pulse-chase experiments in gonococci demonstrated that LtgA produces a larger amount of PG fragments than LtgD, and a vast majority of these fragments are recycled. In contrast, LtgD was necessary for wild-type levels of PG precursor incorporation and produced fragments predominantly released from the cell. Additionally, super-resolution microscopy established that LtgA localizes to the septum, whereas LtgD is localized around the cell. This investigation suggests a model where LtgD produces PG monomers in such a way that these fragments are released, whereas LtgA creates fragments that are mostly taken into the cytoplasm for recycling.
Collapse
Affiliation(s)
- Ryan E Schaub
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yolande A Chan
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mijoon Lee
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Dusan Hesek
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Joseph P Dillard
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
25
|
Ha R, Frirdich E, Sychantha D, Biboy J, Taveirne ME, Johnson JG, DiRita VJ, Vollmer W, Clarke AJ, Gaynor EC. Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni. J Biol Chem 2016; 291:22686-22702. [PMID: 27474744 PMCID: PMC5077204 DOI: 10.1074/jbc.m116.746404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 12/30/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target.
Collapse
Affiliation(s)
- Reuben Ha
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Emilisa Frirdich
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - David Sychantha
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacob Biboy
- the Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom, and
| | - Michael E Taveirne
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jeremiah G Johnson
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Victor J DiRita
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Waldemar Vollmer
- the Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom, and
| | - Anthony J Clarke
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Erin C Gaynor
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,
| |
Collapse
|
26
|
Schultink A, Naylor D, Dama M, Pauly M. The role of the plant-specific ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall polysaccharide O-acetylation. PLANT PHYSIOLOGY 2015; 167:1271-83. [PMID: 25681330 PMCID: PMC4378174 DOI: 10.1104/pp.114.256479] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/05/2015] [Indexed: 05/17/2023]
Abstract
A mutation in the ALTERED XYLOGLUCAN9 (AXY9) gene was found to be causative for the decreased xyloglucan acetylation phenotype of the axy9.1 mutant, which was identified in a forward genetic screen for Arabidopsis (Arabidopsis thaliana) mutants. The axy9.1 mutant also exhibits decreased O-acetylation of xylan, implying that the AXY9 protein has a broad role in polysaccharide acetylation. An axy9 insertional mutant exhibits severe growth defects and collapsed xylem, demonstrating the importance of wall polysaccharide O-acetylation for normal plant growth and development. Localization and topological experiments indicate that the active site of the AXY9 protein resides within the Golgi lumen. The AXY9 protein appears to be a component of the plant cell wall polysaccharide acetylation pathway, which also includes the REDUCED WALL ACETYLATION and TRICHOME BIREFRINGENCE-LIKE proteins. The AXY9 protein is distinct from the TRICHOME BIREFRINGENCE-LIKE proteins, reported to be polysaccharide acetyltransferases, but does share homology with them and other acetyltransferases, suggesting that the AXY9 protein may act to produce an acetylated intermediate that is part of the O-acetylation pathway.
Collapse
Affiliation(s)
- Alex Schultink
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Dan Naylor
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Murali Dama
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Markus Pauly
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| |
Collapse
|
27
|
Urbanowicz BR, Peña MJ, Moniz HA, Moremen KW, York WS. Two Arabidopsis proteins synthesize acetylated xylan in vitro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:197-206. [PMID: 25141999 PMCID: PMC4184958 DOI: 10.1111/tpj.12643] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/18/2014] [Accepted: 08/01/2014] [Indexed: 05/17/2023]
Abstract
Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally because of collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis; however, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10-L (IRX10-L) and ESKIMO1/TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways used by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties.
Collapse
Affiliation(s)
- Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Maria J. Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Corresponding authors: Maria J. Peña, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA, +01 (706) 542-4419, William S. York, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA, +01 (706) 542-4628 ,
| | - Heather A. Moniz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - William S. York
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Corresponding authors: Maria J. Peña, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA, +01 (706) 542-4419, William S. York, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA, +01 (706) 542-4628 ,
| |
Collapse
|
28
|
Moynihan PJ, Clarke AJ. Mechanism of action of peptidoglycan O-acetyltransferase B involves a Ser-His-Asp catalytic triad. Biochemistry 2014; 53:6243-51. [PMID: 25215566 DOI: 10.1021/bi501002d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The O-acetylation of the essential cell wall polymer peptidoglycan is essential in many bacteria for their integrity and survival, and it is catalyzed by peptidoglycan O-acetlytransferase B (PatB). Using PatB from Neisseria gonorrhoeae as the model, we have shown previously that the enzyme has specificity for polymeric muropeptides that possess tri- and tetrapeptide stems and that rates of reaction increase with increasing degrees of polymerization. Here, we present the catalytic mechanism of action of PatB, the first to be described for an O-acetyltransferase of any bacterial exopolysaccharide. The influence of pH on PatB activity was investigated, and pKa values of 6.4-6.45 and 6.25-6.35 for the enzyme-substrate complex (kcat vs pH) and the free enzyme (kcat·KM(-1) vs pH), respectively, were determined for the respective cosubstrates. The enzyme is partially inactivated by sulfonyl fluorides but not by EDTA, suggesting the participation of a serine residue in its catalytic mechanism. Alignment of the known and hypothetical PatB amino acid sequences identified Ser133, Asp302, and His305 as three invariant amino acid residues that could potentially serve as a catalytic triad. Replacement of Asp302 with Ala resulted in an enzyme with less than 20% residual activity, whereas activity was barely detectable with (His305 → Ala)PatB and (Ser133 → Ala)PatB was totally inactive. The reaction intermediate of the transferase reaction involving acetyl- and propionyl-acyl donors was trapped on both the wild-type and (Asp302 → Ala) enzymes and LC-MS/MS analysis of tryptic peptides identified Ser133 as the catalytic nucleophile. A transacetylase mechanism is proposed based on the mechanism of action of serine esterases.
Collapse
Affiliation(s)
- Patrick J Moynihan
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario N1G 2W1 Canada
| | | |
Collapse
|